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ABSTRACT
With the proliferation of images on the Web, fast search of
visually similar images has attracted significant attention.
State-of-the-art techniques often embed high-dimensional vi-
sual features into low-dimensional Hamming space, where
search can be performed in real-time based on Hamming
distance of compact binary codes. Unlike traditional met-
rics (e.g., Euclidean) of raw image features that produce
continuous distance, the Hamming distances are discrete in-
teger values. In practice, there are often a large number of
images sharing equal Hamming distances to a query, result-
ing in a critical issue for image search where ranking is very
important. In this paper, we propose a novel approach that
facilitates query-adaptive ranking for the images with equal
Hamming distance. We achieve this goal by firstly offline
learning bit weights of the binary codes for a diverse set of
predefined semantic concept classes. The weight learning
process is formulated as a quadratic programming problem
that minimizes intra-class distance while preserving inter-
class relationship in the original raw image feature space.
Query-adaptive weights are then rapidly computed by eval-
uating the proximity between a query and the concept cat-
egories. With the adaptive bit weights, the returned im-
ages can be ordered by weighted Hamming distance at a
finer-grained binary code level rather than at the original
integer Hamming distance level. Experimental results on
a Flickr image dataset show clear improvements from our
query-adaptive ranking approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

General Terms
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1. INTRODUCTION
The capability of searching similar images in large databases

has great potential in many real-world applications. While
traditional image search engines heavily rely on textual words
associated to the images, scalable content-based search tech-
niques are receiving increasing attention and have recently
appeared in some search engines such as Google and Bing.
Apart from providing better image search experience for or-
dinary users on the Web, scalable similar image search has
also been shown to be helpful for solving traditionally very
hard problems in computer vision (e.g., image segmentation
and categorization) [28].

Typically a scalable similar image search system should
have two major components: i) effective image feature rep-
resentation, and ii) efficient data structure. It is well known
that the quality of image search results largely relies on the
representation power of image features. The latter, an effi-
cient data structure, is necessary since existing image fea-
tures are mostly of high dimensions, on top of which ex-
haustively comparing a query with many database samples
is computationally very slow.

In this work, we represent images using the popular bag-
of-visual-words (BoW) framework [25], in which local invari-
ant image descriptors (e.g., SIFT [18]) are extracted and
quantized into a set of visual words. The BoW features
are then embedded into compact binary codes for efficient
search. For this, we consider state-of-the-art binary embed-
ding techniques including hashing [30] and deep learning [8].
Binary embedding is preferable over the tree-based index-
ing structures (e.g., the kd-tree [1]) as it generally requires
greatly reduced memory and also works better in high di-
mensions. With the binary codes, image similarity can be
measured in Hamming space by Hamming distance – an in-
teger value obtained by counting the number of bits with
different values. For large scale applications, the dimension
of the Hamming space is usually set as a small number (e.g.,
less than a hundred) limited by the memory budget [29, 34].

Despite the success of using Hamming distance of binary
codes in scalable similar image search, it is important to
realize that it lacks in providing good ranking that is cru-
cial for image search – there can be Ci

d different binary codes
sharing equal distance i (i > 0) to a query in a d-dimensional
Hamming space. For example, there are 1,128 different bi-
nary codes with Hamming distance 2 to a query using 48-d
compact binary codes. As a result, hundreds or even thou-
sands of images may share an equal Hamming distance in
practice, but are very unlikely to be equivalently relevant to
the query.
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Figure 1: Search results of a sunset scene query from a Flickr image dataset, using 48-bit binary codes generated

by deep learning. The top and bottom rows respectively show the most similar images based on query-independent

Hamming distance and the proposed query-adaptive Hamming distance. It can be clearly seen that our method returns

more relevant images. Note that our method does not permute images with exactly the same code to the query (three

in total for this query), i.e., Hamming distance = 0; see texts for more explanations. This figure is best viewed in color.

