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ABSTRACT
While much exciting progress is being made in mobile visual
search, one important question has been left unexplored in
all current systems. When the first query fails to find the
right target (up to 50% likelihood), how should the user
form his/her search strategy in the subsequent interaction?
In this paper, we propose a novel Active Query Sensing sys-
tem to suggest the best way for sensing the surrounding
scenes while forming the second query for location search.
We accomplish the goal by developing several unique com-
ponents – an offline process for analyzing the saliency of the
views associated with each geographical location based on
score distribution modeling, predicting the visual search pre-
cision of individual views and locations, estimating the view
of an unseen query, and suggesting the best subsequent view
change. Using a scalable visual search system implemented
over a NYC street view data set (0.3 million images), we
show a performance gain as high as two folds, reducing the
failure rate of mobile location search to only 12% after the
second query. This work may open up an exciting new di-
rection for developing interactive mobile media applications
through innovative exploitation of active sensing and query
formulation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.4 [Image Processing and Computer Vision]: [Scene
Analysis, Object recognition]

General Terms
Algorithms, System, Measurement

Keywords
Mobile Visual Search, Mobile Location Recognition, Active
Query Sensing, Content-based Image Retrieval
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Figure 1: In mobile location search, the initial query often
fails, as indicated by the incorrect matching results (in red).
We propose Active Query Sensing to suggest the best view
for subsequent queries (shown in blue) without leaving users
to trials and errors.

1. INTRODUCTION
As mobile handheld devices become pervasive, new ap-

plications like mobile media search emerge. One promising
example is searching information about products, locations,
or landmarks, by taking a photograph of the target of in-
terest using the mobile device. The captured image is used
as a query, sent over the mobile network to the server in
which reference images of the candidate objects or locations
are matched in order to recognize the true target. Such mo-
bile visual search functionalities have been shown recently
in commercial systems, such as snaptell [1], Nokia point and
find [2], kooaba [3], and a few research prototypes [4][5][6].
One of the most interesting topics with wide applications
is the mobile location search [6][7]. Mobile location search
offers a service complementary to GPS or network based
localization, because the recognized location may be more
precise and no satellite or cellular network infrastructures
are needed.

Mobile location search systems mentioned above are built
based on image matching, whose success depends on the sep-
arability of image content associated with different targets
(inter-class distance), divergence of content among reference
images of the same target (within-class variation), and dis-
tortion added to the query image during the mobile imaging
process. Ideally, every view of a target location can be used
as a query to successfully recognize the true target, correctly
rejecting others.

However, not every view1 of a location is distinctive enough
to be used as a successful query, as illustrated in Figure 1.

1We use a generic term “view” to refer to the orientation,
scale, and location for taking the image as the mobile visual
query input.
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Figure 2: The geographical distribution of the five routes
in the NAVTEQ New York City data set, which covers 0.3
million street view images taken from 50,000 locations.

In an experiment to be described later in the paper, only
47% of locations are successfully recognized when the online
mobile query is taken from an arbitrary view. When it fails,
incorrect locations with visually similar appearances are re-
turned as the top match. Such performance appears to be
consistent with the modest accuracy (0.4-0.7 average preci-
sion) reported in the state-of-the-art systems [8][4][6][9] for
mobile location search. Several exciting research directions
are being pursued to advance the state of the art and reduce
the recognition errors. Discussion of the related works will
be presented in Section 5.
Different from prior works, in this paper we focus on a

novel aspect of improving the mobile visual search experi-
ence. We hypothesize that there exist unique preferred views
for successful recognition of each target location. For exam-
ple, some views of a location consist of unique “signature”
attributes that are distinctively different from others. Other
views may contain common objects (trees, walls, etc.) that
are much less distinctive. When searching for specific tar-
gets, queries using such unique preferred views will lead to
much better recognition results. To this end, we propose an
automated Active Query Sensing (AQS) system to auto-
matically determine the best view for visual sensing to take
the visual query.
Fully automatic AQS is difficult to achieve for the initial

query because the user location is unknown to the system
a priori. Thus location-specific information is missing for
determining the best view for query. Although some prior
information (like GPS or previously seen locations plus tra-
jectories) may be available for predicting the likely current
locations, it is not always reliable. As a result, we adopt a
more pragmatic goal, aiming at significantly improving the
success rate of the second query if and after the first query
fails. This will bring major improvements over today’s sys-
tems, in which users are often left helpless and have to appeal
to repetitive trials and errors after the first query fails.
Specifically, we present an innovative AQS system that

includes two major components of both offline salient view
learning and online active query sensing:

• First, we have developed automatic methods for assess-
ing the “saliency” of views associated with a location.
Such saliency measures are derived from offline anal-
ysis of the matching scores between a given view and
other images (including those of the same location and
different locations), unique image features contained
in the view, or combinations of these two. We found
the proposed saliency measure can provide much more
reliable predictions about the best query views, com-

Figure 3: (a) The visual coverage of six cameras in the
NAVTEQ NYC data set. (b) Typical example of six photos
in one location (the Metropolitan Museum of Art) of the
NYC street view data set.

pared with alternatives using random selection or the
dominant view.

