
1

Query-Adaptive Image Search with Hash Codes
Yu-Gang Jiang, Jun Wang, Member, IEEE, Xiangyang Xue, Member, IEEE, Shih-Fu Chang, Fellow, IEEE

Abstract—Scalable image search based on visual similarity
has been an active topic of research in recent years. State-
of-the-art solutions often use hashing methods to embed high-
dimensional image features into Hamming space, where search
can be performed in real-time based on Hamming distance of
compact hash codes. Unlike traditional metrics (e.g., Euclidean)
that offer continuous distances, the Hamming distances are
discrete integer values. As a consequence, there are often a
large number of images sharing equal Hamming distances to
a query, which largely hurts search results where fine-grained
ranking is very important. This paper introduces an approach
that enables query-adaptive ranking of the returned images with
equal Hamming distances to the queries. This is achieved by
firstly offline learning bitwise weights of the hash codes for a
diverse set of predefined semantic concept classes. We formulate
the weight learning process as a quadratic programming problem
that minimizes intra-class distance while preserving inter-class
relationship captured by original raw image features. Query-
adaptive weights are then computed online by evaluating the
proximity between a query and the semantic concept classes.
With the query-adaptive bitwise weights, returned images can be
easily ordered by weighted Hamming distance at a finer-grained
hash code level rather than the original Hamming distance level.
Experiments on a Flickr image dataset show clear improvements
from our proposed approach.

Index Terms—Query-adaptive image search, scalability, hash
codes, weighted Hamming distance.

I. INTRODUCTION

W ITH THE EXPLOSION of images on the Internet,
there is a strong need to develop techniques for ef-

ficient and scalable image search. While traditional image
search engines heavily rely on textual words associated to the
images, scalable content-based search is receiving increasing
attention. Apart from providing better image search experience
for ordinary Web users, large-scale similar image search has
also been demonstrated to be very helpful for solving a number
of very hard problems in computer vision and multimedia such
as image categorization [1].

Generally a large-scale image search system consists of two
key components—an effective image feature representation
and an efficient search mechanism. It is well known that the
quality of search results relies heavily on the representation

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by two STCSM’s Programs
(No. 10511500703 & 12XD1400900), a National 863 Program (No.
2011AA010604), and a National 973 Program (No. 2010CB327906), China.

Y.-G. Jiang and X. Xue are with the School of Computer Sci-
ence, Fudan University, Shanghai, China (e-mail: ygj@fudan.edu.cn,
xyxue@fudan.edu.cn). J. Wang is with IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598 (e-mail: wangjun@us.ibm.com). S.-F. Chang
is with the Department of Electrical Engineering and the Department of
Computer Science, Columbia University, New York, NY, 10027 (e-mail:
sfchang@ee.columbia.edu).

Search results

Hash codes: 101101110101 (12 bits)

66 different codes with
Hamming distance 2

6

3

4

8

5

7

9

1

2

11

10

12 Hamming
distance =1

Hamming
distance =2

Query image

12 different codes with
Hamming distance 1

Hamming
distance =0

Fig. 1. An illustration of the proposed query-adaptive image search approach,
using an example query represented by a 12-bit hash code. Traditionally
hashing-based search results are ordered by integer Hamming distance, which
is not ideal since many different hash codes share the same distance to the
query. For instance, in this example there are 12 hash codes having Hamming
distance 1 (each differs from the query in one bit). The proposed approach
is able to order results at finer-grained hash code level. As exemplified over
the images with Hamming distance 1 to the query, we propose a way to
differentiate the ranking of the 12 different hash codes, where the order is
online determined adaptively for each query. See texts for more explanations.

power of image features. The latter, an efficient search mech-
anism, is critical since existing image features are mostly of
high dimensions and current image databases are huge, on top
of which exhaustively comparing a query with every database
sample is computationally prohibitive.

In this work we represent images using the popular bag-
of-visual-words (BoW) framework [2], where local invariant
image descriptors (e.g., SIFT [3]) are extracted and quantized
based on a set of visual words. The BoW features are then
embedded into compact hash codes for efficient search. For
this, we consider state-of-the-art techniques including semi-
supervised hashing [4] and semantic hashing with deep belief
networks [5], [6]. Hashing is preferable over tree-based in-
dexing structures (e.g., kd-tree [7]) as it generally requires
greatly reduced memory and also works better for high-
dimensional samples. With the hash codes, image similarity
can be efficiently measured (using logical XOR operations)
in Hamming space by Hamming distance, an integer value
obtained by counting the number of bits at which the binary
values are different. In large scale applications, the dimension

2

Hamming distance = 0 Hamming distance = 1

Query …

…

…

…

Traditional
ranking

Query-
adaptive
ranking

Fig. 2. Search result lists in a Flickr image dataset, using a “sunset scene” query image (left). Top and bottom rows respectively show the most similar
images based on traditional Hamming distance and our proposed query-adaptive weighted Hamming distance. It can be clearly seen that our method produces
more relevant result by ranking images at a finer resolution. Note that the proposed method does not permute images with exactly the same code to the query
(three images in total for this query), i.e., Hamming distance = 0. This figure is best viewed in color.

of Hamming space is usually set as a small number (e.g., less
than a hundred) to reduce memory cost and avoid low recall
[8], [9].

Although hashing has been shown to be effective for visual
search in several existing works [8], [9], [10], it is important to
realize that it lacks in providing a good ranking that is crucial
for image search. There can be Ci

d different hash codes sharing
an equal distance i (i > 0) to a query in a d-dimensional
Hamming space. Taking 48-d hash codes as an example, there
are as many as 1,128 different codes having Hamming distance
2 to a query. As a result, hundreds or even thousands of images
may share the same ranking in search result list, but are very
unlikely to be equivalently relevant to the query. Although
one can exhaustively compute the similarity for such candidate
images to obtain exact ranking [4], it will significantly increase
both computational cost and memory needs.

The main contribution of this paper is the proposal of
a novel approach that computes query-adaptive weights for
each bit of the hash codes, which has two main advantages.
First, images can be ranked on a finer-grained hash code level
since—with the bitwise weights—each hash code is expected
to have a unique similarity to the queries. In other words,
we can push the resolution of ranking from d (traditional
Hamming distance level) up to 2d (hash code level1). Second,
contrary to using a single set of weights for all the queries, our
approach tailors a different and more suitable set of weights
for each query. Figure 1 illustrates the proposed approach.

The query-adaptive bitwise weights need to be computed in
real-time. To this end, we harness a set of semantic concept
classes that cover many semantic aspects of image content
(e.g., scenes and objects). Bitwise weights for each of the
semantic classes are learned offline using a novel formulation
that not only maximizes intra-class sample similarities but also
preserves inter-class relationships. We show that the optimal
weights can be computed by iteratively solving quadratic
programming problems. These pre-computed class-specific
bitwise weights are then utilized for online computation of
the query-adaptive weights, through rapidly evaluating the
proximity of a query image to the image samples of the
semantic classes. Finally, weighted Hamming distance is ap-
plied to evaluate similarities between the query and images

1Given a code length d, there can be 2d different binary hash codes.

in a target database. We name this weighted distance as
query-adaptive Hamming distance, as opposed to the query-
independent Hamming distance widely used in existing works.
Notice that during online search it is unnecessary to compute
the weighted Hamming distance based on real-valued vectors
(weights imposed on the hash codes), which would bury one of
the most important advantages of hashing. Instead the weights
can be utilized as indicators to efficiently order the returned
images (found by logical XOR operations) at hash code level.

