
Submodular Video Hashing: A Unified Framework Towards
Video Pooling and Indexing

Liangliang Cao
Multimedia Group

IBM Watson Research Center
liangliang.cao@us.ibm.com

Zhenguo Li, Yadong Mu, Shih-Fu Chang
Dept. of Electrical Engineering

Columbia University
zgli,muyadong,sfchang@ee.columbia.edu

ABSTRACT
This paper develops a novel framework for efficient large-
scale video retrieval. We aim to find video according to
higher level similarities, which is beyond the scope of tradi-
tional near duplicate search. Following the popular hashing
technique we employ compact binary codes to facilitate n-
earest neighbor search. Unlike the previous methods which
capitalize on only one type of hash code for retrieval, this
paper combines heterogeneous hash codes to effectively de-
scribe the diverse and multi-scale visual contents in videos.
Our method integrates feature pooling and hashing in a s-
ingle framework. In the pooling stage, we cast video frames
into a set of pre-specified components, which capture a va-
riety of semantics of video contents. In the hashing stage,
we represent each video component as a compact hash code,
and combine multiple hash codes into hash tables for ef-
fective search. To speed up the retrieval while retaining
most informative codes, we propose a graph-based influence
maximization method to bridge the pooling and hashing
stages. We show that the influence maximization problem
is submodular, which allows a greedy optimization method
to achieve a nearly optimal solution. Our method work-
s very efficiently, retrieving thousands of video clips from
TRECVID dataset in about 0.001 second. For a larger s-
cale synthetic dataset with 1M samples, it uses less than 1
second in response to 100 queries. Our method is extensive-
ly evaluated in both unsupervised and supervised scenarios,
and the results on TRECVID Multimedia Event Detection
and Columbia Consumer Video datasets demonstrate the
success of our proposed technique.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

Keywords
video hashing, indexing, feature pooling, multiple feature
hashing, submodular

1. INTRODUCTION
The power of word-based document indexing has been

demonstrated by the success of modern text-based search
engines like Yahoo, Google and Bing. Nowadays billions of
users can easily enter search terms to query enormous repos-
itories of text documents in a flexible way. In contrast, video
retrieval is still in its early stage: most video search systems
still rely on textual titles or comments rather than visual
features. One reason is that it is still very expensive to com-
pute distance metrics between video queries and tremendous
video corpus on the Web. Consequently, personalized video
search where users can impose individual preference of vi-
sual features is still far from being a reality. On the one
hand, more video contents are being generated. On the oth-
er hand, it appears to be more difficult for effectively retrieve
relevant contents.

The difficulty in large scale video indexing stems from
the complex nature of video contents. Unlike text retrieval
where a document can be retrieved by words in constan-
t time using inverted index structure, a video is composed
of multiple frames with dynamic backgrounds and evolving
people activities. The semantic gap between low-level fea-
tures and high-level concepts makes it difficult to model rich
video semantics. Additionally, data structures based on in-
verted index files are not readily applicable for content-based
retrieval of videos which are represented by high-dimensional
visual features.

To capture the diversity of video contents, a straightfor-
ward approach is to employ multiple video features to de-
scribe different aspects of visual contents. However, there
are two challenges of using multiple features. First, most
multiple feature learning algorithms rely on supervised learn-
ing. While more features may capture sufficient video con-
tents, non-discriminative or noisy features may degrade the
performance substantially. Second, employing multiple fea-
tures increases the computational complexity and makes
large-scale visual retrieval slower. There is a trade-off be-
tween the quality of the retrieval and the corresponding ef-
ficiency. If the feature dimensionality is too high, nearest
neighbor search will be expensive and undiscriminative due
to the curse of high dimensionality [9].

In this paper, we propose a new framework, called sub-

modular video hashing, for efficient video retrieval with large-
scale feature selection. The approach achieves fast retrieval

speed and scales well to very large video data sets. The
contributions of this new framework lie in three aspects:

• It captures the diversified contents of video frames us-
ing novel visual pooling methods in the temporal do-
main. By pooling the frames with similar visual fea-
tures, it can distinguish different scenes in a video and
group them into different video components. The tem-
poral pooling method is especially useful in modeling
long sequences or videos with multiple scenes.

• It develops a new selection strategy from multiple scene
components and multiple features. To handle the trade-
off between efficiency and accuracy, we prove that our
feature selection formulation is submodular, and thus
can be solved nearly optimally by greedy optimization.

• Finally, it uses multiple hash tables to combine the
results from selected features and video components.
Our hash tables work similarly to inverted indexes in
text retrieval and support video retrieval with very low
computational complexity.

Note that the objective of submodular video hashing is dif-
ferent from near-duplicate search and image hashing. Near-
duplicate video search is a classical problem in multimedia
field, which aims to find similar frames among videos, and is
very useful in protecting copyright and intelligence proper-
ty. In contrast, our submodular video hashing, can be used
to find videos according to higher level similarities, such as
video styles or topics. Image hashing has been a popular
topic in recent years, but it does not consider the tempo-
ral pooling problem as in this paper. There is also another
subtle but practically very important difference between our
method and prior image hashing techniques. A number of
prior efforts on image hashing [33] [34] require computation
of the Hamming distances between the query and images
in the datasets, which implies huge computational cost for
large-scale video datasets. Following the paradigm in Indyk
et al.’s seminal work [8], this paper utilizes hashing table as
inverted indexes to enable very efficient retrieval and devel-
ops a novel submodular framework for combining multiple
hash tables.

