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ABSTRACT
This paper addresses the fundamental question – How do humans
recognize complex events in videos? Normally, humans view videos
in a sequential manner. We hypothesize that humans can make
high-level inference such as an event is present or not in a video, by
looking at a very small number of frames not necessarily in a linear
order. We attempt to verify this cognitive capability of humans and
to discover the Minimally Needed Evidence (MNE) for each event.
To this end, we introduce an online game based event quiz facilitat-
ing selection of minimal evidence required by humans to judge the
presence or absence of a complex event in an open source video.
Each video is divided into a set of temporally coherent microshots
(1.5 secs in length) which are revealed only on player request. The
player’s task is to identify the positive and negative occurrences of
the given target event with minimal number of requests to reveal
evidence. Incentives are given to players for correct identification
with the minimal number of requests.

Our extensive human study using the game quiz validates our
hypothesis - 55% of videos need only one microshot for correct
human judgment and events of varying complexity require differ-
ent amounts of evidence for human judgment. In addition, the pro-
posed notion of MNE enables us to select discriminative features,
drastically improving speed and accuracy of a video retrieval sys-
tem.

Category and Subject Descriptors: H.4 [Information Systems
Applications] : Miscellaneous

Keywords: Minimally Needed Evidence, Complex Event recogni-
tion, Multimedia Event Detection, Video Retrieval

1. INTRODUCTION
Recognition of complex events in consumer videos such as “pa-

rade” or “changing a tire” is propelling a new breed of research [2,
3,11,12,17,18,23,28,31] in multimedia and computer vision. This
is an extremely challenging problem [2,3,8] as it involves high level
machine understanding of videos that are semantically diverse, and
prone to frequent illumination changes, large background clutter,
and significant camera motion.
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Figure 1: Minimally Needed Evidence (MNE) for identifying a
complex event in a video.

Although impressive research has been conducted in this direc-
tion, they usually are based on a common paradigm that employs
sequential processing of information in videos. Quite interestingly,
human perception of events from videos however, may be achieved
with a completely different mechanism. An analogous problem is
recognition of objects in images. Recent studies [7, 10] suggest
human recognition operates in a non-linear mechanism resulting in
an excellent performance.

This motivates us to investigate a fundamental question – How
do humans recognize complex events and how much evidence is
needed for successful recognition? By studying the event recogni-
tion process employed by humans, we can explain vital cognitive
aspects of human understanding of high-level events, and conse-
quently find interesting differences between humans and machines
in the same process. This can potentially help improve machine-
based event recognition performance.

To this end, we develop the Event Quiz Interface (EQI), an inter-
active tool mimicking some of the key strategies employed by the
human cognition system for high-level understanding of complex
events in unconstrained web videos. EQI enables us conduct an ex-
tensive study on human perception of events through which we put
forth the notion of Minimally Needed Evidence (MNE) to predict
the presence or absence of an event in a video. MNEs as shown in
Fig. 1, are a collection of microshots (set of spatially downsampled
contiguous frames) from a video. Note that our emphasis on scaled-
down version of original frames, is coherent to the term Minimal, in
this context. Our study reinforces our hypothesis that in a majority
of cases humans make correct decisions about an event with just a
small number of frames. It reveals that a single microshot serves
as an MNE in 55% of test videos to identify an event correctly and
68% of videos can be correctly rejected after humans had viewed
only a single microshot.

We make the following technical contributions in this paper: (a)
We propose a novel game based interface to study human cogni-



tion of video events (Section 3.1), which can also be used in a
variety of tasks in complex event recognition that involve human
supervision [3, 17, 23, 28, 31], (b) Based on our extensive study,
we demonstrate that humans can recognize complex events by see-
ing one or two chunks of spatially downsampled shots, less than a
couple seconds in length (Section 3.2), (c) We leverage on positive
and negative visual cues selected by humans for efficient retrieval
(Section 4), and finally, (d) We perform conclusive experiments
to demonstrate significant improvement in event retrieval perfor-
mance on two challenging datasets released under TRECVID (Sec-
tion 5) using off-the-shelf feature extraction techniques applied on
MNEs versus evidence collected sequentially.