This paper proposes a novel approach to compute query-
adaptive weights for each bit of the binary codes, which has
two main advantages. First, with the bit-level weights, we
are able to rank the returned images at a finer-grained bi-
nary code level1, rather than at the traditional Hamming
distance level. In other words, we can push the resolution of
ranking from d (Hamming distance level) up to 2d (binary
code level). Second, contrary to using a single set of weights
for all the queries, our approach tailors a different and more
suitable set of weights for each query.
To compute the query-adaptive weights in real-time, we

harness a set of semantic concept classes that cover most se-
mantic elements of image content (e.g., scenes and objects).
Bit-level weights for each of the classes are learned offline
using a novel formulation that not only maximizes intra-
class sample similarity but also preserves inter-class rela-
tionships. We show that the optimal weights can be com-
puted by iteratively solving quadratic programming prob-
lems. These precomputed class-specific weights are then uti-
lized for online computation of the query-adaptive weights,
through rapidly evaluating the proximity of a query im-
age to the samples from the semantic classes. With the
query-adaptive weights, weighted Hamming distance is fi-
nally applied to evaluate similarities between the query and
images in a target database. We name our proposed ap-
proach as query-adaptive Hamming distance, as opposed to
the query-independent Hamming distance widely used in ex-
isting works. Notice that during online search it is unneces-
sary to compute the weighted Hamming distance based on
real-valued vectors (weights imposed on the binary codes),
which would bury one of the most important advantages of
binary embedding. Instead the weights can be utilized as
indicators to efficiently order the returned images at binary
code level.
Figure 1 displays search results using a query from a dataset

of Flickr images. As can be seen, our approach obtains
clearly better result (bottom row) by reordering images with
Hamming distance larger than 0. It is worth noting that in
most cases there is typically a very small number, if not
zero, of images having Hamming distance 0 to the queries
(see Figure 3), as there is only one binary code satisfying
this condition (in contrast to Ci

d, i > 0).
Our main contributions are summarized as follows:

1. We propose a complete framework to learn adaptive

1Some existing approaches rerank top results at the finest-grained
image level based on visual similarity of original raw features,
which are not scalable since the raw features cannot fit in memory
and disk-read operations for loading the features are slow.

Hamming distance for each query in real-time, in or-
der to provide better ranking for similar image search
with compact binary codes. This is achieved by nov-
elly exploring a set of predefined semantic classes. To
the best of our knowledge, it is the first work on query-
adaptive ranking for image search in Hamming space.

2. To learn the suitable weights for each of the semantic
classes, we propose a formulation that not only mini-
mizes intra-class sample similarity but also maintains
inter-class proximity, which can be efficiently solved by
quadratic programming.

The remaining sections are organized as follows. We re-
view related works in Section 2 and give an overview of our
approach in Section 3. Section 4 introduces two binary em-
bedding methods, and Section 5 elaborates our formulation
for learning the query-adaptive Hamming distance. We con-
duct experimental validations in Section 6 and conclude in
Section 7.

2. RELATED WORK
Searching visually similar images has been a longstanding

research issue, dating back at least to the early 1990s [26].
See good surveys by Smeulders et al. [26] and Datta et al. [4]
for related works in the past decade. Many works adopted
simple features such as color and texture [27, 22], while more
effective features such as GIST [21] and SIFT [18] have been
popular in recent years [25, 20]. In this paper, we choose the
popular bag-of-visual-words (BoW) framework grounded on
the local SIFT features, whose effectiveness has been vali-
dated in numerous applications. Since our work in this pa-
per is more related to fast search, in the rest of this section
we mainly review existing works on efficient data structures,
which are roughly divided into three categories: 1) inverted
index, 2) tree-based index, and 3) binary embedding.

Indexing data with inverted file was initially proposed and
is still very popular for fast textual document retrieval in
the IR community [37]. It has been introduced to the field
of image retrieval as recent image feature representations
such as BoW are very analogous to the bag-of-words rep-
resentation of textual documents. In this structure, a list
of references to each document (image) for each text (vi-
sual) word are created so that relevant documents (images)
can be quickly located given a query with several words.
A key difference of document retrieval from visual search,
however, is that the textual queries usually contain very few
words. For instance, on average there are 4 words per query
in Google web search. While in the BoW representation,
a single image may contain hundreds of words, resulting



in a large number of candidate images (from the inverted
lists) that need further verification – usually based on sim-
ilarities of the original BoW features. This largely limits
the application of inverted files for large scale image search.
While increasing visual vocabulary size in BoW can reduce
the number of candidates, it will also significantly increase
memory usage [12]. For example, indexing 1 million BoW
features of 10,000 dimensions will need 1GB memory with
a compressed version of the inverted file. In contrast, for
the binary embedding as will be discussed later, the mem-
ory consumption is much lower (48MB for 1 million 48-bit
binary codes).
Tree-based indexing techniques [1, 17, 19, 20] have been