• Second, we use the first query as a “probe” to narrow
down the search space and form a small set of candi-
date locations, from each of which the first query is
aligned, then the optimal view change (e.g., turn to
the right of the first query view) is predicted2 in order
to sense the discriminative view for the next query.

The proposed AQS system is general, without requiring
special hardware on mobile devices. It is applicable to any
visual location search system in which each location is asso-
ciated with multiple reference views. Using a large database
of about 50,000 locations (300,000 street view images), we
will demonstrate the power of the proposed AQS system in
significantly reducing the location search error.

The rest of the paper is organized as follows. In Sec-
tion 2, we present a case study over the NAVTEQ street
view data set as further justification of the proposed Ac-
tive Query Sensing idea. Section 3 includes an overview
of the AQS system and constituent components, including
the basic visual matching component suitable for large scale
data sets, the offline salient view analysis, the online query
alignment, and the best query view suggestion. Section 4
shows the quantitative evaluation and in-depth analysis of
the results. We discuss related works and summarize novel
contributions of this work in Section 5. Finally, in Section
6, we present conclusions and open research problems.

2. CASE STUDY AND PROBLEM
JUSTIFICATION

To further motivate the problem, we present a brief sum-
mary of a case study of mobile location search using a NAVTEQ
data set captured in Manhattan of New York City. Details
about implementations of the visual search system will be
described in Section 3 of the paper.

2.1 NAVTEQ 0.3M NYC Data Set
The data set consists of close to 300,000 images of about

50,000 locations in Manhattan collected by the NAVTEQ
street view imaging system during September and October
of 2009 over 5 routes, as shown in Figure 2. Each geograph-
ical location contains six surrounding views separated by 45
degrees. Note the right rear view and the rear view are

2For each location in the database, we have multiple image
samples with parametric viewing angles.
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Figure 4: Location dependent visual distinctiveness. (a) Percentage of locations in the test query set (cropped from Google
Street View) with different numbers of searchable views. About 87% of locations have a partial set of views (1 to 5) that can
be used to successfully recognize the right locations, confirming the need of prudent query view selection. (b) Distribution of
the test query locations with different degrees of searchability over the NYC Manhattan map.

Figure 5: Two exemplar image panoramas in the NAVTEQ
NYC data set.

not covered in this setup. The locations are imaged at a
four meter interval on average. The view orientations are
shown in Figure 3 (a) and a typical example of six photos
of a location is shown in Figure 3 (b). In addition, for each
location there is also a panorama image captured by the
panoramic camera (Ladybug 3), as shown in Figure 5. Both
reference images and panoramas are geo-tagged based on
the GPS system plus the Inertial Measurement Unit (IMU)
and Distance Measurement Instrument (DMI) on the mobile
imaging vehicle.
In this preliminary case study, we simulate the mobile

location search scenarios by creating a test set using the
Google Street View interface. We manually cropped queries
from Google Street View (Figure 7) in 226 randomly chosen
locations covered by the above mentioned routes in NYC.
Although such test images are less ideal compared to real
photos captured by mobile phones, we use them for initial
testing since they are quite different from the reference im-
ages in the NAVTEQ data set and many challenging condi-
tions (like occlusion and time change) are presented.
For each location, six query images are cropped from view-

ing angles similar to the view orientations used in the database
(as shown in Figure 3 (a)). This results in 1,356 images
with angles and ground truth locations tags. For each query
image, we consider a returned reference image as relevant
if it has visual overlap with the query image, as shown in
Figure 3. Due to the fixed geometry and interval used in
image acquisition, the ground truths of each query result
set can be computed without the laborious manual annota-
tion. Depending on the viewing angle of a reference image,
the number of relevant images in the database varies, e.g.
the front view has more relevant images as its field of view
overlaps with more images. Note this is different from the
ground truth definition for locations that based on a certain
distance threshold.

