
Supplementary Material for “Compact Hyperplane Hashing with

Bilinear Functions”

Wei Liu† Jun Wang‡ Yadong Mu† Sanjiv Kumar§ Shih-Fu Chang†

†Columbia University, New York, NY 10027, USA {wliu,muyadong,sfchang}@ee.columbia.edu

‡IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA wangjun@us.ibm.com

§Google Research, New York, NY 10011, USA sanjivk@google.com

1. Theoretical Guarantees

Theorem 2 in the main paper introduces the asymptotic complexity of our proposed randomized bilinear hashing
scheme BH-Hash. For self-contained consideration, here we provide the proof, which is basically following the
technique previously used in the proof of Theorem 1 in (Gionis et al., 1999). Recall that in Theorem 1 of the
main paper, we have shown that the proposed BH-Hash is (r, r(1 + ǫ), p1, p2)-sensitive. Particularly, we show

that p1 = 1
2 − 2r

π2 and p2 = 1
2 − 2r(1+ǫ)

π2 for BH-Hash.

Theorem 2. Suppose we have a database X of n points. Denote the parameters k = log1/p2
n, ρ = ln p1

ln p2
,

and c ≥ 2. Given a hyperplane query Pw, if there exists a database point x
∗ such that D(x∗,Pw) ≤ r, then

the BH-Hash algorithm is able to return a database point x̂ such that D(x̂,Pw) ≤ r(1 + ǫ) with probability at
least 1 − 1

c − 1
e by using nρ hash tables of k hash bits each. The query time is dominated by O(nρ log1/p2

n)
evaluations of the hash functions from B and cnρ computations of the pairwise distances D between Pw and the
points hashed into the same buckets.

Proof. Denote the number of hash tables to be L. For the l-th hash table, the proposed BH-Hash algorithm
randomly samples k hash functions hB

l,1, · · · , h
B
l,k with replacement from B, which will generate a k-bit hash key

for each input data vector x. We denote x’s hash code by HB
l (x) = [hB

l,1(x), · · · , h
B
l,k(x)]. The main observation

is that using L = nρ independent hash tables, a (1 + ǫ)-approximate nearest neighbor is achieved with a non-
trivial constant probability. Moreover, the query (search) time complexity is proved to be sub-linear with respect
to the entire data number n.

To complete the proof, we define the following two events F1 and F2. It suffices to prove the theorem by showing
that both F1 and F2 hold with probability larger than 0.5. The two events are defined as below:

F1: If there exists a database point x∗ such that D(x∗,Pw) ≤ r, then HB
l (x

∗) = HB
l (Pw) for some 1 ≤ l ≤ L.

F2: Provided with a false alarm set

S =
{

x̌ | x̌ ∈ X such that D(x̌,Pw) > r(1 + ǫ) and ∃l ∈ [1 : L], HB
l (x̌) = HB

l (Pw)
}

,

where ǫ > 0 is the given small constant. Then the set cardinality |S| < cL.

First, we prove that F1 holds with probability at least 1− 1
e .

Supplementary Material

Let us consider the converse case that HB
l (x

∗) 6= HB
l (Pw) for ∀l ∈ [1 : L] whose probability is

Pr
[

HB
l (x

∗) 6= HB
l (Pw), ∀l ∈ [1 : L]

]

=
(

Pr
[

HB
l (x

∗) 6= HB
l (Pw)

])L

=
(

1−Pr
[

HB
l (x

∗) = HB
l (Pw)

])L

≤
(

1− pk1
)L

=

(

1− p
log 1

p2

n

1

)nρ

=
(

1− n−ρ
)nρ

=
(

(

1− n−ρ
)−nρ)−1

≤
1

e
, (1)

where Inequality (1) follows from the inequality (1− n−ρ)
−nρ

≥ e. Herewith we derive

Pr
[

HB
l (x

∗) = HB
l (Pw), ∃l ∈ [1 : L]

]

=1−Pr
[

HB
l (x

∗) 6= HB
l (Pw), ∀l ∈ [1 : L]

]

≥1−
1

e
.

Second, we prove that F2 holds with probability at least 1− 1
c .

For every false alarm point x̌ conforming to D(x̌,Pw) > r(1 + ǫ), in any hash table l ∈ [1 : L] we have

Pr
[

HB
l (x̌) = HB

l (Pw)
]

<(p2)
k = (p2)

log 1
p2

n
=

1

n
.

