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Abstract

Many binary code encoding schemes based on hashing

have been actively studied recently, since they can pro-

vide efficient similarity search, especially nearest neighbor

search, and compact data representations suitable for han-

dling large scale image databases in many computer vi-

sion problems. Existing hashing techniques encode high-

dimensional data points by using hyperplane-based hashing

functions. In this paper we propose a novel hypersphere-

based hashing function, spherical hashing, to map more

spatially coherent data points into a binary code compared

to hyperplane-based hashing functions. Furthermore, we

propose a new binary code distance function, spherical

Hamming distance, that is tailored to our hypersphere-

based binary coding scheme, and design an efficient iter-

ative optimization process to achieve balanced partitioning

of data points for each hash function and independence be-

tween hashing functions. Our extensive experiments show

that our spherical hashing technique significantly outper-

forms six state-of-the-art hashing techniques based on hy-

perplanes across various image benchmarks of sizes rang-

ing from one to 75 million of GIST descriptors. The perfor-

mance gains are consistent and large, up to 100% improve-

ments. The excellent results confirm the unique merits of

the proposed idea in using hyperspheres to encode proxim-

ity regions in high-dimensional spaces. Finally, our method

is intuitive and easy to implement.

1. Introduction

Thanks to rapid advances of digital camera and various

image processing tools, we can easily create new pictures

and images for various purposes. This in turn results in a

huge amount of images available online. These huge image

databases pose a significant challenge in terms of scalabil-

ity to many computer vision applications, especially those

applications that require efficient similarity search.

For similarity search, nearest neighbor search techniques

have been widely studied and tree-based techniques [6]

have been used for low-dimensional data points. Un-

fortunately, these techniques are not scalable to high-

dimensional data points. Hence recently hashing techniques

Figure 1. The first two images show partitioning examples of

spherical hashing functions in a 2D space for 2 and 3 bit binary

codes. The rectangle in the images represents the boundary of data

points. The rightmost figure shows partitioning boundaries of non-

linear hashing functions used in the GSPICA method [10], which

is based on hyperplanes defined in its RBF kernel space. The par-

titioning boundary is visualized in the 2D original data space.

have been actively studied to provide efficient solutions for

such high-dimensional data points [11, 23, 26].

Encoding high-dimensional data points into binary codes

based on hashing techniques enables higher scalability

thanks to both its compact data representation and efficient

indexing mechanism. Similar high-dimensional data points

are mapped to similar binary codes and thus by looking into

only those similar binary codes (based on the Hamming

distance), we can efficiently identify approximate nearest

neighbors.

Existing hashing techniques can be broadly categorized

as data-independent and data-dependent schemes. In data-

independent techniques, hashing functions are chosen inde-

pendently from the input points. Locality-Sensitive Hash-

ing (LSH) [11] is one of the most widely known techniques

in this category. This technique is extended to various hash-

ing functions [3, 1, 13, 2, 20]. Recent research attentions

have been shifted to developing data-dependent techniques

to consider the distribution of data points and design bet-

ter hashing functions. Notable examples include spectral

hashing [26], semi-supervised hashing [25], iterative quan-

tization [7], joint optimization [10], and random maximum

margin hashing [15].

In all of these existing hashing techniques, hyperplanes

are used to partition the data points (located in the original

data space or a kernel space) into two sets and assign two

different binary codes (e.g., −1 or +1) depending on which



set each point is assigned to. Departing from this con-

ventional approach, we propose a novel hypersphere-based

scheme, spherical hashing, for computing binary codes.

Intuitively, hyperspheres provide much stronger power in

defining a tighter closed region in the original data space

than hyperplanes. For example, at least d + 1 hyperplanes

are needed to define a closed region for a d-dimensional

space, while only a single hypersphere can form such a

closed region even in an arbitrarily high dimensional space.

One can find that hyperplanes in a kernel space are able

to map to non-linear hashing functions (Fig. 1). However,

we have found that the proposed simple spherical hashing

in the original space achieves more spatially coherent parti-

tioning than the non-linear hashing functions used in recent

works [10, 15, 20].

Our paper has the following contributions:

1. We propose a novel spherical hashing scheme, analyze

its ability in terms of similarity search, and compare

it against the state-of-the-art hyperplane-based tech-

niques (Sec. 3.1).

2. We develop a new binary distance function tailored for

the spherical hashing method (Sec. 3.2).