In addition, we further conjecture that the utility of MNEs can
be perceived beyond complex event recognition. They can be used
to drive tasks including feature extraction, fine-grained annotation
and detection of concepts. Furthermore, they can also be used to
investigate if underlying temporal structure in a video is useful for
event recognition.

2. RELATED WORK
Video event recognition is a widely studied research area in the

field [8] of multimedia and computer vision. That said, some of the
noted work in recent past, pertinent to recognition in unconstrained
settings include machine interpretation of either low-level features
[13, 26] directly extracted from human labeled event videos [18,
20] or training intermediate-level semantic concepts that require
expensive human annotation [1,17] or a combination of both [9,21].

All these automated efforts require a temporal scan of video con-
tent to initiate processing. In practice, videos are first divided into
small temporal segments uniformly or using some scene change
detection techniques before, further processing. Some sophistica-
tion on selection of relevant shots can be achieved through pool-
ing [2,11], using latent variables [23] or modeling attribute dynam-
ics [12] that preserve the temporal structure present in the videos.

Techniques involving full human interaction [22, 27, 30] to per-
form video retrieval, have also been studied. Efforts in this direc-
tion derive a strong similarity with human annotation of videos [5,
25, 29], as both tasks necessitate linear playback of a video by hu-
mans. While this paradigm may be suitable in the persistent video
surveillance perspective, we argue that for recognition of complex
events, it is an over utilization of resources.

We propose a completely different perspective complex recogni-
tion tasks. Specifically, our approach aims to identify minimal evi-
dence required for recognition with or without a temporal order. In
this context, our work draws some level of conceptual similarities
with [6] and [4], albeit both are in different domains. In [6], the
authors propose a max-margin framework to identify the number of
frames needed to detect simple events e.g. “smile”. Likewise, the
authors of [4] introduce a game based interface to collect discrimi-
native regions and features corresponding to them that humans see
in an image to identify an object.

Our work also aligns with efforts that apply computational hu-
man attention models [7, 10, 14] or visual saliency [15] to solve
high-level visual recognition or video summarization tasks. How-
ever, these methods, do not aim to find the minimal evidence and
they are not designed for recognition of complex events. Needless
to say, they are also computationally prohibitive.

3. EVIDENCE BASED RECOGNITION
In order to facilitate video playback in a non-linear fashion, we

resort to a technique illustrated in Fig. 2. The objective of this in-
terface is to enable humans discover Minimally Needed Evidences

for the recognition of complex events. A more detailed implemen-
tation is provided in the later sections of the paper. Our interface
design conforms to minimalist principles so that whatever human
efforts involved can be judiciously utilized. Instead of asking hu-
mans to directly select the most discriminative shots from the entire
video of the event in question, we use only a small set of interesting
microshots. Compared to keyframes, microshots can reveal local
temporal structure in videos, and therefore provide important cues
about major human actions, in addition to contextual evidence such
as scenes (outdoor/indoor) etc. Also, in contrast to regular shots,
these are more compact, do not require sophisticated boundary de-
tection techniques which can add to the computational overhead.
More details on the microshot extraction is provided in the imple-
mentation section (Section 5.2).
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Figure 2: Collecting Minimally Needed Evidences (MNEs) to
identify complex events in videos: A player watches a mi-
croshot (revealed only after request) to decide whether an event
is present or absent in a video. Numbers over each microshot
indicate the order in which they are revealed with microshots
encircled in red are revealed just before the player made a de-
cision.

3.1 Event Quiz Interface
Given a target event e.g. “changing a tire”, a set of N tem-

porally coherent microshots from K positive and negative videos
(randomly sampled) are selected to populate the quiz interface. We
ensure that each microshot within a set, are roughly spread across
the length of the source video to capture as much diversity as possi-
ble. The temporal structure between the microshots within a video
is also presented through progress timeline, to provide the player a
basic idea of the approximate temporal location of the microshot in
the “parent” video.