Figure 2 shows search results of a query from a Flickr image
dataset. We see that the proposed approach produces clearly
better result (bottom row) by ordering images with Hamming
distance 1 to the query. Notice that in most cases there is
typically a very small number, if not zero, of images with
Hamming distance 0 to search queries (see Figure 6), as there
is only one hash code satisfying this condition (in contrast to
Ci

d, i > 0).
The rest of this paper is organized as follows. We briefly

review existing efficient search methods and discuss related
works in Section II. Section III gives an overview of the
proposed query-adaptive image search system. Section IV
briefly introduces two hashing methods that will be used in
this work and Section V elaborates our approach. Experimental
setup is described in Section VI and results are discussed in
Section VII. Finally, Section VIII concludes this paper.

II. RELATED WORKS

There are very good surveys on general image retrieval task.
See Smeulders et al. [11] for works from the 1990s and Datta
et al. [12] for those from the past decade. Many people adopted
simple features such as color and texture in systems developed
in the early years [13], while more effective features such
as GIST [14] and SIFT [3] have been popular recently [2],
[15]. In this work, we choose the popular bag-of-visual-words
(BoW) representation grounded on the local invariant SIFT
features. The effectiveness of this feature representation has
been verified in numerous applications. Since the work in this
paper is more related to efficient search, this section mainly
reviews existing works on efficient search mechanisms, which
are roughly divided into three categories: inverted file, tree-
based indexing, and hashing.

Inverted index was initially proposed and is still very
popular for document retrieval in the informational retrieval

3

community [16]. It was introduced to the field of image
retrieval as recent image feature representations such as BoW
are very analogous to the bag-of-words representation of
textual documents. In this structure, a list of references to each
document (image) for each text (visual) word is created so
that relevant documents (images) can be quickly located given
a query with several words. A key difference of document
retrieval from visual search, however, is that the textual
queries usually contain very few words. For instance, on
average there are merely 4 words per query in Google web
search2. While in the BoW representation, a single image
may contain hundreds of visual words, resulting in a large
number of candidate images (from the inverted lists) that
need further verification—a process that is usually based on
similarities of the original BoW features. This largely limits
the application of inverted files for large scale image search.
While increasing visual vocabulary size in BoW can reduce
the number of candidates, it will also significantly increase
memory usage [17]. For example, indexing 1 million BoW
features of 10,000 dimensions will need 1GB memory with
a compressed version of the inverted file. In contrast, for the
binary representation in hashing methods, as will be discussed
later, the memory consumption is much lower (e.g., 48MB for
1 million 48-bit hash codes).

Indexing with tree-like structures [7], [18], [15] has been
frequently applied to fast visual search. Nister and Stewenius
[15] used a visual vocabulary tree to achieve real-time object
retrieval in 40,000 images. Muja and Lowe [18] adopted
multiple randomized kd-trees [7] for SIFT feature matching
in image applications. One drawback of the classical tree-
based methods is that they normally do not work well with
high-dimensional feature. For example, let the dimensionality
be d and the number of samples be n, one general rule is
n ≫ 2d in order to have kd-tree working more efficiently
than exhaustive search [19]. There are also several works
focusing on improving tree-based approaches for large-scale
search [20], [21], where promising image search performance
has been reported. Compared with these methods, hashing
has a major advantage in speed since it allows constant-time
search.

In view of the limitations of both inverted file and tree-
based indexing, embedding high-dimensional image features
into hash codes has become very popular recently. Hashing
satisfies both query time and memory requirements as the
binary hash codes are compact in memory and efficient in
search via hash table lookup or bitwise operations. Hashing
methods normally use a group of projections to divide an input
space into multiple buckets such that similar images are likely
to be mapped into the same bucket.

Most of the existing hashing techniques are unsupervised.
Among them, one of the most well-known hashing methods
is Locality Sensitive Hashing (LSH) [22]. Recently, Kulis and
Grauman [23] extended LSH to work in arbitrary kernel space,
and Chum et al. [24] proposed min-Hashing to extend LSH for
sets of features. Since these LSH-based methods use random

2http://www.beussery.com/blog/index.php/2008/02/google-average-
number-of-words-per-query-have-increased/

projections, when the dimension of the input space is high,
many more bits (random projections) are needed to achieve
satisfactory performance. Motivated by this mainly, Weiss et
al. [9] proposed a spectral hashing (SH) method that hashes
the input space based on data distribution. SH also ensures that
the projections are orthogonal and sample number is balanced
across different buckets.

Although SH can achieve similar or even better performance
than LSH with a fewer number of bits, it is important to
underline that these unsupervised hashing techniques are not
robust enough for similar image search. This is due to the fact
that similarity in image search is not simply equivalent to the
proximity of low-level visual features, but is more related to
high-level image semantics (e.g., objects and scenes). Under
this circumstance, it is helpful to use some machine learning
techniques to partition the low level feature space according to
training labels on semantic level. Several supervised methods
have been proposed recently to learn good hash functions [25],
[26], [4], [27], [28], [29], [30], [6]. In [25], Kulis and Darrell
proposed a method to learn hash functions by minimizing
reconstruction error between original feature distances and
Hamming distances of hash codes. By replacing the original
feature distances with semantic similarities, this method can
be applied for supervised learning of hash functions. In [26],
Lin et al. proposed to learn hash functions based on semantic
similarities of objects in images. In [4], Wang et al. proposed a
semi-supervised hashing algorithm that learns hash functions
based on image labels. The advantage of this algorithm is that
it not only utilizes given labels, but also exploits unlabeled
data when learning the hash functions. It is especially suitable
for the cases where only a limited number of labels are
available. The idea of using a few pairwise data labels for
hash function learning was also investigated in [27], using
an algorithm called label-regularized max-margin partition.
In [28], a scalable graph-based method was proposed to
exploit unlabeled data in large datasets for learning hash
codes. In [29], Bronstein et al. used boosting algorithms for
supervised hashing in shape retrieval. Boosting was also used
by Xu et al. [30] who proposed to learn multiple hash tables.
In [6], Salakhutdinov and Hinton proposed a method called
semantic hashing, which uses deep belief networks [5] to learn
hash codes. Similar to the other supervised hashing methods,
the deep belief network also requires image labels in order
to learn a good mapping. In the network, multiple Restricted
Boltzmann Machines (RBMs) are stacked and trained to
gradually map image features at the bottom layer to binary
codes at the top (deepest) layer. Several recent works have
successfully applied this method for scalable image search [8],
[31].

All these hashing methods, either unsupervised or super-
vised, share one limitation when applied to image search.
As discussed in the introduction, the Hamming distance of
hash codes cannot offer fine-grained ranking of search results,
which is very important in practice. This paper proposes a
means to rank images at a finer resolution. Note that we will
not propose new hashing methods—our objective is to alleviate
one weakness that all the hashing methods share particularly
in the context of image search.

