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Abstract

Attribute-based representation has shown great promis-
es for visual recognition due to its intuitive interpretation
and cross-category generalization property. However, hu-
man efforts are usually involved in the attribute designing
process, making the representation costly to obtain. In this
paper, we propose a novel formulation to automatically de-
sign discriminative “category-level attributes”, which can
be efficiently encoded by a compact category-attribute ma-
trix. The formulation allows us to achieve intuitive and crit-
ical design criteria (category-separability, learnability) in
a principled way. The designed attributes can be used for
tasks of cross-category knowledge transfer, achieving su-
perior performance over well-known attribute dataset An-
imals with Attributes (AwA) and a large-scale ILSVRC2010
dataset (1.2M images). This approach also leads to state-of-
the-art performance on the zero-shot learning task on AwA.

1. Introduction

Visual attributes have received renewed attention by the
computer vision community in the past few years. The term
“attribute” often refers to human nameable properties (e.g.,
furry, striped, black) that are shared across categories, there-
by enabling applications of leveraging knowledge learned
from known categories to recognize novel categories, a.k.a,
cross-category knowledge transfer. Such applications in-
clude recognizing unseen categories with no training exam-
ples, or zero-shot learning [13], and description of images
containing unfamiliar objects [8]. “Attributes” have also
been used to denote shareable properties of objects with-
out concise semantic names (e.g., dogs and cats have it but
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sharks and whales don’t [8]) for improved discrimination.
The effectiveness of attribute-based representations has

benefited broad applications, including face verification
[12], image retrieval [25,34], action recognition [15],
image-to-text generation [2], fine-grained visual categoriza-
tion [6], and classification with humans-in-the-loop [4,20].
Problem. Designing attributes usually involves manual-
ly picking a set of words that are descriptive for the im-
ages under consideration, either heuristically [8] or through
knowledge bases provided by domain specialists [13]. Af-
ter deciding the set of attributes, additional human efforts
are needed to label the attributes, in order to train attribute
classifiers. The required human supervision hinders scal-
ing up the process to develop a large number of attributes.
More importantly, a manually defined set of attributes (and
the corresponding attribute classifiers) may be intuitive but
not discriminative for the visual recognition task.
Solution. In this paper, we propose a scalable approach
of automatically designing category-level attributes for dis-
criminative visual recognition. Our approach is motivated
by [13,18], in which the attributes are defined by concise
semantics, and then manually related to the categories as a
category-attribute matrix (Figure 1). This matrix charac-
terizes each category (row) in terms of the pre-defined at-
tributes (columns). For example, polar bear is non-white,
black, non-blue, etc. This matrix is critical for the subse-
quent process of category-level knowledge transfer.

Similar to characterizing categories as a list of attributes,
attributes can also be expressed as how they relate to the
known categories. For example, we can say the second at-
tribute of Figure 1 characterizes the property that has high
association of polar bear, and low association of walrus, li-
on, etc. Based on the above intuition, given the images with
category labels (a multi-category dataset), we propose to
automatically design a category-attribute matrix to define
the attributes. Such attributes are termed as category-level
attributes. The designed attributes will not have concise
names as the manually specified attributes, but they can be
loosely interpreted as relative associations of the known cat-
egories. Because multi-category datasets are widely avail-
able in the computer vision community, no additional hu-
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Figure 1. Manually defined category-attribute matrix copied from
[13]: the rows are the categories, and the columns are the at-
tributes. This matrix is obtained from human judgments on the
“relative strength of association” between attributes and animal
categories.

man efforts are needed in the above process.
Our work makes the following unique contributions:

• We propose a principled framework of using category-
level attributes for visual recognition (Section 3.1).
• We theoretically demonstrate that discriminative

category-level attributes should have the properties of
category-separability and learnability (Section 3.2).
• Based on this analysis, an efficient algorithm is proposed

for scalable design of attributes (Section 4).
• We conduct comprehensive experiments (Section 5) to

demonstrate the effectiveness of our approach in recog-
nizing known and novel categories. Our method achieves
the state-of-the-art result on the zero-shot learning task.