frequently applied to fast visual search. Nister and Stewe-
nius [20] used a visual vocabulary tree to perform real-time
object retrieval in 40,000 images. Muja and Lowe [19] used
multiple randomized kd-trees for SIFT feature matching.
One drawback of the tree-based methods is that they are
not suitable for high-dimensional feature. For example, let
the dimensionality be d and the number of samples be n,
one general rule is n ≫ 2d in order to have kd-tree working
more efficiently than exhaustive search [10].
In view of the limitations of both the inverted file and

the tree-based methods, embedding high-dimensional image
features into compact binary codes has attracted much more
attention. Binary embedding satisfies both query-speed (via
hash table or efficient bitwise operation) and memory re-
quirements. Generally there are two ways for computing the
binary code: hashing and deep learning. The former uses a
group of projections to hash an input space into multiple
buckets such that similar images are likely to be mapped
into the same bucket. Most of the existing hash techniques
are unsupervised. Among them, one of the most well-known
hashing methods is Locality Sensitive Hashing (LSH) [11].
Recently, Kulis and Grauman [16] extended LSH from in-
put feature space to arbitrary kernel space, and Chum et
al. [3] proposed min-Hashing to extend LSH for sets of fea-
tures. Since these LSH-based methods use random projec-
tions, when the dimension of the input space is high, many
more bits (random projections) are needed for satisfactory
performance. In light of this, Weiss et al. [34] proposed a
spectral hashing (SH) method that hashes the input space
based on data distribution, ensuring that projections are
orthogonal and sample number is balanced across different
buckets. To further utilize image label information, sev-
eral (semi-)supervised methods have been proposed to learn
good hash functions [15, 30].
Binary embedding by learning deep belief networks was

proposed by Hinton and Salakhutdinov [8]. While it was oc-
casionally also viewed as a type of hashing methods [23], we
discuss it separately since its mechanism for generating the
binary codes is very different from the traditional hashing
techniques. Similar to the supervised hashing methods [15,
30], the deep network also requires image labels in order to
learn a good mapping. In the network, multiple Restricted
Boltzmann Machines (RBMs) are stacked and trained to
gradually map image features at the bottom layer to bi-
nary codes at the top (deepest) layer. Several recent works
have successfully applied deep learning for scalable image
search [29, 9].
All these binary embedding methods, either unsupervised

or supervised, have one limitation when applied to image
search. As discussed in the introduction, the Hamming dis-

tance of binary codes cannot provide good ranking, which is
very important in practice. This paper introduces a means
to learn query-adaptive weights for each bit of the binary
codes, so that images can be efficiently ranked at a finer
resolution based on weighted Hamming distance. Our work
in this paper is not on the proposal of new data structures
or embedding techniques. Rather, our objective is to allevi-
ate one weakness that all binary embedding methods share
particularly in the context of image search.

There have been a few works using weighted Hamming
distance for image retrieval, including parameter-sensitive
hashing [24], Hamming distance weighting [13], and the An-
noSearch [32]. Each bit of the binary code is assigned with a
weight in [24, 32], while in [13], the aim is to weigh the over-
all Hamming distance of local features for image matching.
These methods are fundamentally different from this work.
They all used a single set of weights to measure either the
importance of each bit in Hamming space [24, 32], or to
rescale the final Hamming distance for better matching of
sets of features [13], while ours is designed to learn different
weights efficiently and adaptively for each query.

3. SYSTEM ARCHITECTURE
Figure 2 gives an overview of our search system, where all

the image features in both target database and the semantic
classes are embedded into binary codes. The flowchart on
the right illustrates the process of online search. In this fig-
ure, we assume that the class-specific bit-level weights of the
binary codes (left; under the names of the semantic classes)
were already computed offline. This is done by an algo-
rithm that lies in the very heart of our approach, which will
be discussed later in Section 5. During online search, binary
code of the query image will be used to search against la-
beled images in the predefined semantic classes – we pool
a large set of images that are close to the query in the
Hamming space to predict its potential semantic content,
and then compute query-adaptive weights using the precom-
puted weights of the potentially relevant classes. Finally,
images in the database are rapidly ranked using weighted
(query-adaptive) Hamming distance.

In the next we first briefly introduce two popular binary
embedding methods. We then elaborate our algorithm for
computing the bit-level weights for each of the predefined
semantic classes. After that, we introduce a method for
predicting the query adaptive weights.

4. BINARY EMBEDDING
We consider two state-of-the-art binary embedding tech-

niques: semi-supervised hashing and deep learning.

