
Chapter 1

Cross-Domain Learning for Semantic

Concept Detection

Automatic semantic concept detection has become increasingly important to effectively index

and search the exploding amount of multimedia content, such as those from the Web and TV

broadcasts. The large and growing amount of unlabeled data in comparison with the small

amount of labeled training data limits the applicability of classifiers based upon supervised

learning. In addition, newly acquired data often have different distribution from the previous

labeled data due to the changing characteristics of real-world events and user behaviors.

For example, in concept detection tasks such as TRECVID [19], new collections may be

added annually from unseen sources such as foreign news channels or audio-visual archives.

There exists a non-negligible domain difference. To improve the semantic concept detection

performance, these issues need to be addressed.

In this chapter, we investigate cross-domain learning methods that effectively incorporate

information from available training resources in other domains to enhance concept detection

in a target domain by considering the domain difference 1. Our contribution lies in two folds.

First, we develop three approaches to incorporate three types of information to assist the

1Data sets from different domains generally have different data distributions. It may be more appropriate to use the term
“data distribution”. We use “domain” to follow the notation in previous work.
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target domain: the Cross-Domain Support Vector Machine (CDSVM) algorithm that uses

previously learned support vectors; the prediction-based method that uses concept scores of

the new data predicted by previously trained concept detectors; and the Adaptive Semi-

Supervised SVM (AS3VM) algorithm that incrementally updates previously learned SVM

concept detectors to classify new target data. Second, we provide a comprehensive summary

and comparative study of the state-of-the-art SVM-based cross-domain learning methods.

Cross-domain learning methods can be applied to classify semantic concepts in various

types of data. For instance, we can assign semantic labels to images, videos, or events

that are defined as groups of images and videos in this chapter. With regard to the three

approaches we propose here, the CDSVM and AS3VM algorithms are irrelevant to the specific

data type. In other words, they directly work with feature vectors that are extracted to

represent the underlying data. The prediction-based method, on the other hand, is developed

for classifying event data, where the prediction hypotheses generated by previously trained

concept detectors are used as features.

We extensively evaluate the proposed approaches over two scenarios by using four large-

scale data sets: the TRECVID 2005 development data set containing 108 hours of videos in

different languages from international broadcast news programs; the TRECVID 2007 data

set containing 60 hours of videos from news magazines, science news, documentaries, and

educational programming videos; Kodak’s consumer benchmark set containing 1,358 videos

from actual users representing different consumer groups; and Kodak’s consumer event data

set containing 1,972 events from actual users. In the first scenario, we use information from

the TRECVID 2005 development data to enhance concept detection over the TRECVID

2007 data. Both data sets contain TV program videos, and we evaluate the cross-domain

learning performance of using TV news videos to help classify TV documentary videos.

In the second scenario, we use the TRECVID 2007 set to enhance concept detection over

Kodak’s consumer video and event data. We evaluate the prediction-based method and

the AS3VM algorithm, respectively. We aim to test the cross-domain learning performance

when there is significant domain difference, i.e., using TV programs to help classify consumer

data. Experimental results show that compared with several state-of-the-art alternatives,

the proposed approaches can significantly improve semantic classification in both scenarios.
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1.1 Survey of Cross-Domain Learning for Concept Detection

We first define our learning problem. The goal is to classify a set ofK concepts C1, . . . , CK in

a data set X that is partitioned into a labeled subset XL (with size nL≥0) and an unlabeled

subset XU (with size nU >0), i.e., X =XL ∪ XU . Each data point xi∈XL is associated with

a set of class labels yik, k=1, . . . , K, where yik=1 or −1 indicates the presence or absence

of concept Ck in xi. A data point xi can be an image, a video, or an event (a set of images

and videos grouped together). In addition to X , we have a previous data set X old (with size

nold>0), whose data characteristics or distribution is different from but related to that of X ,

i.e., X and X old are from different domains. A data point xj∈ X old can also be an image, a

video, or an event. A set of classifiers (represented by a set of parameters Θold) have been

learned using the old domain data X old to detect another set of Kold concepts Cold
1 , . . . , Cold

Kold .

Intuitively, there are several different scenarios to study. From the data type point of view,

the target data X and the old-domain data X old can have the same data type, or X and

X old can have different types of data. From the concept point of view, the target concepts

C1, . . . , CK can be the same as the old-domain concepts Cold
1 , . . . , Cold

Kold , or C1, . . . , CK can

be different from Cold
1 , . . . , Cold

Kold .

Cross-domain learning has been proposed recently as a technique to leverage information

from the previous domain to enhance classification in the target domain. Such information

can be selected data points or learned models from the previous domain. Several cross-dom-

ain learning methods have been developed for concept detection [5, 6, 11, 21], and they all

deal with the scenario where X and X old have the same type of data, and the target concepts

C1, . . . , CK are the same as old-domain concepts Cold
1 , . . . , Cold

Kold (i.e., Ck is the same as Cold
k ,

and K=Kold). The CDSVM [10] and AS3VM algorithms we develop in Section 1.2 and 1.3,

respectively, deal with this scenario too. In Section 1.4, we describe our prediction-based

method [9] that studies the scenario where data in X are events while data in X old are images

or videos, and C1, . . . , CK can be different from Cold
1 , . . . , Cold

Kold . In the following, we first

briefly summarize the previous work, followed by some discussions of our approaches.

1.1.1 Standard SVM

Without cross-domain learning, the standard SVM classifier [20] can be learned based upon

the labeled subset XL to classify unlabeled data XU and future unseen test samples. For
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each concept Ck, given a datum x the SVM determines its corresponding label by the sign

of a decision function f(x). The optimal hyperplane gives the largest margin of separation

between different classes and is obtained by solving the following problem:

minf∈H Qsvm = minf∈H

{
γ||f ||22 +

1

nL

∑nL

i=1
(1−yikf(xi))+

}
, (1.1)

where (1−yikf(xi))+=max(0, 1−yikf(xi)) is the hinge loss, f=[f(x1), . . . , f(xnL
)]T , xi∈XL,

and γ controls the scale of the empirical error loss that the classifier can tolerate.