2. Related Works
2.1. Designing Semantic Attributes

Traditionally, the semantic attributes are designed by
manually picking a set of words that are descriptive for the
images under consideration [8,13,16]. Similar way has al-
so been explored for designing “concepts” in multimedia
[17,31] and computer vision [14,26,27]. The concepts are
sometimes manually or automatically organized into a hier-
archical structure (ontology) to characterize different levels
of semantics [17,26]. To alleviate the human burdens, [2]
proposes to automatically discover attributes by mining the
text and images on the web, and [23] explores the “seman-
tic relatedness” through online knowledge source to relate
the attributes to the categories. In order to incorporate dis-
criminativeness for the semantic attributes, [6,19] propose
to build nameable and discriminative attributes with human-
in-the-loop. Compared to the above manually designed se-
mantic attributes, our designed attributes cannot be used to
describe images with concise semantic terms, and they may
not capture subtle non-discriminative visual patterns of in-
dividual images. However, the category-level attributes can
be automatically and efficiently designed for discriminative
visual recognition, leading to effective solutions and even

state-of-the-art performance on the tasks that traditionally
achieved with semantic attributes.

2.2. Designing Data-Driven Attributes

Non-semantic “data-driven attributes” have been ex-
plored to complement semantic attributes with various
forms. [12] combines semantic attributes with “simile clas-
sifiers” for face verification. [32] proposes data-driven
“concepts” for event detection. [15] extends a set of man-
ually specified attributes with data-driven attributes for im-
proved action recognition. [24] extends a semantic attribute
representation with extra non-interpretable dimensions for
enhanced discrimination. [3,10,22] use the large-margin
framework to model attributes for objective recognition.
[7,30] use attribute-like latent models to improve objec-
t recognition. The highly efficient algorithm, and the unique
capability of zero-shot learning, differentiate the proposed
methodology from the above approaches.

The category-level attribute definition can be seen as a
generalization of the discriminative attributes used in [8].
Instead of randomly generating the “category split” as in
[8], we propose a principled way to design the category-
level attributes.

3. A Learning Framework for Visual Recogni-
tion with Category-Level Attributes

3.1. The Framework

We propose a framework of using attributes as mid-level
cues for multi-class classification on known categories. And
the error of such classification scheme is used to measure
the discriminativeness of attributes. Suppose there are k
categories, and l attributes. The category-attribute matrix
(definition of attributes) is denoted as A ∈ Rk×l, in which
the columns {A·i}li=1 define l category-level attributes, and
the rows {Ai·}ki=1 correspond to k known categories.

Definition 1. For an input image x ∈ X (as low-level fea-
tures), we define the following two steps to utilize attributes
as mid-level cues to predict its category label y ∈ Y .
Attribute Encoding: Compute l attributes by attribute clas-
sifiers f(x) = [f1(x), ..., fl(x)]

T in which fi(x) ∈ R mod-
els the strength of the i-th attribute for x.
Category Decoding: Choose the closest category (row of
A) in the attribute space (column space of A):

argmin
i
‖ Ai· − f(x)

T ‖ . (1)

Because A is real valued, a unique solution for Equation
1 can be reached. Figure 2 illustrates using two attributes to
discriminate cats and dogs.

Definition 2. Designing discriminative category-level at-
tributes is to find a category-attribute matrix A, as well as
the attribute classifiers f(·) to minimize the multi-class clas-
sification error.
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Why the Framework. The above framework is motivat-
ed by two previous studies: learning attributes based on
category-attribute matrix [13], and Error Correcting Output
Code (ECOC) [1,5]. Multiple previous research can be uni-
fied into the framework by firstly setting A as a pre-defined
matrix, and then modeling f(·) accordingly. For example,
in the previous studies, A was set as a manually defined
matrix [13], a random matrix (discriminative attributes [8]),
or a k-dimensional square matrix with diagonal elements as
1 and others as −1. The last case is exactly the one-vs-all
approach, in which an attribute is equivalent to a single cat-
egory. When applied for recognizing novel categories, such
attributes are termed as category-level semantic features, or,
classemes [27,31].

Unlike the manual attributes and classemes, the designed
attributes are without concise semantics. However the
category-level attributes are more intuitive than mid-level
representations defined on low-level features, reviewed in
Section 2.2. In fact, our attributes can be seen as soft group-
ings of categories, with analogy to the idea of building tax-
onomy or concept hierarchy in the library science. We pro-
vide a discussion on the semantic aspects of the proposed
method in the supplementary technical report [33].