4

Query Search result list
by query-adaptive

ranking

…

sunset

water

person

cityscape

tree

plane

… …

Semantic concept classes
- image hash codes and learned class-specific weights

[0 0 1 0 … 0 1 0]

Embed raw features to
hash codes

[1 0 1 0… 0 0 0] [1 0 0 0… 0 0 0]

[1 0 0 0… 1 0 0][1 1 1 0… 0 0 0]

[1 0 1 0… 0 1 0][0 0 1 0… 0 0 0]

[1 0 1 0… 0 1 0][0 0 1 0… 0 1 0]

[1 0 1 0… 0 0 1][0 0 1 0… 0 0 1]

[1 0 0 0… 0 0 1][1 0 1 0… 0 0 1]

[0 1 1 0… 0 1 1]

[0 0 1 0… 0 1 0]

[0 1 0 0… 0 1 1]

[0 0 0 0… 0 1 1]

[1 1 1 0… 1 0 0]

[1 1 1 1… 0 0 0]

[1 1 1 1… 0 0 0]

[1 0 1 0… 0 1 0]

[0 0 0 0… 0 1 0] [1 0 0 0… 0 1 0]

[1 0 0 0… 0 1 0][1 0 0 0… 0 1 0]

[0.13 0.05 0.51 … 0.06]

Image database
(hash codes)

Query-adaptive weights

[0.05 0.15 0.21 … 0.46][0.22 0.11 0.12 … 0.15]

[0.02 0.24 0.22 … 0.08] [0.22 0.04 0.62 … 0.02][0.08 0.17 0.02 … 0.19]

[0.12 0.11 0.42 … 0.10]

…

Feature extraction

Fig. 3. Framework of query-adaptive image search with hash codes. Given a query image, we first extract bag-of-visual-words feature and embed it into
a short hash code (Section IV). The hash code is then used to predict query-adaptive bitwise weights by harnessing a set of semantic concept classes with
pre-computed class-specific bitwise weights (Section V). Finally, the query-adaptive weights are applied to rank search results using weighted (query-adaptive)
Hamming distance.

There have been a few works using weighted Hamming
distance for image search, including parameter-sensitive hash-
ing [32], Hamming distance weighting [33], and the An-
noSearch [34]. Each bit of the hash codes was assigned with
a weight in [32], [34], while in [33], the main purpose was
to weigh the overall Hamming distance of local features for
image matching. These methods are fundamentally different
from this work. They all used a single set of weights to
measure either the importance of each bit in Hamming space
[32], [34], or to rescale the final Hamming distance for better
matching of sets of features [33], while ours is designed to
learn different category-specific bitwise weights offline and
adapt to each query online. Another relevant work is by
Herve et al. [35], who proposed query-adaptive LSH, which
is essentially a feature selection process that picks a subset
of bits from LSH adaptively for each query. Since their aim
was to further reduce search complexity by using less bits,
the problem of coarse ranking remains unsolved. This paper
extends upon a previous conference publication [36] with
additional exploration on query-adaptive hash code selection,
more detailed analysis of the weight learning algorithm, and
many amplified discussions.

III. SYSTEM FRAMEWORK

The proposed query-adaptive image search system is de-
picted in Figure 3. To reach the goal of query-adaptive search,
we harness a set of semantic concept classes, each with a set
of representative images as shown on the left of the figure.
Low-level features (bag-of-visual-words) of all the images
are embedded into hash codes, on top of which we compute
bitwise weights for each of the semantic concepts separately.
The weight computation process is done by an algorithm that

lies in the very heart of our approach, which will be discussed
later in Section V-A.

The flowchart on the right of Figure 3 illustrates the process
of online search. We first compute hash code of the query
image, which is used to search against the images in the
predefined semantic classes. From there we pool a large set
of images which are close to the query in Hamming space,
and use them to predict bitwise weights for the query (cf.
Section V-B). One assumption made here is that images around
the query in Hamming space, collectively, should be able to
infer query semantics, and therefore the pre-computed class-
specific weights of these images can be used to compute
bitwise weights for the query. Finally, with the query-adaptive
weights, images from the target database can be rapidly ranked
by weighted (query-adaptive) Hamming distance to the query.

IV. HASHING

In this work two state-of-the-art hashing techniques are
adopted, semi-supervised hashing [4] and semantic hashing
with deep belief networks [6].

A. Semi-Supervised Hashing

Semi-Supervised Hashing (SSH) is a newly proposed al-
gorithm that leverages semantic similarities among labeled
data while remains robust to overfitting [4], [10]. The ob-
jective function of SSH consists of two major components,
supervised empirical fitness and unsupervised information
theoretic regularization. More specifically, on one hand, the
supervised part tries to minimize an empirical error on a
small amount of labeled data. The unsupervised term, on the
other hand, provides effective regularization by maximizing

5

desirable properties like variance and independence of indi-
vidual bits. Mathematically, one is given a set of n points,
V = {vi}, i = 1 . . . n, vi ∈ RD, in which a small fraction of
pairs are associated with two categories of label information,
M and C. Specifically, a pair (vi,vj) ∈ M is denoted as
a neighbor-pair when (vi,vj) share common class labels.
Similarly, (vi,vj) ∈ C is called a nonneighbor-pair if the
two samples have no common class label. The goal of SSH
is to learn d hash functions (H) that maximize the following
objective function:

J(H) =
d∑

k=1

{
∑

(vi,vj)∈M

hk(vi)hk(vj)

−
∑

(vi,vj)∈C

hk(vi)hk(vj)}+ µ
d∑

k=1

var[hk(v)],

where the first term measures the empirical accuracy over
the labeled sample pair sets M and C, and the second part,
i.e., the summation of the variance of hash bits, realizes the
maximum entropy principle [10]. This optimization problem is
nontrivial. However, after relaxation, the optimal solution can
be approximated using eigen-decomposition. Furthermore, an
algorithm called semi-supervised sequential projection learn-
ing based hashing (S3PLH) was designed to implicitly learn
bit-dependent hash codes with the capability of progressively
correcting errors made by previous hash bits [10], where
in each iteration, the weighted pairwise label information is
updated by imposing higher weights on point pairs violated by
the previous hash function. In this work, the S3PLH algorithm
is applied to generate hash codes. Throughout this paper, we
use 5,000 labeled samples for learning hash functions H. Both
training (hash function learning) and testing of SSH are very
efficient [4], [10].

B. Semantic Hashing with Deep Belief Networks

Learning with deep belief networks (DBN) was initially
proposed for dimensionality reduction [5]. It was recently
adopted for semantic hashing in large-scale search applications
[6], [8], [31]. Like SSH, to produce good hash codes DBN also
requires image labels during training phase, such that images
with the same label are more likely to be hashed into the
same bucket. Since the DBN structure gradually reduces the
number of units in each layer3, the high-dimensional input
of original image features can be projected into a compact
Hamming space.

Broadly speaking, a general DBN is a directed acyclic
graph, where each node represents a stochastic variable. There
are two critical steps in using DBN for hash code generation,
the learning of interactions between variables and the inference
of observations from inputs. The learning of a DBN with
multiple layers is very hard since it usually requires to estimate
millions of parameters. Fortunately, it has been shown by
Hinton et al. in [37], [5] that the training process can be
much more efficient if a DBN is specifically structured based

3In practice, the number of units may increase or remain stable for
a few layers, and then decrease.

on the RBMs. Each single RBM has two layers containing
respectively output visible units and hidden units, and multiple
RBMs can be stacked to form a deep belief net. Starting
from the input layer with D dimension, the network can
be specifically designed to reduce the number of units, and
finally output compact d-dimensional hash codes. To obtain
optimal weights in the entire network, the training process
of a DBN has two critical stages: unsupervised pre-training
and supervised fine-tuning. The greedy pre-training phase is
progressively executed layer by layer from input to output,
aiming to place the network weights (and the biases) to
suitable neighborhoods in parameter space. After achieving
convergence of the parameters of one layer via Contrastive
Divergence, the outputs of this layer are fixed and treated
as inputs to drive the training of the next layer. During the
fine-tuning stage, labeled data is adopted to help refine the
network parameters through back-propagation. Specifically, a
cost function is defined to ensure that points (hash codes)
within a certain neighborhood share the same label [38]. The
network parameters are then refined to maximize this objective
function using conjugate gradient descent.

