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A key goal of information analytics is to identify patterns of
anomalous behavior. Such identification of anomalies is required
in a variety of applications such as systems management, sensor
networks, and security. However, most of the current state of the art
on anomaly detection relies on using a predefined knowledge base.
This knowledge base may consist of a predefined set of policies and
rules, a set of templates representing predefined patterns in the data,
or a description of events that constitutes anomalous behavior.
When used in practice, a significant limitation of information
analytics is the effort that goes into defining and creating the
predefined knowledge base and the need to have prior information
about the domain. In this paper, we present an approach that can
identify anomalies in the information stream without requiring any
prior domain knowledge. The proposed approach simultaneously
monitors and analyzes the data stream at multiple temporal scales
and learns the evolution of normal behavior over time in each time
scale. The proposed approach is not sensitive to the choice of the
distance metric and hence is applicable in various domains and
applications. We have studied the effectiveness of the approach using
different data sets.

Introduction
Anomaly or outlier detection is of great importance when
analyzing streaming data in many applications such as
systems and network management for detecting faults
and performance problems; sensor networks for detecting
anomalous behaviors and activities; and security for
detecting frauds and intrusions. As processors become faster
and less expensive, more and more streaming data can
be captured and made available for analysis. To manage
the overload of the streaming data, one needs to create
mechanisms for identifying only those time intervals that
are informative and worthy of further high-level analysis
by either machine or the human observer. For example,
when analyzing sensor network data, one must segment
the temporal data stream and identify the potential event
bearing candidates for further analysis. These segments of
data may be identified by an outlier or anomaly detector that
scans the data streams at a high rate and outputs only the
segments that need further processing.

A key challenge in anomaly detection is defining what
is normal and identifying the boundary between normal
behavior and the outlier or abnormal behavior. Use of
rule- or template-based techniques for identifying normal
or abnormal behavior is subject to the application domain
and very much dependent on domain expertise. The
nearest-neighbor or distance-based approaches rely heavily
on the choice of the distance metric being used, which is
highly dependent on the data type and application. It is
almost impossible to choose a distance metric that performs
well in all types of applications. Another challenge is that
normal behavior and outliers frequently change over time.
Therefore, the system needs to learn the evolution of
normal behavior over time, yet another challenge is that
the different types of anomalies may unfold at different
temporal scales based on the application domain and the
nature of the anomaly. Therefore, if the analysis is done
at a coarse temporal scale, anomalies that span a short
length of time might be missed. On the other hand, if the
analysis is performed at a small temporal scale, the
long-spanning anomalies may not be detected. Another
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challenge in anomaly detection is being able to process large
volumes of data in real time. Hence, the anomaly detection
algorithm needs to be fast and reactive in a timely manner.
In order to address the limitations of traditional

knowledge-base-driven systems, we propose a data-driven
approach that does not require any prior knowledge of
normal behavior. The key observation that we make is that
abnormality manifests itself in multiple temporal scales.
Therefore, simultaneous examination of data at different time
scales allows one to identify abnormal behavior in a
nonparametric way, i.e., develop an algorithm that does not
require any parameters that need to be defined manually.
Nonparametric statistical approaches, which are also known
as Bdistribution free,[ do not assume that the data belongs
to any particular distribution and therefore do not require
that the data fit any predefined distribution. They require
less restrictive assumptions about the data compared to
the parametric approaches, which assume the data comes
from a type of probability distribution and makes inference
about the parameters of the distribution.
In our approach, we define an outlier to be an uncommon

segment of the data in time. We use a nonparametric
statistical approach to represent the statistical behavior of
the temporal data while monitoring the incoming streaming
data at different temporal scales and looking for discrepancies
between the local statistical behavior of the signal and its
historical behavior. The approach learns the evolution of the
normal behavior over time. The statistical representation of
the data is optimized for providing the highest accuracy
without imposing high computational demand. In addition,
we show that the approach is distance-metric agnostic,
which makes it applicable to all types of data and
settings.
We have applied the proposed approach to a data set

obtained from sensing various human activities using a set
of multimodal sensors. In addition, we have used sensor
data generated by motes measuring temperature, humidity,
and light in the Intel Berkeley Research Laboratory [1], as
well as time series data containing passenger interarrival
times at a bus stop [2]. The results reported in this paper are
focused on a single sensor data stream. The results of our
experiments have shown that the proposed approach is
capable of spotting the event-bearing time segments of the
data in different resolutions depending on the time length of
the events.