The simplest way to perform cross-domain learning is to learn new models over all possible

training samples X̃ =X old ∪ XL, i.e., the Combined SVM. The primary motivation is that

when the size of XL is small, the target model will benefit from a high count of training

samples present in X old and, therefore, hopefully be more stable than a model trained on

XL alone. However, this method is computationally expensive if X old is large. Also, the

influence of new data in XL may be overshadowed by the large amount of data in X old.

1.1.2 Semi-supervised Approaches

One intuitive way to improve the Combined SVM is to use semi-supervised learning. By

incorporating knowledge about the unlabeled data XU into the training process, semi-

supervised learning methods [1, 4, 20, 23] can obtain better classifiers to classify test data.

One most popular branch of semi-supervised learning is to use graph regularization [4, 23].

A weighted undirected graph Gd=(Vd, Ed,Wd) can be generated for the data set X , where

Vd is the vertices set and each node corresponds to a data point, Ed is the edges set, and Wd

is weights set measuring the pairwise similarities among data points. To detect a concept Ck,

a binary classifier is trained as follows. Under the assumption of label smoothness over Gd, a

discriminant function f is estimated to satisfy two conditions: the loss condition – it should

be close to given labels yik for labeled nodes xi∈XL; and the regularization condition – it

should be smooth on graph Gd. Among graph-based methods, the Laplacian SVM (LapSVM)

algorithm [1] is considered one of the state-of-the-art approaches in terms of both classifica-

tion accuracy and the out-of-sample extension ability. Let f=[f(x1), . . . , f(xnU+nL
)]T be the

vector of discriminant functions over X . LapSVM solves the following problem:

min
f∈H

{γA||f ||22+γItr
(
fTLdf

)
+

1

nL

∑
xi∈XL

(1−yikf(xi))+}, (1.2)

where Ld is the Laplacian matrix computed from Wd.



1.1. SURVEY OF CROSS-DOMAIN LEARNING FOR CONCEPT DETECTION 5

Semi-supervised learning methods such as LapSVM can be applied directly to cross-

domain learning problems by using X̃ =X old ∪ XL as the combined training data. However,

due to the nonnegligible domain difference, the classifier may still be biased by X old. Also,

such methods usually have high computation cost, especially for large-scale problems.

1.1.3 Feature Replication

The feature replication approach [5] uses all training samples from both X old and X , and

tries to learn generalities between the two data sets by replicating parts of the original feature

vector, xi, for different domains. Specifically, we first zero-pad the dimensionality of xi from

d to d(N+1) where N is the total number of adaptation domains (in our experiments N=2).

Next we transform all samples from all domains as:

x̂old
i =

[
xT
i 0 xT

i

]T
, xi ∈ X old ; x̂new

i =
[
xT
i xT

i 0
]T

, xi ∈ X .

During learning, for each concept Ck a model is constructed by using the transformed training

data from both X old and X . However, due to the increase in feature dimensionality, there is

a large increase in model complexity and computation time for both training and evaluation.

1.1.4 Domain Adaptive Semantic Diffusion (DASD)

The DASD algorithm [11] aims to improve classification of XU by using affinity relationships

among the K semantic concepts while considering the domain-shift problem. An undirected

graph Gc=(Vc, Ec,Wc,old) is defined to capture semantic concept affinity relations over the

old domain. Vc is the vertices set, each node corresponding to a concept, Ec is the edges set,

and Wc,old is the concept affinity matrix. Each entry W c
kl gives the edge weight (representing

the affinity relation) between Ck and Cl. Define the normalized graph Laplacian matrix Lc,old:

Lc,old=I−Dc,old−1/2
Wc,oldDc,old−1/2

, (1.3)

where Dc,old is a diagonal matrix whose entries are row sums of Wc,old. DASD makes

an assumption of local smoothness over Gc, i.e., if two concepts have high similarity de-

fined in Gc, they frequently co-occur (or have similar discriminant functions) in data sam-

ples. Let F = [f c1 , . . . , f
c
K ] be the discriminant functions over X for all concepts, f ck =

[fk(x1), . . . , fk(xnL+nU
)]T . The initial F is usually composed by discriminant functions gener-

ated by concept detectors that are trained from the old data X old. DASD solves the following

problem to get refined F̃ and Wc,new by iteratively updating the initial F and Wc,old:

minF̃,Wc,new tr(F̃TLc,newF̃)/2. (1.4)
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The major issue of DASD is the lack of the out-of-sample extension ability, i.e., F̃ is optimized

over the available unlabeled data XU , and the learned results can not be easily applied to

new unseen test data. Therefore, DASD does not have the incremental learning ability. This

largely limits the applicability of DASD in many real problems.

1.1.5 Adaptive SVM (A-SVM)

The A-SVM algorithm [21] adapts classifiers Θold learned from the previous domain to classify

X with the out-of-sample extension ability and incremental learning ability, without the

requirement of retraining the entire model using data X old from the previous domain. For a

concept Ck, A-SVM adapts the old discriminant function f old learned from X old to classify

the current data X . The basic idea is to learn a new decision boundary that is close to

the original decision boundary and can separate new labeled data. This is achieved by

introducing a “delta function” ∆f(x)=wTx+b to complement f old(x). The final discriminant

function over a datum x is the average of f old(x) and ∆f(x). ∆f(x) can be obtained by

minimizing the deviation between the new decision boundary and the old one, as well as

minimizing the classification error over new labeled data.

One potential problem with this approach is the regularization constraint that the new

decision boundary should not be deviated far from the old-domain classifier. It is a reasonable

assumption when X only moderately deviates from X old, i.e., X has similar distribution with

X old. When X has a different distribution but comparable size than X old, such regularization

can be problematic and can limit classification performance.