In our experiments, the dimension of the image feature is
fixed to 500. Similar to the network architecture used in [8],
we use a five-layer DBN of sizes 500-500-500-256-d, where d
is the dimension of the final hash codes. The training process
requires to learn 5002+5002+500·256+256·d weights in total.
For the number of training samples, we use a total number
of 160, 000 samples in the pre-training stage, and 50 batches
of neighborhood regions with size 1000 in the fine-tuning
stage. Based on the efficient algorithms described earlier [37],
[5], training a set of DBN codes can be finished within 1
day using a fast computer with an Intel Core2 Quad 2GHz
CPU (15-24 hours depending on the output code size). Since
parameter training is an offline process, this computational cost
is acceptable. Compared to training, generating hash codes
with the learned DBN parameters is a lot faster. Using the
same computer it requires just 0.7 milliseconds to compute a
48-bit hash code of an image.

V. QUERY-ADAPTIVE SEARCH

With hash codes, scalable image search can be performed
in Hamming space using Hamming distance. By definition,
the Hamming distance between two hash codes is the total
number of bits at which the binary values are different.
Specific indices/locations of the bits with different values are
not considered. For example, given three hash codes x = 1100,
y = 1111, and z = 0000, the Hamming distance of x and y
is equal to that of x and z, regardless of the fact that z differs
from x in the first two bits while y differs in the last two
bits. Due to this nature of the Hamming distance, practically
there can be hundreds or even thousands of samples sharing
the same distance to a query. Going back to the example,
suppose we knew that the first two bits are more important
(discriminative) for x, then y should be ranked higher than z
if x was the query. In this section, we propose to learn query-
adaptive weights for each bit of the hash codes, so that images
with the same Hamming distance to the query can be ordered
in a finer resolution.

6

A. Learning Class-Specific Bitwise Weights

To quickly compute the query-adaptive weights, we propose
to firstly learn class-specific bitwise weights for a number of
semantic concept classes (e.g., scenes and objects). Assume
that we have a dataset of k semantic classes, each with a
set of representative images (training data). We learn bitwise
weights separately for each class, with an objective of maxi-
mizing intra-class similarity as well as maintaining inter-class
relationship. Formally, for two hash codes x and y in classes
i and j respectively, their proximity is measured by weighted
Hamming distance ∥ai◦x−aj◦y∥2, where ◦ denotes element-
wise (Hadamard) product, and ai (aj) is the bitwise weight
vector for class i (j).

Let X be a set of n hash codes in a d-dimensional Hamming
space, X = {x1, ...,xn}, xj ∈ Rd, j = 1, ..., n. Denote
Xi ⊂ X as the subset of codes from class i, i = 1, ..., k.
Our goal is to learn k weight vectors a1,...,ak, where ai ∈ Rd

corresponds to class i. The learned weights should satisfy a
few constraints. First, ai should be nonnegative (i.e., each
entry of ai is nonnegative), denoted as ai ≥ 0. To fix the
scale of the weight values, we enforce the summation of the
entries of ai to 1, i.e., a⊤i 1 = 1, where 1 denotes a vector
of ones of d dimension. Ideally, a good weight vector should
ensure images (represented by weighted hash codes) from the
same class to be close to each other. This can be quantified
as follows:

f(a1, ...,ak) =
k∑

i=1

∑
x∈Xi

∥ai ◦ x− ai ◦ c(i)∥2, (1)

where c(i) is the center of the hash codes in class i:

c(i) =
1

ni

∑
x∈Xi

x; (2)

ni is the total number of hash codes in Xi. Notice that although
the sample proximity, to some extent, was considered in the
hashing methods, Equation (1) is still helpful since weighting
the hash codes is able to further condense samples from the
same class. More importantly, the optimal bitwise weights to
be learned here will be the key for computing the query-
adaptive weights.

In addition to intra-class similarity, we also want the inter-
class relationship in the original image feature (BoW) space to
be preserved by the weighted Hamming distance. Let sij ≥ 0
denote the proximity between classes i and j (sij = sji).
sij can be quantified using average BoW feature similarity
of samples from classes i and j. Then it is expected that the
weighted hash codes in the two classes should be relatively
more similar if sij is large. This maintains the class rela-
tionship, which is important since the semantic classes under
our consideration are not fully exclusive. Some of them are
actually highly correlated (e.g., tree and grass). We formalize
this idea as a minimization problem of the following term:

g(a1, ...,ak) =
k∑

i,j=1

sij∥ai ◦ c(i) − aj ◦ c(j)∥2. (3)

Integrating both intra-class similarity and inter-class rela-
tionship, we propose the following optimization problem to

learn the weights for each semantic class:

min
a1,...,ak

f(a1, ...,ak) + λg(a1, ...,ak) (4)

s.t. a⊤i 1 = 1, i = 1, ..., k, (5)
ai ≥ 0, i = 1, ..., k, (6)

where λ ≥ 0 is a parameter controlling the balance of the two
terms.

Let us now show that the above optimization problem can
be efficiently solved using an iterative quadratic programming
(QP) scheme. First, the term f can be rewritten in matrix form
as

f(a1, ...,ak) =
k∑

i=1

a⊤i Aiai (7)

where Ai is a symmetric positive semidefinite matrix:

Ai = diag(
∑
x∈Xi

(x− c(i)) ◦ (x− c(i))). (8)

In addition, we can expand g as

∥ai ◦ c(i) − aj ◦ c(j)∥2 (9)

= a⊤i Ciiai − 2a⊤i Cijaj + a⊤j Cjjaj

where Cij = diag(c(i) ◦ c(j)).
With these preparations, we can expand and rewrite Equa-

tion (4) as

f(a1, ...,ak) + λg(a1, ...,ak)

=
k∑

i=1

a⊤i Aiai + λ
k∑

j,l=1

sjl(a
⊤
j Cjjaj − 2a⊤j Cjlal + a⊤l Cllal)

= a⊤i (Ai + 2λ(
∑
l

sil − sii)Cii)ai − (4λ
∑
j ̸=i

sjiCjiaj)
⊤ai+

(
k∑

j ̸=i

a⊤j Ajaj + 2λ
∑
j ̸=i,l

sjla
⊤
j Cjjaj − 2λ

∑
j ̸=i,l ̸=i

sjla
⊤
j Cjlal)

=
1

2
a⊤i Qiai + p⊤

i ai + ti, (10)

where

Qi = 2Ai + 4λ(
∑
l

sil − sii)Cii, (11)

pi = −4λ
∑
j ̸=i

sjiCjiaj , (12)

ti =
k∑

j ̸=i

a⊤j Ajaj + 2λ(
∑
j ̸=i,l

sjla
⊤
j Cjjaj −

∑
j ̸=i,l ̸=i

sjla
⊤
j Cjlal).

(13)

We have now derived the quadratic form of Equation (4)
w.r.t. ai. Notice that Qi is symmetric and positive semidefinite
as Ai and Cii are. Given all aj , j ̸= i, the quadratic program in
Equation (10) is convex, and thus ai can be solved optimally.
These analysis suggests an iterative procedure summarized in
Algorithm 1 for solving the optimization problem stated in
Equations (4) – (6).

7

Algorithm 1 Learning class-specific bitwise weights.
1: INPUT:

Hash codes X ;
Class similarity sij in original image feature space,
i, j = 1, ..., k.

