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ABSTRACT
Joint audio-visual patterns often exist in videos and provide
strong multi-modal cues for detecting multimedia events.
However, conventional methods generally fuse the visual
and audio information only at a superficial level, without
adequately exploring deep intrinsic joint patterns. In this
paper, we propose a joint audio-visual bi-modal representa-
tion, called bi-modal words. We first build a bipartite graph
to model relation across the quantized words extracted from
the visual and audio modalities. Partitioning over the bipar-
tite graph is then applied to construct the bi-modal words
that reveal the joint patterns across modalities. Finally,
different pooling strategies are employed to re-quantize the
visual and audio words into the bi-modal words and form bi-
modal Bag-of-Words representations that are fed to subse-
quent multimedia event classifiers. We experimentally show
that the proposed multi-modal feature achieves statistically
significant performance gains over methods using individual
visual and audio features alone and alternative multi-modal
fusion methods. Moreover, we found that average pooling is
the most suitable strategy for bi-modal feature generation.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithm, Experimentation

Keywords
Bi-Modal Words, Event Detection, Feature Pooling

1. INTRODUCTION
Automatic detection of complex multimedia events in In-

ternet videos has great potential for many applications, such
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Figure 1: Event detection in unconstrained videos
is a challenging task due to uncontrolled conditions
such as lighting, occlusions, and complicated camer-
a motions, etc. The content is extremely diverse as
shown in the image frames extracted from the ”feed-
ing an animal” event category defined in TRECVID
MED 2011.

as general video retrieval, consumer content management,
etc. A large portion of the Internet videos are captured and
uploaded by ordinary consumers. These videos are typically
recorded under uncontrolled conditions without professional
post-editing, showing large variations in lighting, viewpoint
and camera motion. Figure 1 gives several example frames
of videos containing the same event.

Notably, events captured in the videos are implicitly multi-
modal and videos of the same event typically show con-
sistent audio-visual patterns. For example, an “explosion”
event is best manifested by the transient burst of sound to-
gether with the visible smoke and flame after the inciden-
t. Other examples include strong temporal synchronization
(e.g., horse running with audible footsteps) or loose associ-
ation (e.g., runner with cheering sounds in baseball videos).
Therefore, we believe that successful event detection solu-
tions should harness both audio and visual modalities. Also,
we expect the cross-modal correlation to be best preserved
in consumer videos due to the raw audio-visual content seen
in such videos. Such correlations might disappear after edit-
ing seen in other domains such as broadcast, commercials,
or videos used in social media sites.

The existing audio-visual video event analysis approach-
es evolve through three paradigms. The first is early fu-
sion [3], which combines the audio and visual information
before performing classification, such as feature concatena-
tion or multiple kernel learning. The second paradigm is
late fusion [12, 22], which aims at combining the prediction
scores of the individual models constructed from audio or vi-
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Figure 2: The generation process of the proposed
audio-visual bi-modal BoW representation. First,
audio and visual features are extracted from the
videos and quantized into audio and visual BoW his-
togram respectively. Then a bipartite graph is con-
structed to model the relations across the quantized
words extracted from the visual and audio modal-
ities, in which each node denotes a visual or audio
word and each edge between two nodes encodes the
correlation between the two words. By partitioning
the bipartite graph into a number of clusters, we
obtain several bi-modal words that reveal the joint
audio-visual patterns. Finally, the audio and visu-
al words in the original BoW representations are
re-quantized into the bi-modal words with different
pooling strategies.

sual information. Both paradigms combine the information
from different modalities only in a shallow manner, lacking
through exploitation of their deep correlations. In the third
paradigm, deep multi-modal analysis models are proposed
to discover the joint audio-visual patterns in the videos [9,
10]. Nevertheless, such models typically need to perform
object or region tracking followed by complex audio-visual
joint modeling, which prevents their applicability in the real
world unconstrained videos with complex object and scene
interactions.