4.1 Semi-Supervised Hashing
Recently, Semi-Supervised Hashing (SSH) was proposed

for binary embedding. SSH leverages semantic similarities
among labeled data while remains robust to overfitting [30].
The objective function of SSH consists of two main compo-
nents, supervised empirical fitness and unsupervised infor-
mation theoretic regularization. More specifically, SSH tries
to minimize the empirical error on a small amount of labeled
data while an unsupervised term provides effective regular-
ization by maximizing desirable properties like variance and
independence of individual bits. In the setting of SSH, one
is given a set of n points, P = {pi}, i = 1 . . . n, pi ∈ RD, in
which a small fraction of pairs are associated with two cat-
egories of label information, M and C. Specifically, a pair
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Figure 2: Overview of our

image search framework using

query-adaptive Hamming dis-

tance. Given a query image,

we first compute bag-of-visual-

words feature and embed it into

compact binary code (Section

4). The binary code is then

used to predict query-adaptive

weights by harnessing a set

of semantic classes with pre-

computed class-specific weights

(Section 5). Finally, the query-

adaptive weights are applied to

generate a rank list of search

results using weighted (query-

adaptive) Hamming distance.

(pi,pj) ∈ M is denoted as a neighbor-pair when (pi,pj)
are close in a metric space or share common class labels.
Similarly, (pi,pj) ∈ C is called a nonneighbor-pair if two
samples are far away in metric space or have no common
class labels. The goal of SSH is to learn d hash functions
(H) that maximize the following objective function:

J(H) =

d∑
k=1

{
∑

(pi,pj)∈M

hk(pi)hk(pj)−
∑

(pi,pj)∈C

hk(pi)hk(pj)}

+

d∑
k=1

var[hk(p)],

where the first term measures the empirical accuracy over
the labeled sample pair sets M and C, and the second part,
i.e., the summation of the variance of hash bits, realizes the
maximum entropy principle [31]. The above optimization is
nontrivial. However, after relaxation, the optimal solution
can be approximated using eigen-decomposition. Further-
more, a sequential learning algorithm called S3PLH was de-
signed to implicitly learn bit-dependent hash codes with the
capability of progressively correcting errors made by pre-
vious hash bits [31], where in each iteration, the weighted
pairwise label information is updated by imposing higher
weights on point pairs violated by the previous hash func-
tion. In this work, the S3PLH algorithm is applied to gener-
ate compact hash codes. We select 5000 labeled samples for
learning H. Both training and testing (binary embedding)
of SSH are very efficient [30, 31].

4.2 Deep Learning
Learning with a deep belief network (DBN) was initially

proposed for dimensionality reduction [8]. It was recently
adopted for efficient search applications with binary embed-
ding [23, 29, 9]. Similar to SSH, DBN also requires image
labels during training phase, such that images with the same
label are more likely to be mapped to the same bucket. Since
the DBN structure gradually reduces the number of units in
each layer2, the high-dimensional input of the raw descrip-
tors can be projected into a compact Hamming space.
Broadly speaking, a general DBN is a directed acyclic

graph, where each node represents a stochastic variable.

2In some cases the number of units may increase or remain the
same for a few layers, and then decrease.

There are two critical steps in using DBN for binary em-
bedding, i.e., learning interactions between variables and in-
ferencing observations from inputs. The learning of a DBN
with multiple layers is very hard since it usually requires to
estimate millions of parameters. Fortunately, it has been
shown in [7, 8] that the training process can be much more
efficient if a DBN is specifically structured based on the
RBMs – each single RBM has two layers containing respec-
tively output visible units and hidden units, and multiple
RBMs can be stacked to form a deep belief net. Starting
from the input layer with D dimension, the network can
be specifically designed to reduce the number of units, and
finally output compact d-dimensional binary codes.

To obtain the optimal weights in the entire network, the
training process of a DBN has two critical stages: unsuper-
vised pre-training and supervised fine-tuning. The greedy
pre-training phase is progressively executed layer by layer
from input to output, aiming to place the network weights
(and the biases) to suitable neighborhoods in the parame-
ter space. After achieving convergence of the parameters
of one layer via Contrastive Divergence, the outputs of this
layer are fixed and treated as inputs to drive the training of
the next layer. During the fine-tuning stage, labeled data
is adopted to help refine the network parameters through
back-propagation. Specifically, a cost function is defined to
ensure that points (binary codes) within a certain neigh-
borhood share the same label [6]. The network parameters
are then refined to maximize this objective function using
conjugate gradient descent.