2: Compute c(i) using Equation (2);
3: Initialize aj = 1/d, j = 1, ..., k;
4: Repeat
5: For i = 1, ..., k
6: Compute Qi, pi, and ti using Equations (11) – (13);
7: Solve the following QP problem:

a∗i = argmin
ai

1

2
a⊤i Qiai + p⊤

i ai + ti

s.t. a⊤i 1 = 1 and ai ≥ 0;

8: Set ai = a∗i ;
9: End for

10: Until convergence
11: OUTPUT:

Class-specific bitwise weights aj , j = 1, ..., k.

1) Convergence Analysis and Implementation: As stated
earlier, given all aj , j ̸= i, the quadratic program in Equation
(10) is convex. Solving it with global minimization w.r.t. ai
will always reduce the value of the energy function in Equation
(4), which will definitely not be greater than the energy value
derived from a previous iteration. In addition, it is obvious that
the energy function is lower-bounded since both terms of the
function are non-negative (recall the definitions in Equations
(1) and (3)). Therefore, the iterative optimization process given
in Algorithm 1 is a Block Coordinate Descent approach, which
gradually reduces the energy and leads to convergence at a
non-negative value.

In practice, to avoid long time convergence procedure,
we define an empirical stop condition (convergence) when
the energy difference of two successive states |Ecurrent −
Eprevious| < ξ, where E = f(a1, ...,ak)+λg(a1, ...,ak) and ξ
is set as a small value (10−6 in our experiments). Having such
a stop condition can help avoid unneeded deep optimization
that leads to almost invisible changes to the bitwise weights.

2) Connections to Existing Algorithms: We briefly discuss
the differences and connections of our proposed algorithm to
some well-known machine learning methods such as LDA
[39] and distance metric learning, although ours is particularly
designed for this specific application.

LDA is a well-known method that linearly projects data
into a low-dimensional space where the sample proximity is
reshaped to maximize class separability. While LDA also tries
to condense samples from the same class, it learns a single
uniform transformation matrix G ∈ Rd×s to map all original
d-dimensional features to a lower s-dimensional space. In
contrast, we learn a d-dimensional weight vector separately
for each class.

Distance metric learning tries to find a metric such that
samples of different classes in the learned metric space can
be better separated. Typically a single Mahalanobis distance

metric is learned for the entire input space [40]. There are
also a few exceptions where multiple metrics were considered,
e.g., a metric was trained for each category in [41]. These
methods are relevant in the sense that they also deal with
multiple categories separately. Nevertheless, they cannot be
directly applied to our problem, because the class-specific
bitwise weights are in a very different form from that of
distance metric matrices.

B. Computing Query-Adaptive Bitwise Weights

As described in Figure 3, images and the learned weights
of the predefined semantic concept classes form a semantic
database for rapid computation of the query-adaptive bitwise
weights. Given a query image q and its hash codes xq, the
objective here is to adaptively determine a suitable weight
vector aq, such that weighted Hamming distance (WHD) can
be applied to compare xq with each hash code xt in the target
database:

WHD(xq,xt) = ∥aq ◦ xq − aq ◦ xt∥2. (14)

To compute aq, we query xq against the semantic database
based on typical Hamming distance. Semantic labels of the
top-K most similar images are collected to predict query se-
mantics, which is then utilized to compute the query-adaptive
weights. Specifically, denote T as the set of the most relevant
semantic classes to the query q, and mi as the number of
images (within the top K list) from the ith class in T . The
query adaptive weights are computed as

aq =
∑
i∈T

(miai)/
∑
i∈T

mi, (15)

where ai is the precomputed weight vector of the correspond-
ing class. We expect that, although top results from typical
Hamming distance lack in good ranking, query semantics may
be inferred by collectively using a large pool of samples. We
empirically set |T | as 3 throughout the experiments.

The right side of Equation (14) can be rewritten as (aq ◦
aq)

⊤(xq ⊕ xt), where ⊕ means the XOR of the two hash
codes. While the weighting can now be achieved by an inner-
product operation, we can avoid a significant portion of the
computation in practice. The idea is very simple—since a
common way of using hashing in a real system is to retrieve
images locating only within a certain Hamming radius to a
query, we can first find a subset of the hash codes with non-
weighted Hamming distance smaller than a certain value to the
query (e.g., Hamming distance≤3). Then, each of the retrieved
hash code in the thresholded subset is re-ranked by computing
the weighted Hamming Distance to the query. In other words,
we do not need to order all the hash codes in practice; only the
small subset of hash codes with a few bits different from the
query is sufficient for pooling the top search results of a query
image. In this way, it’s possible that some of the hash codes
are incorrectly excluded from the initial subset. But the true
top matched hash codes with the shortest weighted distances
are preserved.

8

Query

[0 0 1 0 … 0 1 0]

Embed raw features to hash codes

[0.13 0.05 0.51 … 0.06]
[0.08 0.18 0.21 … 0.17]

Image database (hash codes)

Query-adaptive weights on both
general and class-specific codes

Feature extraction

Search result

Semantic concept
classes
 hash codes
(general and
class-specific)

 class-specific weights

(learned for both
general and class-
specific codes)

[1 0 0 1 … 1 1 0]

Predicted
query semantics

General hash codes Class-specific hash codes

General data flow

Query specific data flow

Fig. 4. Extended framework for query-adaptive hash code selection. The
semantic concept classes are used to infer query semantics, which guides the
selection of a good set of hash codes for the query, and the computation of
corresponding query-adaptive weights on the chosen hash codes. The selected
class-specific codes are used together with the general codes for image search.

C. Extension to Query-Adaptive Hash Code Selection

The above approach is designed to use a single set of general
hash codes for image search. In this subsection, we further
extend our approach to the case where multiple sets of hash
codes are available. Since there are multiple semantic concept
classes, it is very easy to train a set of hash codes for each class
by extensively using images containing the corresponding
concept. The class-specific hash codes are expected to be
more discriminative for a particular class of images. The
weight learning algorithm introduced in Section 1 can be
applied to each set of class-specific hash codes to produce
a separate group of bitwise weights. During online search,
the semantic database is used not only for computing query-
adaptive weights, but also to select a suitable set of class-
specific hash codes for each query.

Figure 4 depicts the extended framework. Given a query
image, we first compute its general (globally trained) hash
code and query against the semantic database. Like the query-
adaptive weight computation process introduced earlier, we
use the same set of images to predict query semantics. Hash
codes trained for the dominant concept class in this selected set
will be chosen. The query is then embedded into the selected
class-specific hash code using hash functions trained for the
corresponding concept class. Finally, the new hash code is
concatenated with the general code for search, and results are
sorted at binary code level based on bitwise weights predicted
from a similar procedure as described in Section V-B. This new
framework provides a means to adaptively select both hash
codes and bitwise weights. Additional computation is required
in this extended framework as the query needs to be hashed
twice and more bits are used in search. Fortunately, since
both testing process (hash code computation) of the hashing
algorithms and logical XOR operations are very efficient, this
added computational cost is acceptable in general.

AIRPORT ANIMAL BEACH BIRDS

BRIDGE

BOAT

CAR CAT CLOUDS COMPUTER

COW DANCING ELK GLACIERFLOWERS

HARBOR LEAF MILITARY PLANE POLICE

Fig. 5. Example images from several semantic concept classes in NUS-WIDE
dataset.