1.1.6 Overview of Our Methods

In this chapter, we develop three different cross-domain methods to use three different types

of information from the old domain to help classification in the new target domain. For data

incorporation, instead of using all training data from X old like Combined SVM, we selectively

use a fewer number of important data from the old domain to help classify new data. For

classifier adaptation, instead of relying upon target labeled data XL alone such as A-SVM,

we incrementally update Θold by considering unlabeled data XU . For the prediction-based

method, we incorporate prediction hypotheses generated by previously trained models from

the old domain to enhance classification in the new domain.
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1.2 CDSVM for Data Incorporation

In this section, we describe our CDSVM algorithm that learns a new decision boundary

based upon the target labeled data XL to separate the unlabeled data XU and future unseen

test data, with the help of X old. For a concept Ck, let Uold=
{
(uold

1 , yold1k ), . . . , (u
old
ns,old , y

old
ns,oldk

)
}

denote the set of ns,old support vectors that determine the decision boundary and f old(x) be

the discriminant function already learned from the old domain. The learned support vectors

carry all of the information about f old(x); if we can correctly classify these support vectors,

we can correctly classify the remaining samples from X old except for some misclassified

training samples. Therefore, instead of using all data from X old directly, we only incorporate

these support vectors Uold from the old domain. In addition, we make the assumption that

the impact of each data in Uold can be constrained by neighborhoods. The rationale behind

this constraint is that if a support vector uold
j falls in the neighborhood of the target data X ,

it tends to have a distribution similar to X and can be used to help classify X . Thus the new

learned decision boundary needs to take into consideration the classification of this support

vector. Let σ(uold
j ,XL) denote the similarity measurement between the old support vector

uold
j and the labeled target data set XL, our optimal decision boundary can be obtained by

solving the following optimization problem:

min
w

1

2
||w||22 + C

∑nL

i=1
ϵi + C

∑ns,old

j=1
σ(uold

j ,XL)ϵ̄j (1.5)

s.t. yik(w
Tϕ(xi)+b)≥1−ϵi, ϵi≥0, ∀ xi∈XL, yoldjk (w

Tϕ(uold
j )+b)≥1−ϵ̄j, ϵ̄j≥0,∀ uold

j ∈X old,

where ϕ(·) is a mapping function to map the original data into a high-dimension space.

In CDSVM optimization, the old support vectors learned from X old are adapted based

upon the new training data XL. The adapted support vectors are combined with the new

training data to learn a new classifier. Let X̃ =Uold ∪ XL, Eqn. (1.5) can be rewritten as:

min
w

1

2
||w||22 + C

∑nL+ns,old

i=1
σ̃(xi,XL)ϵi (1.6)

s.t. yik(w
Tϕ(xi) + b) ≥ 1− ϵi, ϵi ≥ 0,∀ xi∈X̃

σ̃(xi,XL) = 1, ∀ xi∈XL, σ̃(xi,XL) = σ(xi,XL), ∀ xi∈Uold.

The dual problem of Eqn. (1.6) is as follows:

max
αi

LD =
∑nL+ns,old

i=1
αi −

1

2

∑nL+ns,old

i=1

∑nL+ns,old

j=1
αiαjyikyjkK(xi,xj) (1.7)

s.t. ϵi≥0, µi≥0, 0≤αi≤Cσ̃(xi,XL), αi

[
yik(w

Tϕ(xi)+b)−1+ϵi
]
=0, µiϵi=0, ∀ xi∈X̃ ,
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where K(·) is the kernel function and K(xi,xj) = ϕT (xi)ϕ(xj). Equation (1.7) is the same

as the standard SVM optimization, with the only difference that:

0 ≤ αi ≤ C, ∀ xi∈XL, 0 ≤ αi ≤ Cσ(xi,XL),∀ xi∈Uold.

For support vectors from the old data set X old, weight σ penalizes those support vectors that

are located far away from the new training samples in the target data set XL.

Similar to A-SVM [21], in CDSVM we also want to preserve the discriminant property

of the new decision boundary over the old data X old, but our technique has a distinctive

advantage: we do not enforce the regularization constraint that the new decision boundary

is similar to the old one. Instead, based upon the idea of localization, the discriminant

property is addressed only over important old data samples that have similar distributions

to the target data. Specifically, σ takes the form of a Gaussian function:

σ(uold
j ,XL) =

1

nL

∑
xi∈XL

exp{−β||uold
j − xi||22}. (1.8)

Parameter β controls the degrading speed of the importance of support vectors from Uold.

The larger the β, the less influence of support vectors in Uold that are far away from XL.

When β is very large, a new decision boundary will be learned solely based upon new training

data from XL. When β is very small, the support vectors from Uold and the target data XL are

treated equally and the algorithm is equivalent to training an SVM over Uold ∪XL together.

With such control, the proposed method is general and flexible. The control parameter, β,

can be optimized in practice via systematic validation experiments. CDSVM has small time

complexity. Let OL denote the time complexity of training a new SVM based upon labeled

target set XL. Because the number of support vectors from the old domain, Uold, is generally

much smaller than the number of training samples in target domain or the entire old data

set, i.e., ns,old ≪ nL and ns,old ≪ nold, CDSVM trains an SVM classifier with ns,old+nL ≈ nL

training samples, and this computational complexity is very close to OL. Therefore CDSVM

is in general faster than Combined SVM or semi-supervised approaches.

1.3 AS3VM for Incremental Classifier Adaptation

In this section, we study the scenario where there are only a few (or even none) training

samples available in the new domain, i.e., XL is a small (or empty) set. In such a case, it is

difficult to obtain a satisfactory classifier by using previous cross-domain learning methods.

For example, both CDSVM and A-SVM rely mainly on XL and will suffer from small sample
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learning. Combined SVM or semi-supervised learning will be biased by X old since the old

training data dominate the entire training set. We develop an AS3VM algorithm to accom-

modate this scenario. The main idea is to directly adapt the old classifiers Θold by using

both XL and XU , without retraining classifiers over all of the data. It is also desirable that

such adaptation has the out-of-sample extension ability and can be conducted incrementally.

Before introducing the detailed AS3VM algorithm, we first make our cross-domain learn-

ing problem more general. For each labeled data xnew
i ∈XL, we have a set of labels ynewik ,

k=1, . . . , K. Instead of requiring ynewik =1 or −1, here ynewik can take three values, 1, 0, or −1,

where ynewik =1 (−1) indicates that xnew
i is labeled as positive (negative) to the concept Ck,

and ynewik =0 indicates that xnew
i is not labeled for Ck. That is, it is not necessary that each

xnew
i is fully labeled to all K concepts. This is a frequent situation in reality because users

commonly only annotate a few important concepts to a datum. Unless they are required to

do so, users are reluctant to provide full annotation due to the burden of manual labeling.