The rest of this paper is organized as follows: Section 2
first reviews related work on image pooling and submodular
optimization. Section 3 generalizes previous studies by ex-
tending pooling from image domain to video domain. The
proposed pooling technique comprises multiple components
that can provide a comprehensive description of video con-
tents. Based on these video components, Section 4 develops
a novel submodular video hashing strategy. Section 5 re-
ports experimental results using submodular video hashing
techniques that show excellent performance. Finally we con-
clude this paper in Section 6 and report on future directions.

2. RELATED WORK
Our work is partly motivated by the recent progress in im-

age hashing. Shaknarovich and Darrell [31] proposed Boost-
SSC to compute a weighted Hamming distance. However,
the weighted Hamming distance makes it difficult to find the
neighbors efficient in their approach. Torralba et al. used
small hash codes to represent 80 million tiny images [33].
Weiss et al. developed spectral hashing [34] to improve the
hashing quality using spectral graph theory. Liu et al. em-
ployed anchor nodes to speed up the hashing process on

large-scale graphs [26]. Hashing with supervised informa-
tion is also considered in recent studies [23], [25]. Zhang et
al. [38] proposed to integrate information from several dif-
ferent sources by adjusting the weights on each individual
source for maximizing the coding performance, and enabling
fast conversion from query examples to their binary hash
codes. However, all the above approaches adopt just a sin-
gle hash code to represent an instance, which cannot capture
the diversified content of video clips.

In contrast to previous studies in image hashing, this pa-
per proposes to represent a video using multiple components
produced by temporal video pooling. The pooling operation
has been widely used in image recognition. Boureau et al.
argued in [2] that many recent progresses in image recog-
nition can be viewed as a combination of alternating series
of coding and spatial pooling steps. Average pooling [20]
tries to compute the mean of the feature vectors within a
spatial neighborhood. Bag-of-words model can be viewed as
a special case of average pooling. Max pooling is found to
be useful for sparse coding features [37]. This idea is recent-
ly generalized in [1], by enlarging the spatial bins in feature
space clustering. Video pooling is different from image pool-
ing in the sense that the regularity in temporal domain is
not as significant as that in the spatial domain. A video
event can either happen at the beginning part of the video
or the second half of the video, or it can last throughout the
whole sequence.

It is worth noting that this paper is also different from
classical near-duplicate video search problem that are chiefly
motivated by the problem of copyright detection. Many
of the proposed solutions decompose videos into multiple
key-frames and look for similar key-frames across pairs of
videos [16], [35], [15], [12], [32]. Some recent work consid-
ers pair-wise distances of key-frames [24], which can further
improve the detection accuracy but suffers from heavy com-
putational burden. This prior work does not generalize for
content-based video retrieval because: (1) General video re-
trieval requires support for content-based search based on
high-level semantics rather than visual duplication. (2) Tra-
ditional near-duplicate search requires a distance measure
between key-frames, and the performance is determined by
the quality of low-level features of key-frames in unsuper-
vised learning scenario. In contrast, a single low-level feature
may not work well for general video retrieval, which often re-
quires supervised learning. (3) Video retrieval systems are
desired to support personalized retrieval, where user pro-
file or retrieval history improves retrieval performance. This
cannot be accomplished by classical near-duplicate retrieval.

This paper employs hash tables as the basic data struc-
ture and develops a novel method to construct multiple hash
tables. The contribution in this paper is in developing a u-
nified submodular framework that integrates video pooling
and hashing, and provides an efficient strategy exploring the
rich contents in video retrieval. In recent years, submodular
optimization has emerged as a powerful optimization tool
in a variety of machine learning problems including active
learning, structure learning, clustering, and ranking. A sub-
modular function is essentially characterized by a diminish-
ing return property which states that, the marginal gain of
adding a new element to a subset B is higher than that of
adding it to any larger subset A, where B ⊂ A. Formally,
let P be the power set of a set V. A set function h : P → R

is said to be submodular [18] if

h(A∪{v})−h(A) ≤ h(B∪{v})−h(B) ∀B ⊂ A ⊂ V, v ∈ V\A.
(1)

The very desirable consequence of submodularity is that
provably (near-)optimal solutions can be found via efficient
greedy optimization [18]. Some typical submodular func-
tions explored in machine learning include set cover, influ-
ence in social network [21], electricity network [18], anisotrop-
ic diffusion [17], and sparse representation [6]. In this paper,
we will prove that our hash code selection is also a sub-
modular problem and can be solved by an efficient greedy
approach.

3. VIDEO POOLING
The basic idea of our video hashing algorithm is to exploit

the rich semantics of videos and construct binary codes cor-
responding to different characteristics of video contents. Our
methods contrast with previous image based hashing meth-
ods by considering video feature pooling in frame-level.

Suppose there is a video with T frames, where each frame
is represented by a feature vector xt. We generate temporal
pooling component k as

zk =

T
∑

t=1

pkt xt. (2)

Here pkt stands for the probability Pr(k|xt) that captures
the amount of contribution of frame t in forming the scene
component k. We approximate the probability using soft
vector quantization on GIST features.