VI. EXPERIMENTAL SETUP

A. Dataset, Training, and Performance Measurement

We conduct image search experiments using the widely
adopted NUS-WIDE dataset [42]. NUS-WIDE contains
269,648 Flickr images, divided into a training set (161,789
images) and a test set (107,859 images). It is fully labeled
with 81 semantic concept classes, covering many topics from
objects (e.g., bird and car) to scenes (e.g., mountain and
harbor). Each image in NUS-WIDE may contain multiple
semantic classes. Figure 5 shows several example images from
this dataset. Notice that NUS-WIDE is one of the largest
publicly available datasets with complete labels of a wide
range of classes. Other well-known and larger datasets such as
ImageNet and MIT TinyImages are either not fully labeled4

or unlabeled, which are therefore not suitable for quantitative
performance evaluation.

Local invariant features are extracted from all the images
based on Lowe’s DoG detector and SIFT descriptor [3].
Soft-weighted bag-of-visual-words features are then computed
using a visual vocabulary generated by clustering a subset of
SIFT features [43]. The concepts in NUS-WIDE are very suit-
able for constructing the semantic database in our approach.
Therefore we use the training images to learn a general set
of hash functions by applying labels from every class. On
the same training set, we also learn the class-specific hash
functions by extensively applying training labels from each
class. Class-specific bitwise weights are learned for the general
hash functions, as well as for each set of the class-specific hash
functions, using the algorithm introduced in Section V. The
weight learning algorithm is very efficient; training bitwise
weights for a set of hash codes only needs 5 minutes on a
regular PC (Intel Core2 Duo 2.4GHz CPU and 2GB RAM).

For performance measurement, we rank all images in the
NUS-WIDE test dataset according to their (weighted) Ham-
ming distances to each query. An image will be treated as a

4Each image in ImageNet has only one label. E.g., an image with
a car running in a city may be labeled to a vehicle category, but not
to road or building categories, although both co-occur with the car.

9

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
10

0

10
1

10
2

10
3

10
4

Hamming distance

a
v
e
ra

g
e
 #

 o
f
im

a
g
e
s
 p

e
r

q
u
e
ry

Fig. 6. Average number of returned images at each Hamming distance,
computed using 20,000 queries and 48-bit hash codes generated by DBN.
Note that the y-axis is plotted in log-scale.

correct hit if it shares at least one common class label to the
query. Performance is then evaluated by ∆AP, an extended
version of average precision where prior probability, i.e., the
proportion of relevant images in the test set to the query, is
taken into account [44]. To aggregate performance of multiple
queries, mean ∆AP (∆MAP) is used.

B. Evaluation Plan

Part 1: Characteristics of hash codes based image search.
At the beginning of the evaluation, we experimentally verify
one weakness of hash codes based image search, i.e., the
coarse ranking problem, which is also the main motivation
of this work.

Part 2: Query-adaptive ranking. This set of experiments
evaluates the proposed framework (Figure 3) for query-
adaptive ranking of search results. Hash codes from both
SSH and DBN will be adopted. Specifically, we compare
performance of the refined ranking (by the weighted query-
adaptive Hamming distance) with original results by traditional
Hamming distance, using the two different types of hash codes
separately.

Part 3: Query-adaptive hash code selection. The last exper-
iment tests the extension of query-adaptive search to dynamic
hash code selection (cf. the extended framework in Figure 4).
Here we only use SSH codes since training DBN codes for
81 concept classes is extremely slow. The purpose of this
experiment is to learn how much performance gain class-
specific hash codes could offer. To the best of our knowledge,
similar empirical analysis has never been conducted in previ-
ous studies.

VII. RESULTS AND DISCUSSIONS

A. Characteristics of Hash Codes Based Search

Let us first check the number of test images with each
Hamming distance value to a query. The 48-bit hash codes
from DBN are used in this experiment. Note that we will not
specifically investigate the effect of code-length in this paper,
since several previous works on hashing have already shown
that codes of 32-50 bits work well in practice [8], [25]. In
general, using more bits may lead to higher precision, but at
the price of low recall and longer search time.

Figure 6 visualizes the results, averaged over 20,000 ran-
domly selected queries. As shown in the figure, the number of
returned images at each Hamming distance rapidly grows with
the distance values until d/2 (24). This verifies one nature of
Hamming distance, as mentioned in the introduction, there can
be Ci

d different hash codes sharing the same integer distance
i (i > 0) to a query in a d-dimensional Hamming space.
Consequently, the number of hash codes (and correspondingly
the number of images) at each specific distance increases dra-
matically as i grows until i = d/2. For some queries, there can
be as many as 103-104 images sharing equal distances. This
motivates the need of our proposed approach that provides
ranking at a finer granularity. Although our approach does
not permute/re-rank images with Hamming distance 0 to the
queries, this analysis reveals that this is not a critical issue
since most queries have none or just a few such images (2.4
on average in this evaluation).

B. Query-Adaptive Ranking

Next we move on to evaluate how much performance gain
can be achieved from the proposed query-adaptive Hamming
distance, using 32-bit and 48-bit hash codes from both SSH
and DBN (the general sets trained with labels from every
class). Figure 7 displays the results. The parameters λ and
K are set as 1 and 500 respectively. We randomly pick
8,000 queries (each contains at least one semantic label)
and compute averaged performance over all the queries. As
shown in Figure 7(a,c), our approach significantly outperforms
traditional Hamming distance. For the DBN codes, it improves
the 32-bit baseline by 6.2% and the 48-bit baseline by 10.1%
over the entire rank lists. A little lower but very consistent
improvements (about 5%) are obtained with the SSH codes.
The steady improvements clearly validate the usefulness of
learning query-adaptive bitwise weights for hash codes based
image search.

Figure 7(b,d) further shows performance over the upper half
part of search results, using the same set of queries. The aim
of this evaluation is to verify whether our approach is able to
improve the ranking of top images, i.e., those with relatively
smaller Hamming distances to the queries. As expected, we
observe similar performance gain to that over the entire list.

Looking at the two hashing methods, DBN codes are better
because more labeled training samples are used (50k for DBN
vs. 5k for SSH). Note that the comparison of DBN and SSH is
beyond the focus of this work, as the latter is a semi-supervised
method, which prefers and is more suitable for cases with
limited training samples. Direct comparison of the two with
equal training set size can be found in [4].

To see whether the improvement is consistent over the
evaluated queries, we group the queries into 81 categories
based on their associated labels. Results from the 48-bit DBN
codes are displayed in Figure 8. Significant performance gain
is observed for almost all the categories, and none of them
suffers from performance degradation. This shows another
advantage of our approach—it offers consistently improved
results for most queries. Figure 9 gives top-5 images of two
example queries, where the query-adaptive ranking approach

10

32−bit code 48−bit code
0

0.03

0.06

0.09

0.12

0.15

∆
M

A
P

Traditional ranking

Query−adaptive ranking

Query−adaptive ranking & code selection

5.2%

13.7%

5.1%

15.0%

32−bit code 48−bit code
0

0.03

0.06

0.09

0.12

0.15

∆
M

A
P

37.3%
39.3%

5.0%
4.6%

32−bit code 48−bit code
0

0.03

0.06

0.09

0.12

0.15

∆
M

A
P

6.2%
10.1%

32−bit code 48−bit code
0

0.03

0.06

0.09

0.12

0.15

∆
M

A
P

6.9%
9.5%

(a) SSH, entire list (b) SSH, upper half (c) DBN, entire list (d) DBN, upper half

Fig. 7. Search performance comparison of traditional Hamming distance based ranking, query-adaptive ranking, and query-adaptive ranking with code
selection. Results are measured over 8,000 queries. We show performance over entire and upper half of the result rank lists using hash codes computed by
SSH and DBN. Performance gains (over the baseline traditional ranking) are marked on top of the query-adaptive search results.