In our experiments, the dimension of the image feature
is fixed to 500. Similar to the network architecture used in
[29], we use DBNs with five layers of sizes 500-500-500-256-
d, where d is the dimension of the final binary code, rang-
ing from 32 to 48. The training process requires to learn
5002+5002+500 ·256+256 ·d weights in total – a minimum
number of 636, 192 weights (d = 32) and a maximum num-
ber of 640, 288 weights (d = 48). For the number of training
samples, we use a total number of 160, 000 samples in the
pre-training stage, and 50 batches of neighborhood regions
with size 1000 in the fine-tuning stage. Based on the effi-
cient algorithms described earlier [7, 8], the entire training
process can be finished within 1 day using a fast computer
with a 2G Core-2 Quad CPU (15-24 hours depending on the



output code size). Since parameter training is an offline pro-
cess, this computational cost is fairly acceptable. Compared
to training, generating binary codes with the learned param-
eters is way faster – using the same computer it requires just
0.7 milliseconds to compute a 48-bit code for each image.

5. IMAGE SEARCH BY QUERY-ADAPTIVE
HAMMING DISTANCE

With binary embedding, scalable image search can be ex-
ecuted in Hamming space using Hamming distance. The
computation of the Hamming distance is highly efficient via
bitwise operations. For example, comparing a query with
a database containing a few millions of samples can finish
within a fraction of a second. By definition, the Hamming
distance between two binary codes is the total number of bits
with different values, where the specific indexes of the bits
are not considered, i.e., all the bits are treated equivalently.
For example, given three binary codes x = 1100, y = 1111,
and z = 0000, the Hamming distance of x and y is equal to
that of x and z, regardless of the fact that z differs from x in
the first two bits while y differs in the last two bits. Due to
this nature of the Hamming distance, practically there can
be hundreds or even thousands of samples having the same
distance to a query. Back to the example, suppose we know
that the first two bits are more important (discriminative)
for x, then y should be ranked higher than z if x is a query.
In this section, we propose to learn query-adaptive weights
for each bit of the binary code, so that images sharing the
same Hamming distance can be ordered at a finer resolution.

5.1 Learning Class-Specific Weights
To quickly compute the query-adaptive weights, we pro-

pose to firstly learn class-specific weights for a number of
semantic concept classes (e.g., scenes and objects). Assume
that we have a dataset of k semantic classes, each with a set
of labeled images. We learn bit-level weights separately for
each class, with an objective of maximizing intra-class sim-
ilarity as well as maintaining inter-class relationship. For-
mally, for two binary codes x and y in classes i and j respec-
tively, their proximity is measured by weighted Hamming
distance ∥ai ◦ x − aj ◦ y∥2, where ◦ denotes element-wise
(Hadamard) product, and ai (aj) is the bit-level weight vec-
tor for class i (j).
Let X be a set of n binary codes in a d-dimensional Ham-

ming space, X = {x1, ...,xn}, xj ∈ Rd, j = 1, ..., n. Denote
Xi ⊂ X as the subset of codes from class i, i = 1, ..., k. Our
goal is to learn k weight vectors a1,...,ak, where ai ∈ Rd

corresponds to class i. The learned weights should satisfy
some constraints. First, ai should be nonnegative (i.e., each
entry of ai is nonnegative), denoted as ai ≥ 0. To fix the
scale, we enforce the summation of the entries of ai to 1, i.e.,
a⊤
i 1 = 1, where 1 denotes a vector of ones of d dimension.

Ideally, a good weight vector should ensure the weighted
codes from the same class to be close to each other. This
can be quantified as follows:

f(a1, ..., ak) =

k∑
i=1

∑
x∈Xi

∥ai ◦ x− ai ◦ c(i)∥2, (1)

where c(i) is the center of the binary codes in class i, i.e.,
c(i) = 1

ni

∑
x∈Xi

x, with ni being the total number of binary

codes in Xi. Notice that although the sample proximity, to
some extent, was considered in the binary embedding pro-

cess of SSH and DBN, Eq. (1) is still helpful since weighting
the binary codes is able to further condense samples from the
same class. More importantly, the optimal bit-level weights
to be learned here will serve as the key for computing the
query-adaptive Hamming distance.

