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ABSTRACT | Graph-based semisupervised learning (GSSL)

provides a promising paradigm for modeling the manifold

structures that may exist in massive data sources in high-

dimensional spaces. It has been shown effective in propagating

a limited amount of initial labels to a large amount of unlabeled

data, matching the needs of many emerging applications such

as image annotation and information retrieval. In this paper,

we provide reviews of several classical GSSL methods and a few

promising methods in handling challenging issues often

encountered in web-scale applications. First, to successfully

incorporate the contaminated noisy labels associated with web

data, label diagnosis and tuning techniques applied to GSSL are

surveyed. Second, to support scalability to the gigantic scale

(millions or billions of samples), recent solutions based on

anchor graphs are reviewed. To help researchers pursue new

ideas in this area, we also summarize a few popular data sets

and software tools publicly available. Important open issues

are discussed at the end to stimulate future research.

KEYWORDS | Anchor graphs; graph-based semisupervised

learning (GSSL); image annotation; image classification; image

search; label diagnosis; large scale; noisy labels

I . INTRODUCTION

In the era of data divulgence, there has been broad interest

in leveraging a massive amount of data available in open

sources such as the Web to help solve long standing

problems like object recognition, topic detection, and

multimedia information retrieval. One promising direction

gaining a lot of attention aims to develop the best ways of
combining labeled data (often of limited amount) and a

huge pool of unlabeled data in forming abundant training

resources for optimizing machine learning models. This

learning paradigm is referred to as semisupervised

learning (SSL) [63]. Of various SSL methods, graph-based

approaches have attracted wide attention due to their good

performance and ease of implementation. Graph-based

semisupervised learning (GSSL) treats both labeled and
unlabeled samples as vertices (nodes) in a graph and builds

pairwise edges between these vertices which are weighed

by the affinities (similarities) between the corresponding

sample pairs. The small portion of vertices carrying seed

labels are then harnessed via graph partition or informa-

tion propagation to predict the labels for the unlabeled

vertices. For instance, the graph mincuts approach

formulated GSSL as a graph cut problem [3], [4]. Other
GSSL methods such as graph transduction formulated

GSSL as a regularized function estimation over the graph.

These regularized methods optimize the tradeoff between

fitting a label prediction function on the labeled samples

and a regularization term which encourages smoothness of

such a function over the graph. The weighted graph,

producing the optimal label prediction function, essen-

tially propagates the initial label information from the
labeled samples to the vast amount of unlabeled ones.

Many popular GSSL algorithms including graph cuts [3],

[4], [25], [31], graph-based random walks [1], [45],
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manifold regularization [2], [42], and graph transduction

[61], [64] have been proposed. Comprehensive surveys of

these methods can be found in [6] and [63].

Despite the promise and popularity of the above GSSL

methods, it remains challenging to develop a general

solution suitable for processing gigantic data sets such as

those from the Web. The most important challenges center

around two issuesVnoisy contaminated labels often seen
in open sources and the extremely large data size at the

level of hundreds of millions or more. We elaborate on

details of these two issues in the following.

A. Contaminated Noisy Labels
Web data are often associated with rich metadata, some

of which can be culled to provide useful labels describing

the content of the data. One good example is the user

provided tags for the images and videos on media sharing

forums such as Flickr and Youtube. However, such free

labels come at a cost of low accuracy. As discussed in [27],

the tag accuracy of web images may be as low as 50% or
even less. This problem has been well recognized, as

discussed in the review papers [21], [15]. Many prior

solutions for this problem usually started with an initial

data pool (e.g., top results of a keyword search by image

search engines) and subsequently utilized data mining

techniques such as random walks [21] or probabilistic

latent semantic analysis (pLSA) [15] to discover the hidden

patterns and then filter out the noisy labels.
For GSSL, the challenging data conditions mentioned

above and other issues discussed below have been shown

to result in major performance degradation [52]. Fig. 1

displays that some examples showing noisy labels lead to

poor graph transduction results for most of the existing

GSSL algorithms. The first ill condition involves uninfor-

mative labels [Fig. 1(a)]. In this case, the only negative

label (dark circle) is located in an outlier region where the
low-density connectivity prevents diffusion of this label to

the rest of the graph. As a result, conventional GSSL

methods classify the majority of the unlabeled nodes in the

graph as positive [52]. Such a condition is very common in

content-based image retrieval (CBIR) or related media

analysis tasks in which the visual query example does not

necessarily fall in the salient region of the target semantic

class.

Another difficult case involves imbalanced labeling in
which the ratio of the given labels between classes does not

match the underlying class proportion. For example,

Fig. 1(b) depicts two half-circles with almost equal

numbers of samples. However, the initial labels contain

three negative labels and only one positive label, so SSL is

strongly biased toward the negative class. This imbalanced

labeling case also occurs frequently in real-world app-

lications. For example, for image classification [13], [14],
[43], typically there are much more negative samples

than positive ones. Fig. 1(c) demonstrates another ill

conditionVmislabeling. It is one of the most frequently

encountered cases in practical applications like web image

search where tags, captions, and metadata associated with

images are often not carefully assigned or verified due to

subjective interpretation or content ambiguity.

B. Scalability
The second challenging issue associated with GSSL for

web-scale applications is scalabilityVhow to successfully

handle millions or billions of data points. Unfortunately,
most SSL methods scale poorly with the data size. They

usually have a square time complexity Oðdn2Þ (suppose

that data live in Rd) for neighborhood graph construction

and a nearly linear time complexity OðknÞ (k is a constant)

for label propagation over a graph, so the overall time

complexity remains as Oðdn2Þ. Such a square time

complexity is computationally prohibitive in large-scale

applications, preventing the adoption of GSSL methods in
practice.

Fig. 1. Examples illustrating the sensitivity of GSSL to adverse labeling conditions. Particularly challenging conditions are shown in (a) where the

only negative label (denoted by a black circle) resides in an outlier region, in (b) where the numbers of labels over different classes are

unbalanced, and in (c) where a significant portion in eight given labels is wrong (two out of eight).