An overview of anomaly detection techniques
Anomaly or outlier detection refers to detecting patterns
in a given data set that do not conform to a normal or
expected behavior. The term normal refers to a baseline that
may be known a priori or learned through time. The presence
of outliers in a data set may be due to noise or unwanted
system behavior. Noise may be caused by measurement
error or communication error, but the nature of unwanted

system behavior is application dependent. For example, in
network or system performance monitoring, it may be link or
server failures, and in security, it may be denial of service
attacks or intrusion detection. In accounting and transaction
monitoring, it may be due to fraud, whereas in surveillance
applications, it may be due to abnormal activity.
The approaches used to perform anomaly detection depend

on the application and the nature of the data. The broad
categories of approaches are given as follows: the rule-based,
pattern-matching, model-based, similarity-based, and
statistical approaches.

Modeling approaches
Modeling approaches require prior knowledge of the
application domain and are given as follows:

• Rule-based approaches use a database containing the
rules governing the behavior of the faulty system or an
abnormal behavior to determine whether an anomaly
has occurred. The anomaly or fault is determined by
monitoring a series of symptoms that are predefined
by the rules. Rule-based methods rely heavily on human
expertise and are not adaptive to new and evolving
environments. Case-based reasoning is an extension of
the rule-based approach, which uses the history of faults
to make decisions and, because it can build new rules, is
more adaptive to evolving environments. However, it
relies heavily on having past information and is not
efficient in computation time and complexity.

• Pattern matching or profiling uses online learning to
build profiles or patterns for normal behavior, and
deviations from them are considered anomalies. These
methods do not scale well for evolving behaviors
over time.

• Model-based approaches use different types of models
to characterize the normal behavior of the monitored
system. The most popular predictive model used is
unsupervised support vector machines. The model-based
approaches need training data in order to build the model.

• Parametric statistical approaches perform model fitting
and assume a known underlying distribution [3] of
the data or are based on statistical estimation of the
distribution parameters [4]. These methods flag as
outliers those observations that deviate from the model
assumptions. However, these methods rely heavily on
prior knowledge of the data distribution and are not
suitable for arbitrary or new and unknown data sets.

Data-mining approaches
Data-mining approaches do not require any prior knowledge
of the application domain and include the following:

• Distance- or similarity-based approaches [5] detect
outliers by computing distances among observations or
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points in a multidimensional space. These methods do not
scale well and are not useful in very high dimensional
data spaces since data points are sparse [6] and finding
outliers is non-obvious. In addition, finding a good
distance metric and a good threshold is not easy and
obvious. Similarity-based approaches cannot be applied
to stochastic data. Depth-based methods identify the
neighborhood of an object based on spatial relationships
and consider the proximity factor to decide whether an
object is an outlier with respect to neighboring objects or
to a cluster. Similarity-based approaches have better
computational efficiency than depth-based approaches.

• Nonparametric statistical approaches [7, 8] do not
assume prior knowledge of the data distributions.
Nonparametric density-based outlier detection methods
are popular and seem to be more promising than other
approaches since they are efficient to compute in a
streaming environment. They are suitable for unknown
environments and can easily be combined when there are
multiple dimensions.

Many of the proposed outlier detection approaches as
referred to in [6] require prior knowledge about the
application. They choose the distance metric heuristically
by performing empirical testing and selecting the one that
performs best for the specific application.

Proposed approach
Our approach is based on the observation that the statistical
characteristics of the data do not have abrupt changes if
there are no outliers or events of interest; that is, statistically,
the data follows a constant baseline model or evolves slowly
as time progresses. However, when an event or anomaly
occurs, it manifests itself through perturbing such statistical
behavior and causing it to shift characteristics from what
was seen before. The issues then are how to capture and
represent the statistical behavior of the stream at different
times and at what temporal scale to look for such
perturbations. We have validated this observation in the
examination of various data samples.
Based on this observation, our algorithm to detect

anomalies is a nonparametric distribution-based approach
using a sliding time window for which the distribution
of the observed data is determined. This distribution is
compared to a baseline, which represents the expected or
historic behavior. The baseline distribution is calculated
using the data values seen in the past. There are two methods
for determining the baseline. In the first method, the
baseline uses a growing window starting at some time t0.
In this case, the start of the historic data is fixed and is set
to the beginning of a new episode. For example, t0 can
be the beginning of a new season or the first day of the week.
In the second method, the baseline uses a shifting window
in the past, which means t0 moves as time goes by.