1.3.1 Discriminative Cost Function

The previous concept detectors Θold are trained to separate data X old in the old domain.

To maintain this discriminative ability, we want the learned new models Θnew to be similar

to Θold. This is the same assumption used in some previous cross-domain methods such as

A-SVM [21] described in Section 1.1.5. Therefore, the first part of the joint cost function

that our AS3VM minimizes is the following:

minΘnew ||Θnew −Θold||22 . (1.9)

Specifically, SVMs are used as concept detectors from the old domain. According to the

Representer Theorem [20], the discriminant function fk(x), which is learned from the old

domain of a datum x for a concept Ck, is given as:

fk(x) =
∑

xi∈X old
µikK(xi,x)=K(x;X old)Tuk, (1.10)

where K(·) is the kernel function, K(x;X old) is a vector composed by kernel functions of

x against all data in X old, and uk = [µ1k, . . . , µnoldk]
T (nold is the size of X old). Define

Uold= [u1, . . . ,uK ]. The nold×K matrix Uold contains all parameters learned from the old

domain to generate discriminant functions for classifying K concepts. Our goal is to learn a

new matrix Unew=[ũ1, . . . , ũK ] that is similar to Uold. Thus Eqn. (1.9) can take the form:

minUnew ||Unew −Uold||22 , (1.11)
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where || · ||2 is the Hilbert-Schmidt norm. The new discriminant function of classifying x for

a concept Ck is given by:
f̃k(x) = K(x;X old)T ũk . (1.12)

Now let us incorporate the new labeled data XL into the above process. XL can be

added directly into the set of support vectors by assigning a set of parameters unew
i =

[µnew
i1 , . . . , µnew

iK ]T to each data sample xnew
i ∈XL, where:

µnew
ik =

 η ·mini(µik), ynewik =−1

ynewik ·maxi(µik), others
. (1.13)

Parameter µik is the parameter in originalUold, and 0≤η≤1 is a weight added to the negative

new labeled samples. Due to the unbalancing between positive and negative samples in

some real applications, i.e., negative samples significantly outnumber positive ones for some

concepts, we may need to treat positive and negative samples unequally. The weight µnew
ik

assigns more importance to the newly annotated data in XL compared with old support

vectors in Uold. This is especially useful for small-size XL since we need to emphasize the

few newly labeled target data to obtain a good target classifier.

Let UL = [unew
1 , . . . ,unew

nL
]. We can obtain the new amended parameter matrix Ûold =

[UoldT ,ULT
]T . Equation (1.11) can be directly rewritten to the following:

minUnew ||Unew − Ûold||22 , (1.14)

which is the first part of the cost function AS3VM optimizes.

1.3.2 Graph Regularization on Data Points

In order to use the large amount of unlabeled data in the new domain to assist classi-

fication, we incorporate the assumption of graph smoothness over data points from the

semi-supervised learning, i.e., close-by points in the feature space should have similar dis-

criminant functions. Let undirected graph Gd=(Vd, Ed,Wd) denote the graph over X in the

new domain, where Vd is the vertices set and each node corresponds to a data sample, Ed is

the edges set, and Wd is the data affinity matrix. Each entry W d
ij measures the similarity

of xi and xj. Then we have the following cost function:

minF̃

1

2

∑
xi,xj∈X

W d
ij||(f̃di /

√
ddi )− (f̃dj /

√
ddj )||22. (1.15)

F̃ = [f̃d1 , . . . , f̃
d
nU+nL

]T contains the discriminant functions of X over all K concepts. f̃di =

[f̃1(xi), . . . ,f̃K(xi)]
T comprises discriminant functions over xi. ddi is the degree of graph Gd
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over node xi. By substituting Eqn. (1.12) into Eqn. (1.15), we obtain:

minUnew

1

2
tr
{
UnewTK(X old;X )LdK(X ;X old)Unew

}
, (1.16)

where Ld is the normalized graph Laplacian matrix:

Ld = I−Dd−1/2
WdDd−1/2

. (1.17)

Dd is a diagonal matrix whose entries are row sums of Wd. K(X ;X old) is the kernel matrix

of data set X against data set X old, and K(X ;X old)=K(X old;X )T .

1.3.3 Solution

We can combine the cost functions Eqn. (1.14) and Eqn. (1.16) into a joint cost function to

minimize by our AS3VM algorithm:

minUnew QAS3VM =

minUnew

[
||Unew − Ûold||22 + (λd/2)·tr{UnewTK(X old;X )LdK(X ;X old)Unew}

]
. (1.18)

By optimizing QAS3VM we can obtain a new parameter matrix Unew that constructs

classifiers to classify all K concepts. By taking the derivative of the cost QAS3VM with

respect to Unew we can obtain:

∂QAS3VM

∂Unew
= 0 ⇒ 2Unew−2Ûold+λdK(X old;X )LdK(X ;X old)Unew = 0

⇒ Unew =

[
I +

λd

2
K(X old;X )LdK(X ;X old)

]−1

Ûold. (1.19)

The AS3VM algorithm has several advantages. First, AS3VM can be conducted with

or without the presence of new annotated data from the new domain. That is, when

nL = 0, Ûold = Uold, AS3VM is still able to adapt old classifiers to the new domain by

using Eqn. (1.19). This is in comparison to most previous domain-adaptive methods that

rely upon new annotated data. Second, AS3VM allows incremental adaptation. This ex-

tends the algorithm’s flexibility in real applications because multimedia data sets (and their

annotations) are usually accumulated incrementally. The major computation cost is from

the matrix inversion, which is about O((nold)3).