Liu et al.: Robust and Scalable Graph-Based Semisupervised Learning

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2625



A few solutions have been proposed recently.
Delalleu et al. [11] proposed a nonparametric inductive

function for label prediction based on a subset of samples

and aggressive truncation in calculating the graph

Laplacian. However, the truncation sacrifices the topology

structure within the majority of input data and hence will

likely lose useful information of the data set. Zhu and

Lafferty [66] fitted a generative mixture model to the raw

data and proposed harmonic mixtures to span the label
prediction function, but the key step, i.e., constructing a

large sparse graph, needed in estimating the harmonic

mixtures remains open. Tsang and Kwok [49] scaled up the

manifold regularization method first proposed in [2] by

solving the dual optimization problem of manifold

regularization subject to a sparsity constraint, but such

optimization still requires heavy computation (taking

Oð1/�8Þ time where � > 0 is the approximation factor) to
achieve a good approximate solution. Zhang et al. [60]

applied the Nyström approximation to build a huge graph

adjacency matrix, but there is no guarantee for the positive

semidefiniteness of the resulting graph Laplacian, which is

required to ensure convexity of the optimization problem

and convergence of the solution. Fergus et al. [16]

approximated the label prediction function by exploiting

smooth eigenfunctions of 1-D graph Laplacians calculated
from each dimension of data, whose derivation relies on

several assumptions about the data, e.g., dimension

independence and 1-D uniform distributions, which are

not true for real-world data.

C. Scope of the Paper
The purpose of this paper is to review a few promising

techniques in tackling the two important issues mentioned
above which if adequately resolved will facilitate general-

ization of the popular GSSL methods to many emerging

applications involving gigantic data sets. Besides reviews of

related methods, we will provide a detailed description of

the promising results presented in [53] for noisy label

diagnosis and [36] for scalable GSSL using anchor graphs.

We will also discuss the strategies of combining these two

approaches in handling complicated real-world cases
which involve both ill conditions.

The structure of this paper is organized as follows.

Section II includes reviews of the basic formulation and

notations used in GSSL. Reviews of the basic building

blocks for GSSL, such as graph construction and label

propagation, are shown in Section III. We summarize the

label diagnosis and self-tuning (LDST) technique devel-

oped in [53] in Section IV, and give an extensive review of
the scalable GSSL methods including anchor graphs [36] in

Section V. Common data sets and software resources for

experiments in this space are presented in Section VI.

Finally, open issues are discussed in Section VII. When-

ever possible, we focus on the intuitive understanding of

the methods and insights learned from prior experiments,

using exemplar results to illustrate how the techniques

perform. Readers are also referred to the original papers
for details of the discussed methods.

II . PROBLEM FORMULATION
AND NOTATIONS

We first give the notations of graph representation which

will be used throughout this paper. Assume that we are

given a data set X , labeled samples fðx1; y1Þ; . . . ; ðxl; ylÞg,
and unlabeled samples fxlþ1; . . . ;xng. Define the set of

labeled inputs as X l ¼ fx1; . . . ;xlg with cardinality

jX lj ¼ l a n d t h e s e t o f u n l a b e l e d i n p u t s a s
X u ¼ fxlþ1; . . . ;xng with cardinality jX uj ¼ u ¼ n� l,
where typically l� n. The labeled set X l is associated with

l a b e l s Y l ¼ fy1; . . . ; ylg, w h e r e yi 2 f1; . . . ; cg
(i ¼ 1; . . . ; l and c is the number of classes). The goal of

SSL is to infer the missing labels Yu ¼ fylþ1; . . . ; yng
corresponding to the unlabeled set X u. A crucial

component of GSSL is the construction of a weighted

sparse graph G from the whole input data X ¼ X l [ X u.
After that, GSSL algorithms use G and the initial seed

labels Y l to infer Ŷu ¼ fŷlþ1; . . . ; ŷng, which are expected

to match the true labels Yu.

Assume that the undirected graph converted from the

input data X is represented by G ¼ ðX ; E;WÞ in which

the set of vertices is X ¼ fxig and the set of edges is

E ¼ feijg. Each data point xi is treated as a vertex and the

weight of edge eij is Wij. The edge weights W ¼ fWijg are
collected to form a weight matrix W ¼ ðWijÞi;j. Similarly,

the vertex degree matrix D ¼ diagð½D11; . . . ;Dnn�Þ is

defined by Dii ¼
Pn

j¼1 Wij. For illustration, Fig. 2 gives

an example of a graph as well as the corresponding graph

quantities.

The graph Laplacian is defined as ¼ D�W and its

normalized version is L ¼ D�1=2D�1=2. The graph

Fig. 2. An example of a graph with only five vertices, the associated

weight matrix W, the degree matrix D, and the label matrix Y.
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Laplacian can be viewed as a discrete operator on a
function space ff : X7!Rcg, which leads to a graph-based

semi-inner product [10]

hf ;LfiG ¼
1

2

Xn

i¼1

Xn

j¼1

Wij
fðxiÞffiffiffiffiffi

Dii

p �
fðxjÞffiffiffiffiffi

Djj

p
�����

�����
2

: (1)

Finally, the label information is encoded into a label

matrix Y 2 f1; 0gn�c, where Yij ¼ 1 if sample xi has a label

j 2 f1; . . . ; cg, i.e., yi ¼ j, and Yij ¼ 0 otherwise. For single

label problems (as opposed to multilabel ones), the
constraints

Pc
j¼1 Yij ¼ 1 are imposed. Let F ¼ fðXÞ save

the output values of a label prediction function f applied to

vertices inX . Most GSSL methods utilize the graph quantity

W and the initial discrete label matrix Yl 2 f1; 0gl�c to

discover a continuous soft label matrix F 2 Rn�c by

minimizing a proper cost or penalty over the graph G. The

missing labels of the unlabeled vertices xi ði ¼ lþ 1; . . . ; nÞ
are then estimated as ŷi ¼ arg maxj2f1;...;cg Fij.

III . CLASSICAL GSSL METHODS

As mentioned earlier, graph-based approaches have
emerged as popular solutions for many choices since

they offer very promising performance improvements via

simple and intuitive graph representation. Here, we

provide a brief overview of the fundamental components

of GSSL, including graph construction and two represen-

tative label propagation algorithms.

A. Graph Construction
To fulfill label prediction over a graph, the first step is

to convert the input data set X ¼ X l [ Xu to a graph

G ¼ ðX ; E;WÞ consisting of n nodes of which each node

stands for a sample xi. Furthermore, take E to be the set of

undirected edges between node pairs. It is common to also

associate a weighted and symmetric adjacency matrix

W 2 Rn�n with the edges E in G. Each scalar Wij

represents the weight of the edge between nodes xi and

xj. Note that W has zeros on its diagonal.