We propose an audio-visual bi-modal Bag-of-Words (BoW)
representation that describes the video contents based on the
joint relations between the audio and visual modalities. The
framework is illustrated in Figure 2. First, we apply BoW
approach to build audio words and visual words through
the standard k-means clustering method separately. Then,
a bipartite graph is constructed to capture joint statistics
between the quantized audio words and visual words. Af-
ter that, the spectral clustering method is used for bipartite
graph partitioning. Finally, the original individual words
in each modality (audio, or visual) are re-quantized into a
number of bi-modal codewords, which are employed as the
audio-visual bi-modal BoW representation. In addition, we
evaluate different pooling strategies in the re-quantization
stage, and show that average pooling is an effective strategy
in the audio-visual bi-modal BoW construction.

The audio-visual bi-modal BoW offers several distinct ad-
vantages: (1) Easy to implement, in which only a bipar-
tite graph partitioning procedure is needed to obtain the
bi-modal words. Moreover, the graph-based representation

is a good choice for uncovering the manifold structure un-
derlying the joint audio-visual feature space, and thus pro-
vides unique representations distinct from those in the prior
work; (2) The dimensionality of the features can be greatly
reduced (e.g. from about 14, 000 to 4, 000), and thereby can
result in a better generalization; (3) It also provides strong
multi-modal cues and discriminative power for detecting the
multimedia events. From the experiment results shown in
Section 5, our method is able to achieve the best perfor-
mance over the state of the arts in the task of video event
detection.

2. RELATED WORK
The most popular audio-visual analysis strategy is multi-

modality fusion, which tries to fuse the audio and visu-
al information in a complementary manner. For example,
the work in [3] averaged the kernel matrices obtained from
the audio and visual features as the early fusion method.
Jiang et al. [12] trained independent event classifiers based
on BoW representation of the audio or visual feature, and
then performed late fusion to combine the prediction results
of the classifiers obtained from different modalities. Differ-
ent from such fusion methods, we pursue a novel bi-modal
feature representation that characterizes the joint patterns
across the audio and visual modalities, which better cap-
tures the underlying relations between low-level features and
high-level semantics.

Related work can also be found in audio-visual speech
recognition [21]. But they are restricted to videos of talk-
ing faces and only special features associated with faces and
speeches are used. Note our work focuses on general sit-
uations without the limitation to talking faces and speech
recognition only.

There are also some work that explore the joint audio-
visual analysis for object detection and tracking in the lit-
erature. For example, Cristani et al. [7] proposed to syn-
chronize foreground of visual objects and the background of
audio sounds for object detection. Beal et al. [4] proposed a
joint probability model of both audio and visual information
for tracking the object motion. Nevertheless, these methods
are only designed for videos in a controlled environment in
which the foreground and background can be easily separat-
ed. However, such requirement cannot be satisfied in detect-
ing events from uncontrolled videos with complex contextu-
al interactions among different semantic entities. Recently,
Jiang et al. [9] developed a Short-Time Audio-Visual Atom
(ST-AVA) as the joint audio-visual feature for video concep-
t classification. First, visual regions are tracked within the
short-term video slices to generate the visual atoms, and au-
dio energy onsets are located to generate audio atoms. Then
the regional visual features extracted from the visual atom-
s and the spectrogram features extracted from the audio
atoms are concatenated to form the AVA feature representa-
tion. Finally, a discriminative joint audio-visual codebook is
constructed from the AVAs using multiple instance learning,
and the codebook-based features are generated for semantic
concept detection. As an extension of this work, Jiang et
al. [10] further proposed the Audio-Visual Grouplet (AVG)
by exploring the temporal audio-visual interactions, in which
an AVG is defined as a set of audio and visual codewords
that are grouped together based on their strong temporal
correlations in videos. Specifically, the authors conducted
foreground/background separation in both audio and visual



channels, and then formed four types of AVGs by exploring
the mixed-and-matched temporal audio-visual correlations,
which provide discriminative audio-visual patterns for clas-
sifying semantic concepts. Despite the close relatedness with
our work, the above two works need to perform object or re-
gion tracking. However, since the events typically consists of
complex interactions between objects and scenes, it will be
difficult, if not impossible, to perform effective and efficient
object tracking in unconstrained videos. In addition, track-
ing also incurs significant computational burden in practice.
Therefore, such tracking based methods may not be ade-
quate for capturing the audio-visual patterns in the events,
which directly motivates our work in this paper.