In addition, by defining attributes based on a set of
known categories, we are able to develop a highly efficient
algorithm to design the attributes (Section 4). It also en-
ables a unique and efficient way for doing zero-shot learn-
ing (Section 5.3).

3.2. Theoretical Analysis

In this section, we theoretically show the properties of
good attributes in a more explicit form. Specifically, we
bound the empirical multi-class classification error in terms
of attribute encoding error and a property of the category-
attribute matrix, as illustrated in Figure 2.

Formally, given training examples {xi, yi}mi=1, in which
xi ∈ X is the feature, and yi ∈ Y is the category label
associated with xi:

Definition 3. Define ε as the average encoding error of
the attribute classifiers f(·), with respect to the category-
attribute matrix A.

ε =
1

m

m∑
i=1

‖ Ayi· − f(xi) ‖. (2)

Definition 4. Define ρ as the minimum row separation of
the category-attribute matrix A

ρ = min
i6=j
‖ Ai· −Aj· ‖ . (3)

Theorem 1. The empirical error of multi-class classifica-
tion is upper bounded by 2ε/ρ.

Figure 2. Discriminating dogs and cats, with two attributes. Each
category (row of A) is a template vector in the attribute space (col-
umn space of A). ρ is the row separation of the category-attribute
matrix. A new image of dog can be represented as an attribute
vector through attribute encoding, and ε is the encoding error. In
order for the image not to be mistakenly categorized as cat, we
prefer smaller ε and larger ρ.

The proof of the theorem is provided in the supplemen-
tary technical report [33]. The message delivered by the
bound is very intuitive. It tells us discriminative attributes
should have the following properties, illustrated in Figure 2:
• Category-separability. We want ρ to be large, i.e. the

categories should be separated in the attribute space.
• Learnability. We want ε to be small, meaning that the

attributes should be learnable. This also implies that at-
tributes should be shared across “similar” categories.

In addition, we also want the attributes to be non-redundant,
otherwise we may get a large amount of identical attributes.
In this paper, the redundancy is measured as

r =
1

l
‖ ATA− I ‖2F , (4)

in which ‖ · ‖F is the Frobenius norm.

4. The Attribute Design Algorithm
Based on the above analysis, we propose an efficient and

scalable algorithm to design the category-attribute matrix
A, and to learn the attribute classifiers f(·). The algorithm
is fully automatic given images with category labels.

4.1. Designing the Category-Attribute Matrix

To optimize the category-attribute matrix A (definition
of attributes), we first consider the objective function in the
following form, without the non-redundancy constraint:

max
A

J(A) = J1(A) + λJ2(A), (5)

in which J1(A) induces separability (larger ρ), and J2(A)
induces learnability (smaller ε). To benefit the algorithm,
we set J1(A) as sum of all distances between every two
rows of A, encouraging every two categories to be separa-
ble in the attribute space.

J1(A) =
∑
i,j

‖ Ai· −Aj· ‖22 . (6)
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Algorithm 1 Designing the category-attribute matrix
Initialize R = Q, and A as an empty matrix, solve E-
quation 9 by sequentially learning k additional columns.
for i = 1 : k do

Solve Equation 10 to get a
Add the new column A← [A,a]
Update1R← R− ηaaT

end for

We set J2(A) as a proximity preserving regularizer

J2(A) = −
∑
i,j

Sij ‖ Ai· −Aj· ‖22, (7)

in which Sij measures the category-level visual proximi-
ty between the category i and category j. The intuition is
that if two categories are visually similar, we expect them to
share more attributes, otherwise the attribute classifiers will
be hard to learn. The construction of the visual proximity
matrix S ∈ Rk×k will be presented in Section 4.3.

It is easy to show that

J(A) = Tr(ATQA), Q = P− λL, (8)

in which P is with diagonal elements being k − 1 and all
the other elements −1, and L is the Laplacian of S [28].