For each video (as shown as a separate row in Fig. 2), a human
player is asked to determine the presence or absence of the event –
changing a tire with minimal “clicks”. In order to achieve this, all
microshots are initially hidden (shown as grayed frames in Fig. 2)
from the game player. On click, a spatially downsampled version
(animated GIF sequences used to reduce the network overhead of
the gameplay and low spatial resolution ensures that players cannot
recognize faces/other minute details to memorize a particular class
of event) of the microshot is revealed to the player. For every re-
quest made to reveal a microshot, a player looses a fixed number
of points. Consequently, for all true positive or negative decisions
made, points are retained whereas, for false positive or negative
decisions, points are lost. This scoring system ensures rewarding
correct identification of a video sample in minimal revelation re-
quests.



Once the player is done with one quiz session, the system dis-
plays the final scores (based on the scoring rule described above)
and the accuracy (number of correct decisions divided by 2K).
Note that the order in which microshots are requested for revelation
from the player is also recorded (shown as numbers over each mi-
croshot in Fig. 2) as they help understand how humans accumulate
the evidence in reaching the final judgment about event occurrence.
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Figure 3: Human decision trends with number of microshots
requested before deciding presence/absence of an event.

In the next section, we discuss some of the insights we have
drawn from our user study over a fraction of the TRECVID MED
2013 ad-hoc events dataset.

3.2 Human Study
We used our event quiz interface to conduct an in-depth study

of human performance over videos from 10 complex event cate-
gories. For this experiment, we recruited 8 human players of age
between 25−35, without no previous knowledge of the TRECVID
MED (Multimedia Event Detection) Task. The dataset contains
diverse videos from events including Tailgating, Beekeeping, Wed-
ding Shower etc. All players were requested to play the event quiz
game 2 times for each target event, generating about 1, 600 judg-
ments. Also each event is viewed by multiple users for reliability.
While playing the game, the players were refrained from using web
search to find relevant visual examples of the target event, to solely
judge the human understanding given only the textual definition of
an event.

Fig. 3 provides analysis of human decision trends with respect
to the number of microshots requested to reveal. The 4 pie-charts
shown here correspond to different outcomes of user decisions against
different number of microshots requested to reveal. The slices
in the charts indicate the number of microshot revelation requests
made. As evident, in approximately 87% of the test cases, humans
make correct decisions about an event. Another surprising obser-
vation is that only one microshot is good enough in 55% of the
test cases to identify an event correctly. Furthermore, in 68% of
the cases where humans correctly rejected a video, required view-
ing just one single microshot. Thus, seeing one microshot provides
more cues towards making true negative than true positive deci-
sions. The pie-charts in the bottom of Fig. 3 show the failures made
by humans.

Videos that induce confusion in the user, affect the false alarms
and mis-detection trends, in which cases, more than one microshot
revelations are being made. To develop an understanding on which
class of events affect the human judgment, we provide an event spe-
cific breakdown of avg. accuracies for true detection and rejection
cases in Fig. 4.
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Figure 4: Event level break-down of Top 2 pie-charts from
Fig. 3: The bar chart on the left shows the percentage of videos
in each event category, correctly detected using different num-
ber of microshots revealed. The bar chart on the right, indi-
cates the same for true rejections. The different number of mi-
croshots revealed are color coded as : blue (1), cyan (2), yellow
(3), and brown (4) with numbers indicating # of microshots re-
vealed.

We observe that for three specific events e.g. “Parking a Vehi-
cle”, “Tuning a musical instrument”, “Non-motorized Vehicle Re-
pair”, and “Wedding Shower”, humans need to look at more than 3
microshots for correct identification in relatively more cases (∼ 4%
more) than other events. This can be attributed to the inherent com-
plexity of these events. Intuitively, “Tuning” as opposed to “play-
ing” or “repairing” a musical instrument can only be justified using
relatively more evidences. Some events contain signature contex-
tual evidences such as Horse/Jockey in “Horseriding Competition”,
Bee Farms/Beekeper wearing protecting clothing in “Beekeeping”
etc. which have higher likelihood to be seen by humans, trivializ-
ing correct identification of these events. Hence just 1 microshot is
sufficient, for these events to achieve high recognition performance.
This observation provides a practical psychological insight, which
we believe can be exploited to train specialized concept detectors.