3. We formulate an optimization problem that achieves

both balanced partitioning for each hashing function

and the independence between any two hashing func-

tions (Sec. 3.3). Also, an efficient, iterative process

is proposed to construct spherical hashing functions

(Sec. 3.4).

In order to highlight benefits of our method, we have

tested our method against different benchmarks that con-

sists of one to 75 million image feature points with varying

dimensions. We have also compared our method with many

state-of-the-art techniques and found that our method sig-

nificantly outperforms all the tested techniques, confirming

the superior ability of defining closed regions with tighter

bounds compared to conventional hyperplane-based hash-

ing functions (Sec. 4).

2. Related Work

In this section we discuss prior work related to image

representations and nearest neighbor search techniques.

2.1. Image Representations

To identify visually similar images for a query image,

many image representations have been studied [4]. Exam-

ples of the most popular schemes include the Bag-of-visual-

Words representation [21] and GIST descriptor [19], which

have been known to work well in practice. These image de-

scriptors have high dimensionality (e.g. hundreds to thou-

sands) and identifying similar images is typically reduced to

finding nearest neighbor points in those high dimensional,

image descriptor spaces [17]. Since these image descriptor

spaces have high dimensions, finding nearest neighbor im-

age descriptors has been known to be very hard because of

the ‘curse of dimensionality’ [11].

2.2. Treebased Methods

Space partition based tree structures such as kd-trees [6]

have been used to find nearest neighbors and optimized

for higher performance [16]. It has been widely known,

however, that kd-tree based search can run slower than

linear scan for high dimensional points. Nistér and

Stewénius [18] proposed another tree-based nearest neigh-

bor search scheme based on hierarchical k-means trees.

Although these techniques achieve reasonably high ac-

curacy and efficiency, they have been demonstrated in small

image databases consisting of about one million images.

Also, these techniques do not consider compressions of im-

age descriptors to handle large-scale image databases.

2.3. Binary Hashing Methods

Binary hashing methods aim to embed points in binary

codes, while preserving relative distances among them. One

of the most popular hashing techniques is LSH [11]. Its

hash function is based on projection onto random vectors

drawn from specific distribution. Many variations of LSH

have been proposed for learned metrics [13], min-hash [2],

random Fourier features [20], etc. [3, 1]. Since hashing

functions in LSH are drawn independently from the data

points, it could be inefficient especially for short lengths of

binary codes.

There have been a number of research efforts to de-

velop data-dependent hashing methods that reflect data dis-

tributions to improve the performance. Weiss et al. [26]

have proposed data-dependent, spectral hashing motivated

by spectral graph partitioning. It improved performance

over LSH especially for compact bit lengths (i.e. 8 and 16

bits). Wang et al. [25] proposed a semi-supervised hashing

method to improve image retrieval performance by exploit-

ing label information of the training set. Gong and Lazeb-

nik [7] introduced a procrustean approach that directly min-

imizes quantization error by rotating zero-centered PCA-

projected data. He et al. [10] presented a hashing method

that jointly optimizes both search accuracy and search time.

Joly and Buisson [15] constructed hash functions by using

large margin classifiers with arbitrarily sampled data points

that are randomly separated into two sets.

All the mentioned hashing techniques compute binary

codes by partitioning data points (located in the original fea-

ture space or a kernel space) into two different sets based on

hyperplanes. Departing from this conventional approach,

we adopt a novel approach of partitioning data points by

hyperspheres.

We found a similarly named method, spherical LSH [22].

Our method is totally different from this spherical LSH,

which is a specialized technique for data points located on

the unit hypersphere.



2.4. Distance based Indexing Methods

The database community has been designing efficient

techniques for indexing high dimensional points and sup-

porting various proximity queries. Filho et al. [5] index

points with distances from fixed pivot points. As a re-

sult, a region with a same index given a pivot becomes a

ring shape. This method reduces the region further by us-

ing multiple pivot points. They then built various hierar-

chical structures (e.g., R-tree) to support various proxim-

ity queries. The efficiency of this method highly depends

on the locations of pivots. For choosing pivots, Jagadish

et al. [12] used k-means clustering and Venkateswaran et

al. [24] adopted other heuristics such as maximizing the

variance of distances from pivots to data points.