In this case, the shifting window used to calculate the
baseline represents only recent observations of the
environment.
We use histograms to approximate the underlying

statistical characteristics of the data. Histograms have an
advantage of being simple and fast to compute as opposed
to an alternative such as the kernel density estimator.
In addition, histograms can be easily updated in streaming
data environments as data is being read over time.
Different types of anomalies unravel at different temporal

scales because of the nature of the anomaly. Hence, we
simultaneously analyze the data at multiple temporal scales.
This means that we use multiple window sizes for
the sliding window. This is an alternative method to using
wavelets [9] or scale space filters [10] for analyzing the
data at multiple scales and using fixed-sized windows.
In a previous paper [11], we showed that, if the streaming
data is analyzed at multiple scales, different outliers may be
detected depending on the scale at which they happen.
As the current statistical behavior of the data is compared

with the baseline, a distance vector is generated, consisting
of one distance value every time the moving window is
shifted. The distance vector is then passed through a maxima
detector that determines the outlier points for the particular
time scale. To detect the outlier segments, we find the
maxima points (i.e., outliers) within each calculated distance
vector. We have used three different methods for detecting
the maxima points. Maximum point detection is performed
at each temporal scale.

1. Constant thresholdVThe first method uses a constant
threshold T . Each value in the distance vector having
a value greater than T is marked as an outlier.

2. Top percentageVThe second method selects the largest
N% of the values for a window of time. This method
is useful for domains where an approximate percentage
of anomalies is expected.

3. Maximum neighborVThe third method for detecting
the maxima points compares each point in the distance
vector to its neighbors on both sides. We let V be the
number of neighbors on each side. If the value is
larger than all the 2V neighbors, then the point is
considered a maxima point, hence detecting the local
maxima points.

The appropriate maxima detection method may be chosen
at deployment time in order to better tune the system.
Note that, as mentioned earlier, the proposed approach may
be used to reduce the data overload and to extract the
segments of data that may need further analysis using other
machine-learning methods. Therefore, the choice of the
maxima detection method may also be affected by the
amount of processing power one has and the rate of the
incoming data.
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The input data may be the raw data or derived features
from the raw data stream. The features are decided at
design time and are based on the particular environments
and data streams being monitored. For audio signals,
the most common types of low-level features are the
mel-frequency cepstral coefficients [12], which represent
the spectral envelope of the audio signal. The features
may be elementary or at higher levels such as concepts,
the number of human voices detected [13], etc. They may
be the extracted semantic concepts, which may be the
type of objects detected, being car, airplane, or human.
The features may also be aggregated results such as
the sum, maximum, minimum, or algebraic functions for
computing coarser granularity such as average, standard
deviation, and variance. Keeping only the high-level
and the aggregated features helps overcome the information
overload and the storage required for buffering the
streaming data.

Detection accuracy
In this section, we describe how to maximize the detection
accuracy by minimizing the error in generating the
distribution of the data when there is no prior knowledge
of the distribution type. One fundamental problem in
generating a faithful representation (i.e., distribution) of a
given data set is choosing the right smoothing parameter h or,
in the case of histograms, the bin width. If the bin width
is too large, it averages out the details of the distribution.
On the other hand, if the bin width is too small, the
distribution just tells what the observation values are,
which does not give a good representation of the data
distribution. Choosing h to be very large will result in
small variance but large bias, which is referred to as
oversmoothing. On the other hand, choosing small values
for h will result in small bias but a large variance. This is
referred to as undersmoothing. The bias and variance may
be controlled simultaneously by choosing an intermediate
value of the bin width and allowing the bin width to slowly
decrease as the sample size increases. The method in
calculating the optimum bin width must be computationally
simple in order to maintain the advantage of simplicity of
using histograms.
The asymptotic mean integrated squared error ðAMISEÞ

represents the error in estimating a density function by
a histogram. It uses the L2 distance for computing the
distance between the actual function and its estimate and is
given by [14]

AMISEðhÞ ¼ 1

nh
þ 1

12
h2Rðf 0Þ; (1)

where n is the number of data samples; h is the smoothing
parameter (i.e., bin width); and Rðf 0Þ is the statistical
roughness of the first derivative of density function f . The
only assumption made on the density function is that it has

an absolutely continuous derivative and a square-integrable
first derivative.
The optimum bin width that minimizes the AMISE error

is [14]

h� ¼ 6

Rðf 0Þ

� �1=3
n�1=3: (2)