Methodologically, our work is motivated by the bipartite
graph partitioning technique [8] which has been widely ap-
plied in various applications. For example, Pan et al. [19]
constructed a bipartite graph to model the co-occurrence re-
lations between words in different domains, and then adapt-
ed spectral clustering to discover cross-domain word clusters.
In this way, the clusters can reduce the gap between different
domains, and achieve good performance in cross-domain sen-
timent classification. Liu et al. [15] used the bipartite graph
to model the co-occurrence relation of two view-dependent
visual vocabularies, and applied the graph partitioning to
find visual word co-clusters. The co-clusters can transfer
view knowledge across different views, and realize the cross-
view action recognition. In contrast to these applications
which focus on cross-domain/view learning, we use the bi-
partite graph to discover the correlations between audio and
visual words, which greatly reduces the dimensionality of the
features and provides strong cues and discriminative power
for detecting events.

3. FEATURE EXTRACTION FROM INDI-
VIDUAL MODALITIES

We follow the BoW feature representations in [12] which
typically forms the feature representations by the following
four steps. First, a set of key points are sampled from the
videos by detecting the 2D/3D local features [13, 14] in the
videos. Second, we extract a descriptor from each detected
key point that represents the local appearance/motion at d-
ifferent locations in the videos. Next, these descriptors are
quantized into a codebook of feature vectors, typically with
k-means clustering method. Finally, the quantizations are
aggregated to form a single, fixed-dimensional histogram to
represent the video. In this work, we extract three kind-
s of low-level features from the video contents, which are
described as follows:

SIFT Appearance Feature. SIFT has been proved
very effective especially for object and scene categorization.
Following [12], we adopt two versions of sparse keypoint de-
tector: Different of Gaussian [13], and Hessian Affine [17],
to find local keypoints. Each keypoint is described by a 128
dimensional vector. To reduce the computational processing
time, we sample one frame from every two seconds of video.
The SIFT features within a frame are further quantized into
a 5, 000-dimensional BoW histogram.

STIP Motion Feature. Unlike SIFT, STIP captures
motion information in the video. It extracts space-time local
volumes which have significant variations in space and time.
We apply Laptev’s method [14] to compute the keypoints
and the corresponding descriptors of STIP. The descriptors

are computed from HOG and HOF (144 dimensions). The
STIP features within the local volume are quantized into a
5, 000-dimensional BoW histogram.
MFCC Audio Feature. Except for the visual features

such as SIFT and STIP, audio information is also very im-
portant for event classification. We extract the popular Mel-
frequency cepstral coefficients (MFCC) [20] as the audio fea-
ture in this work. We compute the 60-dimensional MFCC
feature for every window of 32ms with 50% overlap, and
then apply k-means method on these MFCC features to for-
m the codebook of size 4, 000. Finally, the MFCC feature
within the time window is further quantized into a 4, 000-
dimensional BoW histogram.

In the experiments of this work, we combine the visual
words generated from SIFT and STIP together as the visual
codebook (5, 000+5, 000 = 10, 000 codewords) while treating
the 4, 000 audio words as the audio codebook. It is worth
noting that the above three BoW representations are local
features which represent the keyframe or local volume of the
video clip. To obtain an aggregated single feature vector for
the entire video clip, we use average pooling to obtain the
video level feature representation, i.e., taking the average of
the BoW features of all the keyframes or local volumes.

4. AUDIO-VISUAL BI-MODAL REPRESEN-
TATION

In this section, we present our audio-visual bi-modal rep-
resentation for video event detection. We first describe the
bipartite graph construction for modeling the correlation of
audio and visual words, and then introduce how to gener-
ate the bi-modal words through bipartite graph partition-
ing. Finally, we discuss several pooling strategies for re-
quantizing the original visual/audio BoW into the audio-
visual bi-modal BoW representation.