This line of work uses a similar concept to ours in

terms of using distances from pivots for indexing high-

dimensional points. However, our approach is drastically

different from these techniques, since ours aims to compute

compact binary codes preserving the original metric spaces

of feature points by using hashing, while theirs targets for

designing hierarchical indexing structures supporting effi-

cient proximity queries.

3. Spherical Hashing

Let us first define notations. Given a set of n data points

in a D-dimensional space, we use X = {x1, ..., xn}, xi ∈
R

D to denote those data points. A binary code correspond-

ing to each data point xi is defined by bi = {−1,+1}c,

where c is the length of the code.

3.1. Binary Code Embedding Function

Our hashing function H(x) = (h1(x), ..., hc(x)) maps

points in R
D into the binary cube {−1,+1}c. We use a

hypersphere to define a spherical hashing function. Each

spherical hashing function hk(x) is defined by a pivot pk ∈
R

D and a distance threshold tk ∈ R
+ as the following:

hk(x) =

{

−1 when d(pk, x) > tk

+1 when d(pk, x) ≤ tk,

where d(·, ·) denotes the Euclidean distance between two

points in R
D; various distance metrics (e.g., Lp metrics)

can be used instead of the Euclidean distance. The value

of each spherical hashing function hk(x) indicates whether

the point x is inside the hypersphere whose center is pk and

radius is tk.

The key difference between using hyperplanes and hy-

perspheres for computing binary codes is their abilities to

define a closed region in R
D that can be indexed by a bi-

nary code. To define a closed region in a d-dimensional

space, at least d + 1 hyperplanes are needed, while only a

single hypersphere is sufficient to form such a closed region

in an arbitrarily high dimensional space. Furthermore, un-

like using multiple hyperplanes a higher number of closed
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Figure 2. The left figure shows how the avg. of the max. distances

among points having the same binary code changes with differ-

ent code lengths based on hyperspheres or hyperplanes. We ran-

domly sample 1000 different binary codes to compute avg. of the

max. distances. The right figure shows how having more common

+1 bits in our method effectively forms tighter closed regions.

For the right curve we randomly sample one million pairs of bi-

nary codes. For each pair of binary codes (bi, bj) we compute the

max. distance between pairs of points, (x, y), where H(x) = bi
and H(y) = bj . We report the avg. of the max. distances as a

function of the number of common +1 bits, i.e. |bi ∧ bj |. Both

figures are obtained with GIST-1M-960D dataset (Sec. 4.1).

regions can be constructed by using multiple hyperspheres,

while the distances between points located in each region

are bounded. For example, the number of bounded regions

by having c hyperspheres goes up to
(

c−1
d

)

+
∑d

i=0

(

c
i

)

[27].

In addition, we can approximate a hyperplane with a large

hypersphere (e.g. a large radius and a far-away center)

In nearest neighbor search the capability of forming

closed regions with tighter distance bounds is very impor-

tant in terms of effectively locating nearest neighbors from a

query point. When we construct such tighter closed regions,

a region indexed by the binary code of the query point can

contain more promising candidates for the nearest neigh-

bors.

We also empirically measure how tightly hyperspheres

and hyperplanes bound regions. For this purpose, we mea-

sure the maximum distance between any two points that

have the same binary code and take the average of the max-

imum distances among different binary codes. As can be

seen in the left figure of Fig. 2, hyperspheres bound regions

of binary codes more tightly compared to hyperplanes used

in LSH [3]. Across all the tested code lengths, hyperspheres

show about two times tighter bounds over the hyperplane-

based approach.

3.2. Distance between Binary Codes

Most hyperplane-based binary embedding methods use

the Hamming distance between two binary codes, which

measures the number of different bits, i.e. |bi⊕bj |, where ⊕
is the XOR bit operation and | · | denotes the number of +1
bit in a given binary code. This distance metric measures

the number of hyperplanes that two given points reside in

the opposing side of them. The Hamming distance, how-

ever, does not well reflect the property related to defining



closed regions with tighter bounds, which is the core bene-

fit of using our spherical hashing functions.

To fully utilize desirable properties of our spherical hash-

ing function, we propose the following distance metric,

spherical Hamming distance (dshd(bi, bj)), between two bi-

nary codes bi and bj computed by spherical hashing:

dshd(bi, bj) =
|bi ⊕ bj |

|bi ∧ bj |
,

where |bi ∧ bj | denotes the number of common +1 bits be-

tween two binary codes.