Equation (2) shows that the optimum value for h depends
on the number of data points n, as well as the roughness
of the density function, which is data dependent. The value
for n is known, but the roughness of the density function
depends on the shape of the function and is not known
a priori. By definition, the statistical roughness is
given by

Rð�Þ �
Z
�ðxÞ2dx;

which can be computed using a biased estimator given by
the following [15]:

R̂ðf 0Þ ¼ 1

n2h3

X
k

ðvkþ1 � vkÞ2 �
2

nh3
; (3)

where vk is the number of data points in the kth bin.
Substituting (3) into (1) gives the biased cross-validation
ðBCV Þ [16] estimate of the AMISEðhÞ, which is

BCV ðhÞ ¼ 5

6nh
þ 1

12n2h

X
k

ðvkþ1 � vkÞ2: (4)

We now make a simple assumption that the range of
measurement values and the quantization level of the
measurements is known.
As we saw in (2), the optimum bin width is inversely

proportional to the statistical roughness Rðf 0Þ. Since
the density function f can be arbitrarily rough, there is
no lower bound on bin width h. However, if the sampled
data values are bounded between two known values amin

and amax, or in other words, the density function is zero
outside of ðamin; amaxÞ, there is a lower bound on the
roughness Rðf 0Þ that results in an upper bound on bin
width h [15]

h� G
amax � aminffiffiffiffiffi

2n3
p : (5)

There is also a lower bound q on the bin width, which
is the quantization level of the measurements, since the
bin width must be at least equal to or greater than the
quantization step size, as measured by the sensor acquisition
process. Therefore, we have the following lower and
upper bounds on bin width h:

q G h� G
amax � aminffiffiffiffiffi

2n3
p : (6)

Solving for n in inequality (6), we get the inequality (7),
which gives the upper bound for n. This is the maximum
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allowable size for the baseline window, which does not
allow it to grow arbitrarily large

n � 1

2

amax � amin

q

� �3

: (7)

Distance metrics such as the Kullback–Leibler (KL)
divergence are well suited for measuring the divergence of a
given distribution from a reference or expected distribution.
However, most distance metrics are binwise, which
requires the number of bins of the two histograms to be
the same. Given that both distributions are zero outside the
range ðamin; amaxÞ, the bin widths for the two distributions
must be made the same to perform binwise comparison.
This condition imposes a restriction on the range of window
sizes (i.e., the value for n) in order to keep the AMISE
below a desired value. Let nc and nb be the number of
data points within the current and the baseline windows,
respectively. We define three optimization problems:

1. To determine the common optimum bin width for two
histograms with different number of data points.

2. To determine the bounds on the baseline window size.
3. To determine the bounds on the current window size.

Optimization problem 1VGiven nc and nb, find h for
optimum (i.e., minimum) AMISE for both histograms. In
this optimization, we assume that the window sizes are
given (based on other criteria such as prior knowledge
about the events being monitored), and we find bin
width h for which the AMISE is minimized for both
histograms as follows:

h� ¼ arg minh AMISEðnc; hÞ þ AMISEðnb; hÞð Þ (8)

However, this is a nonlinear optimization and requires a
search over h. We can determine the optimum bin width
for two window sizes nc and nb by averaging the values of
the corresponding hc and hb using (1). The following is an
approximation for (8):

Given : nc Calculate : h�c
Given : nb Calculate : h�c

�
i h� ¼ h�2 þ h�b

2
: (9)

Optimization problem 2VGiven nc, find the range for nb
such that jAMISE � AMISEoptj � � . In this optimization,
we assume that the shifting current window size
(i.e., resolution) is given, and we find the range for the
baseline window for which the jAMISE � AMISEoptj
is always kept below a given value. The AMISEopt can
be computed using (4) for the current window size nc.

Optimization problem 3VGiven nb, find the range for nc such
that jAMISE � AMISEoptj � � . In this optimization, we
assume that the window for the baseline is given, and we
find the range for the current shifting window for which the
jAMISE � AMISEoptj is always kept below a given value.
This gives us the range of time scales (i.e., resolutions)

we are allowed to use. The method used to solve this
optimization is the same as optimization problem 2.

Optimization techniques 2 and 3 may be chosen at
deployment time, depending on prior knowledge of the
length of the history (i.e., baseline) or the range of the
temporal span of the events of interest. The number of
temporal scales may be chosen depending on the processing
power available at deployment time.