1.4 Prediction-based Concept Score Incorporation

In this section, we develop a cross-domain learning system to adapt concept scores predicted

by previously trained concept detectors from the old domain to the new domain. In the

above two sections, the CDSVM and AS3VM algorithms apply to the situation where both
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Event Event

Photo Photo Photo Photo Photo Video Video

mistakenly organized photo

Photo

Figure 1.1: Two event data taken for different “parade” events, which have quite different
visual appearances. These events are generated by an automatic albuming system, and in
the event on the right a photo irrelevant to “parade” is mistakenly organized into this event.

the target data X and the old data X old have the same data type, and the target concepts

are the same as the old-domain concepts, i.e., they work with feature vectors extracted from

underlying data points, and such data points can be images, videos, or events. Different from

these two methods, here we study the scenario where the target data X are events while the

old data X old are images or videos. An event is defined as a set of photos and/or videos that

are taken within a common period of time, and have similar visual appearance. For example,

an event can be composed by photos and videos taken by any user at the 2009 commencement

of a university. Events are generated from unconstrained photo and video collections, by

an automatic content management system, e.g., an automatic albuming system. We want

to assign one or multiple semantic labels to each event to describe its content, such as

“wedding” and “graduation”. In other words, the old domain data type is a building element

of the target domain data type, i.e., images and/or videos are building elements of events.

Therefore, semantic concept detectors previously trained based on the old domain data can

generate prediction hypotheses over the target data, and such hypotheses can be used as

features to represent the target data. As a result, the target concepts C1, . . . , CK that we

want to label to the event data can be different from the old-domain concepts Cold
1 , . . . , Cold

Kold

for which previous detectors are trained to generate prediction hypotheses.

Semantic classification of events has several characteristics. First, an event can contain

both photos and videos, and we need to process photos and videos simultaneously. Second,

the algorithm needs to accommodate errors resulting from automatic albuming systems.

For example, in Fig. 1.12, a photo irrelevant to “parade” is mistakenly organized into a

“parade” event. Third, events taken by different users, although from the same semantic

category, can have quite diverse visual appearances, e.g., as shown in Fig. 1.1, data from

two “parade” events can look very different. In comparison, occasionally we do not have

enough event data for robust learning, e.g., in Kodak’s consumer event collection we use in

2Fig. 1.1 is from [9] c⃝2009 Association for Computing Machinery, Inc. Reprinted by permission.
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our experiment, there are only 11 “parade” events for training. The small sample learning

difficulty may be encountered. This drives us to solicit help from cross-domain learning

where we can borrow information from outside data sources to enhance classification.

1.4.1 Overview of Our System

Addressing the above characteristics, we develop a general two-step Event-Level Feature

(ELF) learning framework, as described in Fig. 1.23. In the first step each image (a photo

or a video keyframe) is treated as a set of data points in an elementary-level feature space

(e.g., a concept score space at the image level or a low-level visual space at the region level).

In the second step a unified ELF learning procedure is used to construct various ELFs based

upon different elementary features. The ELF representation models each event as a feature

vector, based upon which classifiers are directly built for semantic concept classification. The

ELF representation is flexible to accommodate both photos and videos simultaneously, and

is more robust to difficult or erroneous images from automatic albuming systems compared

to the naive approach that uses image-level features to obtain classifiers straightforwardly.

Step 2 — Generation of Event-Level Features

Bag-of-Features Representation for Events

Codebook Construction

by Spectral Clustering

Codebook-based

Event Representation

Elementary-Level Feature Representation

photo

Step 1 -- Generation of Elementary-Level Features

photo

video

Event
Video

photo
photo

Event

Video
PhotoPhoto

. . .

A Consumer Event Collection

photo
photo

video

Pairwise Similarity by EMD

Figure 1.2: The general ELF learning framework. In the first step, each image (a photo or
a video keyframe) is treated as a set of feature points in an elementary-level feature space,
and then in the second step, an ELF representation can be constructed.

Using the general ELF learning framework, we conduct cross-domain and within-domain

learning for semantic indexing in event data, as described in Fig. 1.34. Complex target

semantic concepts are usually generated by the concurrence of elementary constructive con-

cepts. For example, “wedding” is a complex concept associated with people, park, etc.,

evolving with a certain pattern. Based upon this idea, we adopt the PRED framework [5]

for cross-domain learning. That is, a set of models detecting a set of elementary concepts

Cold
1 , . . . , Cold

Kold are built based upon the old data source, and are applied to the current

data to generate concept occurrence predictions. Such predictions are then used as fea-
3Fig. 1.2 is from [9] c⃝2009 Association for Computing Machinery, Inc. Reprinted by permission.
4Fig. 1.3 is from [9] c⃝2009 Association for Computing Machinery, Inc. Reprinted by permission.
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tures to represent the current data and to learn semantic concept detection models in the

current domain. In practice, we incorporate two sets of concept detection scores from pre-

trained models over two different old data sources, at both image and region level. They

are: the TRECVID 2005 news video set [19] with a 374-concept LSCOM ontology [14]; and

the LHI image-parsing ground-truth set with a 247-concept regional ontology [22]. Within-

domain approaches use low-level visual features over entire images or image region segments

as elementary-level features. The cross-domain and within-domain ELFs complement and

cooperate with each other to improve classification.
Within-Domain Approach

Cross-Domain Approach

(Concept Score by Models from Outside Data)

Region-Level Concept Score

(Regional Concept Models

learned from LHI images)

People (0.17)

Grass   (0.32)
. . .

People (0.92)

Grass  (0.15)
. . .

Early Fusion

Late Fusion

Selective

Fusion

Color

Texure

. . .

ELF-Vis

ELF-K

ELF-LSCOM

ELF-RegLHI

ELF-RegVis

Region-Level Visual Feature

Color

Texure
. . .

Color

Texure
. . .

Image-Level Visual Feature

Image-Level Concept Score

(LSCOM Concept Models

learned from TRECVID Videos)

. . .

People (0.95) Park (0.32)

Sports (0.97)

Representation
ELF

Construction

Classifier

Figure 1.3: The overall framework of our concept detection approach over event data.

1.4.2 The ELF Learning Process

Assume that we have a collection of photos and videos from consumers, which is partitioned

into a set of events. The partition is based upon the capture time of each photo/video

and the color similarity between photos/videos, by using previously developed automatic

albuming systems such as [13]. Let Et be the t-th event, which contains mt
p photos and mt

v

videos, and I ti and V t
j be the i-th photo and j-th video in Et, respectively. We define that

both photos and videos are data units, represented by x. For example, event Et contains

mt=mt
p+m̃t

v data units. Our goal is to assign Et with semantic categories C1, . . . , CK .