From (2), we can see that to obtain different scene com-

ponent zk =
∑T

t=1 p
k
t xt, in fact is equivalent to decompose

each frame feature xt into different scenes

xt → [p1txt, p
2
txt, · · ·], (3)

From eqs (2) and (3) one can see that our new model is a
feature pooling method [1]. The unique characteristic of our
method is that our pooling weights pkt are on video frames
instead of spatial domain. Here we force the pooling weights
pkt to follow the constraint

∑

k p
k
t = 1. We will explain how

to compute pkt in the following.
Following the previous studies [29] [30] [36], we use GIST

features to represent the scenes of video frames and then to
compute pkt . Note that the pooling weights are computed
based on Euclidean distance, which is not reliable for sparse
histogram features like SIFT. On the other hand, GIST is
easy to compute and gives a reliable measure on how differ-
ent two frames look holistically [29]. With all the training
data, we compute the GIST features for all frames and clus-
ter them into C centers using the K-means algorithm. The
C center is represented as g1c , g

2
c , · · · , g

C
c . To compute the

pooling weight pkt for frame t in a training or test video clip,
we extract it GIST feature vector gt . The pooling weight
is derived by comparing {gkc } and gt.

One simple way to compute pooling weights is by vector
quantization (VQ), which forces all but the nearest one pkt to
be zero. However, VQ is well-known to be sensitive to noises.
In this paper, we consider a soft voting pooling weights as

pkt =
1/(dkt)

3

∑C
l=1 1/(d

l
t)

3
, (4)

Algorithm 1 Video Pooling Algorithm.

Input: A video with the set of frame feature vectors {xt},
1 ≤ t ≤ T . A codebook with C centers of GIST feature gkc ,
1 ≤ k ≤ C.

Extract GIST descriptor gt for every frame t.
Compute the pooling weight pkt using eq. (4).
Compute scene component zk using eq. (2).
Normalize zk and encode each component with a hash
code.

where dkt is the Euclidean distance between centers gkc and
frame feature gt. It is not difficult to see that our pooling
weights satisfy the constraint

∑

k p
k
t = 1. Also our pool-

ing weights rely on GIST feature, regardless of the event
label y. This means we will use the same pooling strate-
gy independent with events. We call the method in eq. 4
as concurrent VQ. Compared with traditional VQ, our new
pooling method penalizes the impact of large outliers, and
assigns more weights to the centers closer to gt.

Note that this paper chooses an unsupervised way to mod-
el pooling weights. The reasons why unsupervised learning
is preferred are as follows: First, unsupervised learning can
save the extra labeling efforts; On the other hand, in our
model, the goal is not to recognize the exact scene category
but to do pooling according to scene context, and thus su-
pervised learning is not necessary. Algorithm 1 summarizes
the workflow of our video pooling algorithm.

Our recent experiments show [4] that Support Vector Ma-
chine (SVM) classifiers with video pooling components can
significantly improve the recognition accuracy for complex
video events. However, this paper is different from [4] in
the fact that it considers the video hashing problem (as e-
laborated in the next section) instead of SVM classification.
After temporal pooling components {zk} are computed, we
further learn a compact hash code (less than 32 bits) for
each pooling component. We generate a number of hash
codes using different temporal pooling. We use both ran-
dom projection [8] and spectral hashing [34] in this paper,
but note that our system is also flexible to be combined with
other hashing functions.

4. SUBMODULAR VIDEO HASHING

4.1 Model
Suppose we have nf features indexed by f = 1, . . . , nf ,

where each (f) is captured by multiple (C) components
(v1f , · · · , v

C
f) and each component (vjf) is expressed by a

compact binary hash code1. Our first observation is that
not every code is equally informative and there can be sig-
nificant redundancy among the codes. On the other hand, it
is critical to use compact representation for large-scale video
retrieval. Inspired by these observations, we aim to select a
small number of “informative” codes which can well “repre-
sent” the entire set of codes. We found these concepts can
be effectively modeled using a graph over the codes whose
edge weights capture the degree of overlapping or similari-
ty between pairwise codes. In this section, we assume that
the mechanism to compute pairwise code similarity is known
(which will be addressed in the next subsection).

1Our model applies to any other feature representation.

Figure 1: Temporal pooling for video hashing.

Let G = {V,W } be a graph with node set V consisting of
the hash codes considered, i.e., V = {vkf |k = 1, . . . , C; f =
1, . . . , nf}, and similarity matrix W = [wij] where wij cap-
tures the similarity between codes i and j. Our goal is to
select m representative nodes from the graph, where m can
be manually specified or determined automatically. We cast
this node selection problem as an influence maximization
problem where the influence of the selected m nodes can be
maximally propagated to the rest of the nodes in the graph.

Denote A as the set of selected nodes whose influences are
assigned and fixed to 1’s. We use a score uA(i) ∈ [0, 1] to
quantify the influence node i received from A. For technical
reason that will be clear soon, we introduce a sink node s
to the graph that is connected to each node with a small
constant weight. The sink node s is very “cool” in that it
is never influenced by others or tries to influence others. So
its influence is fixed to 0. For simplicity and a little abuse
of notations, we still denote the graph as G = {V,W } but
keep in mind that s ∈ V and W is expanded accordingly.
We also denote Â = A∪ s and N the set of remaining nodes,
i.e., Â ∩ N = ∅ and Â ∪ N = V. Formally, we propose the
following influence maximization framework:

max
A⊂V

Ω(A) :=
∑

i∈N

uA(i). (5)

To instantiate the above framework, a concrete model for
influence propagation is needed. Since label propagation on
graph is a well studied problem in machine learning [39], we
adapt it for influence, though other propagation techniques
can be employed [3] [13]. Specifically, we use the concept of
Harmonic fields from Zhu et al. [40] which has been shown
to be a highly effective label propagation model.