Considering the non-redundant objective, if we force the
designed attributes to be strictly orthogonal to each other,
i.e. ATA = I, the problem can be solved efficiently by
a single step, i.e. A combines the top eigenvectors of Q.
However, just like PCA, the orthogonal constraint will re-
sult in low-quality attributes, because of the fast decay of
eigenvalues. So we relax the strict orthogonal constraint,
and solve the following problem:

max
A

Tr(ATQA)− β ‖ ATA− I ‖2F . (9)

Without loss of generality, we require the columns of A
(attributes) to be l2 normalized. We propose to incremental-
ly learn the columns of A. Specifically, given an initialized
A, optimizing an additional column a is to solve the fol-
lowing optimization.

max
a

aTRa s.t. aTa = 1, (10)

in which R = Q − ηAAT , η = 2β. This is a Rayleigh
quotient problem, with the optimal a as the eigenvector of
R with the largest eigenvalue. The overall algorithm is de-
scribed in Algorithm 1. The algorithm greedily finds addi-
tional non-redundant attributes, with desired properties.

1Because AAT =
∑

i AiA
T
i , in each iteration R can be updated as

R← R− ηaaT = Q− ηAAT for efficiency.

4.2. Learning the Attribute Classifiers

After getting the real-valued category-attribute matrix
A, the next step is to learn the attribute classifiers f(·). We
assume each classifier {fi(·)}li=1 can be learned indepen-
dently. Specifically, suppose fi(·) can be represented by
a linear model wi, our solution is to solve a large-margin
classification problem with weighted slack variables.

min
wi,ξ

‖ wi ‖22 +C

m∑
j=1

|Ayj ,i|ξj (11)

s.t. sign(Ayj ,i)w
T
i xj ≥ 1− ξj

ξj ≥ 0, j = 1...m

in which the binarized category-attribute matrix elemen-
t sign(Ayj ,i) defines the presence/non-presence of the ith
attribute for xj . The idea is to put higher penalties for mis-
classified instances from categories with stronger category-
attribute association. Generalizing to kernel version is s-
traightforward.

4.3. Building the Visual Proximity Matrix S

In the proposed algorithm in Section 4.1, one importan-
t issue is to build the visual proximity matrix S ∈ Rk×k
used in Equation 7. This matrix is key towards making the
attributes learnable, and sharable across categories. Simi-
lar to [28], we first build a distance matrix D ∈ Rk×k, in
which Dij measures the distance between category i and j.
S is modeled as a sparse affinity matrix, with the non-zero
elements Sij = e−Dij/σ .

D is built dependent on type of kernel used for learning
the attribute classifiers f(·) (Section 4.2)2. When nonlinear
kernels are used, SVM margins, of k(k − 1)/2 one-vs-one
SVMs modeled on low-level features are used as distance
measurement for categories; when linear kernels are used
(which is usually used for large-scale problems), we simply
use the distances of category centers (category mean of the
low-level features) as distance measurements. Because the
category centers can be pre-computed, the latter process is
very fast, with computational complexity linear to # images,
and quadratic to # categories.

4.4. Discussions

Efficiency and Scalability. The attribute design algorith-
m requires no expensive iterations on the image features.
The computational complexity of designing an attribute (a
column of A) is as efficient as finding the eigenvector with
the largest eigenvalue of matrix R in Equation 10 (quadrat-
ic to # categories). For example, on a 6-core Intel 2.5 GHz

2The visual proximity matrix S is only dependent on the kernel type,
not the learned attribute classifiers. Therefore, designing attributes (Sec-
tion 4.1) and learning the attribute classifiers (Section 4.2) are two sequen-
tial steps, requiring no expensive iterations on the image features.
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workstation, it just takes about 1 hour to design 2,000 at-
tributes based on 950 categories on the large-scale ILSVR-
C2010 dataset (Section 5.2).
Known Categories vs. Novel Categories. Though the
above algorithm is for designing attributes to discriminate
known categories, the application of the designed attributes
is for recognizing novel categories, the categories that are
not used in the attribute designing process. In specific, we
will show by experiment:
• The designed attributes are discriminative for novel, yet

related categories (Section 5.2 AwA dataset).
• The designed attributes are discriminative for general

novel categories, provided we can design a large amount
of attributes based on a diverse set of known categories
(Section 5.2 ILSVRC2010 dataset).
• The attributes are effective for the task of zero-shot learn-

ing (Section 5.3).