Similar to the chart on left, a single microshot is sufficient for
rejecting a large number of videos for most event categories. Thus,
these microshots are ideally the MNE which can facilitate early
rejection of videos in recognition context. A slightly more verbose
feedback from the players, such as “I believe the video does not
represent Horseriding because, (a) I See . . .”, (b) I do not see . . .”,
etc. can be used to identify event specific concepts.

In other words, the MNEs discovered through the EQI, can be
used to explain complex events more naturally. Specifically, these
can further help us answer what evidence or concepts a human
looks for to make conclusive judgments about an event. With some
more sophistication, we may also be able to answer if there exists
any explicit temporal relationship across evidence that are useful
in the recognition process. The first an foremost step before in-
vestigating the above questions is to validate the credibility of the
discovered MNEs for automated recognition. Hence we propose a
simple video retrieval experiment to back up our hypothesis. The
following section attempts to adapt the discovered MNEs into a ba-



sic retrieval framework.

4. RETRIEVAL
Traditional video retrieval techniques either exhaustively use all

possible constituent shots from a video or automatically select dis-
criminative [2] shots to form a query for retrieval. We are inter-
ested in investigating how MNEs can be efficiently used to formu-
late such queries. Thus, during a typical session, based on the order
of the microshots revealed to a player, we identify microshots that
are most representative towards making a positive judgment (selec-
tion or rejection of a video belonging to the target event category).
For each microshot revealed, a separate query is generated, while
the order of revelation associated with each microshot is later used
to weigh the corresponding retrieved results.

Recall, N being the total number of microshots per video sam-
ple, available for revelation, lets consider Q being the number ac-
tually revealed to the player. Let i be the order of the revealed
microshot, thus the higher the value of i, the latter it has been re-
vealed to the human player. Consequently, it is likely to be more
discriminative towards correct identification or rejection of a video
with respect to a target event. We first represent each revealed mi-
croshot or query (mi) as a vector obtained from the bag-of-features
representation (discussed in Section 4.1).

We perform a nearest neighbor search for each of the Q re-
vealed microshots across a pre-indexed database of microshot vec-
tors. Each of the P nearest neighbor to mi, say x

(j)
i in the set

Xi = {x(1)
i , x(2)

i , . . ., x(P )
i } contributes a real valued vote (v(j)i ,

conforming to the set of votes Vi). The votes are computed based
on the neighbors’ distances to the revealed microshot mi, accord-
ing to the following equation:

v
(j)
i = (N −Q+ i)× exp(−|x(j)

i −mi|). (1)

The term (N − Q + i) ensures a simple weighting mechanism
penalizing nearest neighbors to those microshots that are less dis-
criminative towards identifying a target event, and rewarding those
that are revealed later to the player. Note that the above formulation
fits perfectly in all cases, irrespective of the number of microshots
revealed, while also capturing their order of revelation.

After we have obtained the nearest neighbors to each revealed
microshot, our objective is to come up with a sorted list of videos
(L), whose each entry is paired as < V ideo, V ote >. To perform
this task, we employ a majority voting scheme listed in 1. The key
idea of this algorithm is to add votes from neighbors that share their
“parents” (recall microshots are sampled from a video).

Note that the algorithm 1 does not incorporate temporal relation-
ship between multiple microshots used as queries, so we used a
separate strategy to include this additional information. Instead of
aggregating weights from all candidates, we only considered those
candidates that are temporally consistent with the query. However,
through experiments we found this additional information did not
help improve retrieval performance and hence not reported.

We also leverage on the true negative decisions made by play-
ers in a setting discussed in Section 4.2. Player decisions that end
up being false positives and negatives are not used in the retrieval
process.

4.1 Microshot Representation
We use two complementary representations for each microshot.

Recall that a microshot consists of M -consecutive frames, we use
the center most frame to extract appearance based representation,
while the entire microshot for motion based representation. SIFT [13]

Algorithm 1: Majority voting algorithm used in our video re-
trieval technique.