The construction of G from X usually includes two

steps. The first step is to compute a similarity score

between every data pair using a similarity measure which

creates a full adjacency matrix K 2 Rn�n. Kij ¼ Kðxi;xjÞ
measures the sample similarity with a kernel function Kð�Þ.
In the second step, the matrix K is sparsified and possibly
reweighed to produce a sparse matrix W. Sparsification is

important since it leads to improved efficiency, better

accuracy, and robustness to noise in the label propagation

stage. Furthermore, a kernel function Kð�Þ is often locally

effective as a similarity measure because it includes

unreliable edges between sample pairs that are relatively

far apart.

Starting from the dense matrix K, graph sparsification
removes edges by finding a binary matrix B 2 f1; 0gn�n,

where Bij ¼ 1 indicates that an edge is present between

nodes xi and xj, while Bij ¼ 0 indicates that the edge is

absent (assume Bii ¼ 0 unless explicitly stated otherwise).

There are two popular graph sparsification algorithms as

summarized in [22]: neighborhood sparsification such as

k-nearest neighbors (k-NN) and �-neighborhood, and

matching sparsification. The former often suffers from
the issue that nodes in dense regions may have too many

links. The latter explicitly addresses this issue by adding a

constraint that every node has the same number of edge

links, leading to much improved performances as reported

in [22].

Once a graph has been sparsified and a binary matrix B
has been found, several schemes can be further applied to

adjust the weights in the matrix K, generating the final
weight matrix W. Specifically, whenever Bij ¼ 0 the edge

weight Wij is also zero; however, Bij ¼ 1 implies Wij � 0.

Three possible schemes, including binary weighting,

Gaussian kernel weighting [22], and locally linear

reconstruction-based weighting [50], are commonly con-

sidered for specifying the nonzero elements in W.

B. Label Propagation
Given a constructed graph G ¼ ðX ; E;WÞ whose

geometric structure has been unveiled by the weight

matrix W, the label inference (or prediction) task is to
propagate the seed labels Y l on the labeled nodes X l to all

of the unlabeled ones Xu in G, accomplishing the label

predictions Ŷu. Designing robust label propagation algo-

rithms over graphs is a widely studied subject and the state

of the arts are surveyed in [6] and [63].

Here we are particularly interested in a category of

approaches which predict the soft labels F 2 Rn�c

through minimizing a cost function defined over the
graph. The cost function typically involves a tradeoff

between the smoothness of the predicted labels over the

entire graph (i.e., consistency of label predictions on

closely connected nodes), and the accuracy of the

predicted labels in fitting the given hard labels on the

labeled nodes X l. Many existing methods like Gaussian

fields and harmonic functions (GFHF) method [64] and

local and global consistency (LGC) method [61] fall in this
category.

Both LGC and GFHF define a cost function Q which

integrates the combined contributions of two penalty

terms: global smoothness Qsmooth and local fitting

Qfit. The final label predictions F are obtained by mini-

mizing Q

F� ¼ arg min
F2Rn�c

QðFÞ

¼ arg min
F2Rn�c

QsmoothðFÞ þ QfitðFÞf g: (2)
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A very natural instantiation of the above cost function was
proposed by LGC [61] as follows:

QLGCðFÞ ¼ 1

2
kFk2

G þ �kF�Yk2
� �

: (3)

The first term kFk2
G represents label smoothness over G,

and the second term kF�Yk2, in which Y 2 f1; 0gn�c is

the hard label matrix defined in Section II, measures the

empirical loss on the given labels. In LGC, the label

smoothness term is defined as

Qsmooth ¼
1

2
kFk2

G ¼
1

2
hF;LFiG ¼

1

2
trðF>LFÞ: (4)

The coefficient � > 0 in (3) balances the global
smoothness term and the local fitting term. If we set

� ¼ 1 and use a standard graph Laplacian for the

smoothness term, (3) reduces to the GFHF formulation

[64]. Its cost function only keeps the smoothness term as

follows:

QGFHFðFÞ ¼ 1

2
trðF>FÞ: (5)

The GFHF solution F that minimizes the above cost

satisfies two conditions

rFu
QGFHF ¼ uuFu ¼ 0

Fl ¼Yl (6)

where Fl ¼ fðX lÞ and Fu ¼ fðX uÞ are the output values

of fð�Þ on the labeled and unlabeled data, F ¼
½F>l ;F>u �

>
, and uu is the submatrix of corresponding

to the unlabeled data set X u. The first equation above

denotes the zero gradient of the cost function on the

unlabeled data, and the second equation requires

clamping the predicted label values Fl on the initial

label values Yl.
Both LGC and GFHF fit in a univariate regularization

framework, where the soft label matrix F is treated as the

only variable in optimization. Since their cost functions are

convex, the optimal solutions to (3) and (5) can both be

easily obtained by solving linear systems.

IV. A ROBUST GSSL METHOD FOR
HANDLING NOISY LABELS

In order to address various challenging issues of ill labels,

Wang et al. extended the existing univariate GSSL

formulations to a bivariate optimization problem over
the predicted soft labels and the initial hard labels [52].

Then, a new GSSL method, called graph transduction

via alternating minimization (GTAM), was designed to

propagate the initial labels, meanwhile performing

optimization over both label variables. Note that this

bivariate formulation provides the flexibility to manip-

ulate the initially ill labels and thus has the potential to

resolve noisy labels. Below we introduce the formula-
tion of bivariate graph transduction and its extension to

label tuning called label diagnosis through self-turning

(LDST) [53].

A. Bivariate Optimization
The univariate GSSL framework in (2) treats the initial

hard labels Y as Bgolden[ correct labels and propagates

them to the unlabeled nodes, but as discussed above this

often leads to serious performance degradation when the

initial labels are no longer trustable. To handle this

problem, a novel bivariate optimization framework is
proposed to explicitly optimize both the predicted soft

label matrix F and the initial hard label matrix Y

ðF�;Y�Þ ¼ arg minF2Rn�c;Y2Bn�c QðF;YÞ (7)

where Bn�c is the set of all binary matrices Y in
size n� c that satisfy

P
j Yij ¼ 1 and Yij ¼ 1 for the

labeled node xi 2 X l with yi ¼ j. Note that the

solution space of the bivariate optimization framework

includes label matrices Y, which may initially contain

contaminated noisy labels but will become refined

after optimization.