2.2 Location Dependence and Need of
Active Query Sensing

For each simulated query image from each of the random
locations, we find the most likely location (among the 50,000

locations in the database) that has the highest aggregated
matching scores between the query image and the multiple
views associated with the location. Details of the matching
process will be described in Section 3.1. A returned loca-
tion is considered correct if it is within a distance threshold
from the query location. Setting the appropriate threshold
needs to consider several factors, such as the application re-
quirements and the visual overlap of reference images. We
set it to 200 meters in this initial study since two locations
may still share overlapped views at this distance in our data
set. Figure 4 (a) shows the proportions of the test locations
that can be correctly recognized, broken to groups that can
be recognized by a different number of searchable views (0
to 6). 11.1% of the locations cannot be recognized using
any of the views cropped from the same location on Google
Street View. This appears to validate our assumption that
there is sufficient content difference between the reference
images in the NAVTEQ database and the simulated test
images cropped from Google Street View. Only 3.5% of
the locations can be correctly recognized by all of their six
constituent views. The rest of locations (85.4%) are recog-
nizable only with a subset of the views, with most locations
being searchable by 3 of the 6 views. This supports our hy-
pothesis presented in Section 1 - each location has a unique
subset of preferred views for recognition and the problem
of automatically determining such preferred views are in-
teresting and practical. In addition, only 42.1% of the test
query images from Google Street View were successful. This
indicates that if a mobile user randomly selects views for lo-
cation search, more than half of the times he/she will not
get correct results (even though the distance threshold was
set to be quite generous, say 200m). This again validates
the motivation of AQS.

Another important finding is Location Dependence. Fig-
ure 4 (b) shows the distribution of the locations with dif-
ferent numbers of searchable views. It’s clear that different
locations have different degrees of “difficulty” - some have
more searchable angles than others. Additionally, locations
of the same search difficulty do not significantly cluster to-
gether. This implies that any active query suggestion so-
lution needs to be location adaptive and take into account
the unique characteristics of the query in an online fashion.
Finally, we also find there is no single dominant view that
can successfully recognize all locations, though some views
(e.g., the front view) are more effective than others.

In addition, this Location Dependence assumption forms
another basis of our Active Query Sensing: Only in the case
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Figure 6: The architecture and process flow of the proposed Active Query Sensing system.

Figure 7: The Google Street View interface is used to crop
images to simulate online mobile queries.

that the mobile visual search results are “Location Depen-
dent”, we need Active Query Sensing. Otherwise we can
always suggest the mobile user a“dominant”view, say point-
ing at the middle of the street (the front view) etc. We also
find that only 3.5% of locations can be correctly searched
when using a random query viewing angle. It means ran-
dom selection of query view has a big gap from this “search
bound”, which is the ultimate goal of our active query sens-
ing.

3. ACTIVE QUERY SENSING
Two fundamental components are needed in developing a

mobile AQS system to actively suggest the best query view
for searching each location that user might be interested in.
First, an offline analysis is needed to discover the best query
view(s) for each location indexed by the system. Second, an
online mapping process is needed to estimate the most likely
view of the first query (which has failed). Afterwards, an
online step based on the majority voting principle is used to
suggest the most beneficial view change to the user in order
to form the next query.
Figure 6 shows the overall architecture and the process

flow of the proposed AQS system. Given the first query
submitted by the user, the image matching component (Sec-
tion 3.1) computes the scores for the reference images and
returns the top candidate locations. Assuming the top re-

turned location is incorrect3, the active view suggestion pro-
cess kicks in. First, the most likely view of the current query
image is estimated through coarse classification of the query
image to some of the predefined views (e.g., side, front-back,
etc.) and then refined by aligning the query image to the
panorama or the multi-view image set associated with each
of the top candidate locations (Section 3.3). Such alignment
process can also be used to filter out outlier locations that
are inconsistent with the majority of the candidate locations
in terms of predicting the current query view. The filtered
candidate location set is then used to retrieve the salient
view associated with each possible location, which has been
pre-computed offline (Section 3.2). A majority voting pro-
cess is used to determine the best query view for the next
query (Section 3.3). The difference between the best query
view and the predicted current view is then used to come up
with the view change suggestion to the user, who may then
turn the camera phone by following the suggested change.

We go through each of the components described above
in the following subsections.

3.1 Million Scale Image Matching
We achieve approximate image matching in a million scale

image database using Bag of visual Words (BoW) with in-
verted indexing technique. Our implementation basically
follows the algorithm described in [11], which uses a hi-
erarchical tree based structure for efficient codebook con-
struction and visual local feature quantization. In addi-
tion, we also test the incorporation of multi-path search [7]
and spatial verification [10] to improve the accuracy. The
experimental result over a validation set is shown in Fig-
ure 8. Our current system uses the six high-resolution views
captured by individual cameras, though image crops from
panoramas can be incorporated as well. We summarize be-
low some of the specific findings about implementations over
the NAVTEQ NYC data set.