1 Procedure RetrieveVideos ({m1, . . .mQ}, N , P )
Input: Set of queries {m1, . . .mQ},
Number of Microshots available per video (N ),
Nearest Neighbors (P ),
Database (D)

2 Output: Ranked List of videos (L)
3 L← {};
4 for each mi ∈ {m1 . . .mQ} do
5 Xi ← NNsearch(mi, D, P );
6 for each x

(j)
i ∈ Xi do

7 // Calculate vote from j-th neighbor x(j)
i

8 v
(j)
i ← (N −Q+ i)× e(−|x

(j)
i −mi|);

9 // Add neighbor votes from common “parents”
10 Li ← addVotes(Vi, Xi);
11 L← merge(Li, L);
12 L← sort(L);
13 return (L);

features are extracted from the center-most frame, and dense trajec-
tory features described using motion boundary histograms [26] are
extracted from the entire microshot, form the bases of the appear-
ance and motion representation of a given microshot, respectively.
A soft quantization based bag of visual words model is employed to
create the final representations for each microshots. We use a pro-
tocol empirically similar to [26] to generate the optimal vocabulary
in both cases.

These feature representations are independently used to construct
pre-built indexing structures using a hierarchical k-means tree algo-
rithm available in [19]. Note that, this step can be easily replaced
with any algorithm capable of scalable enough to search in high-
dimensional space.

4.2 Leveraging Negative Cues
In our human study, we observe that players can quickly reject

some videos by viewing as few as a single microshot. In other
words, given such shots, the players are certain that the video does
not contain the target event . For example as shown in Figure 5,
considering the event parkour, if a player sees an indoor scene, the
entire sequence can be immediately rejected. On the other hand,
if the microshot contains some evidence belonging to an outdoor
scene with a handful of people, humans may need additional evi-
dence to make the final decision.

Figure 5: Representative frames from top 3 discovered negative
microshot clusters for Parkour.

Motivated by the above fact, we propose to quickly reject the
negative videos by learning from the user response. This can dra-
matically save the online testing time for event detection. Consid-
ering a single event,

• We first collect the video shots, such that after viewing this



single shot, the user rejects the video. These video shots are
considered to constrain strong cues against the event.

• We then cluster the above shots to S clusters. We assume
that each cluster represents a strongly negative visual cue.

• For each cluster, we train a one-class SVM [16]. A one-
class SVM can capture the visual properties of the clustering,
without the need for defining the “positive” microshots.

• In the online test time, we first randomly sample 1 (or 2)
microshots from each test video, and apply the S one-class
SVMs. If any score of the S-classifiers is high, we will ex-
clude the video for further processing.

In practice, we set L = 5, which can well capture the “nega-
tive clusters” based on visualization. Figure 5-6 show some top
detected representative frames from the negative clusters for events
Birthday Party and Parkour. We can see, for example microshots
containing animals, indoor scenes, and fixing vehicles are strong
negative cues for presence of Parkour event in a video.

Figure 6: Representative frames from top 3 discovered negative
microshot clusters for Birthday Party.

Recall the statistics presented in Fig. 3, human players can cor-
rectly reject negative samples of a target event by looking at one
or atmost two microshots in ∼ 90% cases. Thus, the online test-
ing time can be dramatically reduced, as lots of videos are rejected
without the time-consuming process of extracting features. In par-
ticular, even by performing simple exhaustive search without any
sophisticated indexing structure employed at dataset level, we ob-
served a 6 − 7 times speed up in search time. Consequently, the
memory allocated for loading a significant portion of the database
(for efficient search) is reduced. The above approach is similar to
performing a single-level cascade classification on temporal scale.
A similar idea on the spatial scale has been widely used in object
detection [24].

We explain our experimental protocol in the next section starting
with the datasets we used for evaluation and discuss some interest-
ing results thereafter.

5. EXPERIMENTS
In this paper, we are considering video-example based event re-

trieval. In other words, given a query video, we consider the videos
in the database with same event label as positive. We use mAP
to compare the performance of different methods. The following
sections detail our extensive experiments on two widely used event
recognition datasets released by NIST as part of TRECVID MED
competition organized since 2010 1.