The bivariate cost function used by GTAM [52] is

QðF;YÞ ¼ 1

2
tr F>LFþ �ðF�YÞ>ðF�YÞ
� �

: (8)

Exactly solving both variables Y and F is intractable

since (7) is a mixed integer programming problem over

binary Y with constraints and continuous F. To address
this issue, GTAM first reduces the original bivariate

problem to a univariate problem which only retains the

variable Y.

Given fixed Y, the cost function in (8) is convex in

terms of F, allowing the optimal F� to be discovered by

simply zeroing the gradient of Q with respect to F, that is

rF�Q ¼ 0¼)F� ¼ ðL=�þ IÞ�1Y ¼ PY (9)

where P ¼ ðL/�þ IÞ�1
. Next, replace F in (8) with its

optimal version F� in (9), yielding the univariate
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optimization problem

Y� ¼ arg min
1

2
trðY>AYÞ

s.t. Y 2 f1; 0gn�c

Xc

j¼1

Yij ¼ 1 8i 2 f1; . . . ; ng

Yij ¼ 1 8xi 2 X l with yi ¼ j (10)

where ð1/2ÞtrðY>AYÞ ¼ QðF�;YÞ ¼ QðPY;YÞ and

A ¼ PLPþ �ðP� IÞ2. Note that there are three groups

of constraints in the above optimization problem. The first

group produces a binary integer programming problem,

the second one makes single class assignment (i.e., each
node can only be assigned to one class label), and the third

one fixes the initial seed labels in Y.

B. Label Normalization
An approximate yet fast solution to the NP-hard

problem in (10) is to use gradient descent to greedily

update the binary label variable Y. However, this will raise

another practical issue of biased classification since the

class with more labels will dominate in each iteration,

namely, most label refinements are associated with large

classes. To handle the bias issue, a proven effective method
is to use a normalized label variable ~Y ¼ VY to replace

the original variable Y in the bivariate cost (8), that is

Q ¼ 1

2
tr F>LFþ �ðF�VYÞ>ðF�VYÞ
� �

: (11)

The diagonal matrix V ¼ diagð½v1; . . . ; vn�Þ is introduced

as the normalization term to balance the influence of

labels from different classes and modulate the label

importance based on node degrees. The values vi

ði ¼ 1; . . . ; nÞ are computed as the class-normalized node

degrees for the labeled vertices [52], and thus depend on

the current label variable Y. It allows the labeled nodes of

higher degrees to contribute more during the label

propagation process. However, the total diffusion of each

class is kept equal or proportional to the class prior.

Therefore, the influence of different classes is balanced

even if the initial class labels are unbalanced.
Finally, a locally optimal solution to (11) can be achieved

through 1) updating F as PVY given fixed Y; and

2) updating Y via gradient-based greedy search over all n � c
binary elements in Y given fixed F. Since this optimization

procedure explicitly minimizes the cost functionQ over two

label variables F and Y alternatively, it is named as graph

transduction via alternating minimization (GTAM) [52].

C. Label Tuning
The GTAM method has achieved much better perfor-

mance due to its robustness to labels, but it still cannot

handle incorrect labels since the initial labels are treated as

ground truths, resulting in erroneous label propagation

results. In order to handle problematic labels, a bidirec-

tional mechanism for performing label tuning over the

graph is proposed, leading to the following approach

named label diagnosis through self-tuning (LDST) [53].
While preserving the optimal F�, LDST explores greedy

search among the most beneficial gradient directions of Q
on both labeled and unlabeled nodes.

Note that Y is constrained to a binary space. Therefore,

the labeling operation changes the value from 0 to 1 for a

certain element Yij, and the unlabeling operation (i.e.,

removing the incorrect label) does the reverse by setting Yij

to 0 from 1. To decrease the cost function Q, one can
manipulate the label variable Y in both directions, labeling

and unlabeling. Note that at each time the labeling operation

is carried out on one unlabeled node with the minimum

element in the gradientr ~YQ, while the unlabeling operation

is executed on one labeled node with the maximum element

in r ~YQ. The bidirectional gradient search, including both

labeling and unlabeling operations, can achieve the steepest

decrease on the cost Q. It is described as follows:

Yiþ jþ ¼ 1; for ðiþ; jþÞ ¼ arg minxi2X u;1	j	cr~Yij
Q

Yi� j� ¼ 0; for ði�; j�Þ ¼ arg maxxi2X l;1	j	cr~Yij
Q

(12)

where ðiþ; jþÞ and ði�; j�Þ are the optimal entries in the

label variable Y for labeling and unlabeling operations,

respectively. In other words, through one iteration of

bidirectional gradient search, one most reliable label is

added and meanwhile one least confident label is removed.

Fig. 3 demonstrates the effect of the LDST approach on

a synthetic data set with initially noisy labels. In the first t
iterations, a number of unlabeling and labeling operations
are executed so as to eliminate the contaminated labels and

add new trustable labels. After LDST, GTAM is conducted

to propagate the refined labels to the remaining unlabeled

nodes in the graph, resulting in much more accurate label

prediction results as shown in Fig. 3.

Table 1 shows the effectiveness of LDST on reranking

image search results (some example images are displayed

in Fig. 4) crawled from the web search engine Flickr. Due
to the noisy tags associated with the searched web images,

the precision of the initial text search for nine text queries

is only about 0.67 in the top-100 reduced set on the

average. To apply the graph-based LDST method, the top-

1500 returned images from the text search results are

included in the graph, in which the top-60 images are

treated as the pseudopositive samples. The LDST method
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is then performed to diagnose and tune the labels before

propagating them to the rest of samples in the graph. As

shown in Table 1, the accuracy of top-100 images after
label tuning and propagation was significantly improved to

about 0.87, much higher than those results obtained by

graph-based label propagation without tuning noisy labels

(e.g., GTAM or VisualRank [23]).

Note that in the above experiment, the GSSL method is

applied as a postprocessing reranking step after a reduced

working set is obtained from web search. The size of the

working set can be controlled so that the square
computational complexity of graphs does not become a

bottleneck. In the following section, we will address how

to handle gigantic data scale when directly applying GSSL.

V. SCALABLE GSSL METHODS FOR
HANDLING GIGANTIC DATA SETS

We address the other key challenge, scalability, in this

section. We first review a few works in the recent

literature which tried to address large-scale SSL. Specif-

ically, we will summarize the ideas and results presented

in the latest scalable GSSL works including our work based

on anchor graphs [36].