4.1 Bipartite Graph Construction
Assume that we are given a training video collection D =

{di}ni=1 with n videos. Each video di is represented as a bi-
modal representation di = {ha

i ,h
v
i }, where ha

i denotes the
4, 000-dimensional audio BoW feature and hv

i denotes the
10, 000-dimensional visual BoW feature. We use �1 normal-
ization on each of the above BoW feature representations
such that the sum of its entries equals 1. For simplicity, we
use Wa = {wa

1 , . . . , w
a
ma
} and Wv = {wv

1 , . . . , w
v
mv
} to de-

note the sets of audio and visual words respectively, where
wa

i ∈ Wa and wv
i ∈ Wv represent one audio word and one

visual word, ma and mv denotes the number of audio and
visual words. The total number of audio and visual words
can be denoted as m = ma +mv.
Based on the given training video collection, we can con-

struct a bipartite graph G = (V,E) between the audio and
visual words, where V and E denote the set of vertices and
the set of edges respectively. Specifically, the vertex set V
is a finite set V = V a ⋃

V v, where each vertex in V a cor-
responds to an audio word in Wa and each vertex in V v

corresponds to a visual word in Wv. An edge in E con-
nects two vertices in V a and V v, and there is no intra-set
edges connecting two vertices in V a or V v respectively. For
any edge ekl ∈ E, we associate a non-negative weight skl to
measure the correlation between audio word wa

k ∈ Wa and
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Figure 3: An illustration of bipartite graph con-
structed between audio and visual words, where the
upper vertices denote the audio words and the low-
er vertices denote the visual words. Each edge con-
nects one audio word and one visual word, which
is weighted by the correlation measure calculated
based on Eq. (1). In this figure, the thickness of the
edge reflects the value of the weight.

visual word wv
l ∈ Wv, which is defined as follows,

skl =

∑n
i=1 h

a
i (k)h

v
i (l)∑n

i=1 h
a
i (k)

∑n
i=1 h

v
i (l)

, (1)

where ha
i (k) denotes the entry of ha

i corresponding to audio
word wa

k and hv
i (l) denotes the entry of hv

i corresponding to
video word wv

l .
Now we explain the rationality of Eq. (1). Specifically, the

numerator measures the summation of the joint probability
of audio word wa

k and visual word wv
l , where the summation

is calculated over the entire video collection. This value es-
sentially reveals the correlation of audio and visual words,
in which the higher the value, the more correlative for these
two words. On the other hand, the denominator acts as a
normalization term, which penalizes the audio and/or visual
words that frequently appeared in the video collection. It
is worth noting that the underlying principle in Eq. (1) is
similar to the term of tf -idf in information retrieval, which
has proven to be effective in various applications [16]. Fig-
ure 3 illustrates a bipartite graph constructed from the joint
statistic of the audio and visual words.

Note that the choice of correlation measure in Eq. (1) is
flexible and we can also adopt other methods to estimate
skl, e,g., the Pointwise Mutual Information (PMI) in [15].
In addition, the co-occurrence measure (the numerator in
Eq. (1)) can be computed over shorter temporal durations
by segmenting each video into shorter clips.

4.2 Bi-Modal Words Discovery
Based on the bipartite graph constructed between audio

and visual words, we adopt the bipartite graph partitioning
method to discover the audio-visual bi-modal words. Fol-
lowing the discussion in [8], we begin with bipartitioning
method over the bipartite graph and then extend it into the
multipartitioning scenario.

Suppose we have a bipartite graphG = (V,E) between the
audio and visual words. Given a partitioning of the vertex
set V into two subsets V1 and V2, the cut can be defined as
sum of all edge weights connecting vertices in two subsets,

cut(V1, V2) =
∑

k∈V1,l∈V2

skl. (2)

The bipartitioning problem over the bipartite graph is to
find the vertex subsets V ∗1 and V ∗2 such that cut(V ∗1 , V ∗2 ) =
minV1,V2 cut(V1, V2). To this end, we define the Laplacian
matrix L ∈ R

m×m associated with the bipartite graph G as,

Lkl =

⎧⎨
⎩

∑
l skl, k = l,

−skl, k �= l and ekl ∈ E,
0, otherwise.

(3)

Furthermore, given a bipartitioning of V into V1 and V2,
we define a partition vector p ∈ R

m that characterizes this
division, in which the ith entry describes the partitioning
state of i ∈ V and can be defined as,

pi =

{
+1, i ∈ V1,
−1, i ∈ V2.