Computational complexity
One of the most important aspects of stream processing is
the computational complexity and the speed of the data
processing. In this section, we analyze the order of
complexity and, later in the paper, show the empirical
results.
The histogram generation algorithm uses a binary search

tree by performing a recursive search with a complexity of
Oðlog2 NÞ, where N is the number of histogram bins. The
computational complexity of calculating the KL distance
between two histograms is OðNÞ. The total computation
complexity for generating two histograms and calculating
their divergence using the KL distance is

Order of complexity ¼OHist þ OKL

¼Oðlog2 NÞ þ OðNÞ: (10)

We expect the computational time in generating
two histograms and computing their distance to increase
exponentially as the number of bins increases or as the bin
width decreases. We provide the empirical results in the
experiments section.

Sensitivity to the distance metric
The density-based change detection approaches use the
well-known distance metrics or variations to measure the
divergence of the true data distribution from a model
distribution. Prior art suggests that the performance of these
change detection techniques rely heavily on the distance
metric being used. In prior work [17], it has been pointed out
that different distance metrics have different sensitivities to
changes. For example, the commonly used L1 distance metric
is too sensitive. On the other extreme, Lp norms (for p 9 1)
are far too insensitive in detecting changes.
The choice of the distance metrics depends mainly on the

application, and in data mining, it is chosen heuristically.
With the number of new kinds of data increasing rapidly,
it is increasingly difficult to choose a distance metric that
performs well for each data set. This choice is usually made
by performing empirical testing and consensus over the
accuracy of the results for each application. Aggarwal [18]
proposed a user-centric method for modeling a distance
metric, which performs better than a pure learning mechanism
but is still sensitive to the size of the training data set.
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In the previous section, we saw that the choice of the bin
width affects the error in generating a histogram. When the
bin width is chosen to be smaller than the optimum, the
variance of the histogram is high, and therefore, the distance
between two histograms having high variance will have a
high variance as well. However, as the bin width increases,
the histogram gets coarser, and we expect the effect of
using different distance metrics to get minimized, but as we
saw earlier, this would be at the cost of degraded accuracy.
Here, we analyze how the size of the bin width affects

the distance vector obtained while using different distance
metrics. We introduce two different metrics to compare
the computed distance vector and discuss the results in the
experiments section to follow. We call this metric dðhÞ.
The first method for computing metric dðhÞ measures the

difference in the shapes of two discrete vectors (i.e., distance
vectors). We use the gradient function to first determine
the rate and direction of change of the values in each distance
vector and then count the number of times the directions (i.e.,
slopes) of the two vectors have opposite values.
Let

~v1ðhÞ ¼ D1ðP;Q; hÞ
~v2ðhÞ ¼ D2ðP;Q; hÞ
K : length of distance vector:

D1 and D2 are any two distance metrics used to compute
distance vectors v1 and v2, respectively, by comparing
distributions P and Q, with h being the common bin width
used to compute P and Q.

Method 1 (compares only the shapes of the distance vectors):
Let: hmin ¼ q be the quantization level of the sensor
measurements
and hmax ¼ ðamax � aminÞ=

ffiffiffiffiffi
2n3
p

be the upper bound on h
as shown previously in (6)
for (h ¼ hmin to hmax) (11)

dðhÞ ¼ 0
for (i ¼ 1 to K)

if ððr~v1ðhÞÞi=ðr~v2ðhÞÞi G 0Þ
dðhÞ þ þ;

end
end
The second method measures the L1 distance between the

two distance vectors and therefore measures the absolute
distance between the values and not just the shape of the
vectors.

Method 2:

dðhÞ ¼
XK
i¼1

~vi1ðhÞ �~vi2ðhÞ
�� ��: (12)

Experiments and results
We have used three different data sets, which we describe here.

Infrared sensor data set
The sensor data set used in our experiments was obtained
by monitoring people walking in a hallway. The objective
is to detect activities that are out of the norm. We used a
wideband passive infrared (PIR) sensor sampling at a rate
of 256 samples per second for a duration of 108 minutes. The
PIR measures the temperature difference between the target
object and the background. Therefore, its output value is
affected by the type of the object (i.e., human body versus
nonliving objects), the speed and size of the objects passing
by, and the distance of the object to the sensor. In our
experiments, the objects detected are people walking by
(in a limited range of speed) and in a limited range of
distance from the sensor as the hallway has a limited width.
Therefore, the PIR output value is directly proportional to
the number of people in the field of view of the sensor.
The PIR sensor produces integer values that range from 0 to
65,535 with a quantization level q ¼ 1.