A. Overview
Almost all SSL methods can be categorized to two

families: transductive and inductive. The former aims to
infer labels of unlabeled data without developing an explicit

classification model, thus lacking the capability of dealing

with novel data. The latter takes advantage of both labeled

and unlabeled data to train classification models (i.e.,

inductive models) which can be used to handle unseen data

outside the training data set. Consequently, inductive SSL

is referred to as truly SSL [42]. Several classical GSSL

methods including GFHF [64], LGC [61], and GTAM [52]
are purely transductive, and other methods such as graph

mincuts [3], [3], [31], spectral graph partitioning [25],

random walks [1], [45], and local learning [56] also belong

to the transductive family since they focus on predicting

information associated with the existing unlabeled data.

The inductive family consists of transductive support vector

machines (SVMs) [24], semisupervised SVMs [7], manifold

regularization [2], [42], multikernel SSL [46], translated
kernel logistic regression [41], etc. The recent advance in

inductive SSL explores relevance ranking [57], structured

output learning [39], and multilabel learning [58].

For the scalability issue, most purely transductive

methods are not suitable solutions except the blockwise

supervised inference method [59], which, however, made

a restrictive assumption that the data graph has a block

structure. Because of the capability of handling novel data,
scalable inductive SSL is more desirable for real-world

web-scale data, which usually anticipates dynamic novel

data. The scalable GSSL works mentioned in Section I-B,

including nonparametric function induction [11], harmon-

ic mixtures [66], sparsified manifold regularization [49],

prototype vector machines [60], and eigenfunction [16],

are actually inductive. In what follows, we will discuss

Table 1 The Mean Precision of Top-100 Ranked Images Over Nine Queries by Different Methods

Fig. 4. Example images of text search results from Flickr.com. A total

of nine text queries are searched: dog, tiger, panda, bird, flower,

airplane, Forbidden City, Statue of Liberty, and Golden Gate Bridge.

Fig. 3. The demonstration of the label tuning method on the synthetic two-moon data set with initially noisy labels.
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these works and concentrate on the GSSL method called

anchor graph regularization [36] that is not only inductive

but also scalable.

The idea of anchors is related to the concept of randomly
subsampled Bbeacons[ in large-scale network analysis [28],

in which node distances are inferred based on the

triangulation over the distances between nodes and

beacons. In the speech recognition community, the idea

of anchor models has also been employed to prune the

number of speaker models needed by the applications in

speaker detection and speaker indexing on a large database

and achieve a promising tradeoff between detection
accuracy and computational efficiency [44]. One important

distinction between these prior works and the anchor graph

model is that the anchor graph model aims at inferring label

information of a large number of original data points rather

than the minimal-distortion reconstruction of the entire

data graph. In addition, the implementation of anchor

graphs is very efficient in both storage and computation.

B. Efficient Inductive Models
The representative inductive GSSL method manifold

regularization [2] exploits all n training samples to span its

inductive model, so classifying a single data point needs a

time complexity OðdnÞ which is inadequate for handling

large-scale data. One way to remove this barrier is to

modify the traditional inductive model that entangles all

training samples, to a more economic inductive model.

Such a model utilizes much fewer training samples, so it is
much more efficient for label prediction.

Consider a soft label prediction (namely classification)

function f : Rd 7!R defined on the input samples

X ¼ fxign
i¼1. To accomplish scalable GSSL, a few works

[11], [36], [60], [66] have adopted the following inductive

model:

fðxiÞ ¼
Xm

k¼1

Zikak; m� n (13)

in which ak’s are the model parameters and Zik’s are the

weights specific to each sample xi. Equation (13) implies

that the label of each sample can be interpreted as the

weighted combination of a smaller subset (size m) of

variables ak’s defined on m anchor points (or landmarks)

U ¼ fukgm
k¼1. By doing so, the solution space Rn of

conventional GSSL is reduced to a much lower space Rm.

Consequently, the presented inductive model (13) can

substantially alleviate the computational burden required
in training full-size inductive models. Table 2 summarizes

and compares four efficient inductive models adopting the

anchor-based strategy, most of which can reach a training

time complexity Oðm3 þ m2nÞ and all of which can attain a

test time complexity OðdmÞ.
The above model can be written in a matrix form

f ¼ Za; Z 2 Rn�m; m� n

where f ¼ ½fðx1Þ; . . . ; fðxnÞ�> and a ¼ ½a1; . . . ; am�>. As

investigated in [36], a good design principle for the weight

matrix Z is
Pm

k¼1 Zik ¼ 1 and Zik � 0, which maintains the

unified range of values for predicted soft labels via (13).
Besides, the manifold assumption [2] implies that close-by

data points tend to have similar labels and distant data

points are less likely to take similar labels. Thus, a practical

step as used in [36] sets Zik ¼ 0 when anchor uk is far away

from xi. Then, Zik is defined based on a kernel function

Khð�Þ with a bandwidth h

Zik ¼
Khðxi;ukÞP

k02hii Khðxi;uk0 Þ
8k 2 hii (14)

where the notation hii 
 f1; . . . ;mg is a small integer set

saving only the indexes of s nearest anchors of xi; Zik ¼ 0 for

k 62 hii. A popular choice of the kernel is the Gaussian kernel

Khðxi;ukÞ ¼ expð�kxi � ukk2
/2h2Þ. Other domain-specif-

ic kernels may also be used. As a result of keeping a small
anchor neighborhood, one can obtain a highly sparse Z and

the involved complexities can also be greatly reduced [OðsnÞ
space and OðdmnÞ time]. For the inductive purpose, we need

to know the weights Z:k’s for novel samples. Obeying the

same design principle as the matrix Z, we define a nonlinear

data-to-anchor mapping zðxÞ: Rd 7!Rm as follows:

zðxÞ ¼ �1Khðx;u1Þ; . . . ; �mKhðx;umÞ½ �>Pm
k¼1 �kKhðx;ukÞ

(15)

Table 2 Summary of Scalable GSSL Methods That Use Efficient Inductive Models. Að�Þ Is an Affinity Function, Kð�Þ Is a Kernel Function,

and pðCkjxÞ Is the Posterior Probability of Sample x Assigned to Cluster Ck
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where �k 2 f1; 0g and �k ¼ 1 if and only if anchor uk is one

of s nearest anchors of sample x in U. Under this definition
zðxiÞ � ½Zi1; . . . ; Zim�>, the inductive model in (13) can be

used to predict the label as

fðxÞ ¼ z>ðxÞa (16)

for any sample x (training or novel test sample) in a

universal manner. A kernel-free zðxÞ can be learned from

the perspective of geometric reconstruction [36] despite
longer computation time.