Local Feature Extraction: Both interest point detec-
tion and dense sampling are tested in building our search

3We assume only the top location is returned to the mo-
bile user and the user is able to realize the response is actu-
ally wrong by inspecting the scenes of the predicted location
or verifying the associated information (e.g., recommended
stores missing in the neighborhood)
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Figure 8: Comparison of image matching performance with different configurations. (a) Small codebook configurations with
varying local detector, codebook size, hierarchical clustering, and quantization; (b) Million sized codebook configuration with
varying branching factor, histogram intersection kernel, GNP search [7], IDF, and spatial verification [10].

system. The former is based on Difference of Gaussian [12],
while the latter is based on multi-scale sliding window with 3
scales and fixed steps, producing approximately equal num-
bers of local features. As shown in Figure 8 (a), DoG out-
performs dense sampling under different configurations of
codebook sizes and quantization methods.
Local Feature Clustering: We use the Hierarchical K

Means Clustering to build a million scale Vocabulary Tree
[11]. There are two basic settings in building the Vocabulary
Tree: (1) Branching Factor B controls how many clusters are
built to partition a given set of local features into its lower
hierarchy; (2) Hierarchical Layer H controls the number of
hierarchical layers in the tree. There is a tradeoff between
speed and quantization accuracy in choosing different B and
H values. With empirical validation, we set B = 10, and
H = 6 to construct our final codebook of approximately one
million codewords.
Quantization: Soft quantization has been found in [13]

to improve the retrieval precision. In our case, soft quanti-
zation performs better when the codebook size is small. But
as the codebook size increases, the performance of soft quan-
tization degrades, and is outperformed by hard quantization
in our million-scale codebook configuration. Greedy N-Best
Path (GNP) [7] is used to rectify the quantization errors
by searching multiple paths over the quantization tree. We
found that by using GNP of 10 paths we achieved a slight
gain in average precision (2%).
Spatial Verification: We further incorporate the spa-

tial matching proposed in [10], which considers a point in
one image matches a point in another image only if a suffi-
cient number of nearby local features are also matched. This
process is easy to be implemented, but the performance im-
provement is minor (only 0.5%), perhaps due to the precise
matching capability of the large codebook (one million).
Inverted Indexing: Finally, we implement Histogram

Intersection Kernel (HIK) [14] matching with inverted in-
dexing in our search system to ensure the scalability to the
million scale database. Once a certain amount of local de-
scriptors from one query are assigned into a given visual
word, we assign all images indexed by this visual word a
certain score.
The final million-scale codebook configuration is shown

in Table 1. The performance of the final baseline system
is satisfactory and comparable with the state of the art. It
achieves an average precision at 0.79 over a validation subset
from the NAVTEQ data set. Over the widely used UKbench

Table 1: The final one million codebook configuration

Component Choice
Local Feature DoG + SIFT [12]
Clustering Hierarchical K Means (B = 10, H = 6)

Quantization Hard Quantization with GNP [7] N = 10
Inverted Indexing HIK kernel based
Spatial Verification Neighborhood Voting [10]
Word Frequency TF-IDF

benchmark [11], it even slightly outperforms the results in
[11] by a large-scale vocabulary tree.

It is important to note that image matching is not the
focus of the paper. Our proposed AQS approach is general,
independent of the image matching subsystem used as long
as the assumption about the location-dependent preferred
query view holds. In addition, it can be applied to any vi-
sual location search system without requiring any additional
hardware on mobile devices.

3.2 Offline Salient View Learning
Given a location of interest, which view is the best candi-

date for matching the reference images in the database and
recognizing the true location? As discussed earlier, each lo-
cation has certain views that are more salient and can be
used for successful retrieval. Figure 9 shows another ex-
ample to illustrate the concept. Intuitively, two approaches
can be considered - content-based and training performance
based. The former explores the unique attributes contained
in each view such as distinct objects, local features, etc.,
while the latter predicts the test performance by assessing
the query effectiveness over a training data set. We have
developed methods based on both ideas. Note in the dis-
cussion below, we assume the continuous space of view can
be appropriately discretized, for example, to a finite set of
choices (e.g., six angles used in the NAVTEQ data set).

Content based View Saliency Prediction: With the
BoW representation, distinctive visual words have a better
discriminating power than words that appear in most loca-
tions in the databases. This concept has been well explored
in the information retrieval and image classification litera-
tures, following the concept of TF-IDF (Term Frequency -
Inverse Document Frequency). A word is considered more
distinctive if its frequency of occurrence in the database im-
ages (documents) is low. Extending this concept, we define
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Figure 9: Top: the six views of the Metropolitan Museum of
Art in New York City; Middle: The top 4 returned images
for each view (blue: correct, red: incorrect); Bottom: the
geographical distribution of returned locations of different
views. Cross indicates the actual query location while lo-
cations of the matched images are shown in different sizes
according to the rank orders.

a TF-IDF related content-based feature as follows:

F (k) = count(wordi|IDF (wordi) > k/K × IDFmax), (1)

where k = 1, 2, ...,K−1. If we setK to be 10, then the above
feature accounts for the number of visual words whose IDF
exceed certain thresholds (up to 90% with 10% increment).
Intuitively, images of salient views will have more words with
high IDF than images of non-salient views.
We train a Support Vector Machine (SVM) based classi-

fier and use its classification score to predict the saliency of
an image. A subset of geo-tagged locations sampled from
Google Street View (described in Section 2.1) was used as
a labeled training set to train the SVM classifier. Since the
feature dimension is kept low (10 if K = 10), a training set
of such a size is adequate.
Training Performance based View Saliency Pre-

diction: As described in Section 2, each location is associ-
ated with a finite set of reference images captured in different
views. Each of the reference images can be used to query
the database and evaluate its capability in retrieving related
images of the same location, or other locations sharing over-
lapped scenes. Although there is always a gap between such
training performance and the real test performance when
querying by new images that have not been seen before, the
score distributions of relevant (positive) images and irrele-
vant (negative) images can serve as an approximate measure.
An ideal score distribution is the one that has maximal

separation between the scores of the positive results and
those of the negative ones, like the first score distribution
shown in Figure 10. Scores that have very small separation
(second distribution in Figure 10) or mixed results (third
and fourth distributions in Figure 10) do not generalize well.
To approximate the robustness of such query results, we
develop two simple methods. The first one is based on the

Figure 10: A good score distribution is the one that can
maximally distinguish the positive results (red) from the
negative (black). Several examples of score-rank distribu-
tions are shown, with the first one being the most reliable
one and the last being the least (second one with the iden-
tical AP to the first).

commonly used metrics, Average Precision (AP), as below:

AP =

∑Nrelevant
r=1 P (r)

Nrelevant
. (2)

Nrelevant is the number of relevant documents to the current
query; r is the the rth relevant document; P (r) is the pre-
cision at the cut-off rank of document r. In the literature,
there are some subtle variations in definition of AP. The one
used above sometimes is also called full-length AP.

The other measurement, called Saliency as defined below,
is similar to AP with several important modifications. First,
we compute the ratio of the positive score statistics to that of
the negative scores. Second, we incorporate the actual score
values in the measure. Both modifications are important, as
we are interested in the score separation between the positive
and negative classes:

Saliency =

N∑
i=1

i∑
j=1

score(j)rel(j)/i

N∑
i=1

i∑
j=1

score(j)rel(j)/i

, (3)

where N is the number of returned locations, which can be
a fixed size or adjusted based on the number of positive
samples4. score(j) is the location matching score, which is
the maximal score of its six views. rel(j) is the relevance
judgement of the j th returned location, which gives 1 for
correct locations and 0 for incorrect. Conceptually, other
statistical measures, such as KL Divergence, can also be
used.

Note the numerator in Equation 3 is very similar to that of
AP, except the score values are used instead of binary values
(1 for positive and 0 for negative) and the inner average is
repeated for every sample, not just for the positive points.
Despite the simplicity of the above saliency measure, sur-
prisingly it has a significantly superior prediction accuracy
to all other measures (Section 4).

The offline measures of saliency for each view can also be
used to “grade” the searchability of each location, as dis-
cussed in Section 2. Based on the search results of the as-
sociated views, a location can be categorized into one of the
following groups.

• View-Independent Confident Location: Users can take
photos in any arbitrary view to find this location.

4In our experiments to be reported later, we use 3 times
of the number of positive points so that we can compute
the statistics from the top result set covering both sufficient
positive and negative results.
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Algorithm 1: Online view estimation and Active Query
Sensing procedure

1 Given query q, get the top N most likely locations
(Section 3.1).

2 if the first location is incorrect then

3 Obtaining candidate location set L̂ {
4 Remove locations in the top-N set that are

geographically close to the first location;
5 Predict the viewing angle of the first query using

GIST + SVM with the voting refinement (Equation 4);
6 Discard the outlier locations with predicted viewing

angles inconsistent with the one obtained before;
7 }
8 Majority voting within L̂ {
9 for l ∈ L̂ do

10 Retrieve the saliency of the remaining views Θ;
11 Estimate the camera movement to the most salient

view in l;
12 end
13 Majority voting to determine the best view for the

second query.
14 }
15 end

• View-Dependent Searchable Location: Users can take
photos in certain views to find this location.

• Difficult Location: Users cannot find this location no
matter which view he/she use to form the visual query.

There is room for improvement with the above analysis.
First, the offline analysis is only limited to the discrete views
that have been indexed in the database. In practice, users
can sample the view space in a much more flexible man-
ner. Second, there is likely to be generalization gap between
offline analysis based on training performance and the real-
world online testing. Nonetheless, the offline analysis offers
an approximate yet systematic process of discovering the
preferred query views for all of the searchable locations.