Having the common +1 bits in two binary codes gives us

tighter bound information than having the common −1 bits

in our spherical hashing functions. This is mainly because

each common +1 bit indicates that two data points are in-

side its corresponding hypersphere, giving a stronger cue in

terms of distance bounds of those two data points. In order

to see the relationship between the distance bound and the

number of the common +1 bits, we measure the average

distance bounds of data points as a function of the number

of the common +1 bits. As can be seen in the right figure of

Fig. 2, the average distance bound decreases as the number

of the common +1 bits in two binary codes increases. As

a result, we put |bi ∧ bj | in the denominator of our spheri-

cal Hamming distance. In implementation, we add a small

value to the denominator to avoid the division by zero.

The common +1 bits between two binary codes define

a closed region with a distance bound as mentioned above.

Within this closed region we can further differentiate the

distance between two binary codes based on the Hamming

distance |bi ⊕ bj |, the numerator of our distance function.

The numerator affects our distance function in the same

manner to the Hamming distance, since the distance be-

tween two binary codes increases as we have more different

bits between two binary codes.

3.3. Independence between Hashing Functions

Achieving balanced partitioning of data points for each

hashing function and the independence between hashing

functions has been known to be important [26, 10, 15], since

independent hashing functions distribute points in a bal-

anced manner to different binary codes. It has been known

that achieving such properties lead to minimizing the search

time [10] and improving the accuracy even for longer bit

lengths [15]. We also aim to achieve this independence be-

tween our spherical hashing functions.

We define each hashing function hk to have the equal

probability for +1 and −1 bits respectively as the following:

Pr[ hk(x) = +1 ] =
1

2
, x ∈ X, 1 ≤ k ≤ c (1)

Let us define a probabilistic event Vk to represent the

case of hk(x) = +1. Two events Vi and Vj are indepen-

dent if and only if Pr[Vi ∩ Vj ] = Pr[Vi] · Pr[Vj ]. Once

we achieve balanced partitioning of data points for each bit

(Eq. 1), then the independence between two bits can satisfy

the following equation given x ∈ X and 1 ≤ i, j ≤ c:

Pr[hi(x) = +1, hj(x) = +1]

= Pr[hi(x) = +1] · Pr[hj(x) = +1] = 1
2 · 1

2 = 1
4 (2)

In general the pair-wise independence between hashing

functions does not guarantee the higher-order independence

among three or more hashing functions. We can also for-

mulate the independences among more than two hashing

functions and aim to satisfy them in addition to constraints

shown in Eq. 1 and Eq. 2. However we found that consid-

ering such higher-order independence hardly improves the

search quality.

3.4. Iterative Optimization

We now propose an iterative process for computing c dif-

ferent hyperspheres, i.e. their pivots pk and distance thresh-

olds tk. During this iterative process we construct hyper-

spheres to satisfy constraints shown in Eq. 1 and Eq. 2.

As the first phase of our iterative process, we sample a

subset S = {s1, s2, ..., sm} from data points X to approx-

imate its distribution. We then initialize the pivots of c hy-

perspheres with randomly chosen c data points in the subset

S; we found that other alternatives of initializing the pivots

(e.g., using center points of K-means clustering performed

on the subset S) do not affect the results of our optimization

process.

As the second phase of our iterative process, we refine

pivots of hyperspheres and compute their distance thresh-

olds. To help these computations, we compute the follow-

ing two variables, oi and oi,j , given 1 ≤ i, j ≤ c:

oi = | {sk|hi(sk) = +1, 1 ≤ k ≤ m} |,

oi,j = | {sk|hi(sk) = +1, hj(sk) = +1, 1 ≤ k ≤ m} |,

where | · | is the cardinality of the given set. oi measures

how many data points in the subset S have +1 bit for ith
hashing function and will be used to satisfy balanced parti-

tioning for each bit (Eq. 1). Also, oi,j measures the num-

ber of data points in the subset S that are contained within

both of two hyperspheres corresponding to ith and jth hash-

ing functions. oi,j will be used to satisfy the independence

between ith and jth hashing functions during our iterative

optimization process.