Denote uA(i) = 1 if i ∈ A and uA(s) = 0. Our influence
model enjoys a “harmonic” interaction among the nodes as
follows:

uA(i) =
1

di

∑

j∈N (i)

wijuA(j), i ∈ N (6)

where N (i) denotes the set of neighbors of node i and di =
∑

j∈N (i) wij is the degree of node i. In other words, the

influence on node i is the weighted sum of the influences on

its neighbors.
Recall that our objective is to select m nodes A to max-

imize the overall influence Ω(A), which appears to be a
difficult discrete optimization problem. However, we will
show below that set function Ω(A) is submodular (see e-
q. (1)), whose optimization can be done in a greedy man-
ner which is guaranteed to converge to a solution that is
nearly optimal [28]. Our strategy is partially inspired by
previous work in semi-supervised learning [40] and image
co-segmentation [17]. Our work differs in a new formulation
for hash function selection as well as a novel and easier way
for showing the submodularity of the influence maximization
problem.

We introduce some notations first. Denote

W =

[

W
ÂÂ

W
ÂN

W
NÂ

WNN

]

.

Let u
Â
and uN be the two vectors corresponding to the in-

fluences on Â and N, respectively. Then (6) becomes

DNNuN = W
NÂ

u
Â
+WNNuN, (7)

where DNN is the diagonal matrix corresponding to degrees
of nodes in N.

Below we will show that Ω(A) =
∑

i∈N
uA(i) is submodu-

lar. Since any non-negative linear combination of submodu-
lar functions is also submodular, it suffices to show uA(i) is
submodular w.r.t. A for any i ∈ N.

Proposition 1. The matrix LNN := DNN −WNN is posi-

tive definite and L−1
NN

is non-negative.

Proof. Denote DN = diag(WNN1) where 1 is a vector of

one of appropriate size. Then D̂ = DNN −DN is a diagonal
matrix whose every diagonal element is no less than a. Here
a denotes the weight between the sink node and each of the
other nodes. So LNN = D̂ + LN where LN := DN − WNN is

known to be positive semi-definite [5]. Thus LNN is positive
definite.

Note that to show L−1
NN

is non-negative is equivalent to

showing L := D
1/2
NN

L−1
NN

D
1/2
NN

is non-negative. However, L =

(I−C)−1 where C = D
−1/2
NN

WNND
−1/2
NN

is a non-negative ma-
trix whose eigenvalues are of magnitude less than 12. Thus
L =

∑∞
ℓ=0 C

ℓ is non-negative since each component in the
summation is non-negative.

Proposition 2. uA(i) = 0 if A = ∅.

Proof. Since A = ∅, we have Â = A ∪ s = {s}. So
u
Â
= 0. By (7), LNNuN = 0 which yields uN = 0 since LNN

is invertible (Proposition 1).

Proposition 3. uA(i) is non-decreasing.

Proof. To show uA(i) is non-decreasing is to show uA(i) ≤

uA∪e(i) where e ∈ N. Denote N̂ = N \ {e}, and write
u = [u⊤

Â
, ue,u

⊤
N̂
]⊤ and

W =

W
ÂÂ

W
Âe W

ÂN̂

WeÂ Wee WeN̂

W
N̂Â

W
N̂e W

N̂N̂

When only A is selected, we have

D
N̂N̂

u
N̂
= W

N̂Â
u
Â
+W

N̂eue +W
N̂N̂

u
N̂
.

When both A and e are selected, we have

D
N̂N̂

u
′
N̂
= W

N̂Â
u
Â
+W

N̂e1e +W
N̂N̂

u
′
N̂
.

Thus

(D
N̂N̂

−W
N̂N̂

)(u′
N̂N̂

− u
N̂
) = W

N̂e(1e − ue),

yielding

(u′
N̂N̂

− u
N̂
) = (D

N̂N̂
−W

N̂N̂
)−1W

N̂e(1e − ue), (8)

which is non-negative since (D
N̂N̂

−W
N̂N̂

)−1 is non-negative
(Proposition 1) and ue ≤ 1 [40].

Proposition 4. uA(i) is submodular.

Proof. To show uA(i) is submodular is to show that for

any B̂ ⊆ B ⊆ V, the following inequality holds

u
B̂∪{e}(i)− u

B̂
(i) ≥ uB∪{e}(i)− uB(i). (9)

By (8), δ
N̂
:= u′

N̂
−u

N̂
decreases (component-wisely) as ue is

larger (i.e., more nodes are selected), which confirms (9).

Proposition 5. Ω(A) =
∑

i∈N
uA(i) is submodular.

Proof. This is true because any non-negative linear com-
bination of submodular functions is also submodular [18].

Based on the above development, we are in a position to
employ Nemhauser et al.’s celebrated result on the maxi-
mization of submodular functions [28], which is stated as
follows:

Proposition 6. If h is submodular, nondecreasing, and

h(∅) = 0, then the greedy algorithm finds a set A such that

h(A) ≥ (1− 1
c
)max|B|≤m h(B) where c ∼ 2.718 is the natural

logarithm base.

2This can be seen by noting C is similar to Ĉ :=

D
−1/2
NN

CD
1/2
NN

= D−1
NN

WNN while the sum of each row in Ĉ
is less than 1 [11].