(4)

Based on the above definitions, it can be shown that the
graph cut can be equally written as the following equivalent
form,

cut(V1, V2) =
1

4
p�Lp =

1

4

∑
(i,j)∈E

sij(pi − pj)
2. (5)

However, it can be easily seen from Eq. (5) that the cut
is minimized by the trivial solution when all pi’s are either
+1 or −1. To avoid this problem, a new objective function
is used to achieve not only minimized cut but also a bal-
anced partition. Formally, the objective function is defined
as follows,

Q(V1, V2) =
cut(V1, V2)

weight(V1)
+

cut(V1, V2)

weight(V2)
, (6)

where weight(Vi) =
∑

k,l∈Vi
skl, i = 1, 2. Then it can be

proved that the eigenvector corresponding to the second
smallest eigenvalue of the generalized eigenvalue problem
Lz = λDz (where D is a diagonal matrix with D(k, k) =∑

l skl) provides a real relaxed solution of the discrete opti-
mization problem in Eq. (6). To obtain the the eigenvector
corresponding to the second smallest eigenvalue, [8] proposes
a computationally efficient solution through Singular Value
Decomposition (SVD). Specifically, for the given bipartite
graph G, we have

L =

(
D1 −S
−S� D2

)
, and D =

(
D1 0
0 D2

)
, (7)

where S = [skl], D1 and D2 are diagonal matrices such that
D1(k, k) =

∑
l skl and D2(l, l) =

∑
k skl. Let the normal-

ized matrix Ŝ = D
−1/2
1 SD

−1/2
2 , it can be proved that the

eigenvector corresponding to the second smallest eigenvalue
of L can be expressed in terms of the left and right singular
vectors corresponding to the second largest singular value of
Ŝ as follows,

z2 =

[
D
−1/2
1 u2

D
−1/2
2 v2

]
, (8)

where z2 is the eigenvector corresponding to the second s-
mallest eigenvalue of L, u2 and v2 are the left and right
singular vectors corresponding to the second largest singu-
lar value of Ŝ.
Finally, we need to use z2 to find the approximated opti-

mal bipartitioning by assigning each z2(i) to the clusters Cj
(j = 1, 2) such that the following sum-of-squares criterion is



Algorithm 1 Audio-Visual Bi-Modal BoW Representation
Generation Procedure
1: Input: Training video collection D = {di} where each

di is represented as a multi-modality representation d =
{ha

i ,h
v
i }; Size of the audio-visual bi-modal codebook K.

2: Produce the correlation matrix S between the audio and
visual words by calculating the co-occurrence probability
over D by Eq. (1).

3: Calculate matrix D1, D2 and Ŝ respectively.
4: Apply SVD on Ŝ and select l = �log2 K� of its left

and right singular vectors U = [u2, . . . ,ul+1] and V =
[v2, . . . ,vl+1].

5: Calculate Z = (D
−1/2
1 U,D

−1/2
2 V)�.

6: Apply k-means clustering algorithm on Z to obtain
K clusters, which form the audio-visual words B =
{B1, . . . , BK}.

7: Apply a suitable pooling strategy to re-quantize each
video into the audio-visual bi-modal BoW representa-
tion.

8: Output: Audio-visual BoW representation.

minimized,

2∑
j=1

∑
z2(i)∈Cj

(z2(i)−mj)
2, (9)

where mj is the cluster center of Cj (j = 1, 2).
In practice, the above objective function can be minimized

by directly applying the k-means clustering method on the
1-dimensional entries of z2. The bipartitioning method can
be easily extended to a general case of findingK audio-visual
clusters [8]. Suppose we have l = �log2 K� singular vectors
u2,u3, . . . ,ul+1, and v2,v3, . . . ,vl+1, then we can form the
following matrix with l columns,

Z =

[
D
−1/2
1 U

D
−1/2
2 V

]
, (10)

where U = [u2, . . . ,ul+1] and V = [v2, . . . ,vl+1]. Based on
the obtained matrix Z, we further run k-means method on
it to obtain K clusters of audio-visual words, which can be
represented as follows,

B = {B1, . . . , BK}, (11)

where each Bi consists of the audio word subsetWa
i and the

visual word subset Wv
i falling in the same bi-modal cluster.

Note that either Wa
i or Wv

i can be empty, indicating that
only one modality forms a consistent pattern within the bi-
modal word Bi (e.g., audio or visual words corresponding to
the background).