Once we compute these two variables with data points

in the subset of S, we adopt two alternating steps to re-

fine pivots and distance thresholds for hyperspheres. First,

we adjust the pivot positions of two hyperspheres in a way

that oi,j becomes closer to or equal to m
4 . Intuitively, for

each pair of two hyperspheres i and j, when oi,j is greater

than m
4 , a repulsive force is applied to both pivots of those

two hyperspheres (i.e. pi and pj) to place them farther

away. Otherwise an attractive force is applied to locate them



Algorithm 1 Our iterative optimization process

Input: sample points S = {s1, ..., sm} , error tolerances

ǫm, ǫs, and the number of hash functions c
Output: pivot positions p1, ..., pc and distance thresholds

t1, ..., tc for c hyperespheres

Initialize p1, ..., pc with randomly chosen c data points

from the set S
Determine t1, ..., tc to satisfy oi =

m
2

Compute oi,j for each pair of hashing functions

repeat

for i = 1 to c− 1 do

for j = i+ 1 to c do

fi←j =
1
2
oi,j−m/4

m/4 (pi − pj)

fj←i = −fi←j

end for

end for

for i = 1 to c do

fi =
1
c

∑c
j=1 fi←j

pi = pi + fi
end for

Determine t1, ..., tc to satisfy oi =
m
2

Compute oi,j for each pair of hashing functions

until avg(| oi,j −
m
4 |) ≤ ǫm

m
4 and std-dev(oi,j) ≤

ǫs
m
4

closer. Second, once pivots are computed, we adjust the dis-

tance threshold ti of ith hypersphere such that oi becomes
m
2 to meet balanced partitioning of the data points for the

hypersphere (Eq. 1).

We perform our iterative process until the computed hy-

perspheres do not make further improvements in terms of

satisfying constraints. Specifically, we consider the mean

and standard deviation of oi,j as a measure of the conver-

gence of our iterative process. Ideal values for the mean

and standard deviation of oi,j are m
4 and zero respectively.

However, in order to avoid over-fitting, we stop our itera-

tive process when the mean and standard deviation of oi,j
are within ǫm% and ǫs%, error tolerances, of the ideal mean

of oi,j respectively; we found that too low error tolerances

lead to over-fitting while the values near 10% give reason-

able result. In the following experiments, we consistently

used fixed values for ǫm and ǫs as 10% and 15% respec-

tively.

Force computation: A (repulsive or attractive) force from

pj to pi, fi←j , is defined as the following (Fig. 3):

fi←j =
1

2

oi,j −m/4

m/4
(pi − pj).

An accumulated force, fi, is then the average of all the

p
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Figure 3. These two images show how a force between two pivots

is computed. In the left image a repulsive force is computed since

their overlap oi,j is larger than the desired amount. On the other

hand, the attractive force is computed in the right image because

their overlap is smaller than the desired amount.
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Figure 4. This graph shows a convergence rate of our iterative opti-

mization. The left and right y-axises indicate how the average and

std. dev. of oi,j approach our termination condition in the scale of

our error tolerances, ǫm and ǫs respectively. In this case, we set

ǫm as 0.1 and ǫs as 0.15 for terminating our optimization. This re-

sult is obtained with the GIST-1M-384D dataset at the 64-bit code

length.

forces computed from all the other pivots as the following:

fi =
1

c

c
∑

j=1

fi←j .

Once we apply the accumulated force fi to pi, then pi is

updated simply as pi+fi. Our iterative optimization process

is shown in Algorithm 1.

The time complexity of our iterative process is O((c2 +
cD)m), which is comparable to those of the state-of-the-

art techniques (e.g., O(D2m) of spectral hashing [26]). In

practice, our iterative process is finished within 10 to 30 it-

erations. Also, its overall computation time is less than 30

seconds even for 128 code lengths. The convergence rate

with respect to the number of iterations is shown in Fig. 4.

Note that our iterative optimization process shares similar

characteristics of the N-body simulation [9] designed for

simulating various dynamic systems of particles (e.g., celes-

tial objects interacting with each other under gravitational

forces). Efficient numerical integration methods (e.g., fast

multipole method) can be applied to accelerate our iterative

optimization process.

4. Evaluation

In this section we evaluate our method and compare it

with the state-of-the-art methods [3, 26, 7, 10, 15, 20].



4.1. Datasets and Protocol

We perform various experiments with the following

three datasets:

• GIST-1M-384D: A set of 384 dimensional, one mil-

lion GIST descriptors, which consist of a subset of

Tiny Images [23].

• GIST-1M-960D: A set of 960 dimensional, one mil-

lion GIST descriptors that are also used in [14].