Figure 2: Comparing the difference between the

searching methods using hash table and Hamming

distance.

Since our objective Ω(A) for the hash function selection
problem is submodular, we can obtain a nearly optimal com-
bination of hash codes by a greedy algorithm. We start from
an empty set A0 := ∅ and iteratively adds a code y to Ai

that maximizes the increase of influence of Ω. Specifical-
ly, we select the node yi+1 in step i+ 1 using the following
criterion

yi+1 = argmax
y∈Ni

Ω(Ai ∪ {y})− Ω(Ai) (10)

where Ai denotes the set of nodes selected in the previous i
steps and Ni denotes the remaining nodes (the sink node s
is excluded).

4.2 Implementation
In this subsection, we discuss several important issues in

implementing the submodular video hashing: how to build
hash tables and how to measure the similarity between two
hash codes.

Hash Tables: A lot of previous studies [34] [31] em-
ploy the Hamming distance of binary codes to approximate
the neighborhood structure in Euclidean space. However,
there are two shortcomings of computing Hamming distance.
First, when the dataset is large, computing the pairwise
Hamming distance is still expensive and requires a lot of
storage. Moreover, when the length of hashing codes grows
high, the Hamming approximation will become less precise
and the Hamming ball algorithm will be ineffective [10].
These problems will become more serious when multiple
hash codes are involved for video indexing. In this paper, we
do not compute the hamming distance between query and
samples in the datasets. On the contrary, we use hash tables
to find nearest neighbors. Hash tables, which are in princi-
ple similar with inverted index [41], build a series of bucket
containing the indices of the documents with the same hash
code. Given a query, we can find the bucket corresponding
hash codes in near constant time, and return all the docu-
ments in the bucket as the retrieval results. Figure 2 com-
pares the different searching methods using hash table and
hamming distance. It is easy to see that searching based on

Hamming distance means computing the pairwise distance
between queries and samples in the database, and hence the
computational complexity increases with the growing num-
ber of samples and length of the hash codes. On the oth-
er hand, searching with hash tables does not compute the
pairwise distance and is scalable to large-scale data, which is
especially useful for video retrieval. The cost of our efficient
search lies in the efforts of building hash tables and over-
looking those hash codes which are different from the query.
However, such cost is acceptable for our retrieval systems.
The hash tables can be built once and used for ever, and
we employ multiple hash codes to catch the similarity in
different feature descriptions.

Hash Functions: The structure of hash table is flexi-
ble enough to accommodate various hash codes. There have
been a lot of studies of designing hash function and generat-
ing hash codes. This paper tries two types of popular hash
functions: random projection [8] and spectral hashing [34].
The random projection method generates some random vec-
tors, and computes the inner project of a random vector and
the feature vectors which are thresholding to binary vari-
ables. To remove the affects of unorganized data, we choose
the threshold as randomly sampling from the data. The oth-
er method, spectral hashing, develops the hashing function
by minimizing the weighted sum of Hamming distance on
graph Laplacian. Weiss et al. showed that spectral hashing
can be obtained by evaluating small eigenvalues in PCA di-
rection [34]. In the original spectral hashing algorithm, the
authors compute the Hamming distance between query and
other hash codes. In this paper, we employ hash tables for
the retrieval task without computing the Hamming distance.

Similarity between Hash Functions: How to measure
the similarity between hash codes is a crucial question. We
first consider the scenario of unsupervised learning. Sup-
pose there are two hash function hi and hj . Given a query
q, we can retrieve its similar videos Ri(q) and Rj(q) which
share the same hash code using i and j, respectively. We can
explore whether the two hash functions are similar by exam-
ining how much overlapping Ri(q) and Rj(q) enjoy. If Ri(q)
and Rj(q) are similar, we can expect the two hash function-
s are similar. Otherwise we expect the hash functions are
different from each other. To measure the overlapping of
retrieval results we employ the Jaccard index

γij(q) =
|Ri(q) ∩ Rj(q)|

|Ri(q) ∪ Rj(q)|
.

By averaging the Jaccard index scores over a number of
queries, we get the similarity between two codes as

wij = Eq [γij(q)] , (11)

where Eq denotes the expectation over all queries.
In addition to unsupervised modeling, it is often interest-

ing to consider the semi-supervised scenario where part of
the videos are labeled. Suppose Ti(q) and Tj(q) are two
sets with labeled samples, we consider the Jaccard index of
labeled samples

δij(q) =
|Ti(q) ∩ Tj(q)|

|Ti(q) ∪ Tj(q)|
, (12)

and the similarity is measured by

wij = Eq [αγij(q) + (1− α)δij(q)] . (13)

Algorithm 2 Submodular Video Hashing

Stage I: Video Pooling

Set the set of hash code V = ∅.
for every feature f do

create C video pooling component using feature f .
for every component k = 1 to C do

generate a hashing function using component fk.
build a hashing table where each bucket store video
names corresponding to the same hash code.
add the hash code to the set V = V ∪ {fk}.

end for

end for

Stage II: Submodular Code Selection

Build a graph with |V| nodes corresponding to all possible
hash codes.
Measure the similarity between each pair of the codes.
Select m hash codes in a greedy way using eq. (10). The
set of selected hash codes is denoted as A.
Stage III: Video Retrieval

for every query q do

Initialize the retrieve set as R = ∅.
for code m in A do

R = R∪{samples in the same bucket of q using code m}.
end for

end for

Output: Return R as the retrieved videos.