In addition to intra-class similarity, we also want the inter-
class relationship in the original image feature (BoW) space
to be preserved in the weighted Hamming space. Let sij ≥ 0
denote the proximity between classes i and j (sij = sji). sij
can be quantified using average BoW feature similarity of
samples from classes i and j. Then it is expected that the
weighted codes in classes i in j should be relatively more
similar if sij is large. This maintains the class relationship,
which is important since the semantic classes under our con-
sideration are not exclusive – in fact some of them are highly
correlated (e.g., tree and grass). We formalize this idea as a
minimization problem of the following term:

g(a1, ..., ak) =

k∑
i,j=1

sij∥ai ◦ c(i) − aj ◦ c(j)∥2. (2)

Based on above analysis, we propose the following opti-
mization problem to learn the weights for each class:

min
a1,...,ak

f(a1, ..., ak) + λg(a1, ..., ak) (3)

s.t. a⊤
i 1 = 1, i = 1, ..., k, (4)

ai ≥ 0, i = 1, ..., k, (5)

where λ ≥ 0 is a parameter that controls the balance of
the two terms. Next we show that the above optimization
problem can be efficiently solved using an iterative quadratic
programming (QP) scheme.

First, we can rewrite f in matrix form as

f(a1, ..., ak) =
k∑

i=1

a⊤
i Aiai (6)

where Ai is a symmetric positive semidefinite matrix:

Ai = diag(
∑
x∈Xi

(x− c(i)) ◦ (x− c(i))). (7)

Also, to simplify g, we have

∥ai ◦ c(i) − aj ◦ c(j)∥2 (8)

= a⊤
i Ciiai − 2a⊤

i Cijaj + a⊤
j Cjjaj

where Cij = diag(c(i) ◦ c(j)).
With these preparations, we can expand Eq. (3) as

f(a1, ..., ak) + λg(a1, ..., ak)

=

k∑
i=1

a⊤
i Aiai + λ

k∑
j,l=1

sjl(a
⊤
j Cjjaj − 2a⊤

j Cjlal + a⊤
l Cllal)

= a⊤
i (Ai + 2λ(

∑
l

sil − sii)Cii)ai − (4λ
∑
j ̸=i

sjiCjiaj)
⊤ai+

(

k∑
j ̸=i

a⊤
j Ajaj + 2λ

∑
j ̸=i,l

sjla
⊤
j Cjjaj − 2λ

∑
j ̸=i,l̸=i

sjla
⊤
j Cjlal)

=
1

2
a⊤
i Qiai + p⊤

i ai + ti, (9)



Algorithm 1 Learning class-specific weights.

1: INPUT:
Binary codes Xi and class similarity sij , i, j = 1, ..., k.

2: OUTPUT:
Class-specific weights aj , j = 1, ..., k.

3: Compute c(i), and initialize aj = 1/d, j = 1, ..., k;
4: Repeat
5: For i = 1, ..., k
6: Compute Qi, pi, and ti using Eq. (10) – Eq. (12);
7: Solve the following QP problem:

a∗
i = argmin

ai

1

2
a⊤
i Qiai + p⊤

i ai + ti

s.t. a⊤
i 1 = 1 and ai ≥ 0;

8: Set ai = a∗
i ;

9: End for
10: Until convergence

where

Qi = 2Ai + 4λ(
∑
l

sil − sii)Cii, (10)

pi = −4λ
∑
j ̸=i

sjiCjiaj , (11)

ti =

k∑
j ̸=i

a⊤
j Ajaj + 2λ

∑
j ̸=i,l

sjla
⊤
j Cjjaj − 2λ

∑
j ̸=i,l̸=i

sjla
⊤
j Cjlal.

(12)

Up to this point we have derived the quadratic form of
Eq. (3) w.r.t. ai. Notice that Qi is symmetric and pos-
itive semidefinite as Ai and Cii are. Given all aj , j ̸= i,
the quadratic program in Eq. (9) is convex, and thus ai

can be solved optimally. This analysis suggests an itera-
tive procedure summarized in Algorithm 1 for solving the
optimization problem stated in Eq. (3) – Eq. (5). The
stop condition (convergence) is defined as the energy dif-
ference of two states |Ecurrent − Eprevious| < ξ, where E =
f(a1, ..., ak) + λg(a1, ..., ak) and ξ is set as a small value
(10−6 in our experiments).

