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Abstract

We propose a model to infer a user’s preference ranking over musicians from a
sparse set of pairwise preferences of the form ”user k prefers artist i over artist j”.
The goal is to approximate the data with a low-rank factor model using canonical
tensor decomposition. A user-specific pairwise preference is modeled as the sign
of a 3-way tensor inner product of latent factor vectors associated with the user and
the two musicians being compared. The latent factors are learned using mean-field
variational inference and can be used to predict all missing preference pairs. We
validate our approach on a real data set of 80M pairwise preferences aggregated
from the interaction of 200K users with an online radio.

1 Introduction

A good recommendation system is crucial for many web applications. The goal of this work is to
learn a user’s preference between any two artists based on data collected from user listening patterns
to an online radio. A common paradigm for recommendation systems is collaborative filtering
which explores the data for patterns in user behavior and makes recommendations to a user based
on behaviors of other similar users. Latent factor models are often used to implicitly capture those
patterns using a low-rank approximation of the observation data. Tot this end, matrix factorization
has been successfully applied to the Netflix challenge for the prediction of movie ratings [1]. The
idea is that each user and each item is associated with a latent factor vector. The rating by user k
for item j is then modeled as a function of the inner product of the latent factor vector associated
with user k and the latent factor vector associated with item j. A probabilistic treatment of matrix
factorization has since improved the predictive capabilities of this formulation [2, 3].

Our goal in this work is to understand user listening behavior to last.fm, an online radio. The
information we have is of the form “user k listened to artist j a total of ckj times”. One approach is
to directly model ckj . However, results can be skewed by outliers in listening patterns and in many
cases the information desired is less granular, i.e., it is simply desired to know if a user likes an
artist, or which artist a user prefers.

In this paper we focus on a model for this user preference scenario. To this end, we map the click
count data to pairwise preferences [4–7] and obtain an incomplete 3-dimensional binary array {z(k)

ij }
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where z(k)
ij = 1 if user k prefers artist i over artist j. The goal is to approximate this multi-way array

with a low-rank factor model using canonical tensor decomposition [8]. Each entry of the array is
modeled as the 3-way tensor inner product of 3 latent factor vectors. Each user k is associated with
a latent factor vector uk ∈ Rd and each artist i is associated with two latent factor vectors Vi ∈ Rd
and vi ∈ Rd. The dimensionality d governs the rank of the approximation. Introducing two different
sets of latent factor vectors for each item allows us to compare two items and to keep track of the
order in which two items appear in the statement about a users’ preference.

user k score of i vs j = 〈uk, Vi, vj〉 ≈ −〈uk, Vj , vi〉 = user k score of j vs i

where 〈·, ·, ·〉 denotes the 3-way tensor inner product.

The generative process for the model is described in the next section. Variational inference, pre-
sented in Section 3, enables us to train our model on a large dataset of approximately 80M lines
of the form ”user k prefers item i over item j” aggregated from the online radio last.fm. The data
set and experimental results on held out data are described in Section 4 which is followed by a
discussion of our work including our planned future developments.

2 Generative Process for Canonical Tensor Decomposition

Consider a 3-way tensor Z ∈ {−1,+1}N×M×M that encodes the pairwise preferences of N users
between M items as follows,

z
(k)
ij =


1 if user k prefers item i over item j
−1 if user k does not prefer item i over item j
∅ no observed preference.

We construct these values from the last.fm data by calculating the total number of times a user listens
to artist i and j and setting the preference to be the one with the greater number.

We index the observations by Ω = {(i, j, k)|z(k)
ij 6= ∅}. In our approach, a rank d canonical

decomposition of the tensor Z models each entry of as the 3-way tensor inner product of latent
factor vectors uk, Vi, vj ∈ Rd plus Gaussian noise of variance σ2 > 0

z
(k)
ij ∼ N(< uk, Vi, vj >, σ

2). (1)

Since z(k)
ij 6∈ R, we are making an approximation here similar that used by [2] in probabilistic matrix

factorization. The priors on the factor vectors are multivariate Gaussian with diagonal precision
matrix λ−1I ∈ Sd×d++ , λ > 0:

uk ∼ N(0, λ−1I),

Vi ∼ N(0, λ−1I),

vj ∼ N(0, λ−1I).

In the next section we describe an inference scheme which allows us to learn these latent factor
vectors from the data.