The above graph partition method needs to compute eigen-
vectors of the Laplacian matrix, and thus has a computa-
tional complexity of O(m3) in general, where m is the to-
tal number of audio and visual words. We implement the
method on the MATLAB platform of a Six-Core Intel Xeon
Processor X5660 with 2.8 GHz CPU and 32 GB memory,
and observe that it takes 32 minutes to cluster 14, 000 audio
and visual words into 2, 000 bi-modal words in the experi-
ment on CCV dataset (see Section 5.2).

4.3 Audio-Visual BoW Generation
After obtaining the bi-modal words, we need to re-quantize

the original audio and visual BoW representations into the

bi-modal words such that the videos can be represented as
the audio-visual BoW representation. For any video di =
(ha

i ,h
v
i ), we consider three quantization strategies for gen-

erating the audio-visual BoW representation, which are de-
scribed as follows respectively:

Average Pooling. This audio-visual bi-modal BoW gen-
eration strategy is formally described as follows,

havg
i (k) =

∑
wa

p∈Wa
k
,wv

q∈Wv
k
(ha

i (p) + hv
i (q))

|Wa
k |+ |Wv

k |
, (12)

where havg
i (k) denotes the entry in the bi-modal BoW havg

corresponding to a given audio-visual bi-modal word Bk =
(Wa

k ,Wv
k ). |Wa

k | and |Wv
k | denote the cardinalities of Wa

k

and Wv
k respectively. From Eq.(12), we can see that the en-

try of the bi-modal representation is the average value of the
entries corresponding to the audio and visual words in the
original BoW representations. We call such bi-modal BoW
generation strategy average pooling due to its relatedness
w.r.t the pooling strategy in sparse coding [5].

Max Pooling. The second strategy is the max pooling,
which is formally defined as follows,

hmax
i (k) = max

( ∑
wa

p∈Wa
k

ha
i (p),

∑
wv

q∈Wv
k

hv
i (q)

)
, (13)

where essentially selects the largest summation in the orig-
inal audio or visual words as the quantization value of the
given audio-visual bi-modal word.

Hybrid Pooling. We also propose a hybrid pooling s-
trategy which integrates average pooling and max pooling
together. Intuitively, the visual features from the visual
scene in the video tends to persist over a certain interval
when the camera does not move too fast. Therefore, we
use average pooling to aggregate information in the inter-
val. Max pooling is employed for the audio information s-
ince audio features tends to be transient in time. Formally,
the hybrid pooling strategy can be defined as follows,

hhyb
i (k) =

1

2

(
max

wa
p∈Wa

k

ha
i (p) +

∑
wv

q∈Wv
k
hv
i (q)

|Wv
k |

)
, (14)

where the average pooling aggregates the two entries of the
audio and visual words obtained from max and average pool-
ing respectively.

Algorithm 1 shows the generation procedure of the audio-
visual BoW representation. Once we obtain the audio-visual
BoW representations of the video collection, we can use
these features and the label information on the training set
to train event classifiers. Finally, the event detection is per-
formed by applying the learnt classifiers on the test videos.

5. EXPERIMENTS
In this section, we evaluate our proposed audio-visual

bi-modal representation on various benchmark datasets for
video event detection. As discussed in Section 3, we apply
the SIFT BoW (5, 000 dimensions) and STIP BoW (5, 000
dimensions) representations as the visual features while us-
ing the MFCC BoW (4, 000 dimensions) as the audio rep-
resentation. The following audio/visual feature representa-
tions will be compared: (1) Single Feature (SF), where we
only report the best performance achieved by one of the
three features mentioned above. (2) Early Fusion (EF). We
concatenate three kinds of BoW features into a long vector



with the dimensions of 14, 000. (3) Late Fusion (LF). We
use each feature to train an independent classifier and then
average the output scores of the three classifiers as the final
fusion scores for event detection. (4) Average Pooling based
Bi-Modal BoW (BMBoW-AP), where the average pooling s-
trategy is employed to generate the bi-modal BoW. (5) Max
Pooling based Bi-Modal BoW (BMBoW-MP), in which we
use max pooling to generate the audio-visual BoW. (6) Hy-
brid Pooling based Bi-Modal BoW (BMBoW-HP), which
applies the hybrid pooling described in Section 4.3.