Note here α is the weighting factor to balance the labeled
and unlabeled information.

So far we have discussed the important issues in imple-
menting the submodular video hashing. The overall video
indexing algorithm is described in Algorithm 2.

4.3 Analysis
Diversified Ranking of Hash Functions: The goal of

our hash function selection is to select representative hash
codes to reduce redundancy while maintaining their diversi-
ty. Intuitively, in order to maximize the code influence, the
selected codes should be densely connected to other codes
with good similarity. Simultaneously, the selected codes
should be sufficiently distant from each other to have a broad
and balanced coverage of the search. Once a node is select-
ed, the marginal gains of including its neighbors largely drop
because they have been well represented by the selected n-
ode. To illustrate this, we employ a toy example to illustrate
our code selection method. As shown in Figure 3, there are
five hash codes, and each code corresponds to a set of re-
trieval result for a given query. For the ease of clearness,
in this toy example we measure hash code similarity based
on only a single query. In practice we randomly select 100
queries and compute the average of the Jaccard scores. We
compute similarity between these codes using Jaccard index
score, and apply our submodular code selection method on
this toy data. The results show that our greedy method
first selects hash code 1 and then code 4. We also plot the
corresponding nodes with their similarity relationship for in-
tuitive observation.

Computational Complexity: By combining multiple
hash tables, our system can retrieve large-scale video dataset
very efficiently. Suppose there are N videos and |A| hash
codes, each hash code corresponds to b bits hash function.
Given a query, the computational complexity of our sys-

Figure 3: Toy data: representative hash function

selection and diversified ranking.

tem is O(|A|), while the complexity of Hamming distance
search is O(bN |A|). To validate the analysis, we generate a
synthetic dataset with 1,000,000 randomly generated binary
hash codes, and another 100 codes as queries. We com-
pare different code length: 8 bits, 16 bits and 32 bits. For
each code length, we compare the speeds using Hamming
distance search and hash tables. Note that the hamming
distance is computed efficiently using fast bit XOR opera-
tion with the help of look up table so that it has been used
in quite a number of studies [33] [32]. However, as Figure 4
shows, computing Hamming distances even with the fast X-
OR operation is still much less efficient than our hash table
method.

Figure 4: Comparing the speed of Hamming dis-

tance search and hash table search.

5. EXPERIMENTS
In recent years, there has been a proliferation of Web-

shared videos, with about 48 hours of video uploaded on
Youtube every minute, and over 700 billion videos watched
in 2010. The large amount of online videos calls for efficient
ways to organize and retrieve methods for online video shar-
ing communities. However, those online videos are difficult
to model since most of them are free of editing, accompanied
with non-professional recording and variety of illumination,
camera motion, and cluttered background.

In our experiments, we select two datasets most similar to
real world online videos:

• TRECVID Multimedia Event Detection (MED 2011)
dataset is the largest annotated dataset specifically de-
signed to model complex video events. There are about
1570 hours of clips in the Event-Kit and Development
collections. The video duration is similar to YouTube
videos, and the average duration is about 2 to 3 min-
utes. The evaluation of MED is separated in two test
sets: the mid size dryrun evaluation and the large final
evaluation set. We report results on both dry run and
final evaluation sets respectively.

• Columbia Consumer Video (CCV) dataset [14] con-
tains 9,317 YouTube videos over 20 semantic cate-
gories. Jiang et al. [14] used Amazon MTurk platfor-
m to perform manual annotation. The database was
collected with extra care to ensure relevance to con-
sumers’ interest and originality of video content with-
out post-editing. Such videos typically have very little
textual annotation and thus can benefit from the de-
velopment of automatic content analysis techniques.

Experiments on both datasets are conducted on a computer
with quad-core 2.33 Intel Xeon CPU and 16G RAM. All the
experiments use only one thread and have the potential of
further speeding up using multiple threads.

A practical question in submodular video hashing is to
select the number of video components and the number of
features. We use C to represent the number of components
as well as the number of scenes. In traditional scene recog-
nition, Fei-Fei and Perona [7] employed 13 scenes in their
experiment, which is later enlarged to 15 scenes by Lazebnik
et al. [19]. Following their research, we choose the number
of video component as C = 16, although our method can
deal with any number of components.

Another important question is to model the correlation
between hash codes. In Section 4.2 we describe retrieval
similarity measures in both unsupervised and supervised
learning. We apply the unsupervised measure for the MED
dataset and the semi-supervised measure for CCV dataset.
Since each video in the CCV dataset is assigned a label from
20 semantic categories, we evaluate retrieval performance for
all categories. Note that since many of the videos in MED
dataset have no labels, further effort is needed to assess the
retrieval performance.

5.1 Results on MED datasets
The dataset of MED 2011 is composed of dryrun evalu-

ation stage and final evaluation stage. In the dryrun eval-
uation, 5 events are considered: attempting a board trick,
feeding an animal, landing a fish, wedding ceremony, work-
ing on a woodworking project. The final evaluation stage,
on the other hand, considers 10 new events: birthday par-

ty, changing a vehicle tire, flash mob gathering, getting a

vehicle unstuck, grooming an animal, making a sandwich,
parade, parkour, repairing an appliance, and working on a

sewing project. In addition to these 15 events, there are a
lot of videos which are not associated with any event. The
public dataset contains labels for more than 13K video clips.