bear 0.088 0.0927

birds 0.0886 0.0984

boats 0.2394 0.265

book 0.0147 0.0147

bridge 0.1872 0.2098

buildings 0.1961 0.2159

cars 0.0707 0.0742

castle 0.1918 0.2118

cat 0.0719 0.074

cityscape 0.2551 0.2812

clouds 0.2676 0.2934

e

0 1141 0 1244

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

a
ir

p
o
rt

a
n

im
a
l

b
e
a
c
h

b
e
a
r

b
ir

d
s

b
o
a
ts

b
o
o
k

b
ri

d
g
e

b
u

ild
in

g
s

c
a
rs

c
a
s
tl
e

c
a
t

c
it
ys

c
a
p
e

c
lo

u
d
s

c
o
m

p
u

te
r

c
o
ra

l

c
o
w

d
a
n

c
in

g

d
o
g

e
a
rt

h
q
u

a
k
e

e
lk

fi
re

fi
s
h

fl
a
g
s

fl
o
w

e
rs

fo
o
d

fo
x

fr
o
s
t

g
a
rd

e
n

g
la

c
ie

r

g
ra

s
s

h
a
rb

o
r

h
o
rs

e
s

h
o
u

s
e

la
k
e

le
a
f

m
a
p

m
ili

ta
ry

m
o
o
n

m
o
u

n
ta

in

n
ig

h
tt

im
e

o
c
e
a
n

p
e
rs

o
n

p
la

n
e

p
la

n
ts

p
o
lic

e

p
ro

te
s
t

ra
ilr

o
a
d

ra
in

b
o
w

re
fl
e
c
ti
o
n

ro
a
d

ro
c
k
s

ru
n

n
in

g

s
a
n

d

s
ig

n

s
k
y

s
n

o
w

s
o
c
c
e
r

s
p
o
rt

s

s
ta

tu
e

s
tr

e
e
t

s
u

n

s
u

n
s
e
t

s
u

rf

s
w

im
m

e
rs

ta
tt

o
o

te
m

p
le

ti
g
e
r

to
w

e
r

to
w

n

to
y

tr
a
in

tr
e
e

va
lle

y

ve
h

ic
le

w
a
te

r

w
a
te

rf
a
ll

w
e
d
d
in

g

w
h

a
le

s

w
in

d
o
w

ze
b
ra

M

A
P

traditional Hamming distance based ranking query-adaptive ranking

Fig. 8. Per-category performance comparison using 48-bit DBN codes. The queries are grouped into 81 categories based on their associated labels.

B
a
s
e
li
n
e

O
u
r
s

Query

B
a
s
e
li
n
e

O
u
r
s

Query

Fig. 9. Top 5 returned images of two example queries, using the 48-bit
DBN codes. Our approach returns better results than the baseline traditional
Hamming distance, by eliminating irrelevant images (red dotted boxes) from
the top-5 lists. Others are all visually relevant (night-view/outdoor scene for
the first query, and water-view for the second one).

produces better results by replacing less relevant images to the
queries with more suitable ones.

We also evaluate the effect of parameter λ in class-specific
weight learning and K in query-adaptive weight computation,
using the DBN codes. Results are visualized in Figure 10. We
see that the performance gain increases with λ first and then

0.4 0.6 0.8 1 1.2 1.4
3

4

5

6

7

8

9

10

λ

∆
M

A
P

 G
a
in

 (
%

)

5 100 200 300 400 500 600 700
3

4

5

6

7

8

9

10

K

∆
M

A
P

 G
a
in

 (
%

)

Fig. 10. Performance gain of query-adaptive ranking versus parameters λ
(left) and K (right), using DBN codes.

decreases, indicating that the inter-class relationship is helpful.
For K, we observe a fairly stable performance gain when it
is set to a value larger than 50.

C. Query-Adaptive Hash Code Selection

Finally we evaluate query-adaptive hash code selection,
following the extended framework described in Section V-C.
Figure 7(a,b) shows the overall search performance on the

11

same set of queries using SSH codes (the light blue bars on
the right). We see obvious performance improvement from
this extension, with overall gains 9.4% (32-bit) and 8.1% (48-
bit) over the results obtained by query-adaptive ranking with
general hash codes (15.0% and 13.7% respectively over the
baseline traditional ranking). Over the upper half of search
result lists, the improvement over query-adaptive ranking is
very significant: 31.2% and 32.8% for 32-bit and 48-bit
codes respectively. These results confirm the effectiveness of
the class-specific hash codes and our query-adaptive code
selection framework. In addition, we also find that the query-
adaptive weights imposed on the selected class-specific hash
codes do not contribute as much as that on the general hash
codes (around 2%, versus 5-10% on the general codes). This is
probably because the hash code selection process already takes
query semantics into account by choosing a more suitable set
of hash codes for each query. Although the bitwise weights can
still improve result ranking, from query-adaptive perspective
very limited additional information can be further attained.

While promising, it is worth noting that the query-adaptive
hash code selection framework incurs additional computation
and memory cost. First, query images need to be hashed twice
and search needs to be performed with more bits, which—
as mentioned in Section V-C—are generally acceptable since
hashing algorithms and bitwise operations are efficient. Second
and more importantly, in order not to affect real-time search,
we also need to pre-load the class-specific codes of all database
samples, which would require 81 times of the memory needed
by the general codes. Although this is still much less than that
needed by original raw features, the requirement is nontrivial
when very large database is in use. Therefore we conclude that
class-specific hash codes are useful for improved performance,
but this introduces a trade-off between search performance and
memory usage that needs to be carefully considered in real-
world applications, e.g., per application needs and hardware
configuration.

VIII. CONCLUSIONS

We have presented a novel framework for query-adaptive
image search with hash codes. By harnessing a large set
of predefined semantic concept classes, our approach is able
to predict query-adaptive bitwise weights of hash codes in
real-time, with which search results can be rapidly ranked
by weighted Hamming distance at finer-grained hash code
level. This capability largely alleviates the effect of a coarse
ranking problem that is common in hashing-based image
search. Experimental results on a widely adopted Flickr image
dataset confirmed the effectiveness of our proposal.

To answer the question of “how much performance gain
can class-specific hash codes offer?”, we further extended our
framework for query-adaptive hash code selection. Our find-
ings indicate that the class-specific codes can further improve
search performance significantly. One drawback, nevertheless,
is that nontrivial extra memory is required by the use of
additional class-specific codes, and therefore we recommend
careful examination of the actual application needs and hard-
ware environment in order to decide whether this extension
could be adopted.

REFERENCES

[1] A. Torralba, R. Fergus, and W. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 11, pp. 1958–1970, 2008.

[2] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” in IEEE International Conference on
Computer Vision, 2003.

[3] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal on Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[4] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2010.

[5] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[6] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Workshop of
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2007.

[7] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[8] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2008.

[9] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances
in Neural Information Processing Systems, 2008.

[10] J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for
hashing with compact codes,” in International Conference on Machine
Learning, 2010.

[11] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 12, pp. 1349–1380, 2000.

[12] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: ideas,
influences, and trends of the new age,” ACM Computing Surveys, vol. 40,
no. 2, 2008.

[13] J. R. Smith and S.-F. Chang, “VisualSEEk: a fully automated content-
based image query system,” in ACM International Conference on
Multimedia, 1996.

[14] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic
representation of the spatial envelope,” International Journal on Com-
puter Vision, vol. 42, pp. 145–175, 2001.