3 Variational Inference

To make predictions for unseen data we want to learn the latent factor vectors which maximize the
posterior p(θ|Z ), where θ = {u1:N , V1:M , v1:M}. We use the mean-field assumption and approxi-
mate the posterior with a fully factored variational distribution [9, 10],

q(θ) =
[ N∏
k=1

q(uk)
][ M∏
i=1

q(Vi)
][ M∏
i=1

q(vi)
]
, (2)

which requires that we define the functional forms of the q distributions.
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The general variational objective we seek to maximize with respect to the parameters of a particular
q is

L = Eq[log p(Z, u, V, v)]− Eq[log q(θ)]. (3)

which can be shown to minimize the Kullback-Leibler divergence between q(θ) and the true poste-
rior p(θ|Z). Using the standard procedure, each q(θi) can be computed using the formula

q(θi) ∝ exp{Eq(θ−i)[log p(Z, u, V, v)]}. (4)

In our case, the log joint likelihood of the model is

log p(Z, u, V, v) =
∑

(i,j,k)∈Ω

log p(z
(k)
ij |uk, Vi, vj)

+

N∑
k=1

log p(uk) +
∑
i

log p(Vi) +
∑
i

log p(vi). (5)

Since our model is fully conditionally conjugate, finding q with this joint likelihood gives distribu-
tions in the same family as the prior,

q(uk) ∼ N(µuk
,Σuk

) q(Vi) ∼ N(µVi
,ΣVi

) q(vi) ∼ N(µvi ,Σvi).

We next give the analytic updates for these parameters of q. Let� be the elementwise multiplication
of two vectors and define

Σuk
= ( 1

σ2

∑
i,j S

(u)
ij + λI)−1, µuk

= Σuk

1
σ2

∑
i,j z

(k)
ij (µVi

� µvj ),
ΣVi

= ( 1
σ2

∑
j,k S

(V )
jk + λI)−1, µVi

= ΣVi

1
σ2

∑
j,k z

(k)
ij (µuk

� µvj ),
Σvj = ( 1

σ2

∑
i,k S

(v)
ik + λI)−1, µvj = Σvj

1
σ2

∑
i,k z

(k)
ij (µVi

� µuk
),

(6)

where

S
(u)
ij =(µVi

� µvj )(µVi
� µvj )T + diag(diag(ΣVi

)� diag(Σvj ) + µVi
� µVi

� diag(Σvj ) + µvj � µvj � diag(ΣVi
))

S
(V )
jk =(µuk

� µvj )(µuk
� µvj )T + diag(Σuk

� Σvj + µuk
µTuk
� Σvj + µvjµ

T
vj � Σuk

)

S
(v)
ik =(µVi � µuk

)(µVi � µuk
)T + diag(ΣVi � Σuk

+ µViµ
T
Vi
� Σuk

+ µuk
µTuk
� ΣVi).

Then a coordinate ascent inference algorithm can be run by iterating between Equation (6) using the
most recent values of the other parameters.

4 Experimental Results

We experiment with data collected in 2008 from the online radio last.fm [11]. The data is aggregated
by artist and each line has the form ”user k listened to artist j a total of ckj times”. We selected the
796 most popular artists, namely all artists to which at least 1% of users listened, and we selected the
users who listened to between 20 − 50 musicians from this set of artists. This gave 201,147 users,
for which we constructed the pairwise preference data set yielding 80 million lines of the form ”user
k prefers artist i over artist j”.

For testing, for each user we randomly selected one artist and the user specific preference pairs
involving this artist were held out and used as test data. We set the rank d = 10, precision parameter
λ = 0.1 and noise variance σ2 = 1 and randomly initialized the latent factor vectors according to
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Figure 1: Prediction accuracy across 200K users and 800 artists from last.fm.

their priors. The test results after 50 iterations of our variational inference updates can be found in
Figure 1. The average prediction accuracy on held out data is 62% depicted as a straight dashed line.

To better understand the results we also sorted the test data by click difference (|cki −ckj |) and showed
prediction accuracy based on this number. This is to give a sense of how our prediction accuracy
varies by preference strength. That is, for pairs (k, i, j) that have a large difference in listening
number, we would expect to have a higher accuracy, while the more borderline cases should be
harder to predict. As expected the model performs better in the strong preference regime, i.e., when
the click difference between two artists is large. This can also be seen in Table 1 which provides
some qualitative results.