5. Experiments

Datasets. We evaluate the performance of the designed at-
tributes on Animal with Attributes (AwA) [13], and ILSVR-
C2010 datasets3. AwA contains 30,475 images of 50 animal
categories. Associated with the images, there is a manually
designed category-attribute matrix of 85 attributes shown
in Figure 1. ILSVRC2010 contains 1.2M images from
1,000 diverse categories. The experiments are performed
10 times, and we report the mean performance.
Baselines. We first demonstrate that our designed category-
level attributes are more discriminative than other category-
level representations. In the task of discriminating known
categories (Section 5.1), we use the framework proposed
in Section 3, and compare the performance of the designed
attributes with the manual attributes [13] (85 manually de-
fined attributes with a manually specified category-attribute
matrix), random category-level attributes [8] (attributes de-
fined as a randomly generated category-attribute matrix),
and one-vs-all classifiers (equivalent to attributes defined as
an matrix, with diagonal elements as 1 and others as −1).
In the task of novel category recognition in Section 5.2, we
use the extracted attributes as features to perform classi-
fication on the images of novel categories. Our approach
is compared with the manual attributes, random attributes,
classemes [27] (one-vs-all classifiers learned on the known
categories), and low-level features (one-vs-all classification
scheme based on low-level features of the novel categories).
We also test the retrieval and classification performance of
our approaches based on the large-scale ILSVRC2010 data.

To demonstrate the capability of zero-shot learning of the
designed attributes, we compare our approach with the best
published results to date in Section 5.3.

3http://www.image-net.org/challenges/LSVRC/2010/download-public

Figure 3. Multi-class classification accuracy on known categories.
The numbers in bracket are # attributes. The standard deviation is
around 1%.

Measurement Designed Manual Random
Encoding error ε 0.03 0.07 0.04
Minimum row separation ρ 1.37 0.57 1.15
Average row separation 1.42 1.16 1.41
Redundancy r 0.55 2.93 0.73

Table 1. Properties of different attributes. The number of attributes
is fixed as 85. Encoding error ε is defined in Equation 2. Min-
imum row separation ρ is defined in Equation 3. Averaged row
separation is value of the objective function in Equation 6. Redun-
dancy r is defined in Equation 4. The category-attribute matrices
are column-wise l2 normalized in order to be comparable. The
measurements are computed on the test set.

5.1. Discriminating Known Categories

In this section, we verify the multi-class classification
performance and other properties described in Section 3.2
on 40 known categories of AwA dataset. The attributes are
designed based on 40 training categories defined in [13].
The same low-level features (10,940D), and kernel (χ2 with
bandwidth as 0.2 times median distance) are used. For
random attributes, each element of the random category-
attribute matrix is generated uniformly from [−1, 1]4.

We select different amount of images per category for
training, 25 images per category for testing, and 10 images
per category for validation. The parameters are tuned based
on the validation set. The margins of 40×39/2 = 780 one-
vs-one classifiers on the training data are used as distance
measurements D of animal categories (the C parameter for
one-vs-one SVMs is simply fixed as 10). The visual prox-
imity matrix S is built as the mutual 10-NN adjacent matrix
with bandwidth parameter σ as 0.5 times the average dis-
tance [28]. We first fix the weighed SVM penalty C = 2,
and tune λ ∈ {2, 3, 4, 5}, η ∈ {6, 8, 10, 12, 14}. Then we
tune C ∈ {0.02, 0.2, 2, 20}.

Figure 3 demonstrates the performance of multi-class

4Other alternatives including binary random matrix, sparse binary ran-
dom matrix, yield similar performance.
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Figure 4. Multi-class classification accuracy on novel categories.
The 64.6% accuracy with one-vs-all classifier using 50/50 (HALF)
split is similar to the performance (65.9%) reported in [13]. The
numbers in bracket are # attributes. The standard deviation is
around 1%.

classification. Table 1 further verifies the properties of the
designed attributes.
• The designed attributes perform significantly better than

the manual attributes and random category-level at-
tributes (Figure 3 left).
• The designed attributes is competitive to, if not bet-

ter than the low-level features paired with one-vs-all
χ2 classifiers (Figure 3 right). The designed attributes
significantly outperform the the one-vs-all classifiers
(known as classemes) for the task of recognizing novel
categories (Section 5.2), due to the fact that classemes
are not shared across categories.
• The designed attributes have smaller encoding error,

larger row separation and smaller redundancy. This jus-
tifies the theoretical analysis in Section 3.2.
One interesting observation is that even the random

category-attribute matrix has better properties compared to
the manually defined category-attribute matrix (Table 1).
The random attributes therefore outperform the manual at-
tributes (Figure 3 left).