5.1 Datasets
The first dataset is called the TRECVID MED 2013 Ad-hoc

events dataset (referred as MED13 ADHOC) and has already been
1
http://www.nist.gov/itl/iad/mig/med.cfm

used to report our human study in Section 3.2. It consists of 1, 497
videos distributed over another 10 different event classes listed as
follows: (E031) Beekeeping, (E032) Wedding shower,(E033) Non-
motorized Vehicle repair, (E034) Fixing musical instrument, (E035)
Horse riding competition, (E036) Felling a tree, (E037) Parking a
vehicle, (E038) Playing fetch, (E039) Tailgating, (E040) Tuning
musical instrument.

The second one is a combination of complex events from the
event collections released in 2011 and 2012, hereafter referred as
MED TEST. This dataset consists of 3, 489 videos from 20 dif-
ferent complex event categories. These are: (E006) Birthday party,
(E007) Changing a vehicle tire, (E008) Flash mob gathering, (E009)
Getting a vehicle unstuck,(E010) Grooming an animal, (E011) Mak-
ing a sandwich, (E012) Parade, (E013) Parkour, (E014) Repairing
an appliance, (E015) Working on a sewing project, (E021) Attempt-
ing a bike trick, (E022) Cleaning an appliance, (E023) Dog show,
(E024) Giving directions to a location, (E025) Marriage proposal,
(E026) Renovating a home, (E027) Rock climbing, (E028) Town
hall meeting, (E029) Winning a race without a vehicle, and (E030)
Working on a metal crafts project.

All videos in the datasets are approximately uniformly distributed
over all event classes, and are typically recorded by amateur con-
sumers approximately at 30 fps with no specific resolution, under
unconstrained scenarios. Also videos from these events have large
degree of intra-class visual variance (e.g. Attempting a Board trick
refers to both Snow boarding and Skate boarding), and in many
cases demonstrate subtle inter-class visual variance (e.g. Cleaning
an Appliance and Repairing an appliance).

5.2 Implementation
We implement the proposed Event Quiz Interface in a web based

framework. A screen capture of a typical query session is shown
in Fig. 7. The camera icon with text overlay “Show Microshot” is
part of the actual game interface design. A player initially sees a
set of camera icons, and attempt to judge whether a video contains
the specific event (in this case “parade”) by requesting to reveal
a minimal number of microshots. Such minimal set of revealed
microshots is deemed the MNEs for event recognition. Players are
given incentives in the form of points (indicated in the rightmost
column) for correct identification of an event by seeing minimal
evidence.

The versatility of the interface allows us to use it in testing mode,
where queries can be formulated and simultaneously be used for re-
trieval purpose (Submit labels and Search button in Fig. 7). Before
each session, EQI automatically generates a random target event
name from either of MED13 ADHOC or MED TEST datasets, and
initializes the placeholders (camera icons in Fig. 7) with subsam-
pled animated images of the microshots. K is set to 5, indicating
the number of positive and negative samples to be used per session.
In practice, we find that smaller K cannot capture the contents of
the video, yet larger K will create more burdens for the user.

Each microshot is pre-sampled from its parent video subjected to
an interestingness threshold (Iδ). Only microshots with sufficient
interestingness (in terms of appearance and dynamics) are used.
For example, dark or static microshots will not be selected. The
interestingness (I) of a microshot of length M is computed as a
weighted function of entropy content with respect to appearance
and motion:

I = −α
M∑
i=1

Pa(i)log[Pa(i)]− β
M∑
i=1

Pm(i)log[Pm(i)], (2)

where Pa(i) and Pm(i) are the probability mass functions for ap-

http://www.nist.gov/itl/iad/mig/med.cfm
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Figure 7: Screen capture of a typical game play session on the event quiz web interface using the MED13 ADHOC dataset, with
Parade being used as a target event.

pearance and motion, respectively. Pa(i) is directly derived from
horizontal and vertical intensity gradients and Pm(i) is computed
using successive frame difference for ith frame in a candidate mi-
croshot. More sophisticated methods [2, 11] can be applied to
select better microshots which would involve sacrificing compu-
tational speed, and hence not considered within the purview of this
work.