Calculating the statistical roughness
As mentioned, the optimum h for generating a histogram
depends on the number of data points n and the roughness
of the distribution given by (3). The roughness is affected
by the contents of the underlying data. Using the infrared
data, we calculate the sensitivity of optimum h to the
roughness only (i.e., keeping n constant). For a given
window size n, we find the value of h that corresponds to
the smallest BCV ðhÞ given by (4) for different segments
of the data by using a sliding window of size n (shifting
with 50% overlap with the previous position), and we
calculate the standard deviation for optimum h computed
from multiple data segments of size n. We repeat this for
different values of n.
From this experiment, we have observed that when the

number of data points n grows larger than a value (in this
case, 60,000 data points or 3% of the total data points), the
optimum h is not affected by the contents of the data and only
depends on the number of data points n. This shows that
optimum h can be estimated by only knowing n, which is the
dominant factor in determining the optimum bin width.

Detection accuracy
Figure 1 shows the receiver operating characteristic (ROC)
curves using different distance metrics. We have compared
using optimum h, undersmoothed h, and oversmoothed h
for three different time scales. The ROC curves plotted show
the true positive rate (i.e., sensitivity) versus the false positive
rate (i.e., 1-specificity), with sensitivity ¼ TP=ðTP þ FNÞ
and specificity ¼ TN=ðFP þ TNÞ, where

TP true positive;
FP false positive;
TN true negative;
FN false negative.
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In this figure, we have compared various distance metrics
such as L1, L2, L1, and the KL.
The L1 norm distance metric is given by

L1ðP;QÞ ¼
X
i

jpi � qij;

where P is the true or the observed distribution, Q is the
model or baseline distribution, and p and q are their densities,
respectively.
The L2 norm distance metric is given by

L2ðP;QÞ ¼
X
i

ðpi � qiÞ2:

The L1 norm (i.e., Chebyshev distance) is defined by

L1ðP;QÞ ¼ max
i
jpi � qijð Þ:

The KL divergence metric is given by

KLðP;QÞ ¼
X
i

PðiÞ log PðiÞ
QðiÞ :

The figure shows that using optimum h results in a
much higher accuracy in detecting changes. This figure
also shows that, when using the optimum bin width,
all the different distance metrics perform well (as shown
for three time scales).

Figure 1

Comparing the ROC curves using different distance metrics (L1, L2, L1, and KL) for optimum h, undersmoothed h, and oversmoothed h. Three
different time scales using the PIR (passive infrared detector) data are shown. The large scale uses a time window of 312 seconds, the medium scale
uses a time window of 156 seconds, and the small scale uses a time window of 78 seconds.
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Computational complexity
Figure 2 shows the empirical results on the effect of the
bin width on computation time. The measured computation
time is for segmenting the data stream, generating the
histograms, and detecting the outlier segments. In this
experiment, the number of data points in the shifting window
(i.e., time scale) is nc ¼ 40;000. The number of data points
in the baseline window is nb ¼ 106. For this scale, the
optimum bin width is calculated to be roughly 450. The
plot shows that the processing time drops exponentially as
the bin width increases, which supports our analysis given
in (10). We can see that, using the proposed optimum
bin width (as opposed to an arbitrary value), we achieve
higher accuracy and a low processing time.
In this figure, we have compared various distance metrics

such as L1, L2, L1, Jensen-Shannon ðJSÞ, KL, and the
Bhattacharyya distance.
The JS distance metric is given by

JSðP;QÞ ¼ 1

2
KLðP;MÞ þ 1

2
KLðQ;MÞ;

where

M ¼ 1

2
ðP þ QÞ:

The Bhattacharyya distance metric is given by
BhattaðP;QÞ ¼ � lnðBCðp; qÞ, where

BCðp; qÞ ¼
X
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p
:

Distance metric analysis
Figure 3 shows the shape comparison between the distance
vectors using different distance metrics as a function of h
using the metric specified by (11). In the figure, we show the
shape difference using six different types of distance metrics
such as L1, L2, L1, KL, JS, and Bhattacharyya. In this
experiment, the optimum h is around 80. We can see that,
once the optimum h is reached, the effect of using the type of
the distance metric is low.
Figure 4 shows a similar graph but uses (12) to measure

the difference between the distance vectors using different
distance metrics. This metric not only uses the shapes of the
distance vectors but also measures the absolute distance
between the values in the vectors. The results are similar to
Figure 3.
As can be seen in these figures, as the bin width increases,

the computation time and the sensitivity of the detection to
the choice of the distance metric both drop at the same rate.
We see that choosing the optimum bin width gives the

Figure 2

Computation speed as a function of bin width for different distance metrics using the infrared data. The distance metrics used are L1, L2, L1, JS, KL,
and Bhatta (Bhattacharyya). (nc ¼ 40;000; nb ¼ 106; hopt ¼ 450.)
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best accuracy (i.e., Figure 1) while having low computation
time (i.e., Figure 2). It is also performs the same no matter
what distance metric is being used (i.e., Figures 3 and 4).

Motes data set
For the second data set, we have used sensor data generated
by motes measuring temperature, humidity, and light in the
Intel Berkeley Research Laboratory [1]. We have used the
temperature and light measurements by mote 1 between
February 28 and April 5, 2004. The sampling rate for the
measurements for both temperature and light is once every
31 seconds. The temperature measurements are float numbers
ranging between 0 and 123, and the light measurements are
floats ranging between 0 and 714.
The system detects anomalies such as changes in the

lights’ intensity (e.g., going on and off), as well as changes
in the temperature in various locations of the laboratory.
Using this data set, we again see the importance of analyzing
the data at multiple temporal scales and using the optimum
bin width.

Passenger arrival data set
For the third data set, we used a time series data set from [2],
which captures the passenger arrival rates at a bus terminal

in Santiago de Chile. The number of passengers arriving
at the terminal is recorded every 15 minutes between
6:30 A.M. and 10:00 P.M. each day for a total of
approximately 650 days. We have multiplied the data set
several times to make the length of the data larger.
There are periods of low activity on weekends, when

the passenger arrival rate is much lower than it is on
weekdays. The system detects weekends as outliers, which is
repeated over time, but as time goes on, the intensity of the
outlier (i.e., distance value) is reduced as the system learns
about the events as a normal behavior and perhaps not an
anomaly. We have used different distance metrics such the
KL, JS, and Euclidean, and observed similar results. Another
observation is that when analyzed at a very small scale
(e.g., 4 hours), the anomalies are not detected, but when
the scale is roughly 50 hours (i.e., 2 days), the weekend is
detected as an anomaly. Saturdays and Sundays are also
detected as anomalies at the scale of roughly 24 hours
(i.e., 1 day). We see an exponential decrease in the
processing time as the bin width is increased, but the most
gain is achieved when using the optimum bin width.
Increasing the bin width to much larger values than the
optimum does not gain much in speed and reduces the
detection accuracy.

Figure 3

Comparison among distance different metrics dðhÞ using (11) versus h using the infrared data. The current window is tc � tb ¼ 312 seconds, and
average hopt ¼ 80.

M. S. BEIGI ET AL. 11 : 9IBM J. RES. & DEV. VOL. 55 NO. 5 PAPER 11 SEPTEMBER/OCTOBER 2011



Conclusion and future work
In this paper, we have presented an approach for detecting
anomalies that does not require any predefined rules, models,
or domain-specific knowledge base. Our approach uses
anomaly detection at multiple temporal scales using streams
of sensor data. The approach is nonparametric and does
not make any assumptions regarding the distribution of
the data. We believe it is one of the first nonparametric
self-optimizing algorithms of this nature in the technical
community. Our approach optimizes operational constants
such as optimal bin width on its own, rather than requiring
human input to specify such constants. We have shown the
importance of using the optimal bin width in generating
histograms for representing the data as opposed to choosing
an arbitrary value, in terms of accuracy and computational
speed, as well as its effect on the choice of the distance metric.
The algorithms for selecting optimum bin width or, in a

more general term, quantization level can be applied to other
domains and classifiers. We are studying whether the optimal
bin width (i.e., the number of bins) algorithm can be
applied to calculating an optimal value for the dictionary size
in the Bag of Words (BoW) model [19]. The BoW model
is used in document and image classification. In this model,
a text document or an image is represented as an unordered
collection of words or code words, respectively. The BoW
is then used to determine the similarity between two

documents or images. We will study whether an optimum
size for the BoW (e.g., dictionary size) can be calculated
rather than using heuristic and domain specific values.
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