Table 1 shows the prediction results for 2 users on the randomly held out bands guano apes and
snow patrol compared to artists the model was trained on. Those training artists are sorted from
most listened to (measured in ckj ) to least listened to. According to the underlying ground truth the
users prefer the artists in the first column over the artists in the second column. Checks in the third
column indicate whether our model predicts the pairwise preference correctly. Note that the click
difference is largest at the beginning and the end of the list and smallest when the held out band
switches from the right column to the left. Consistent with Figure 1, the prediction errors for the
examples shown here are more frequent in the region where the click difference is small.

We compare our results with MAP estimates. Rather than updating the entire distribution the MAP
algorithm only updates the locations of the latent factor vectors. This results in shorter running times
but a model that doesn’t capture uncertainty. For comparison Figure 1 also contains the test results
after running MAP for 150 iterations.

5 Discussion and Future Work

We have presented a probabilistic model for the prediction of pairwise user preferences. The binary
preferences are modeled as the 3-way tensor inner product of the latent factor vectors associated
with the user and the two items being compared. We validate our model on a large data set collected
from the online radio last.fm.

Both the advantage and the drawback of our model comes from introducing N + 2M latent factor
vectors rather than N +M such as in other comparable approaches for pairwise preference predic-
tion. More parameters to train means additional computational cost (time and space) but also results
in more flexibility and easier fitting to the structure inherent in the data.

We are currently considering the following future developments:

4



user 130
pairwise preference predicted correctly?

my dying bride guano apes 3
system of a down guano apes 3
john williams guano apes 3
manowar guano apes 3
behemoth guano apes 3
pantera guano apes 3
cannibal corpse guano apes 3
apocalyptica guano apes 3
t.i. guano apes 7
metallica guano apes 7
guano apes ac/dc 3
guano apes lamb of god 3
guano apes howard shore 3
guano apes lil wayne 3
guano apes aerosmith 3
guano apes akon 3
guano apes black eyed peas 3
guano apes tiamat 3
guano apes jimmy eat world 3
guano apes hans zimmer 3
guano apes atb 3
guano apes red hot chili peppers 3
guano apes eminem 3

user 160
pairwise preference predicted correctly?

avenged sevenfold snow patrol 3
nightwish snow patrol 3
metallica snow patrol 7
30 seconds to mars snow patrol 3
anberlin snow patrol 3
ensiferum snow patrol 7
morcheeba snow patrol 3
system of a down snow patrol 7
staind snow patrol 7
the killers snow patrol 3
p.o.d. snow patrol 3
paramore snow patrol 3
rammstein snow patrol 3
kaiser chiefs snow patrol 3
in flames snow patrol 7
3 doors down snow patrol 7
kon snow patrol 7
snow patrol hans zimmer 3
snow patrol robbie williams 3
snow patrol travis 3
snow patrol muse 3
snow patrol fear factory 3
snow patrol keane 3
snow patrol coldplay 3
snow patrol switchfoot 3
snow patrol band of horses 3
snow patrol disturbed 3
snow patrol epica 3
snow patrol my dying bride 3
snow patrol lady gaga 3

Table 1: Prediction results for 2 users on the randomly held out bands guano apes and snow patrol
compared to artists the model was trained on. Those training artists are sorted from most listened
to to least listened to. According to the underlying ground truth the users prefer the artist in the
first column over the artist in the second column. Checks indicate whether our model predicts the
pairwise preference correctly. Note that the click difference is largest at the beginning and the end
of the list and smallest when the held out band switches from the right column to the left. As alrady
quantified in Figure 1 prediction occur more frequently in regions where the click difference is small.
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• In the future, we hope to speed up our approach by using stochastic variational inference
[12] (SVI). Since there is no clear way to partition our parameters into global and local
variables, some additional thought will be required for applying stochastic inference to this
problem.

• Modeling z(k)
ij ∈ {−1,+1} as a Gaussian random variable is clearly a rough approxima-

tion. We plan to consider probit models that use a latent Gaussian random variable of the
same form as Equation (1), but then have a binning function that maps this latent Gaussian
variable to ±1.

• We will also extend the framework to the case where there is no clear user preference,
possibly because of an equality in number of clicks, by having a third partition in our latent
probit model for “no clear preference”. This will give an added level of flexibility to the
model in the cases where certain elements in Z cannot be formed based on an inequality.

• In addition, we hope to extend our model and inference scheme to a larger number of
dimensions, for example a time dimension could give a 4-way tensor decomposition and
allow for the modeling of temporal dynamics [13]. We also want to explore other schemes
to incorporate temporal dynamics.
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