As for the design of anchors, Zhang et al. [60] and

Liu et al. [36] have demonstrated that K-means clustering

centers have a stronger representation power to cover the

vast data set X and achieve better SSL performance than

randomly sampled exemplars. Although the K-means

clustering step incurs additional computation, its time

complexity OðdmnTÞ (T is the iteration number) is
relatively manageable compared with the square complex-

ity needed by traditional GSSL. Additionally, some fast

implementations [26] for approximate K-means clustering

may be used to further mitigate the computational

overhead.

C. Efficient Large Graphs
Recall that in most GSSL methods an undirected

weighted graph G ¼ ðX ; E;WÞ is built on n data points in

X 
 Rd. One commonly used graph is the k-NN graph

whose time complexity Oðdn2Þ is infeasible for large-scale
applications. Hence, designing efficient large graphs

constitutes a major bottleneck of large-scale GSSL.

In the recent literature, construction of large graphs

over gigantic data sets has attracted a lot of attention.

Chen et al. [8] used divide and conquer algorithms to

compute an approximate k-NN graph in nearly linear time

�ðdntÞ ð1 G t G 2Þ, but the space complexity could still be

large because a KD-tree indexing structure must be saved
in memory. Zhang et al. [60] applied the Nyström matrix

approximation to yield a low rank

W ¼ KnmK�1
mmK>nm (17)

where matrices Knm and Kmm denote the cross kernel

between X and U, and U and U, respectively. Although the

Nyström graph enjoys a strictly linear time complexity

�ðdmnÞ, it may yield improper dense graphs that could
limit the performance of GSSL. The anchor graph

proposed in [36] used a Markov random walk model

across data points and anchors to derive a low-rank graph

adjacency matrix W by means of the data-to-anchor

mapping matrix Z

W ¼ Z�1Z> (18)

in which the diagonal matrix ¼ diagð½�11; . . . ;�mm�Þ 2
Rm�m is defined by �kk ¼

Pn
i¼1 Zik. Because Z is highly

sparse, such an adjacency matrix W is also empirically

sparse (more explanations in [36]).

A very important property stemming from the anchor

graph’s design strategy is W � 0. This nonnegative
property is sufficient to guarantee the resulting graph

Laplacian ¼ D�W to be positive semidefinite [10], and

thus ensures global optimum of GSSL. Table 3 summarizes

the key properties of efficient large graphs in recent

literature.

The central idea of anchor graphs is to introduce a

small set of anchor points and convert intensive data-to-

data affinity computation to drastically reduced data-to-
anchor affinity computation. This is a quite intuitive

approach, as shown in Fig. 5. Data pair xi and xj become

connected in the anchor graph if their nearest anchors

Table 3 Summary of the Properties of Efficient Large Graphs. d Is the Data Dimension and n Is the Data Size

Fig. 5. The basic idea of anchor graphs. fxig are data points. fukg are

anchor points. Zij’s are the local supports of anchors for each data

point xi. The affinities between data points are Wij , which can be

considered as overlap between the local supports of two data

points xi and xj .
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overlap. Fig. 6 shows that the anchor graph built on the

two-moon toy data is very close to the k-NN graph in

topology yet with a much smaller computational cost.
In summary, the graph adjacency matrix W given by

anchor graphs is nonnegative, sparse, and low rank (its

rank is at most m). Hence, the anchor graph does not

compute W explicitly, but instead keeps its low-rank

form. The space cost of an anchor graph is �ðsnÞ for

storing Z, and the time cost is �ðdmnT þ dmnÞ in which

�ðdmnTÞ originates from K-means clustering. Since

m� n, the time complexity for constructing an anchor
graph is linear in the data size n.

D. Anchor Graph Regularization
Anchor graphs can greatly reduce the time complexity

of GSSL. To illustrate this, let us consider a standard

multiclass SSL setting where each labeled sample xi

ði ¼ 1 . . . ; lÞ carries a discrete label yi 2 f1; . . . ; cg from c
distinct classes. We denote by Y ¼ ½Y>l ;Y>u �

> 2 Rn�c a

class indicator matrix with Yij ¼ 1 if yi ¼ j and Yij ¼ 0

otherwise. By utilizing the inductive label prediction

model in (16), we only need to solve the soft labels
associated with anchors, i.e., A ¼ ½a1; . . . ; ac� 2 Rm�c in

which each column vector accounts for a single class. We

introduce the graph Laplacian regularization norm

�GðfÞ ¼ ð1/2Þf>f . For each class j, we pursue a label

prediction function f j ¼ Zaj. Then, the anchor graph

regularization (AGR) framework [36] is formulated as

follows:

min
A¼½a1;...;ac�

QAGRðAÞ

¼
Xc

j¼1

�GðZajÞ þ
�

2

Xc

j¼1

kZlaj �Yljk2

¼ 1

2
trðA>Z>ZAÞ þ �

2
kZlA�Ylk2

F (19)

where Zl 2 Rl�m is the submatrix corresponding to the

labeled data set X l, Ylj represents the jth column vector of

the initial label matrix Yl, k:kF stands for the Frobenius
norm, and � > 0 is the tradeoff parameter.

Because of the low-rank structure of QAGR, a closed-
form solution for the optimal A� ¼ ½a�1 ; . . . ; a�c � can be

obtained in Oðm3 þ m2nÞ time. Through applying the

inductive model in (16), we are able to predict the hard

label for any sample x (unlabeled training samples or novel

test samples) as

ŷðxÞ ¼ arg max
j2f1;...;cg

z>ðxÞa�j (20)

and in constant time Oðdmþ scÞ.
To sum up, AGR consists of three steps: 1) seek anchors

via K-means clustering [OðdmnTÞ time]; 2) compute Z
[OðdmnÞ time]; and 3) run label propagation [Oðm3 þ m2nÞ
time]. In each step, the space complexity is bounded by

Oðdðmþ nÞÞ. Evaluations conducted on several real-world

data sets up to 630 000 samples showed the significant

accuracy improvement achieved by AGR. The experimen-

tal results on the extended MNIST data set are shown in

Table 4 (more results in [36]). Note that although the

running time of two AGR approaches shown in Table 4 is

longer than the baseline methods 1NN and eigenfunction,
they are far more efficient than traditional GSSL methods

Fig. 6. The two-moon problem of 1200 2-D points. (a) One hundred anchor points by K-means clustering ðm ¼ 100Þ.
(b) The 10NN graph built on original points. (c) The anchor graph ðs ¼ 2Þ leads to a very similar graph.