We use the one-vs-all SVM as the classifier for event de-
tection, in which the positive videos labeled with the given
event and the other negative videos that do not belong to the
concerned event are used as training data for training the
SVM classifier of the target event. We employ the Average
Precision (AP) as the evaluation metric of event detection.
We calculate AP for each event and then calculate the Mean
Average Precision (MAP) across all the events of the dataset
as the final evaluation metric.

For the parameter setting of the SVM classifier, we vary
the tradeoff parameter C of SVM on the grid of {10−1 . . . 103}
and then choose the best value based on validation perfor-
mance. To get the optimal parameter for each method, we
partition the training set into 10 subsets and then perform
10-fold cross validation. Moreover, we apply χ2 kernel as
the kernel matrix for SVM classifier, which is calculated as

k(x, y) = e−
d
χ2(x,y)

σ where σ is by default set as the mean
value of all pairwise distances on the training set.

5.1 Experiment on TRECVID MED 2011 De-
velopment Dataset

TRECVID MED is a challenging task for the detection of
complicated high-level events. We test our proposed method
on TRECVID MED 2011 development dataset [2], which in-
cludes five events “Attempting a board trick”, “Feeding an
animal”, “Landing a fish”, “Wedding ceremony”, and “Work-
ing on a woodworking project” and one background class.
This dataset consists of 10, 804 videos from 17, 566 min-
utes of web videos, which is partitioned into the training
set (8, 783 videos) and the test set (2, 021 videos).

Figure 4 shows the per-event performance for all the meth-
ods in comparison, where the bi-modal codebook size is set
as 4, 000. From the results, we have the following observa-
tions: (1) Our proposed audio-visual bi-modal BoW repre-
sentation produces better result than all the other baseline
methods in terms of MAP, with significant performance im-
provements on all of the five events. (2) The audio-visual
BoW representation outperforms the early fusion and late
fusion methods by a large margin. This is due to the fac-
t that the bi-modal words capture the correlation between
audio and visual information while the latter two method-
s only fuse audio and visual information in an aggregated
manner without exploring their mutual dependence. (3) The
bi-modal feature performs significantly better than all the s-
ingle feature, which verifies the merits of considering multi-
modality in the task of video event detection. (4) BMBoW-
AP tends to produce better results that BMBoW-MP, which
may be due to the fact that the former captures the joint
audio-visual patterns while the latter incurs significant in-
formation loss caused by selecting only the max contribu-
tion between two modalities. (5) BMBoW-HP outperforms
BMBoW-MP, as it utilizes the suitable pooling strategies for
different modalities (i.e., max pooling for the transient audio
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Figure 4: Per-event performance on TRECVID
MED 2011 video event detection. The five even-
t from left to right in the horizontal axis are “At-
tempting board trick”, “Feeding an animal”, “Land-
ing a fish”, “Wedding ceremony”, and “Wood work-
ing”, and the final result is the MAP. This figure is
best viewed in color.

signal and average pooling for the persistent visual signal).
In addition, BMBoW-HP even achieves better results than
BMBoW-AP (see Fig. 5 in the following paragraph), espe-
cially when the size of bi-modal code words is relative large,
indicating that selecting maximum response of audio signal
may help reveal the semantic clue of the videos.

Figure 5 further shows the MAP performance of different
pooling strategies when the size of the audio-visual bi-modal
codebook varies from 2, 000 to 12, 000. As seen, average
pooling tends to enjoy better stability than max pooling
and hybrid pooling when the codebook size varies, which
demonstrates that average pooling is more suitable for the
bi-modal BoW quantization. Figure 6 shows the density of
audio and visual words within each bi-modal word. Each
point in the map denotes the frequency of bi-modal words
made up of a certain numbers of audio word (vertical coor-
dinate, only up to 18 is shown in the figure) and visual word
(horizontal coordinate, only up to 22 is shown in the figure).
It estimates the portion of the words in the entire bi-modal
codebook that contain both visual and audio information,
which was found to be about 47% for the TRECVID MED
2011 data set. This confirms the significant effect of the bi-
modal correlations in the joint multi-modal representation.
The bi-modal feature was also an important component of
the large feature set used in our system and achieved the
best performance [18] in TRECVID MED 2011.