Therefore the expected number of false alarm points, which fall into the same hash bucket with the query Pw in
hash table l, is smaller than n× 1/n = 1. Immediately, we conclude E [|S|] < L. Subsequently, we further apply
Markov’s inequality to derive the following result:

Pr [|S| ≥ cL] ≤
E [|S|]

cL
<

L

cL
=

1

c
,

which leads to

Pr [|S| < cL] = 1−Pr [|S| ≥ cL] > 1−
1

c
.

Third, we prove that F1 and F2 simultaneously hold with probability at least 1− 1
c − 1

e .

Let us deduce the conditional probability Pr
[

F2|F1

]

as follows

Pr
[

F2|F1

]

=
Pr

[

F2

⋂

F1

]

Pr [F1]
≤

Pr
[

F2

]

Pr [F1]
=

1−Pr [F2]

Pr [F1]
<

1− (1− 1
c)

Pr [F1]
=

1

cPr [F1]
.

Then, we derive

Pr
[

F1

⋂

F2

]

= Pr [F2|F1]Pr [F1] = (1−Pr
[

F2|F1

]

)Pr [F1]

> (1−
1

cPr [F1]
)Pr [F1] = Pr [F1]−

1

c

≥ 1−
1

c
−

1

e
.

To sum up, the inequality Pr [F1

⋂

F2] > 1− 1
c−

1
e uncovers that with a constant probability larger than 1− 1

c−
1
e ,

the BH-Hash algorithm is guaranteed to return at least a database point x̂ conforming to D(x̂,Pw) ≤ r(1 + ǫ)
by checking the first cL database points that collide to the query Pw in either of the L hash tables. The
algorithm terminates when cL database points have been scanned. Since at most L hash tables are visited, at
most L · k = nρ log1/p2

n hash functions are evaluated. Accordingly, at most cL = cnρ computations of the
distance function D are needed to confirm the (1 + ǫ)-approximate nearest neighbors. Complete the proof.

Supplementary Material

Table 1. Results on 20 Newsgroups using varying hash code length.

single hash table 8 bits 12 bits 16 bits

Method MAP Preprocess Search MAP Preprocess Search MAP Preprocess Search
Time Time Time Time Time Time

AH-Hash 0.7142 0.07 0.07 0.7047 0.13 0.05 0.7074 0.17 0.05

EH-Hash 0.7588 383.0 3.41 0.7580 384.1 3.38 0.7346 385.2 3.33

BH-Hash 0.8140 0.06 0.16 0.7892 0.10 0.10 0.7752 0.14 0.07

LBH-Hash 0.8184 326.8 0.17 0.8162 506.7 0.10 0.8011 677.2 0.06

Random 0.6999 – – —

Exhaustive 0.8426 – 0.52 —

Table 2. Results on Tiny-1M using 8 and 12 hash bits.

single hash table 8 bits 12 bits

Method MAP Preprocess Search MAP Preprocess Search
Time Time Time Time

AH-Hash 0.2488 1.0 0.12 0.2417 1.4 0.10

EH-Hash 0.3182 577.2 0.98 0.3147 884.1 0.54

BH-Hash 0.3213 1.2 0.86 0.3208 1.4 0.58

LBH-Hash 0.3252 296.6 1.38 0.3313 419.4 0.98

Random 0.2440 – – —

Exhaustive 0.3356 – 14.2 —

Theorem 2 indicates that the query time of the BH-Hash algorithm is essentially bounded by O(nρ), in which
the exponent 0 < ρ < 1 relies on both r and ǫ. In fact, it can be simplified under additional assumptions. We
present the following Corollary.

Corollary 1. If r ≥ γπ2/4 with 0 < γ < 1, then the query time of the BH-Hash algorithm is bounded by

O(n
ln(2/(1−γ))
ln 2+γ(1+ǫ)).

Proof. Given a fixed ǫ > 0,

ρ =
ln p1
ln p2

=
ln
(

1
2 − 2r

π2

)

ln
(

1
2 − 2r(1+ǫ)

π2

) ,

which can be proved to be a monotonically decreasing function with respect to the variable r. Then, if r ≥ γπ2/4,

ρ ≤
ln
(

1
2 − γ

2

)

ln
(

1
2 − γ(1+ǫ)

2

) =
ln
(

1−γ
2

)

ln (1− γ(1 + ǫ))− ln 2
≤

ln
(

1−γ
2

)

−γ(1 + ǫ)− ln 2
=

ln
(

2
1−γ

)

ln 2 + γ(1 + ǫ)
,

where we use the inequality ln (1− γ(1 + ǫ)) ≤ −γ(1 + ǫ).