5.2. Discriminating Novel Categories

We show that the designed attributes are also discrim-
inative for novel categories. Specifically, we use the at-
tributes, and other kinds of category-level representations
as features, to perform the multi-class classification (AwA,
ILSVRC2010) and the category-level retrieval (ILSVR-
C2010) tasks.
Animals with Attributes. We use the 40 animal categories
in Section 5.1 to design the attributes. Efficient linear SVM
classifiers are trained based on different kinds of attribute
features to perform classification on the images of 10 novel
categories. The optimally tuned parameters in Section 5.1
are used for the task (The C parameter of linear SVM is
tuned based on the same grid).

Figure 4 shows the performance. The designed attributes

Method Precision@50
Low-level feature 33.40
Classeme (950) 39.24
Ours (500) 39.85
Ours (950) 42.16
Ours (2,000) 43.10

Table 2. Category-level image retrieval result on 50 classes from
ILSVRC2010. The numbers in bracket are # attributes. We closely
follow the settings of [9].

Percentage for training
Method 1% 5% 10% 50% 100%
Low-level feature 35.55 52.21 57.11 66.21 69.16
Classemes (950) 38.54 51.49 56.18 64.31 66.77
Ours (500) 39.01 52.86 56.54 62.38 63.86
Ours (950) 41.60 55.32 59.09 65.15 66.74
Ours (2,000) 43.39 56.51 60.36 66.91 68.17

Table 3. Image classification accuracy on 50 classes from ILSVR-
C2010. The training set contains 54,636 images. The numbers
in bracket are # attributes. Standard deviation is around 1%. We
closely follow the settings of [9].

perform significantly better than other types of representa-
tions, especially with few training examples. This means
that attributes are discriminative representation for the nov-
el categories, by leveraging knowledge learned from known
categories. As the # training images increases, the perfor-
mance of low-level features is improved, due to sufficient
supervision. Note that the manual attributes and classemes
are with fixed dimensions, not extendable due to definition,
whereas the dimension of the designed category-level at-
tributes is scalable.
ILSVRC2010. In the previous experiments on AwA, we
show that the designed attributes are discriminative for nov-
el, yet related categories. We now demonstrate that the
designed attributes can be discriminative for general nov-
el categories, provided that we can design a large amount of
attributes based on a diverse set of known categories. The
ILSVRC2010 dataset is used for this experiment. Following
the settings in [9], the low-level features are 4,096 dimen-
sional fisher vectors [21]. 950 categories are used as known
categories to design attributes. We test the performance of
using attribute features for category-level retrieval and clas-
sification on the remaining 50 disjoint categories.

The distances of category centers (based on low-level
features) are used as distance measurements D of cate-
gories. The visual proximity matrix S is built as a 30-NN
mutual adjacent matrix, with bandwidth parameter σ as 0.5
times the mean distance [28]. The attributes are trained by
linear weighted SVM models. All other detailed experi-
ment settings, including data splits, and ways for parameter
tuning are identical to [9].

We first test the performance of the designed attributes
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for category-level image retrieval. 1,000 randomly selected
images are used as queries to retrieve the nearest neighbors
from the remaining 67,295 images. Table 2 shows the per-
formance in terms of precision@50. The designed attributes
outperform low-level features and classemes, even with 500
dimensions. And 2,000-dimensional attributes outperform
the baselines by 9.70% and 3.86% respectively.

Next, we use the attribute feature, combined with lin-
ear SVM classifiers to classify the images of the 50 novel
categories. 80% of the data are used for training (54,636
images), 10% for testing, and 10% for validation. Table 3
shows multi-class classification accuracy, using differen-
t amount of training images from the training set. Similar
to the experiments on AwA dataset, attribute representation
outperforms the baselines, especially when training with s-
mall amount of examples. It means attributes are effective
for leveraging information of the known categories to rec-
ognize novel categories. As the amount of training images
increases, the performance of low-level features goes up,
due to sufficient amount of supervisions.