Table 4 Classification Error Rates (in Percent) on Unlabeled Training

Samples in Extended MNIST (630 000) With l ¼ 100 Labeled Samples.

AGR-1: Use Predefined Z [(14)]; AGR-2: Use Learned Z. Both PVM and

AGR-1 Use the Gaussian Kernel. All of PVM, AGR-1, and AGR-2

Use m ¼ 500 K-Means Clustering Centers as Anchor Points.

Both AGR-1 and AGR-2 Set s ¼ 3
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such as GFHF, LGC, and GTAM whose high time
complexity Oðdn2Þ prevents their practical implementa-

tions on large-scale data sets.

E. Adapting AGR to Web Scale
For massive data at the web scale that is at least in the

level of billions, the linear time complexity OðdmnTþm2nÞ
of AGR is inadequate, but we can still benefit from the

inductive nature of the anchor graph model, and adapt

AGR to cope with web-scale data collections.

To handle the gigantic data scale, we can leverage the

Bsubsampling[ idea. Concretely, we construct an anchor
graph over a subsampled data subset containing about

1 million samples on which AGR is applied, resulting in

the soft label matrix A associated with the anchors. Aided

by the inductive label prediction model in (16) and (20),

the anchors’ label matrix A and the data-to-anchor

mapping zð�Þ defined in (15) can be readily integrated to

predict the labels for any novel samples which were not

included in the subset used for training the anchor graph
model. In other words, we learn an inductive anchor

graph model by using a training data set of manageable

size (e.g., millions) and subsequently apply the learned

model to predict the labels for unseen samples from a

much larger pool (e.g., billions). Fig. 7 illustrates the

process of adapting the anchor graph model to web-scale

scenarios.

We demonstrate the effectiveness of AGR in handling
web-scale data by designing a group of inductive classifi-

cation experiments on the well-known 80 Million Tiny

Images database [48]. To evaluate the performance, we

draw on the fully labeled image subset CIFAR-10 [30],

which is drawn from the 80 Million Tiny Images database

and composed of ten object classes. In addition, we

subsample 1 million images from the entire 80 million
pool, of which we also manually label 3000 images not

belonging to the CIFAR-10 classes as Bothers.[ The

inductive experimental setting is: 1) a training set

(1.049 M) includes 50 000 images from ten classes of the

CIFAR-10 data set and 999 000 images sampled from the

whole 80 million pool (containing 2000 images labeled as

Bothers[); 2) a test set (11 000) includes 10 000 CIFAR-10

images from ten classes and 1000 Bothers[ images;
3) during each SSL trial, the labeled samples in the train-

ing set contain 1000 or 2000 randomly chosen images

from each of ten CIFAR-10 classes and the Bothers[ class,

and the rest of images are treated as the unlabeled samples;

and 4) the classification accuracy is measured over the test

set. Every image in our experiments is represented by a

384-dimensional GIST feature vector [40]. The reported

computational speed is based on implementations on a
workstation with a 2.53-GHz Intel Xeon CPU and 48-GB

random access memory (RAM).

Fig. 8 shows several example training and test images

from ten CIFAR-10 classes and the Bothers[ class. Tables 5

and 6 list the classification accuracy averaged over ten

training trials for every compared method. Note that 1NN

and linear SVM do not use any unlabeled samples. From

Tables 5 and 6, we can see that the AGR approach achieves
the highest classification accuracy, while achieving a very

fast classification speed during the test stage and a training

speed comparable with prior GSSL solutions (e.g., PVM).

This web-scale experimental design corroborates that AGR

can be well adapted to cope with web-scale data through

training anchor graph models over million-scale data sets

and then inductively applying them to predict labels for

novel data from a larger pool which may contain billions of
samples.

Fig. 7. Adapting the anchor graph model to web scale through

million-scale subsampling and applying the inductive model

to novel samples.

Fig. 8. Example images from 80 Million Tiny Images database

used in our web-scale experiments.

Liu et al.: Robust and Scalable Graph-Based Semisupervised Learning

2634 Proceedings of the IEEE | Vol. 100, No. 9, September 2012



VI. DATA SETS AND
SOFTWARE RESOURCES

Many image data sets have been used in the literature to

evaluate the performance of SSL. Two popular examples

are images of digits in the USPS data set [19] (9298 samples

only) and handwritten digits in the MNIST data set [32]

(70 000 samples). However, these are relatively small and

lack the desired level of complexity expected in web-scale

multimedia content.
To simulate the noisy label conditions, one could

search the web image search engines using text keywords

and download the top several thousands of results. As

mentioned in [27], the accuracy of the labels of such data

sets could be as low as 50%. The sizes are limited, much

less than the million scale discussed above.

In the following, we discuss a few data sets of much

larger sizes and content diversity that may be suitable for
the large-scale evaluation.

A. The 80 Million Tiny Images Data Set
The 80 Million Tiny Images data set [48] is a large

collection of 32 � 32 tiny images, which has been

frequently used as a benchmark data set for a variety of

vision and multimedia problems including object recogni-

tion, object categorization, image annotation, image
retrieval, and hashing. However, only a small portion of

this data set is manually labeled and the associated meta

information is fairly noisy. The CIFAR-10 data set [30] is a

fully annotated 60 000 subset of this image database,

which consists of ten customary object classes.

B. NUS-WIDE Data Set
This data set includes 269 648 images and associated

tags crawled from the popular social forum Flickr [9]. The

images are labeled over 81 concepts which can be used as

ground truths for performance evaluation, although some

images still do not have complete labels over the
categories. The original tags can be used to simulate the

noisy label problem discussed in this paper.

C. ImageNet
ImageNet [12] is a database of web images organized

according to the concepts (mostly nouns) defined in the

WordNet ontology. At the time of writing, it contained more

than 12 million images over more than 17 000 synsets. It is a

very useful resource for image annotation research. Various

SSL settings can be created by controlling the percentage of
labels kept in the test set. However, like NUS-WIDE data set,

image labels may not be complete, thus treating missing

labels as negative will cause errors. In addition, the original

contaminated labels are not available.