5.2 Experiment on Columbia Consumer Video
(CCV) Dataset

In the second experiment, we use the Columbia Consumer
Video (CCV) dataset [11], This dataset contains 9, 317 Y-
ouTube videos annotated over 20 semantic categories, where
4, 659 videos are used for training and the remaining 4, 658
videos are used for testing. To facilitate benchmark com-
parison, we report performance of all the 20 categories.

Figure 7 shows the per-category performance comparison
of all the methods, where the bi-modal codebook size is
set as 6, 000. From the results, we can see that the pro-
posed BMBoW-AP achieves the best performance in terms
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Figure 5: Effect of varying bi-modal codebook size
on TRECVID MED 2011 performance.
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Figure 6: The density of audio and visual words
within the bi-modal words on TRECVID MED 2011
development dataset, where the total number of bi-
modal words is set as 4, 000. Each point in the map
denotes the frequency of bi-modal words made up
of a certain numbers of audio word (vertical coordi-
nate, only up to 18 is shown in the figure) and visual
word (horizontal coordinate, only up to 22 is shown
in the figure).

of MAP. In particular, it outperforms the BMBoW-MP,
BMBoW-HP and LF by 1.1%, 6.2% and 5.1% respectively,
which clearly demonstrates that our method is superior to all
the baseline feature representations. Moreover, it achieves
the best performance on most of the event categories. For
instance, on event “graduation”, our method outperforms
the best baseline method SF by 14.2%. Besides, compar-
ing with the the best baseline EF, our method achieves the
highest relative performance gain on category “bird ” and
“wedding ceremony”. The reason may be that these two
categories contain more significant audio-visual correlation
than the other categories. For example, the appearance of
birds are often accompanied with the birds’ singing audio
background. Meanwhile, people’s actions in wedding cer-
emony are always with background music. In general, we
expect high impact of the proposed bi-modal features on
other evens that share strong audio-visual correlations like
the ones mentioned above.

Figure 8 further shows MAP performance of different pool-
ing strategies with variant sizes of the codebook. As can be
seen, the average pooling achieves significant and consistent
MAP results as the codebook size varies. Figure 9 shows
the density of audio and visual word within each bi-modal
word for the CCV dataset, for which about 36% of bi-modal
codewords contain both audio and visual codewords.

We also measure the statistical significance between the
best baseline and BMBoW-AP on the two datasets. A pop-
ular measure for statistical significance testing, the p-value,
is the probability of obtaining a test statistic at least as ex-
treme as the one that was observed, assuming that the null
hypothesis is true [1]. We can reject the null hypothesis
when the p-value is less than the significance level, which is
often set as 0.05. When the null hypothesis is rejected, the
result is said to be statistical significant. In order to get the
p-value, we sample 50% of the test set from each dataset and
repeat the experiment 1000 times. For each round, we com-
pute the paired MAP differences Di = MAPBMBoW−AP(i)−
MAPBaseline(i), where i = 1, 2, . . . , 1000. Then we make
the assumption that the null hypothesis is Di < 0, i =
1, 2, . . . , 1000, based on which, the p-value can be defined
as the percentage of Di that is below 0. We find that the
p-values obtained on the MED and CCV dataset are 0.019
and 0.022 respectively, which are well below 0.05 and shows
that the null hypothesis can be rejected. Therefore, we con-
clude that our method has achieved statistical significant
improvements over the best baseline on the two datasets.

6. CONCLUSION
We have introduced an audio-visual bi-modal representa-

tion for video event detection. The proposed method dis-
covers the joint audio-visual patterns in the videos by the
bipartite graph partitioning. Different pooling strategies are
employed to re-quantize the audio and visual BoW repre-
sentations into the bi-modal words, where average pooling
is found to be most suitable for bi-modal BoW generation.
Extensive experiments have demonstrated the effectiveness
of the proposed method on video event detection. For fu-
ture work, we will consider the following directions: (1)
The bi-modal representations provide a common framework
for measuring the “similarity” between features of different
modalities, and thus can be used for cross-modal retrieval.
(2) We will study the class-dependent bi-modal words to
explore the audio-visual patterns that are unique to each
individual event.
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