• GIST-75M-384D: A set of 384 dimensional, 75 mil-

lion GIST descriptors, which consist of a subset of 80

million Tiny Images [23].

Our evaluation protocol follows that of [15]. Specif-

ically, we test with randomly chosen 1000 queries for

datasets GIST-1M-384D and GIST-1M-960D, and 500

queries for GIST-75M-384D that do not have any overlap

with data points. The performance is measured by mean

Average Precision (mAP). The ground truth is defined by k
nearest neighbors that are computed by the exhaustive, lin-

ear scan based on the Euclidean distance. When calculating

precisions, we consider all the items having lower or the

equal Hamming distance (or spherical Hamming distance)

from given queries.

For experiments with GIST-1M-384D and GIST-1M-

960D, we use a machine consisting of i7 X990 with 24GB

main memory. For GIST-75M-384D, we use a machine

consisting of Xeon X5690 and 144GB main memory to hold

all the data in its main memory.

4.2. Compared Methods

• LSH and LSH-ZC: Locality Sensitive Hashing [3]

with/without Zero Centered data points. The projec-

tion matrix is a Gaussian random matrix. As discussed

in [8, 7], centering the data around the origin (i.e.
∑

xi = 0) produces much better results over LSH.

Hence, we transform data points such that their center

is located at the origin for LSH-ZC.

• LSBC: Locality Sensitive Binary Codes [20]. The

bandwidth parameter used in experiment is the inverse

of the mean distance between the points in the dataset,

as suggested in [8].

• SpecH: Spectral Hashing [26].

• PCA-ITQ: Iterative Quantization [7].

• RMMH-L2: Random Maximum Margin Hashing

(RMMH) [15] with the triangular L2 kernel. We ex-

periment RMMH with the triangular L2 kernel since

the authors reported the best performance on k nearest

neighbor search with this kernel. We use 32 for the pa-

rameter M that is the number of samples for each hash

function, as suggested by [15].
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Figure 5. Comparisons between our method and the-state-of-the-

art methods with the GIST-1M-384D dataset when k = 100.

• GSPICA-RBF: Generalized Similarity Preserving In-

dependent Component Analysis (GSPICA) [10] with

the RBF kernel. We experiment GSPICA with the RBF

kernel, since the authors reported the best performance

on k nearest neighbor search with this kernel. The pa-

rameter used in the RBF kernel is determined by the

mean distance of kth nearest neighbors within training

samples as suggested by [15]. The parameters γ and P
are 1 and the dimensionality of the dataset respectively,

as suggested in [10].

• Ours-HD and Ours-SHD: We have tested two differ-

ent versions of our method. Ours-HD represents our

method with the common Hamming distance, while

Ours-SHD uses our spherical Hamming distance.

For all the data-dependent hashing methods, we ran-

domly choose 100K data points from the original dataset

as a training set. We also use the same training set to es-

timate parameters of each method. We report the average

mAP and recall values by repeating all the experiments five

times, in order to gain statistically meaningful values; for

GIST-75M-384D benchmark, we repeat experiments only

three times because of its long experimentation time. Note

that we do not report results of two PCA-based methods

SpecH and PCA-ITQ for 512 hash bits at 384 dimensional

datasets, since they do not support bit lengths larger than

the dimension of the data space.

4.3. Results

Fig. 5 shows the mAP of k nearest neighbor search of

all the tested methods when k = 100. Our method with

the spherical Hamming distance, Ours-SHD, shows better

results over all the tested methods across all the tested bit

lengths ranging from 32 bits to 512 bits. Furthermore, our

method shows increasingly higher benefits over all the other

tested methods as we allocate more bits. This increasing im-

provement is mainly because using multiple hyperspheres
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Figure 6. Recall curves of different methods when k = 100 for the

GIST-1M-384D dataset. Each hash table is constructed by 64 bits

code lengths. The recall (y-axis) represents search accuracy and

the number of retrieved samples (x-axis) represents search time.

Graphs are best viewed with colors.

can effectively create closed regions with tighter distance

bounds compared to hyperplanes.

Given 0.1 mAP in Fig. 5, our method needs to use 128

bits to encode each image. On the other hand, other tested

methods should use more than 256 bits. As a result, our

method provides over two times more compact data repre-

sentations than other methods. We would like to point out

that low mAP values of our method are still very meaning-

ful, as discussed in [15]. Once we identify nearest neighbor

images based on binary codes, we can employ additional re-

ranking processes on those images. As pointed out in [15],

0.1 mAP given k = 100 nearest neighbors, for example,

indicates that 1000 images on average need to be re-ranked.