5.3. Zero-Shot Learning

Building the New Category-Attribute Matrix. Zero-shot
learning can be seen as an special case of recognizing nov-
el categories, without training data. In such case, human
knowledge [13,18] is required to build a new category-
attribute matrix Ã ∈ Rp×l, to relate the p novel categories
to the l designed attributes. After that, we can follow the
framework in Section 3.1 to recognize the novel categories.
However, for each designed attribute in our approach, there
is no guarantee that it possesses a coherent human interpre-
tation. For example, while some may say the visual proper-
ty separating tiger and zebra from cat and dog is “striped”,
others may say it is the sizes of animals that matter. There-
fore, given a new animal, e.g. skunk (both striped and smal-
l), the humans may come up with different answers.

Motivated by the fact that the visual proximity matrix S
in Equation 7 is central to the attribute design process, we
propose a fairly straightforward solution: similar to [29],
given each novel category, and k known categories, we ask
the user to find the top-M visually similar categories. The
user is free to use any similarity interpretation they wish.
We will then have a similarity matrix S̃ ∈ {0, 1}p×k, in
which S̃ij is the binary similarity of the i-th novel category
and the j-th known category. The novel categories are re-
lated to the designed attributes by the simple weighted sum:

Ã = S̃A (12)

The amount of human interaction is minimal for the above
approach, independent on the number of attributes.
Experiment Results. We test the zero-shot learning perfor-
mance on the AwA dataset, with same settings of [13] (40

Method # Attributes Accuracy
Lampert et al. [13] 85 40.5
Yu and Aloimonos [35] 85 40.0
Rohrbach et al. [23] - 35.7
Kankuekul et al. [11] - 32.7
Ours 10 40.52 ± 4.58
Ours 85 42.27 ± 3.02
Ours 200 42.83 ± 2.92
Ours (Fusion) 200 46.94
Ours (Adaptive) 200 45.16 ± 2.75
Ours (Fusion + Adaptive) 200 48.30

Table 4. Zero-shot multi-class classification accuracy with stan-
dard deviation on the 10 novel animals categories.

animal categories for training and 10 categories for testing).
For each novel category, we ask the users to provide up to
top-5 similar categories when building the similarity matrix.
Empirically, fewer categories cannot fully characterize the
visual appearance of the animals, and more categories will
lead to more human burdens. Ten graduate students, who
were not aware of the zero-shot learning experiments, were
included in the study. When performing the the tasks, they
were asked to think about visual similarities, rather than
similarities otherwise. The time spent for the task ranges
from 15 to 25 minutes. Because there is no validation set
for zero-shot learning, we empirically set λ, η and SVM
penalty C as 3, 15 and 20, throughout the experiments. The
performance is not sensitive to the parameters for the range
described in Section 5.1.

Figure 4 shows the experiment results compared to var-
ious published baselines. Our approach achieves the state-
of-the-art performance, even with just 10 attributes. The
accuracy and robustness can be improved by using more
attributes, and by averaging the multiple binary visual sim-
ilarity matrices (Fusion). The former helps to fully explore
the visual similarities S̃, and the later helps to filter out noise
from different users. We have achieved accuracy of 46.94%,
which significantly outperforms all published results.
Adaptive Attribute Design. In the experiments above, the
attributes are designed to be discriminative for the known
categorizes. As a refinement for zero-shot learning, we can
modify the algorithm to design attributes adaptively for dis-
criminating the novel categories. This can be achieved by
changing the first objective J1(A) (Section 4.1) to

J̃1(A) = J1(S̃A). (13)

In other words, we want to design a category-attribute ma-
trix A which is specifically discriminative for the novel cat-
egories. The modified problem can be solved with minor
modifications of the algorithm.

The last two rows of Table 4 demonstrate the perfor-
mance of adaptive attribute design. Combined with av-
eraged similarity matrix (Fusion + Adaptive), we have
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achieved multi-class classification accuracy of 48.30%, out-
performing all published results with larger margin. The
drawback for the adaptive attribute design is that we need
to redesign the attributes for different tasks. Because the
proposed attribute design algorithm is highly efficient, the
drawback can be alleviated.

6. Conclusion
We propose a novel method for designing category-level

attributes. Such attributes can be effectively used for tasks
of cross-category knowledge transfer. Our future work is
to incorporate concise semantics in the attributes, with the
help of human interactions.
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