During microshot extraction, motion entropy content of a se-
quence is weighed higher than that of appearance, as we are more
interested in videos that are rich in action. This is ensured by em-
pirically setting α = 0.3, β = 0.6 and Iδ = 1. Two types of fea-
tures are extracted from the microshots created using the method
described in Section 4.1. We set M = 41 as the microshot length
(most human actions that are repetitive in nature such as jumping,
running, walking, waving, clapping etc. can be discerned after
watching 1.5s of a video footage captured under 30fps [6, 12]),
thus the twenty first frame is marked as key frame. Dense Tra-
jectory Features [26] extracted from a microshot, and Dense SIFT
features [13] extracted from the corresponding keyframe, are quan-
tized into two separate vocabularies of 5, 000 and 2, 000 respec-
tively. These vocabularies are used subsequently to derive the bag
of features representations corresponding to motion and appearance
respectively.

For every microshot used in the query process, we obtain 128
nearest neighbors using a fast approximate nearest neighbor search
as discussed in Section 4. For all experiments, precision at a range
of top k-ranked retrieved results (k = 5,10, 15, 20, 30, 40, 60,80,
100 are computed before returning the final mean Average Preci-
sion.

5.3 Comparisons
Although the MED TEST dataset used in the paper is used in pre-

vious event classification experiments in [2,11,12,23], the MED13
ADHOC dataset is brand new. Additionally, since our focus is
on the retrieval aspect of videos containing complex events, it is
extremely difficult to compare our performance with the previous
methods that perform classification and report results on MED TEST
dataset.

However, to demonstrate the performance of our method, we
compare with two different baseline methods. The first one does
not perform any smart selection of evidence before retrieval (BL-
A). In other words, this baseline uses all microshots available per
query video exhaustively. We implement another baseline method
that performs automatic discriminative microshot selection based
on the technique proposed in [2]. In this baseline, we cluster all
microshots from a video to a few representative ones. The number
of representative shots are empirically determined to be 5. This is
referred as BL-B in the next few sections.

6. RESULTS
We take the opportunity to report our results on the MED13 AD-

HOC dataset here. A summary of experiments under this setting is
provided in Tab. 1. The number of queries used for retrieval is listed
in column 2. This is followed by the average precisions obtained
using two baselines: all microshots (BL-A) and automatically se-
lected microshots using clustering (BL-B). The next two columns
report the respective APs with MNEs selected by human players
without and with quick rejection scheme discussed in Section 4.2.
In all cases appearance information is used to perform retrieval.



Events BL-A BL-B MNE MNE+QR
Beekeeping 3.47 4.12 20.96 20.86
Wedding shower 2.87 2.05 17.23 17.42
Non-motorized Vehicle repair 2.56 3.35 16.90 17.09
Fixing musical instrument 3.52 3.09 19.26 19.69
Horse riding competition 4.60 5.21 21.46 11.91
Felling a tree 5.47 5.25 20.86 11.27
Parking a vehicle 3.09 6.11 17.04 17.35
Playing fetch 2.73 4.08 16.62 16.74
Tailgating 1.75 3.15 15.48 14.97
Tuning musical instrument 3.95 4.06 18.26 18.56
Mean Average Precision 3.41 4.07 18.47 18.59

Table 1: Average Precision (%) for all events from TRECVID
MED 2013 Ad-hoc Event collection data using different re-
trieval methods.

Our experiments back up our hypothesis that video retrieval with
MNEs achieve around 14% absolute improvement in AP over that
obtained using a state-of-the-art method (similar to [2]) that uses
automatic evidence selection. There is slight improvement in AP
when early rejection of irrelevant videos based on negative cues is
employed.
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Figure 8: Summary of retrieval on MED13 Ad-hoc event
dataset.

Fig. 8 offers a better understanding of the retrieval behavior on
this dataset using different methods tested with both the appear-
ance and motion based representations. We report the precision
of retrieval with respect to top k = 5, 10, 15, 20, 30, and 50
videos returned. For legibility, performance on retrieval systems
that are using appearance based representations are indicated in
solid lines whereas the same using motion are shown using dashed
lines. The retrieval performance using all available evidence (BL-
A) for a query video is shown in red, automatically selected evi-
dence based on [2] (BL-B) in blue, Minimally Needed Evidences
(MNE) in green and quick rejection from negative cues paired with
Minimally Needed Evidences (MNE + QR) in magenta. Finally,
results based on early fusion of both motion and appearance repre-
sentations for MNE+QR is indicated in solid black line.