Performances of our methods with two different binary

code distance functions are also shown in Fig. 5. Our

method with the Hamming distance Ours-HD shows better

results than most of other methods across different bits, es-

pecially higher bits. Furthermore, the spherical Hamming

distance Ours-SHD shows significantly improved results

even than Ours-HD. The spherical distance function also

shows increasingly higher improvement over the Hamming

distance, as we add more bits for encoding images.

Our technique can be easily extended to use multiple

hash tables; for example, we can construct a new hash table

by recomputing S, the subset of the original dataset. Fig. 6

shows recall curves of different methods with varying num-

bers of hash tables, when we allocate 64 bits for encoding

each image. Our method (with our spherical Hamming dis-

tance) improves the accuracy as we use more tables. More

importantly, our method only with a single table shows sig-

nificantly improved results over all the other tested methods

that use four hash tables. For example, when we aim to

achieve 0.5 recall rate, our method with one and four hash

tables needs 3674 and 2013 images on average respectively.

However, GSPICA-RBF [10] with four hash tables, the

second-best method, needs to identify 4909 images, which

are 33% and 143% more number of images than our method
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Figure 7. Comparison between our method and the-state-of-the-art

methods with the GIST-1M-960D dataset when k = 1, 000.

with one and four hash tables respectively.

We have also performed all the tests against the 960 di-

mensional, one million GIST dataset GIST-1M-960D with

k = 1000 (Fig. 7). We have found that our method shows

similar trends even with this dataset, compared to what

we have achieved in GIST-1M-384D. The precision-recall

curves corresponding to Fig. 5 and Fig. 7 are available in

the supplementary report.

We have also performed all the tests against the 384 di-

mensional, 75 million GIST dataset GIST-75M-384D with

k = 10, 000 (Fig. 8). We have found that our method shows

significantly higher results than all the other tested methods

across all the tested bit lengths even with this large-scale

dataset.

In order to see how each component of our method af-

fects the accuracy, we measure mAP by disabling the spher-

ical Hamming distance, the independent constraint, and

balanced partitioning in our method. In the case of us-

ing 64 bits, mAP of our method goes down 28%, 83%,

and 90% by disabling the spherical Hamming distance,

the independence constraint, and the balanced partition-

ing/independence constraints respectively.

Finally, we also measure how efficiently our

hypersphere-based hashing method generates binary

codes given a query image. Our method takes 0.08 ms for

generating a 256 bit-long binary code. This cost is same to

that of the LSH technique generating binary codes based

on hyperplanes.

4.4. Discussions

As we briefly pointed out in Sec. 1, hyperplanes in a ker-

nel space can map to non-linear hashing functions. How-

ever, previous techniques using kernel spaces [17, 10, 15]

define their kernels with randomly chosen multiple land-

marks from the input data points. In other words, those mul-

tiple landmarks affect to determine each bit in their binary

codes. As a result, their kernels map to very complicated
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Figure 8. Comparison between our method and the-state-of-the-art

methods with the GIST-75M-384D dataset when k = 10, 000.

non-linear functions, which are drastically different from

hyperspheres (see the rightmost image of Fig. 1). Instead

our method is intuitive and simple, as it uses only the single

pivot of a hypersphere for each bit.

Furthermore, we choose pivots carefully to satisfy the

independence constraint, while other methods [10, 15] use

randomly chosen landmarks. Also, to define binary codes,

LSBC [20] uses shift-invariant kernels. However, LSBC

uses kernels in a different way from our approach and does

not use hyperspheres defined in the original data space to

encode binary codes. In summary, according to the best

of our knowledge, using hyperspheres in the original data

space has never been employed to encode binary codes for

computer vision applications.

5. Conclusion

We have proposed a novel hypersphere-based binary em-

bedding technique for providing compact data represen-

tation and highly scalable nearest neighbor search with

high accuracy. Our method significantly outperformed the

tested six state-of-the-art hashing techniques based on hy-

perplanes with one and 75 million GIST descriptors that

have 384 or 960 dimensions. In our future work, we would

like to incorporate the quantization error that is considered

in the iterative quantization method [7] into our optimiza-

tion process. We expect that by doing so, we can improve

the search accuracy further.
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