3.3 Online View Estimation and
Active Query Sensing

We describe the modules for online view estimation and
active query view suggestion in this section. The main pro-
cess is summarized in Algorithm 1. Given the first query
that fails to recognize the correct location, the objective is
to develop automatic methods that can estimate the likely
view captured by the first query, and from the candidate
location set, discover the best view for the next query.
Using the image matching subsystem, we first find a small

set of top-N most likely locations. Locations close to the first
location are removed as the first location has been judged
as incorrect by the user. Next, we employ a SVM classifier
to assign the first query image to one of few rough orien-
tations, followed by refinement based on image matching.
Algorithm 1 shows the working pipeline of our online active
query sensing. Some key components of Algorithm 1 are
explained in detail below.
Viewing Angle Estimation: Although the visual con-

tent in different views of the location database could be
very diverse, there exist general patterns differentiating each
other. For example, the side views tend to contain more fea-
tures related to buildings, trees, and sides of parked vehicles,
while other views (e.g., front) has more attributes like sky

lines, streets, and front/back views of vehicles. Such differ-
ences tend to be holistic reflecting the overall characteristics
of the scenes, thus motivating the choice of GIST descriptor
[15] for view classification.

We train the SVM classifiers offline based on GIST fea-
tures extracted from 3000 images (500 for each view) ran-
domly chosen from our database. Given an online query,
we use the classifier to predict the current viewing angle in
one-vs-all manner. GIST feature is efficient in describing
the global configuration of images. However, in our case, as
shown in Figure 3, View 1 and View 5, as well as View 2
and View 6 have very similar visual appearance. To address
this problem, we further use a refinement step based on the
image matching results:

argmax
θi

∑
l

P (θi|l, q)P (l|q), (4)

where θi is a candidate view under consideration, P (θi|l, q)
is the matching score between query q and view i of loca-
tion l. P (l|q) can be modeled by location score distribution
based on query q, combined with additional metadata such
as GPS or the history data about the user locations. The de-
fault P (l|q) is a positive constant for top matching locations
(candidates), and zero for others.

This refinement works because similar views, even from
different locations, typically have similar visual contents e.g.,
skylines, side of a truck etc., which are more likely to be in-
cluded in the top image match results. This phenomenon
is also observed in the recent work of [5] for street view im-
age search. So the final angle estimation method is based
on the combination of both local feature (SIFT for image
matching) and global feature (GIST for SVM classification).
This approach is fairly robust in our application scenarios,
which will be shown experimentally later. It should be noted
that when the solution space for view prediction (and align-
ment) is large, a more sophisticated correspondence match-
ing method, such as RANSAC, may be needed to reliably
align the query image to the panorama associated with each
location. However, the impact on the speed will need to be
carefully investigated as a fast response is needed for such
online applications.

Once the current query view is estimated, we further use
it to filter out the outlier locations that produce inconsistent
view estimation. Empirically, we found that this step is very
useful.

Majority Voting for View Suggestion: Given the fil-
tered candidate set of the locations, we use a majority voting
scheme to predict the most beneficial view to be used as the
next query. It can be expressed as:

argmax
θi∈Θ

∑
l∈L̂

Hsaliency(θi|l)P (l|q), (5)

where Hsaliency(θi|l) outputs 1 if the saliency of view θi and
location l is greater than a threshold. P (l|q) is modeled by
the location score distribution after removing outlier loca-
tions with inconsistent view estimations. Setting P (l|q) as a
positive constant for all top-N locations and zero for others
leads the above equation to a majority voting.

The scheme takes into account the saliency of each view
with respect to each remaining candidate location. With the
predicted best query view and the estimated viewing angle
of the current query, we can then make suggestions to the
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Figure 11: Failure rates over successive query iterations
based on different active query sensing strategies: (1) Ran-
dom view suggestion, (2) AP-based view suggestion, (3)
Saliency based view suggestion, (4) Dominant view sugges-
tion, and (5) Oracle view suggestion.

Table 2: Percentages of successful location search using
query images from different views

V iew1 V iew2 V iew3 V iew4 V iew5 V iew6

0.45 0.26 0.58 0.65 0.53 0.35

user to inform him/her of the best way of turning or moving
the camera phone for the subsequent visual search.