We first develop a Bag-of-Features (BoF) representation at the event level to describe

each event as a feature vector, based upon which semantic concept detectors can be directly

built. The BoF representation has been proven effective to detect generic concepts for images

[18], where images are first represented by an orderless set of local descriptors (e.g., SIFT

features), and then through clustering a middle-level vocabulary is constructed. Visual words

in the vocabulary are treated as robust and denoised terms to describe images.

In our event classification problem, for each semantic concept Ck, e.g., “wedding”, we

have M events E1, . . . , EM that contain this concept. A vocabulary can be constructed by
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clustering all data units from these M events into N words. Each word can be treated as a

pattern that is a common characteristic for describing all events that contain Ck. To accom-

modate both photo and video data units, the similarity-based spectral clustering algorithm

[16] is adopted to construct the vocabulary.

Specifically, the consumer video generally contains only one shot, and keyframes can be

uniformly sampled from the videos. Let I tj,l be the l-th keyframe in video V t
j . Each photo I ti

or keyframe I tj,l can be represented as a set of feature points in the elementary-level feature

space. For example, I ti is a single-point set with an image-level low-level visual feature f(I ti ),

or a multipoint set with region-level low-level visual features {f(rti1), . . . , f(rtiG)} where each

rtig is a region from image I ti described by a feature vector f(rtig).

By treating each data unit as a set of feature points in the elementary feature space,

the Earth Mover’s Distance (EMD) [17] can be adopted to measure the similarity between

two data units (feature point sets). Note that there are many ways to compute the distance

between two sets of feature points, e.g., the maximum/minimum distance. These methods

are easily influenced by noisy outliers, while EMD provides a more robust distance metric.

EMD finds a minimum weighted distance among all pairwise distances between the two

sets of feature points subject to weight-normalization constraints, and EMD allows partial

matching between data units, which can alleviate the influence of noisy outliers. The pairwise

EMD distanceD(xi,xj) between two data units xi, xj can be converted to pairwise similarity

based upon the Gaussian function: S(xi,xj) = exp (−D(xi,xj)/β), where β is the mean of

all pairwise distances among training data units.

Given the pairwise similarity matrix over data units from the M events that contain

semantic concept Ck, spectral clustering can be applied to find clusters of these data units.

We adopt the algorithm developed in [16] where the number of clusters N can be determined

automatically by analyzing eigenvalues of the similarity matrix. Each obtained data cluster

is called a word, and all the clusters form a vocabulary. Let Wj be the j-th word, and let

S(x,Wj) be the similarity of a datum x to word Wj calculated as the maximum similarity

between x and the member data units in Wj. Assume that event Et contains mt data

units in total, the entire event Et can be represented by a BoF feature vector fbof (E
t) as:

fbof (E
t)=[maxx∈EtS(x,W1), . . . ,maxx∈Et S(x,WN)]

T .
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1.4.3 Semantic Concept Classification with Multitype ELFs

The above ELF learning framework is very flexible. Different types of elementary-level

features can be used to generate ELFs.

Cross-Domain ELFs

We further categorize the cross-domain ELFs as image-level or region-level, i.e., concept

detectors from external data sets are learned at the image or region level to generate the

image-level or region-level elementary concept spaces.

Image-level concept space – We use the TRECVID 2005 development set [19] with a

374-concept LSCOM ontology [14] to generate a concept-score-based ELF at the image level.

The LSCOM ontology contains 449 multimedia concepts related to objects, locations, people,

and programs. The entire TRECVID 2005 development set is labeled to this ontology. By

using visual features [3] over the entire image, i.e., 5 × 5 grid-based color moments, Gabor

texture, and edge direction histogram, 374 SVM concept detectors are learned based upon

the TRECVID data, detecting 374 concepts with high-occurrence frequencies in LSCOM.

These 374 concepts are the old-domain concepts Cold,trec
1 , . . . , Cold,trec

374 , and we apply the 374

concept detectors to obtain the concept detection probabilities for each image I (a photo or

a video keyframe) in the current event data set. These probabilities represent I in a concept

space with a feature vector formed by concept scores fc(I)=[p(Cold,trec
1 |I), . . . , p(Cold,trec

374 |I)]T .
Each photo is a single-point set and each video is a multipoint set in the concept space. Then

the ELF learning process described in the second step of Fig. 1.2 can be used to generate

the ELF over the LSCOM ontology, which is called ELF-LSCOM.

Region-level concept space – Region-level features provide detailed object information

to describe the image content, which is complementary to global image-level features. In the

regional approach, each image I is segmented into a set of regions r1, . . . , rG, and each region

can be represented by a feature vector in the elementary region-level feature space. Thus,

both photos and videos are treated as multipoint sets, and the ELF learning procedure from

the second step of Fig. 1.2 can be conducted to obtain ELF representations.

To generate region-level concept scores, we need external region-level concept detectors.

In this work, the LHI image-parsing ground-truth data set (the free version) [22] is used

to build region-level concept detectors. The data set contains images from 6 categories:
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manmade object, natural object, object in scene, transportation, aerial image, and sport

activity. These images are manually segmented and the regions are labeled to 247 concepts.

Low-level visual features, i.e., color moments, Gabor texture, and edge direction histogram,

are extracted from each region. By using each region as one sample, SVM classifiers are

trained to detect the 247 region-level concepts corresponding to the old-domain concepts

Cold,LHI
1 , . . . , Cold,LHI

247 . These detectors generate concept detection scores for each automati-

cally segmented region in our event data. Then an ELF representation (ELF-RegLHI ) can

be learned based upon the region-level concept scores.

Within-Domain ELFs

The use of concept score space has been proven effective for semantic annotation by several

previous works [7, 8]. However, low-level visual features are still indispensable, especially

when we only have a limited concept ontology. Because in practice we cannot train a concept

detector for every possible concept, low-level visual features can capture useful information

not covered by the available concept detectors.