Since the dryrun evaluation is of a relatively small scale,
we utilize several low-level features to test their effectiveness.
We explore the following features: edge histogram (edge-

Figure 5: Speed of video retrieval on MED final evaluation dataset.

hist), linear binary pattern (LBP), color histogram (col-
orhist) and SIFT histogram (SIFT). We extract video frame
feature and compute 16 video components for every feature.
Our method represents every video component with a hash-
ing function and select a number of hash tables using the
submodular search approach in Section 4. We use two types
of hashing functions: random projection (RP) and spectral
hashing (SH).

To measure the performance of our hashing method, we
use every video in the five event categories as query and
check how many videos in the retrieved results with the same
event category as the recall for the query. Since more hash
tables call for more retrieve results, we compare the number
of recall subject to different number of hash tables. We
retrieve the videos for every query and compute the average
of the recalls.

To validate the success of our submodular hashing, we
compare its performance of classical hashing methods. Fol-
lowing the previous work [35], we compute a video signature
by accumulating all the key-frames in the video using dif-
ferent features (edgehist, LBP, colorhist, dense SIFT). To
make a fair comparison, we employ random projections to
construct the same number of hash tables, and compare the
recalled samples with our submodular hashing techniques.
The results in Figure 6 show that our submodular hashing
method is significantly better, This confirms the crucial ben-
efit of employing multiple scene components for video repre-
sentation and the submodular selection strategy for hash ta-
ble construction The results also show that the performance
of low-level features such as LBP and color histogram are
inferior than SIFT histogram, which motivate us to focus
on powerful features like SIFT and its variants in the final
run.

After we finish the dryrun evaluation, we also apply the
proposed method on the final evaluation dataset. Since the
final submission is larger, it contains more diversified con-
tents and poses harder challenging for video hashing. We
select several powerful features: dense SIFT, sparse SIFT,
and a new semantic concept feature named 780 dimensional
model vectors. Our semantic model vector is an intermedi-
ate level semantic representation, by evaluating 780 concept
classifiers for each frames. The 780 classifiers are trained
separately using thousands of labeled web photos. A number
of recent research studies [27] [22] show that similar seman-

Figure 6: Comparing the performance on MED

Dryrun dataset.

tic features are complementary to low-level features and can
be useful in many retrieval and annotation tasks. As shown
in Figure 7, semantic feature vectors work better than SIFT
features for video retrieval, however, our submodular hash
methods still clearly boost the performance over these fea-
tures. The results also show that random projection works
better than spectral hashing, which is probably because the
objective function of spectral hashing applies to the ham-
ming distances between all the samples, of which a large
proportion has been ignored in our hash table structure.
Despite that, the contributions of the video component and
submodular selection are still consistent in both cases.

In practice, a big advantage of our submodular video hash-
ing lies in the speed even in large-scale dataset. Figure 5
compares the speed of our hash table based method and
hamming distance based searching methods on MED final
evaluation dataset. These experiments are evaluated on a
windows 64bit workstation with 2.33G CPU. The results
show that although the search speed decreases with more
hash tables, we can still finish the retrieval in about 0.001
seconds for each query even with 8 hash tables.

5.2 Results on CCV dataset
The CCV dataset hosts 9.2K video clips, where a video

corresponds one of the 20 events: basketball, baseball, soc-
cer, ice skating, skiing, swimming, biking, cate, dog, bird,

Figure 8: Video retrieval performance on CCV dataset.

Figure 7: Comparing the performance on MED Fi-

nal dataset.

graduation, birthday, wedding reception, wedding ceremony,
wedding dance, music performance, non-music performance,
parade, beach, playground. Every category contains 200-800
positive videos. Since there are rich amount of positive sam-
ples, we can employ eq. (13) to measure the code similar-
ity for each category with the parameter α = 0.8. In this
dataset, we employ three features including sparse sift, dense
sift, and pyramid histogram of oriented gradients (PHOG).
Since the similarity of different hash codes depends on the
category label, we also compare the retrieval performance
for each category. To make a fair comparison, we report the
results with four hash tables. The average recall is used to
measure retrieval accuracy as we did on the MED dataset.
As shown in Figure 8, our submodularity based video hash-
ing is consistently better than hashing accumulated video
features.

6. CONCLUSIONS
This paper develops a novel framework for large-scale video

retrieval. We view a video as a collections of scene compo-
nents and represent them with multiple hash codes. We
cast the code selection problem as an influence maximiza-
tion problem where the influence of the selected nodes can be

maximally propagated to the rest of the nodes in the graph.
We prove that the code selection is submodular and can
be solved by a greedy method with guaranteed lowerbound.
Benefiting from the three key components (video pooling,
submodular selection, and multiple hash tables), our video
hashing framework works efficiently for large-scale video re-
trieval and obtains superior performance on TRECVIDMED
and Columbia CCV datasets.

We plan to extend our work in the following directions:

• Heterogenous feature fusion for video retrieval. One
advantage of our submodular video hashing method is
that it can easily accommodate various features. We
plan to generalize this approach to multi-modal fea-
tures, including not only visual but also audio features
and tag features.

• Personalized video retrieval. It is also attractive to
leverage users’ interests at individual levels. Our method
provides a flexible way to capture interesting scenes or
contents according to user interests and has the po-
tential to be combined with more complex user profile
information for improved retrieval.