4. EVALUATIONS
We evaluate the performance of the components and over-

all system of the proposed active query sensing approaches
for mobile location search, using the NAVTEQ NYC data set
(about 300,000 images, 50,000 locations). The test queries
are the 1,356 images over 226 locations randomly cropped
from the Google Street View interface as described in Sec-
tion 2.1. Out of the 226 locations, 11.1% were found to be
unsearchable by any of the views and thus were discarded.
The remaining 201 locations are searchable by at least one
viewing angle. The proportions of searchable locations by
various numbers of views are shown in Figure 4.
We first analyze the“dominance”of each view of the query

set. Table 2 shows the percentages of successful searches over
the 201 test locations by each of the six views. It is inter-
esting to see each view has a reasonable chance of success
(between 35% and 65%) while View 2 has the lowest rate.
This is due to the relatively low quality of the camera used
for View 2 in the database. View 4, the one pointing to the
front of the imaging vehicle, has the highest success rate as
it appears to cover the most visual objects (e.g., buildings
on both sides), as well as the most distinctive features such
as sky lines.
Salient View Prediction: Next, we evaluate the perfor-

mance of predicting search robustness using offline saliency
analysis, described in Section 3.2. Table 3 shows the per-
centages of successful search over 201 test locations by using
different methods to predict the best view for each test loca-
tion. We compared two types of proposed methods - training
performance based: AP and Saliency, and content based:
IDF SVM5 classifier, as described in Section 3.3, against

5Since the content-based SVM classifier requires supervised

Figure 13: Confusion matrix for location search difficulty
prediction (the predicted number of successful views vs. the
ground truths)

the random view selection and the one that always chooses
the most dominant view (View 4). Surprisingly, the content-
based classifier did not perform as well as expected, possibly
due to the large content confusion among different locations
in the NYC data set. Among all the competing approaches,
the saliency measure (as defined in Equation 3) incorporat-
ing the score statistics ratio between the positive and the
negative groups turned out to achieve the highest perfor-
mance (84%) with a large margin over other approaches (the
next best one is 68% by AP).

Table 3 shows the robustness comparison of different ap-
proaches. The experiment is performed on all the 201 search-
able locations. For each location, we pick up the external
mobile query with the most salient angle predicted offline.
Then, we test whether or not we can correctly find the true
location using this query. This table shows the robustness
validation of different view discrimination measurements.
For content based approach (SVM based on statistics of dis-
tinctive visual words), we set K = 10 in Equation 1. For
each testing location, we use an SVM classifier to get the
probability based classification results, and the viewing an-
gle with largest probability to be discriminative is predicted
to be the most salient viewing angle. The result is based
on a five-fold cross validation on the test set. As shown in
Table 3, our saliency measurement obtains the highest score.

Query View Estimation: For the module of view es-
timation of test queries, we found the GIST based SVM
classifier was able to achieve 86.5% classification accuracy
over the 1,356 test image queries if we are only concerned
with View 1-4. When Views 5 and 6 are added, they cause
confusion with views of highly similar content (View 1 with
View 5, and View 2 with View 6). This is reasonable due
to symmetrical nature (180 degrees opposite direction) and
thus similar visual content between the two views in each
of the symmetrical pairs. To resolve this, we applied the
maximal voting scheme based on image matching scores (as
described in Equation 4). It helps to keep the view estima-
tion accuracy as high as 82.1% among all six viewing angles.

Active Query View Sensing: Finally, we evaluate the
effectiveness of the proposed AQS system in helping users
choose the best view for subsequent queries after the first
query fails. We initialized the simulated system with a ran-
domly chosen viewing angle in the first visual search. As

training, we adopted a five-fold cross validation process to
partition the test query set for separate training and testing.

10



Figure 12: Geographical location confidence (measured by saliency) distribution in New York City with respect to different
views, where “Max” denotes assigning the maximal confidence among six views to each location.

Table 3: Location search accuracy using different methods in predicting the best query view for each location

Method Random Dominant Angle Content Based AP Saliency
Percentage correct prediction 0.4735 0.6517 0.5521 0.6816 0.8458

discussed earlier, only 47% of the random query images suc-
ceeded, resulting in a 53% failure rate after the first query
(as shown in Figure 11). We then evaluated the performance
of reducing the failure rates in subsequent queries by us-
ing different active query strategies, including the proposed
AQS method based on view saliency measure, other meth-
ods based on AP, dominant view, random selection, and the
oracle scheme which knows the correct answers and always
chooses a successful view after the first query. The perfor-
mance gain achieved by the saliency based AQS scheme is
quite impressive – 12% error rate after only one additional
query compared to the next best one 23% by the dominant
view. As the number of query iterations increases, the pro-
posed AQS solution consistently maintains significant edge
over all other methods. Eventually, the error rate drops to
zero for all methods since this test set consists of search-
able locations only (i.e., at least one view can be used to
recognize the location).
Location Difficulty Level Prediction: We further eval-

uate how well the proposed saliency measure (described in
Section 3.2) can be used to predict the difficulty level of each
location in terms of location recognition. Ideally, we would
like to be able to generate the confidence distribution map
similar to the one shown in Figure 4. Accurate prediction
of such a confidence distribution map can facilitate devel-
opment of very interesting applications. For example, users
may use such information to determine how much to trust
the visual search based location information when he/she
has additional information (like GPS) to roughly know the
geographical region he/she is located in. Figure 12 shows
the distributions of saliency for each viewing angle as well
as their maximum among all views of each location com-
puted from the NYC data set. To avoid outliers caused
by poor image quality or missing data, a simple Gaussian
smoothing was also used. The resulting distribution maps
confirm the location dependence assumption we have made
in the paper. By thresholding the saliency values in each

view, we further predicted the number of views that can
be used to successfully search each location. We compared
the estimated number of successful views against the ground
truths associated with the 1,356 test query images cropped
from Google Street View. The confusion matrix, shown in
Figure 13, confirms the effectiveness of the proposed saliency
based estimation.