According to our observation, appearance based representation

yields slightly better performance than the motion based one for all
methods, however fusion of both boosts the overall performance.
This reinstates that both representations carry complementary in-
formation.

Events [17] MNE+QR (Fused)
Birthday party 15.9 35.6
Changing vehicle tire 11.8 23.4
Flash mob 30.5 34.3
Vehicle unstuck 15.9 28.2
Grooming animal 21.4 28.5
Making sandwich 13.8 31.6
Parade 22.1 34.8
Parkour 21.9 37.1
Repairing appliance 22.1 32.1
Sewing project 10.1 24.4
Bike trick 11.0 21.3
Cleaning appliance 7.2 19.1
Dog show 13.0 24.5
Giving directions 11.4 22.9
Marriage proposal 2.5 16.3
Renovating home 20.7 29.1
Rock climbing 6.5 18.5
Town hall meeting 5.5 12.3
Winning race w/o vehicle 8.5 18.6
Metal crafts project 3.0 16.2
Mean average precision 13.1 25.4

Table 2: Average Precision (%) over all 20 events from
TRECVID MED 2011-12 Event collection data.

In Tab. 2, we report our performance on the MED TEST dataset
consisting of 20 events. We also compare our retrieval perfor-
mance against a state of the art technique published in [17]. For
clarity, we only indicate the respective average precision per event
obtained using our best performing method (MNE+QR on fused
motion and appearance representations). Although, the represen-
tation used in [17] cannot be directly compared with the proposed
method in this paper, it gives a general overview of the complexity
of retrieval in the MED TEST dataset. It is interesting to note that a
simple representation coupled with an equally simple retrieval tech-
nique can report 12% improvement over the performance published
by a state of the art method that uses a more semantically sophisti-
cated representation, using only careful selection of evidence.

Finally, in Fig. 9 we provide some qualitative results visualiz-
ing the MNEs discovered by our event quiz interface from three
MED TEST events. Each block of filmstrips shown in Fig. 9 shows
MNEs from 3 video samples belonging to an event category. Each
film strip shows randomly sampled, temporally coherent evidence
- with MNEs selectively shown. Each video can have multiple
MNEs as they are seen by multiple human players. The blue rect-
angular bars underneath each film strip, together with overlaid red
bars, indicate a timeline and approximate temporal locations of the
MNEs within the timeline, respectively. We conjecture that this
information can be applied as an additional temporal prior while
looking for evidence.

7. CONCLUSION & FUTURE WORK
In this paper, we propose a new framework of human cognitive

capability in recognizing complex events in videos. We hypothe-
size and validate that humans can recognize a complex event by
viewing just a very small number of microshots. We conceived the
Event Quiz Interface (EQI), an interactive tool mimicking some of
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Figure 9: Qualitative depiction of MNEs for three events from the MED TEST dataset. Each red segment corresponds to a microshot
revealed by the user.

the key strategies employed by the human cognition system to de-
velop high-level understanding of complex events in unconstrained
web videos. We also introduced the notion of Minimally Needed
Evidence (MNE) to predict the presence or absence of an event in
a video. We performed conclusive experiments to demonstrate sig-
nificant improvement in event retrieval performance on two chal-
lenging datasets released under TRECVID using off-the-shelf fea-
ture extraction techniques applied on MNEs versus evidence col-
lected sequentially.

We are currently investigating how our proposed EQI can be ex-
tended to incorporate human feedback in a more organic way. Sim-
ple free-text inputs to describe the evidence observed while making
a decision, can pave a better way to perform annotation, and con-
sequently obtain refined training samples for supervised learning
of concepts. We believe, as we ingest more event samples into the
EQI, we can generate a consensus on the kind of microshots that
are helpful for large scale event detection.
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