D. INRIA Web Image Data Set
The INRIA data set [29] contains a total of 71 478 web

images acquired by a web search engine using different

textual queries. In particular, 353 text queries cover a wide

range of concepts, such as objects Bcloud,[ Bflag,[ and Bcar[;
celebrity names BJack Black,[ BWill Smith,[ and BDustin

Hoffman[; and locations Btennis course[ and Bgolf course.[
Each image has the initial ranking score corresponding to the

text query and the ground-truth label indicating whether it is

relevant to the query. Hence, this is an excellent resource for

evaluating the application of SSL techniques in the context of

image retrieval and reranking such as those done in [20].

E. Software Tools
Several popular techniques implementing the GSSL

methods reviewed in this paper are available, such as [62]

Table 5 Classification Accuracy on Web-Scale Data (80 Million Tiny Images plus CIFAR-10). A Subset Containing 1.049 Million Samples

With About 1% Samples Labeled Was Used to Train AGR in a Semisupervised Setting. The AGR Model Was Then Applied to Classify

Novel Samples Drawn From the Same Web-Scale Data Set. Both PVM and AGR ðs ¼ m=10Þ Use the Gaussian Kernel.

The Test Time for Each Compared Method Is the Average Classification Time per Test Sample

Table 6 Classification Accuracy on Web-Scale Data (80 Million Tiny Images plus CIFAR-10). A Subset Containing 1.049 Million Samples

With About 2% Samples Labeled Was Used to Train AGR in a Semisupervised Setting. The AGR Model Was Then Applied to Classify

Novel Samples Drawn From the Same Web-Scale Data Set. Both PVM and AGR ðs ¼ m=10Þ Use the Gaussian Kernel.

The Test Time for Each Compared Method Is the Average Classification Time per Test Sample
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for the classical GFHF method. The anchor graph method
reviewed in Section V for large-scale GSSL can also be

found at [34].

VII. OPEN ISSUES

Despite the exciting results introduced in this paper and

other papers in the literature, there are many open issues

remaining in the development of GSSL methods and the
corresponding large-scale applications such as web-scale

multimedia processing. In the following, we discuss a few

topics for future work.

A. Integrated Solutions for Handling Gigantic Data
Sets With Contaminated Labels

A natural extension of the methods reviewed in this paper

is to integrate the scalable methods for graph construction
and label propagation (such as the anchor graph) with the

approaches for noisy label tuning. Currently, an integrated

solution capable of solving both challenges simultaneously is

still missing. One option is to use the anchor graph idea to

derive the low-rank formulation of the objective function

[see (10)] and the corresponding analytic solution based on

gradient search [see (12)] for label tuning. Another option is

to use the anchor graph to directly propagate the initial noisy
labels to the entire large data set, following the process of

mapping labels to the anchors and then reversely to the

entire graph. In this case, the anchor graph serves as a

filtering mechanism and the results of the propagation can be

used to measure the Bconfidence[ of the original labels and

filter out least confident ones. Both approaches seem

reasonable. Deeper investigation and comprehensive evalu-

ation are needed.

B. Advanced Graph Construction Techniques
Most works on GSSL reported in the literature focused

on label prediction, and efforts on graph construction have

been relatively limited [22], [35]. Majority of the current

graph construction methods use certain heuristics in an

unsupervised setting. It will be desirable to combine the

available label information associated with the given data
to design proper graphs in a semisupervised fashion,

similar to the way they are used to optimize the label

predictions. Liu and Chang [35] tried to learn an adjacency

matrix of a symmetry-favored k-NN graph using an SSL

setting with some promising performance gains. However,

much more work can be pursued in this direction.

C. Graphs of Heterogeneous Features and Relations
Most of the existing GSSL works consider a homoge-

neous type of nodes and relations. Like the experiments

shown in this paper, all nodes correspond to a single type of

content (such as images) and all links correspond to a single

type of similarity metrics (such as the Gaussian kernel).

However, such homogeneity is quite limited compared to

the richness of content and relations. For example, in a

social media network like Flickr many entities exist, e.g.,
users, objects, and tags, and many relations are available,

such as friendship between users, similarities of content in

different feature spaces, and relations between users and

content (ownership, viewership, feedback, etc.). Develop-

ment of new models to capture such heterogeneous data

types and relations will greatly enhance the flexibility and

representation power of the GSSL techniques. In addition,

learning theories and algorithms that fully exploit the
heterogeneous data and structures, beyond the initial

interesting works in [5] and [33], will have significant

impact in this field. Most of these works still consolidate

diverse data and relations back to a single homogeneous

type in the final inference stage. In [51], multifeature

graphs were proposed to build multiple graphs each of

which models a distinct feature. However, a joint process

optimizing over multiple features is still lacking.

D. Active Learning and GSSL
Both active learning [47] and SSL methods aim to

handle the challenging problem of scarce labels. However,

well-known active learning methods are mostly performed

in a supervised learning setting, such as SVM active

learning in which the most informative unlabeled sample

is selected to minimize the margin with respect to the

current decision boundary. Integration of active learning

with GSSL has not been thoroughly exploited, except the

early work in [65] where greedy methods were used to
minimize the estimated expected classification error (risk)

based on a Gaussian random field formulation over graphs.

However, scalability and robustness over large-scale data

sets remain to be proved. Other active sampling criteria on

graphs such as [18] also need to be reexamined.

E. Combining Approximate Nearest Neighbor Search
and Graph-Based Approaches

In k-NN graphs, fast methods are needed in order to

speed up the process of finding the nearest neighbors of each

node. Applying approximate nearest neighbor (ANN)
methods like hashing techniques can help achieve rapid

construction of sparse graphs over gigantic data sets.

Although one can simply apply the well-known hashing

methods like [17] in large graph construction, most ANN

methods are developed in an unsupervised fashion without

taking into account existing label information. Recent works

in learning-based hashing methods including unsupervised

[55], semisupervised [54], and supervised [37] methods have
shown promising improvements, but integration with GSSL

has not been investigated and its performance remains to be

verified. Along a related but slightly different direction,

recent work in [38] extends the anchor graph method

described in this paper to develop several graph-based hash

code generation mechanisms which capture the data

similarities along nonlinear manifolds and better approxi-

mate the semantic similarities. h
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