Thus the query time bound O(nρ) does not exceed O
(

n
ln(2/(1−γ))
ln 2+γ(1+ǫ)

)

. It completes the proof.

2. Experimental Results

Tables 1-3, which again corroborate both accuracy and speed advantages of LBH-Hash, are what we have
mentioned in the main paper. We keep a single hash table and adopt varying hash code length, ranging from
8 bits to 20 bits, for each of four compared hyperplane hashing methods. To perform hash lookups, we set the
Hamming radius to 1, 2, 3, and 4 for 8, 12, 16, and 20 hash bits, respectively. In Tables 1-3, mean average
precision (MAP) ([0, 1]) is the mean of the SVM’s average precision after 300 active learning iterations over
all classes and 5 runs; “Preprocess Time” (seconds) refers to the preprocessing time for a hashing method to

Supplementary Material

Table 3. Results on Tiny-1M using 16 and 20 hash bits.

single hash table 16 bits 20 bits

Method MAP Preprocess Search MAP Preprocess Search
Time Time Time Time

AH-Hash 0.2404 1.6 0.10 0.2444 1.7 0.09

EH-Hash 0.3094 1058.1 0.22 0.3075 1343.6 0.15

BH-Hash 0.3141 1.8 0.16 0.3010 2.0 0.12

LBH-Hash 0.3341 586.5 0.95 0.3469 883.7 0.88

Random 0.2440 – – —

Exhaustive 0.3356 – 14.2 —

compress all of the database points to hash codes (for LBH-Hash, such time includes the time spent on learning
the hash functions from the training data); “Search Time” (seconds) refers to the average search time per query.
Unlike the other methods, AH-Hash always uses twice hash bits to follow its dual-bit hashing theme.

Let us consider the reported MAP first. Table 1 reveals that Random<AH-Hash<EH-Hash<BH-Hash<LBH-
Hash<Exhaustive (where < indicates inferior MAP) on 20 Newsgroups. On Tiny-1M, Tables 2 and 3 show
that Random≈AH-Hash<EH-Hash<BH-Hash<LBH-Hash<Exhaustive when using bits shorter than 20, and
that Random≈AH-Hash<BH-Hash<EH-Hash<Exhaustive<LBH-Hash when using 20 bits. LBH-Hash consis-
tently surpasses the other hashing methods in terms of MAP.

Second, it is observed that AH-Hash and BH-Hash are both efficient in terms of preprocessing time, while EH-
Hash and LBH-Hash need much longer preprocessing time. The preprocessing time of EH-Hash is O(d2n+ dkn)
due to the O(d2 + dk)-complexity EH hash function computation for each database point. The preprocessing
time of LBH-Hash is O(2dkn+ (dm+m2)Tk) in which m (≪ n) is the number of sampled training points and
T is the number of optimization iterations. It is noted that EH-Hash’s time is quadratic in the data dimension
d (k ≪ d) while LBH-Hash’s time is linear in d. For those really large-scale datasets with O(103) or even higher
dimension, the quadratic dimension dependence of EH-Hash will trigger unaffordable computational costs, while
our proposed hashing schemes including both BH-Hash and LBH-Hash will enjoy the linear dependence on
dimension. For example, EH-Hash’s preprocessing time is about twice longer than LBH-Hash’s on the Tiny-1M

dataset.

Although LBH-Hash takes longer preprocessing time than BH-Hash as shown in Tables 1-3, the reported time
is mostly spent on offline training and indexing. In practice, the online search (query) time is more critical.
Considering the search time, all of the compared hashing methods except EH-Hash are much faster than the
exhaustive search. Although AH-Hash is fastest, it incurs many empty hash lookups, as disclosed in Figs. 3(c)
and 4(c) of the main paper. On 20 Newsgroups that is very high-dimensional (over 20K), EH-Hash is slowest
due to the above-mentioned high complexity of its hash function computation, and even slower than exhaustive
search. On 20 Newsgroups, BH-Hash and LBH-Hash demonstrate almost the same fast search speed; on
Tiny-1M, LBH-Hash is slower than BH-Hash, but is acceptably fast for online search.

References

Gionis, A., Indyk, P., and Motwani, R. Similarity search in high dimensions via hashing. In Proc. VLDB, 1999.