Within-domain visual-feature-based approaches can also be categorized as using image-

level or region-level visual features. With image-level visual features, each image I is repre-

sented as a low-level visual feature vector. Then each photo is a single-point set and each

video is a multipoint set, based upon which an ELF (ELF-Vis) can be generated. Specif-

ically, we use the same low-level visual features as the ones to obtain image-level concept

detection scores. Using region-level visual features, each region is represented as a low-level

visual feature, and the entire image is a multipoint set in the regional feature space (as is a

video), based upon which we generate an ELF (ELF-RegVis). In practice, we also use the

same low-level visual features as the ones to obtain region-level concept detection scores. In

addition, we use the concept detectors trained from Kodak’s consumer benchmark video set

with a 21-concept consumer ontology [12] to generate concept detection scores as elementary-

level features to construct the ELF. We call this ELF representation ELF-K. This is treated

as a within-domain learning approach, since both Kodak’s benchmark videos and Kodak’s

event data are from the same consumer domain.

Classification with ELFs

By now we have five ELFs: ELF-K, ELF-LSCOM, ELF-RegLHI, ELF-Vis, and ELF-RegVis.

Individual classifiers can be built over each ELF, and improved performance can be expected
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if we appropriately fuse these ELFs. In early fusion, we concatenate these ELFs into a

feature vector to train classifiers. In late fusion, we combine classifiers individually trained

over ELFs. We can also use selective fusion, i.e., forward feature selection. In selective early

fusion, we gradually concatenate one more ELF at one time based upon the cross-validation

error to choose the optimal combination of features. Similarly, in selective late fusion we

gradually combine one more classifier trained over individual ELFs.

In Section 1.6.2, we will evaluate the concept detection performances of the prediction-

based method over real event data from consumers, where both individual ELFs and their

combinations are tested. From the result, the selective fusion can obtain more than 70%

performance gain compared with individual ELFs.

1.5 Experiments: Cross-Domain Learning in TV Programs

We evaluate the CDSVM algorithm over two different TV program data sets. The first data

set, X old, is a 41,847-keyframe set derived from the development set of TRECVID 2005,

containing 61,901 keyframes extracted from 108 hours of international broadcast news videos.

The target data set, X , is the TRECVID 2007 data set containing 21,532 keyframes extracted

from 60 hours of news magazine, science news, documentaries, and educational programming

videos. We further partition the target set into training and test partitions with 17,520 and

4,012 keyframes, respectively. The partition is at the video level, i.e., keyframes from the

same video will be in the same set. The TRECVID 2007 data set is quite different from the

TRECVID 2005 data set in program structure and production value, but they have similar

semantic concepts of interests. All keyframes are manually labeled for 36 semantic concepts,

originally defined by LSCOM-lite [15]. Both data sets are multi-label sets, i.e., each keyframe

may be labeled to multiple semantic concepts. One-vs.-all classifiers are trained to classify

each concept. For each keyframe, three types of low-level visual features are extracted: grid

color moments over 5×5 image grids, Gabor texture, and edge direction histogram. These

features are concatenated to form a 346-dim feature vector to represent each keyframe. Such

features, although relatively simple, have been shown effective in detecting generic concepts,

and considered as part of standard features in semantic concept detection [3].

We compare CDSVM with several different alternatives in this section: the SVM trained

using TRECVID 2005 data alone (SVM 05), the SVM trained using TRECVID 2007 data
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Figure 1.4: Result comparison: from TRECVID 2005 set to TRECVID 2007 set.

alone (SVM 07), the Combined SVM trained using the merged TRECVID 2005 and 2007

data, the Feature Replication method [5], and the A-SVM method [21]. To guarantee model

uniformity, all SVM classifiers use the RBF kernel K(xi,xj)=exp{−γ||xi−xj||22} with C=1

and γ=1/d, where d is the feature dimension of x. The LibSVM source code [2] is used and

is modified to include sample independent weights, described in Eqn. (1.7).

Figure 1.4 shows the comparison of detection performances over 36 concepts by using

different algorithms. The performance measurements are Average Precision (AP) and Mean

Average Precision (MAP). AP is the precision evaluated at every relevant point in a ranked

list averaged over all points; it is used here as a standard way of comparison for the TRECVID

data set. MAP is the averaged AP across all concepts. From the figure, we can see that

comparing MAP alone, the proposed CDSVM outperforms all other methods. This is signif-

icant not only because of the higher performance, but also because of the lower computation

complexity. In addition, out of the three evaluated cross-domain learning methods, CDSVM

is the only one that improves over the target model and the Combined SVM, while the
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other two, both Feature Replication and A-SVM, can not. This phenomenon confirms our

assumption that a judicious usage of data from the old domain is critical for learning robust

target models. Because A-SVM pursues moderate modification of the old model instead

of pursuing large-margin classification over the target domain, when the number of target

training data is large to train a relatively good classifier, such moderate modification may

be not as effective as retraining a target model directly. Feature Replication, on the other

hand, uses all of the old data without selection, may be biased by the old data, and suffer

from the high dimensionality of the replicated feature.

1.6 Experiments: From TV Programs to Consumer Videos

We conduct two sets of experiments to evaluate the AS3VM algorithm and the prediction-

based method over three data sets: the TRECVID 2007 data set, Kodak’s consumer bench-

mark video set [12], and Kodak’s consumer event data set [9]. Kodak’s consumer benchmark

set contains 1,358 videos from about 100 actual users representing different consumer groups.

A total of 5,166 keyframes are sampled from these videos and are labeled to 21 consumer

concepts. Kodak’s event set contains 1,972 consumer events, which are generated from the

automatic albuming system described in [13], and are labeled to 10 semantic categories. The

details, such as definitions of these semantic categories and descriptions of the event data,

can be found in [8].

1.6.1 AS3VM for Semantic Concept Detection

Kodak’s set and the TRECVID 2007 set are from different domains. Among the 36 concepts

annotated over the TRECVID data, 5 concepts are similar to the consumer concepts anno-

tated over Kodak’s benchmark data. They are animal (animal), boat-ship (boat), crowd

(crowd), people-marching (parade), and sports (sports), where concepts in parentheses are

defined for Kodak’s set. We adaptively apply the 5 SVM concept detectors trained over

TRECVID 2007 data to Kodak’s benchmark data by using the AS3VM algorithm. The

performance measures are AP and MAP. We evaluate two scenarios where we do not have

new labeled data or have some labeled data, from Kodak’s consumer set. Algorithms in

these scenarios are marked by “(n)”, and “(l)”, respectively, e.g., “(n) AS3VM” and “(l)

AS3VM”. Figure 1.5 shows the performance comparison in the first scenario where we
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Figure 1.6: From TRECVID 2007 set to Kodak’s benchmark set: with new annotations.

compare AS3VM with semi-supervised LapSVM [1] and original SVM (directly applying

TRECVID-based SVMs). For LapSVM, we treat the TRECVID 2007 data as training data

and Kodak’s consumer data as unlabeled data. This is one intuitive alternative of learning

classifiers that use information from both data sets without new annotations. The results

show that A3SVM can improve the performance of original TRECVID-based SVMs by about

4% in terms of MAP on a relative basis. LapSVM, which treats both data sets as from the

same distribution, does not perform well due to the non-negligible domain difference.