[15] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in IEEE Conf. on Computer Vision and Pattern Recognition, 2006.

[16] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
Computing Surveys, vol. 38, no. 2, 2006.

[17] H. Jegou, M. Douze, and C. Schmid, “Packing bag-of-features,” in IEEE
Conf. on Computer Vision and Pattern Recognition, 2009.

[18] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Applications, 2009, pp. 331–340.

[19] P. Indyk, “Nearest neighbors in high-dimensional spaces,” in Hand-
book of Discrete and Computational Geometry, J. E. Goodman and
J. O’Rourke, Eds. CRC press, 2004, ch. 39.

[20] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image
descriptor matching,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2008.

[21] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua, “Optimizing KD-trees
for scalable visual descriptor indexing,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2010, pp. 3392–3399.

[22] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Symposium on Theory of
Computing, 1998.

[23] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” in IEEE International Conference on Computer
Vision, 2009.

[24] O. Chum, M. Perdoch, and J. Matas, “Geometric min-hashing: Finding
a (thick) needle in a haystack,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2009.

[25] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive
embeddings,” in Advances in Neural Information Processing Systems,
2009.

[26] R.-S. Lin, D. A. Ross, and J. Yagnik, “Spec hashing: Similarity preserv-
ing algorithm for entropy-based coding,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2010.

12

[27] Y. Mu, J. Shen, and S. Yan, “Weakly-supervised hashing in kernel
space,” in IEEE Conf. on Computer Vision and Pattern Recognition,
2010.

[28] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
International Conference on Machine Learning, 2011.

[29] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Paragios, “Data
fusion through cross-modality metric learning using similarity-sensitive
hashing,” in IEEE Conf. on Computer Vision and Pattern Recognition,
2010.

[30] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Complementary
hashing for approximate nearest neighbor search,” in IEEE International
Conference on Computer Vision, 2011.

[31] E. Horster and R. Lienhart, “Deep networks for image retrieval on large-
scale databases,” in ACM International Conference on Multimedia, 2008.

[32] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation
with parameter-sensitive hashing,” in IEEE International Conference on
Computer Vision, 2003.

[33] H. Jegou, M. Douze, and C. Schmid, “Improving bag-of-features for
large scale image search,” International Journal on Computer Vision,
vol. 87, pp. 191–212, 2010.

[34] X.-J. Wang, L. Zhang, F. Jing, and W.-Y. Ma, “Annosearch: image auto-
annotation by search,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2006.

[35] H. Jegou, L. Amsaleg, C. Schmid, and P. Gros, “Query adaptative
locality sensitive hashing,” in International Conference on Acoustics,
Speech, and Signal Processing, 2008.

[36] Y.-G. Jiang, J. Wang, and S.-F. Chang, “Lost in binarization: Query-
adaptive ranking for similar image search with compact codes,” in ACM
International Conference on Multimedia Retrieval, 2011.

[37] G. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[38] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neigh-
bourhood components analysis,” in Advances in Neural Information
Processing Systems, 2004.

[39] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of Eugenics, vol. 7, pp. 179–188, 1936.

[40] E. Xing, A. Ng, M. Jordan, and S. Russell, “Distance metric learning
with application to clustering with side-information,” Advances in Neu-
ral Information Processing Systems, pp. 521–528, 2003.

[41] K. Weinberger and L. Saul, “Fast solvers and efficient implementations
for distance metric learning,” in International Conference on Machine
Learning, 2008.

[42] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng,
“NUSWIDE: A real-world web image database from national university
of singapore,” in ACM International Conference on Image and Video
Retrieval, 2009.

[43] Y. G. Jiang, C. W. Ngo, and J. Yang, “Towards optimal bag-of-
features for object categorization and semantic video retrieval,” in ACM
International Conference on Image and Video Retrieval, 2007.

[44] J. Yang and A. G. Hauptmann, “(Un)reliability of video concept detec-
tion,” in ACM International Conference on Image and Video Retrieval,
2008.

Yu-Gang Jiang received the Ph.D. degree in com-
puter science from the City University of Hong
Kong, Kowloon, Hong Kong, in 2009.

During 2008-2011, he was with the Department
of Electrical Engineering, Columbia University, New
York. He is currently an Associate Professor of
computer science with Fudan University, Shanghai,
China. His research interests include multimedia
retrieval and computer vision. Dr. Jiang is an active
participant of the Annual U.S. NIST TRECVID
Evaluation and has designed a few top-performing

video analytic systems over the years. His work has led to a best demo
award from ACM Hong Kong, the second prize of ACM Multimedia Grand
Challenge 2011, and a recognition by IBM T. J. Watson Research Center as
one of ten “emerging leaders in multimedia” in 2009. He has served on the
program committees of many international conferences and is a Guest Editor
of a forthcoming special issue on Socio-Mobile Media Analysis and Retrieval,
IEEE Transactions on Multimedia.

Jun Wang (M’12) received the M.Phil. and Ph.D.
degrees from Columbia University, NY, in 2010 and
2011, respectively. Currently, he is a Research Staff
Member in the business analytics and mathematical
sciences department at IBM T. J. Watson Research
Center, Yorktown Heights, NY. He also worked as an
intern at Google Research in 2009, and as a research
assistant at Harvard Medical School, Harvard Uni-
versity in 2006. He is the recipient of several awards
and scholarships, including the Jury thesis award
from the Department of Electrical Engineering at

Columbia University in 2011, the Google global intern scholarship in 2009,
and a Chinese government scholarship for outstanding self-financed students
abroad in 2009. His research interests include machine learning, business
analytics, information retrieval and hybrid neural-computer vision systems.

Xiangyang Xue (M’05) received the B.S., M.S.,
and Ph.D. degrees in communication engineering
from Xidian University, Xi’an, China, in 1989, 1992,
and 1995, respectively. He joined the Department
of Computer Science, Fudan University, Shanghai,
China, in 1995. Since 2000, he has been a Full
Professor. His current research interests include mul-
timedia information processing and retrieval, pattern
recognition, and machine learning. He has authored
more than 100 research papers in these fields. Dr.
Xue is an Associate Editor of the IEEE Transactions

on Autonomous Mental Development. He is also an editorial board member
of the Journal of Computer Research and Development, and the Journal of
Frontiers of Computer Science and Technology.

Shih-Fu Chang (S’89-M’90-SM’01-F’04) received
the B.S. degree in electrical engineering from the
National Taiwan University, Taipei, Taiwan, in 1985
and the M.S. and Ph.D. degrees in electrical engi-
neering and computer sciences from the University
of California at Berkeley, Berkeley, in 1991 and
1993, respectively.

He is the Richard Dicker Professor in the De-
partments of Electrical Engineering and Computer
Science, Senior Vice Dean of School of Engineering
and Applied Science, and Director of Digital Video

and Multimedia Lab at Columbia University. He has made significant contri-
butions to multimedia search, computer vision, media forensics, and machine
learning. He has been recognized with ACM SIGMM Technical Achievement
Award, IEEE Kiyo Tomiyasu Award, Navy ONR Young Investigator Award,
IBM Faculty Award, Recognition of Service Awards from ACM and IEEE
Signal Processing Society, and NSF CAREER Award. He and his students
have received several Best Paper Awards, including the Most Cited Paper
of the Decade Award from Journal of Visual Communication and Image
Representation. He is an IEEE Fellow and a Fellow of the American
Association for the Advancement of Science. He served as Editor-in-Chief
for IEEE Signal Processing Magazine (2006-8), and Chair of Columbia’s
Electrical Engineering Department (2007-2010).