Acknowledgement
This research is supported by Intelligence Advanced Re-
search Projects Activity (IARPA) via Department of Interi-
or National Busyness Center contract number D11PC20070.
The U.S. government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright thereon. Disclaimer: The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
IARPA, DoI/NBC, or the U.S. Government.

7. REFERENCES
[1] Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and

Y. LeCun. Ask the locals: multi-way local pooling for
image recognition. In ICCV, 2011.

[2] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce.
Learning mid-level features for recognition. In CVPR,
2010.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer networks

and ISDN systems, 30(1-7):107–117, 1998.

[4] L. Cao, Y. Mu, S.-F. Chang, A. Natsev, G. Hua, and
J. R. Smith. Scene aligned pooling for complex video
recognition. In ECCV, 2012.

[5] F. Chung. Spectral graph theory. Number 92. Amer
Mathematical Society, 1997.

[6] A. Das and D. Kempe. Submodular meets spectral:
Greedy algorithms for subset selection, sparse
approximation and dictionary selection. ICML, 2011.

[7] L. Fei-Fei and P. Perona. A bayesian hierarchy model
for learning natural scene categories. In CVPR, 2005.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB,
pages 518–529, 1999.

[9] J. He, S. Kumar, and S.-F. Chang. On the difficulty of
nearest neighbor search. In ICML, 2012.

[10] J. He, W. Liu, and S. Chang. Scalable similarity
search with optimized kernel hashing. In SIGKDD,
pages 1129–1138, 2010.

[11] R. Horn and C. Johnson. Matrix analysis. Cambridge
Univ Pr, 1990.

[12] Z. Huang, H. Shen, J. Shao, X. Zhou, and B. Cui.
Bounded coordinate system indexing for real-time
video clip search. ACM Transactions on Information

Systems, 27(3):17, 2009.

[13] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In ACM SIGKDD, pages
538–543, 2002.

[14] Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C.
Loui. Consumer video understanding: A benchmark
database and an evaluation of human and machine
performance. In ICMR, 2011.

[15] A. Karpenko and P. Aarabi. Tiny videos: A large
dataset for nonparametric video retrieval and frame
classification. TPAMI, 33(3):618–630, 2011.

[16] Y. Ke, R. Sukthankar, and L. Huston. An efficient
parts-based near-duplicate and sub-image retrieval
system. In ACM Multimedia, pages 869–876, 2004.

[17] G. Kim, E. Xing, L. Fei-Fei, and T. Kanade.
Distributed cosegmentation via submodular
optimization on anisotropic diffusion. In ICCV, pages
169–176, 2011.

[18] A. Krause and C. Guestrin. Beyond convexity:
Submodularity in machine learning. ICML Tutorials,
2008.

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In CVPR, volume 2, pages
2169–2178, 2006.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[21] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective outbreak
detection in networks. KDD, 2007.

[22] L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object
bank: A high-level image representation for scene

classification and semantic feature sparsification. In
NIPS, 2010.

[23] Z. Li, H. Ning, L. Cao, T. Zhang, Y. Gong, and
T. Huang. Learning to search efficiently in high
dimensions. NIPS, 24, 2011.

[24] J. Liu, Z. Huang, H. Shen, and B. Cui.
Correlation-based retrieval for heavily changed
near-duplicate videos. ACM Transactions on

Information Systems, 29(4):21, 2011.

[25] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. CVPR, 2012.

[26] W. Liu, J. Wang, S. Kumar, and S.-F. Chang.
Hashing with graphs. ICML, 2011.

[27] M. Merler, L. X. Bert Huang, G. Hua, and A. Natsev.
Semantic model vectors for complex video event
recognition. IEEE Transactions on Multimedia, 2011.

[28] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions. Mathematical Programming, 14:265–294,
1978.

[29] A. Oliva and A. Torralba. Modeling the shape of the
scene: a holistic representation of the spatial envelope.
IJCV, 2001.

[30] B. Russell, A. Torralba, C. Liu, R. Fergus, and W. T.
Freeman. Object recognition by scene alignment. In
NIPS, 2007.

[31] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose
estimation with parameter-sensitive hashing. In ICCV,
pages 750–757, 2003.

[32] J. Song, Y. Yang, Z. Huang, H. Shen, and R. Hong.
Multiple feature hashing for real-time large scale
near-duplicate video retrieval. In ACM Multimedia,
pages 423–432, 2011.

[33] A. Torralba, R. Fergus, and Y. Weiss. Small codes and
large image databases for recognition. In CVPR, 2008.

[34] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. NIPS, 2008.

[35] X. Wu, A. Hauptmann, and C. Ngo. Practical
elimination of near-duplicates from web video search.
In ACM Multimedia, pages 218–227, 2007.

[36] J. Xiao, J. Haysy, K. A. Ehinger, A. Oliva, and
A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, 2010.

[37] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear
pyramid matching using sparse coding for image
classification. In CVPR, 2009.

[38] D. Zhang, F. Wang, and L. Si. Composite hashing
with multiple information sources. In SIGIR, pages
225–234, 2011.

[39] X. Zhu. Semi-supervised learning literature survey.
2005.

[40] X. Zhu, Z. Ghahramani, and J. Lafferty.
Semi-supervised learning using gaussian fields and
harmonic functions. In ICML, 2003.

[41] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
files versus signature files for text indexing. ACM
Transactions on Database Systems, 23(4):453–490,
1998.