5. RELATED WORK
Many exciting research directions are being pursued to

advance the field of mobile visual search. For mobile loca-
tion recognition, [16] adopted sequential matching of more
than one reference views to estimate the pose and motion
direction. [7] presented a method for large-scale location
recognition based on geo-tagged video streams with multi-
path search over a vocabulary tree. [17] also adopted a vo-
cabulary tree based approach for real-time loop closing. [18]
described an approach to recognize locations by mobile im-
age search, which utilized a hybrid color histogram to com-
pensate its original ranking results. [19] presented a system
to identify landmark buildings based on image data, meta-
data, and other photos taken within a consecutive 15-minute
window. [20] adopted a structure-from-motion technique to
build 3D scene models for vision-based city scene localiza-
tion. Compact descriptors were proposed in [6] to greatly
reduce the delay in computation and communication. Dis-
covery of vanishing points and identification of facades were
proposed in [9]. Confusing features such as trees and road
markings were removed based on geo-tag supervision [5]. Fu-
sion of multiple image representations (facade-aligned and
viewpoint-aligned) was used to improve the search accuracy
[8]. Despite the impressive progress shown, none of these
works address the active sensing problem to help users take
a better second query in the subsequent location search.

In image search, there have been long standing works in
relevance feedback [21]. The basic idea is to use iterative la-
beling of the top returned results to learn a refined ranking
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function [21][22]. By dealing with the user gap [23], there
are related works in helping and suggesting users to bet-
ter formulate their queries. For instance, [23] presented a
work for visual query suggestion, which provides images to
help users express their search intent despite the ambiguity
in the textual queries. One closely related topic is active
learning [24], in which the system tries to find the most in-
formative sample to collect user feedbacks in order to learn
an improved decision function. Our problem is different in
actively determining the best view to sense in the real-world
scene (rather than the sample space in the database) and in
trying to recognize the correct target (instead of a decision).
Our work is also related to a few topics in information

retrieval. For instance, [25] proposed a learning scheme to
predict the query difficulty, which measures the contribution
of each query term to the final result set. [26] learnt a sup-
port vector machine to predict the query success based on
TF and IDF of query keywords. [27] studied several predic-
tors of the query performance based on the IDF statistics of
the query terms. The suggestion models mentioned above
are typically learnt from the statistical distributions of the
document corpus and query logs. On the contrary, our pa-
per focuses on strategies for visually searching the physical
surroundings of real world geographical locations.

6. CONCLUSIONS AND FUTURE WORKS
Active Query Sensing aims to help the mobile user take a

successful second query once the first query fails (more than
50% of chance as discussed in the paper). It informs the mo-
bile user how to sense his/her surrounding environment so
that the captured image is most distinctive and can be used
to recognize the location. To achieve this goal, we develop
a novel Active Query Sensing system that actively discovers
the best query strategy and suggests the best sensing view
after the first visual query fails. To the best of our knowl-
edge, this is the first effort in addressing the user needs by
iterative refinements of mobile visual search. We develop
several saliency measures based on score distributions to
predict the robustness of each query view and the search
difficulty of each location. In addition, we develop an online
process for estimating the viewing angle of an unseen novel
query and suggesting the best view change prior to forming
the next query. Using a large street view image data set (0.3
million images over 50,000 locations) of the New York City,
our system shows a performance gain as high as two-fold:
Our sensing strategy can reduce the failure rate of mobile
location search to only 12% after the second query. Our sta-
tistical saliency measure can also be used to robustly predict
the difficulty of visually recognizing individual locations, al-
lowing users to decide where the mobile search service can
be best trusted.
The future work includes incorporation of other image rep-

resentations e.g., panorama and range data, to provide more
flexibility in view suggestion (translation, zoom etc). The
proposed system also has great potential for applications
beyond location search, such as products and landmarks.
Another future work is to provide intuitive user interfaces

to maximize the utility of the proposed AQS search system.
For example, when the user is not sure about the correct-
ness of the search result, we may provide extra information
(besides just the images of the predicted location) such as
street names, landmarks in the vicinity, etc.
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