Algorithm Discussion. It is interesting to briefly discuss
the difference and connection of our algorithm to some gen-
eral machine learning methods such as LDA [5] and distance
metric learning, although ours is particularly designed for
this specific application. LDA is a well-known method that
linearly projects data into a low-dimensional space where
the sample proximity is reshaped to maximize class separa-
bility. While LDA also tries to condense samples from the
same class, it learns a single uniform transformation ma-
trix G ∈ Rd×s to map all original d-dimensional features
to a lower s-dimensional space. In contrast, we learn a d-
dimensional weight vector separately for each class.
Distance metric learning tries to find a metric so that

samples of different classes in the learned metric space can be
better separated. Typically a single Mahalanobis distance
metric is learned for the entire input space [35]. There are
also a few exceptions that consider multiple metrics, e.g., a
metric is trained per category in [33]. Besides the different
formulations, our method aims to learn bit-level weights of
binary codes for each class, which was not considered in
these relevant works.

5.2 Computing Query-Adaptive Weights
As described in Figure 2, labeled images and the learned

weights of the predefined semantic concept classes form a se-
mantic database for rapid computation of the query-adaptive
weights. Given a query image q and its binary code xq, the
objective is to adaptively determine a suitable weight vec-
tor aq, so that we can apply weighted Hamming distance to
compare xq to each binary code xt in the target database:

d(xq,xt) = ∥aq ◦ xq − aq ◦ xt∥2. (13)

To compute aq, we query xq against the semantic database
based on Hamming distance. Semantic labels of the top k
most similar images are collected to predict the labels of
the query, which are then utilized to compute the query-
adaptive weights. Specifically, denote T as the set of the
most relevant semantic classes to the query q, and mi as
the number of images (within the top k list) from the ith

class in T . The query adaptive weights are computed via
linear combination as aq =

∑
i∈T (miai)/

∑
i∈T mi, where

ai is the precomputed weight vector of the corresponding
class. We empirically choose 500 for k (random selection for
images with equal Hamming distances) and 3 for |T |.

It is important to note that there is no need to compute
the weighted Hamming distance based on the form shown
in Eq. (13), which can be rewritten as (aq ◦ aq)

⊤(xq ⊕ xt),
where ⊕ means the xor of the two binary codes. While the
weighting can now be achieved by an inner-product opera-
tion, it is actually possible to avoid this computational cost –
by computing traditional Hamming distance and then rank-
ing the images at binary code level rather than Hamming
distance level. Since we have computed the weight of each
bit, the orders of the binary codes (relevance to the query)
could be obtained with very minor additional cost. Similar
observations on this were also given in [24].

6. EXPERIMENTS
Dataset and Setup: We conduct image search experi-
ments using the NUS-WIDE dataset [2]. NUS-WIDE con-
tains 269,648 Flickr images, which are divided into a train-
ing set (161,789 images) and a test set (107,859 images).
It is fully labeled with 81 semantic concepts/classes, cover-
ing a wide range of semantic topics from objects (e.g., bird
and car) to scenes (e.g., mountain and harbor). Notice that
NUS-WIDE is to our knowledge the largest available dataset
that is fully labeled with a large number of classes. Other
well-known and larger datasets such as ImageNet and MIT
TinyImages are either not fully labeled3 or unlabeled, cre-
ating difficulties in performance evaluation.

The concepts in NUS-WIDE are very suitable for con-
structing the semantic database in our approach – therefore
we use the training set to learn class-specific weights based
on the algorithm introduced in Section 5. We compute a set
of weights for each type of the binary codes, where the bal-
ance parameter λ is uniformly set as 1. In our experiments,
we tried a range of λ and found the performance remains
fairly stable.

Local features are extracted from all the images based on
Lowe’s DoG detector and SIFT descriptor [18]. We then
compute soft-weighted BoW features [14] using a visual vo-

3Each image in ImageNet has only one label. E.g., a car image
may be labeled to a vehicle-related category, but not to road or
building categories, although both may co-occur with car.
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Figure 3: Average number of returned images at each
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Figure 4: Comparison of our query-adaptive Hamming

distance (red bars) and traditional Hamming distance

(blue bars). Results are measured by ∆MAP over 8,000

randomly selected queries. We show ∆MAP over entire

and upper half of the result rank lists using binary codes

from both DBN and SSH. The performance gains are

marked on top of the red bars.

cabulary of 500 visual words. For evaluation, we rank all im-
ages in the test dataset according to their (weighted) Ham-
ming distances to each query. An image will be treated as
a correct hit if it shares at least one common class label to
the query. The performance is then evaluated using ∆AP,
an extended version of the average precision where prior
probability of each query result is taken into account [36].
To aggregate performance of multiple queries, mean ∆AP
(∆MAP) is used.