Figure 1.6 shows the performance comparison in the second scenario with different num-

bers of annotated data from the new domain. A set of randomly selected data in Kodak’s
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benchmark set are provided to users, and for each data one concept is randomly chosen for

users to annotate. The annotation rate is pretty low, i.e., from 0.4% to 4% when we have 100

to 1000 annotations compared with 5166× 5 annotations to fully annotate the entire target

set. Results in Figure 1.6 are the averaged results over 10 random runs. Here we compare

AS3VM with two other alternatives: the Combined SVM using all labeled data from both

the TRECVID 2007 set and Kodak’s benchmark set, and the cross-domain A-SVM [21]

of adapting TRECVID-based SVMs to Kodak’s data using new labeled data. The figure

shows that AS3VM can effectively improve the classification performance by outperforming

the Combined SVM. In comparison, A-SVM can not improve detection because it updates

classifiers only based upon the few labeled samples that are often biased. The results indicate

the superiority of our method by both using information from unlabeled data and adapting

classifiers to accommodate the domain change.

1.6.2 Prediction-based Method for Concept Detection in Events

From Kodak’s consumer event set, a total of 1,261 events are randomly selected for training,

the rest for testing. AP and MAP are still used as performance measures.

Figure 1.7 gives the individual AP and the overall MAP using different individual ELFs.

From the result, different types of ELFs have different advantages in classifying different

semantic categories. In general, image-level concept scores (ELF-K and ELF-LSCOM) per-

form well over complex semantic concepts such as “birthday”, “parade”, “picnic”, “school

activity”, and “wedding”, which are composed of many constructive concepts, e.g., wedding

consists of wedding gowns, suits, park, flowers, etc. The concept scores capture the semantic

information about occurrences of these constructive concepts. On the other hand, ELF-Vis

performs extremely well over semantic categories that are determined by only one or a few

concepts, such as “animal”, where the detection scores for other constructive concepts are

not so helpful. Similarly, ELF-RegLHI performs well over complex semantic categories in

general, and it works very well over those semantic categories having strong regional cues,

e.g., “individual sport” or “show”, where detection of sport fields or stages helps greatly.

In terms of image-level concept scores, the large ontology (ELF-LSCOM) outperforms

the small one (ELF-K), although concept detectors for the latter are trained with consumer

videos that are more similar to our consumer event data than the TRECVID data. This
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Figure 1.7: Performances of individual ELFs.

confirms that a large ontology can provide rich descriptors to represent the media content

and a large external data source can be quite helpful. Specifically, ELF-LSCOM gets very

good results over “parade”, “team sport”, and “wedding”. This is because the TRECVID

news videos and the LSCOM ontology provide good detectors for many constructive concepts

related to parade (e.g., protest, demonstration, etc.), sports (e.g., basketball, football, etc.),

and well-suited people (e.g., corporate leader, government leader, and so on).

Figure 1.8 shows performances of different fusion methods, and the best individual ELF

is also given for comparison. From the result, consistent performance improvements can be

achieved over every semantic concept when we combine different ELFs by either early or late

fusion, i.e., about 35% gain in MAP compared to the best individual ELF. In addition, by

selectively combining different ELFs, further performance gain can be obtained. Compared

to the best individual ELF, the selective fusion can attain more than 70%MAP improvement.

1.7 Conclusion

We study the cross-domain learning issue of incorporating information from available training

resources in other domains to enhance concept detection in a target domain. We develop

three approaches: the CDSVM algorithm that uses previously learned support vectors; the

AS3VM algorithm that incrementally updates previously learned concept detectors; and the

prediction-based method that uses concept scores predicted by previously trained concept

detectors. Experiments over both TRECVID data from TV programs and Kodak’s consumer
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Figure 1.8: Performances of different fusion methods. Significant improvements can be
achieved by selectively combining different ELFs.

videos demonstrate the effectiveness of our approaches.

In general, all three methods are developed to deal with relatively large domain differ-

ences. However, if the domain difference is very large, the prediction-based method is more

robust than the other two. The reason is that compared to incorporating old data or updat-

ing old models, using concept scores of new data as features to train new classifiers is less

sensitive to the distribution change between old and new domains. On the other hand, if

there are very few training data available in the new domain, and the domain difference is

not very dramatic, the AS3VM algorithm tends to work better than the other two. This is

because AS3VM relies on both the old models and the new data structure to obtain updated

classifiers while the other two mainly rely upon the insufficient new training data.

In addition, both CDSVM and AS3VM deal with the scenario where we have the same

type of data in both the target and the old domains. Also, the set of concepts that we want

to detect in the target domain and the old domain are the same. These two methods work

with the abstract feature vectors generated from the underlying data points. The prediction-

based method, on the other hand, deals with the scenario where we have different types of

data in the target and the old domains. Since the concept prediction scores generated from

the old-domain models are used as features, the target concepts can be different from the

old-domain concepts.
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In terms of computation complexity, both CDSVM and AS3VM are faster than the Com-

bined SVM in general, especially with large-scale old domain data X old. This is because

CDSVM only incorporates a part of the old data (previously learned support vectors), and

AS3VM relies on a matrix inversion instead of solving the QP problem. As for the prediction-

based method, the major time complexity lies in the computation of the ELFs, including

extraction of elementary-level features and construction of vocabularies. For example, to

compute the region-level concept scores, we need to segment images and apply previous

region-based concept detectors to the segmented regions. Luckily, a lot of computation can

be conducted offline during the training process, and the evaluation is still reasonably fast.
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