Characteristics of Binary Codes for Search: We first
analyze the number of images returned at each Hamming
distance. The 48-bit binary codes from DBN are used in this
experiment. Note that we will not specifically investigate
the effect of code-length in this paper, since several previous
works on binary embedding have already shown that codes
of 32-50 bits work well for search [29, 15]. In general, using
more bits may lead to higher precision, but at the price of
larger memory usage and longer search time.
Figure 3 visualizes the results, averaged over 20,000 ran-

domly selected queries. As shown in the figure, the number
of returned images rapidly increases when the Hamming ra-
dius (distance) goes up. This shows one nature of the Ham-
ming distance – as mentioned in the introduction, there can
be Ci

d different binary codes sharing the same integer dis-
tance i (i > 0) to a query in a d-dimensional Hamming space.
Consequently, the number of binary codes (and correspond-
ingly the number of images) at each specific distance will

increase dramatically as i grows until i = d/2. For some
queries, there can be as many as 103-104 images sharing
equal Hamming distance. This clearly motivates the need
of our proposed approach, which provides ranking at a finer
granularity. On the other hand, although our approach does
not permute images with Hamming distance 0 to the queries,
from the analysis we see that this is not a critical issue since
most queries have none or just a few such images (2.4 on
average in the evaluated queries).

Results and Analysis: We now evaluate how much per-
formance gain can be achieved from the proposed query-
adaptive Hamming distance. Figure 4 displays the results
using 32-bit and 48-bit binary codes from both DBN and
SSH. In this experiment, we randomly pick 8,000 queries
(each contains at least one semantic label) and compute av-
eraged performance over all the queries. As shown in Figure
4(a,c), our approach significantly outperforms traditional
Hamming distance. For the DBN codes, it improves the
32-bit baseline by 6.2% and the 48-bit baseline by 10.1%
over the entire rank lists. A little lower but very consis-
tent improvements (about 5%) are obtained for the SSH
codes. These results clearly validate the effectiveness of
learning query-adaptive weights for image search with com-
pact codes.

Figure 4(b,d) further gives the performance over upper
half of the ranked search results, using the same set of queries.
The aim of this evaluation is to verify whether our approach
is able to improve the ranking of top images, i.e., those with
relatively smaller Hamming distances to the queries. As ex-
pected, we see similar performance gain to that over the
entire list.

As for the baseline performance, DBN codes are better be-
cause more labeled training samples are used (50k for DBN
vs. 5k for SSH). Note that comparing DBN to SSH is be-
yond the focus of this work, as the latter is a semi-supervised
method that prefers and is more suitable for cases with lim-
ited training samples. Direct comparison of the two with
equal training set size can be found in [30].

To see whether the improvement is consistent over the
evaluated queries, we group the queries into 81 categories
based on their associated labels. Results from the 48-bit
DBN codes are displayed in Figure 5. Steady performance
gain is obtained for almost all the query categories, and none
of them suffers from performance degradation, which again
validates the effectiveness of our approach. Figure 6 shows
top-5 images for two example queries, where our approach
shows better results by replacing the clearly irrelevant im-
ages with more suitable ones.

7. CONCLUSION
Searching images with binary codes and Hamming dis-

tance has great potential in practice, as its efficiency allows
us to rapidly browse thousands of images on a regular lap-
top computer (e.g., for personal photo organization), and
millions or even billions of images on a decent server (e.g.,
for Web scale applications). This paper proposed a novel
framework for scalable image search using query-adaptive
Hamming distance, by efficiently harnessing a large set of
predefined semantic concept classes. Compared with tradi-
tional Hamming distance of binary codes, our approach is
able to adaptively produce finer-grained ranking of search
results. Experiments on a Flickr image dataset have con-
firmed the effectiveness of our approach. One important
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on their associated labels.
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Figure 6: Top 5 returned images of two example queries,

using the 48-bit DBN codes. Our approach shows better

results than the baseline traditional Hamming distance,

by removing irrelevant images (red dotted boxes) from

the top-5 lists. Others are all visually relevant (night-

view/outdoor scene for the first query, and water-view for

the second one).

future work is to further enlarge the number of semantic
classes for more accurate prediction of the query-adaptive
bit weights.
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