SINGLE-VIEW RECAPTURED IMAGE DETECTION BASED ON PHYSICS-BASED FEATURES
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ABSTRACT

In daily life, we can see images of real-life objects on posters,
television, or virtually any type of smooth physical surfaces.
We seldom confuse these images with the objects per se mainly
with the help of the contextual information from the surround-
ing environment and nearby objects. Without this contextual in-
formation, distinguishing an object from an image of the object
becomes subtle; it is precisely an effect that a large immersive
display aims at achieving. In this work, we study and address a
problem that mirrors the above-mentioned recognition problem,
i.e., distinguishing images of true natural scenes and those from
recapturing. Being able to detect recaptured images, robot vi-
sion can be more intelligent and a single-image-based counter-
measure for re-broadcast attack on a face authentication system
becomes feasible. This work is timely as the face authentica-
tion system is getting common on consumer mobile devices
such as smart phones and laptop computers. In this work, we
present a physical model for image recapturing and the features
derived from the model are used in a recaptured image detec-
tor. Our physics-based method out-performs a statistics-based
method by a significant margin on images of VGA (640x480)
and QVGA (320x240) resolutions which are common for mo-
bile devices. In our study, we find that apart from the contextual
information, the unique properties for the recaptured image ren-
dering process are crucial for the recognition problem.

Keywords— Recaptured image detection, re-broadcast de-
tection, image forensics, image recapturing model

1. INTRODUCTION

We rarely mistake the image of an object as the object itself
in real life. For example, when we see an image of a car on
poster pasted on a wall, we do not mistake it as a real car. Var-
ious types of contextual information including the size of the
car image, the fact that the car image is on the wall, the flat-
ness of the image that appears to our stereo vision, and the way
light is reflected from the poster surface helps us in making this
judgement. However, if we strip away the contextual informa-
tion as much as possible as in a large immersive display set-
ting, we may confuse the flat image of the car as the car per
se, despite our stereo vision. With minimum contextual infor-
mation, recognizing the two through mono-vision, e.g., view-
ing through a camera, would be much more challenging. In
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Fig. 1. The generative process for the two classes of images
used in our work.

this paper, we study the problem of distinguishing two image
classes, i.e., images of true natural scenes and the recaptured
natural-scene images on a computer. The process of generating
the two classes of images is shown in Fig. 1. Most people con-
sider this recognition task as difficult or even impossible with
single-view vision. Indeed, in computer vision, extracting 3-
dimensional (3D) geometry from a single image is ill-posed.
Without explicitly extracting (reconstructing) the 3D geometry,
our new method utilizes the contextual information and the ren-
dering process related properties to distinguish the two image
classes based on a single-view image. Single-view recaptured
image detection or recognition is an enabling technology for a
few important applications. First, it provides additional infor-
mation for a robot or an unmanned vehicle to distinguish an
image of an object from the object per se. Second, the current
research for general object-class recognition [1] does not con-
sider recaptured image as a separate image class, and hence a
poster cannot be in general detected. In this case, single-view
recaptured image detection can be applied as a pre-filter for an
object recognizer. Third, presenting a printed face to a face au-
thentication system as an attempt to gain illegal access into the
system is a well-known attack and single-view recaptured image
detection can be applied as a counter-measure to this form of at-
tack. Face authentication system has recently been adopted for
access control on mobile devices such as laptop computers and
smart phones. Such authentication system is designed for fast
response time and often not equipped with sophisticated live-
ness detection for verifying a live face. Recently, a Vietnamese
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security group found that most commercial laptop computers
with face authentication system can be easily attacked by just
presenting a human face printed on an A4-size paper [2].

In this work, we propose a physics-based approach for
single-view recaptured image detection which exploits the con-
textual information remaining on a recaptured image and the
unique properties of the recaptured image rendering process.
The set of physics-based features is composed of the contex-
tual background information, the spatial distribution of specu-
larity that is related to the surface geometry, the image gradient
that captures the non-linearity in the recaptured image render-
ing process, the color information and contrast that is related
to quality of reproduction rendering, and a blurriness measure
that is related to the recapturing process. The physics-based
method outperforms the statistical method proposed in [3] by
more than 10% when minimum contextual information is used.
We also perform a detailed analysis of each individual physics-
based feature.

Our work is presented as follows. We will review the prior
work in Sec. 2. In Sec. 3, a physical model for the recapturing
process and the related physics-based features are described in
detail. Sec. 4 describes the dataset that we collected for eval-
uating our method and shows the experiments which compare
our method with a statistics-based method. In Sec. 5, the limita-
tions of the current dataset and method are discussed and future
works are described. Finally, we give conclusions in Sec. 6.

2. PRIOR WORK

Our work is related to the prior work in single-view recaptured
image detection, liveness detection for face authentication, and
device identification in digital image forensics.

2.1. Single-view Recaptured Image Detection

In [3], Farid and Lyu performed an experiment on classifying
photographic images and scanned images using wavelet statisti-
cal features which capture the deviation from the normal image
statistics resulted from the image scanning process. The method
could classify the two image classes with an average accuracy
of 99.6%. This method is statistical in nature therefore it does
not admit to physical intuitions that can lead to further ideas
on improving the method. In [4], Ng et al. devised a set of
physics-motivated features to classify photographic images and
photorealistic computer graphic images. They showed that the
physics-motivated features has the capability of distinguishing
computer graphics recaptured from an LCD display when the
recaptured images have a resolution high enough to resolve the
grid structure of the display. In [5], Yu et al. proposed a way to
extract the micro-texture on the A4-size printing paper from the
specularity component of a recaptured image. Later in [6], Bai
et al. assessed the method on a dataset consisting of 65 human
face images where the method showed 2.2% False Acceptance
Rate and 13% False Rejection Rate of the recaptured images.
The method proposed by Yu et al. requires the input images to

have a high enough resolution in order to resolve the fine micro-
texture of printing papers and its performance may be unreliable
on images other than face images with limited amount of fine
texture.

In contrast to the statistical deviation and the appearance of
fine textures on the display medium, the physics-based features
that we propose in this work exploit the contextual information
and the characteristics of the image recapturing process for rec-
ognizing recaptured images. This method works well on low-
resolution images of natural scenes.

2.2. Liveness Detection for Face Authentication Systems

Re-broadcast attack where an attacker presents a printed face in
an attempt to intrude a face authentication system is well-known
and well-studied. The existing counter-measures mainly rely on
ways to assess the level of liveness of the presented face. These
methods require a sequence of image frames for liveness detec-
tion. For example, in [7], eye blinks are used to identify the
liveness of a subject. Although these methods are effective in
detecting a static face re-broadcast attack, they are vulnerable
to video replay attack. The single-view recaptured image detec-
tion method in this work requires only a single input image and
therefore is effective against video replay attack.

2.3. Device Identification

Image recapturing process consists of image printing or display-
ing followed by re-photographing. We can consider this process
as a means of color image rendering, just like computer graphic
rendering or half-toning. In the area of digital image foren-
sics, the class of methods that analyze an image to recognize
how the image is generated is classified as image source or de-
vice identification. These methods attempt to identify the cam-
era characteristics inherent in an image [8], the printer/scanner
signatures [9] or characteristics of computer graphics render-
ing [4]. In this work, we consider recaptured images produced
by a camera under uncontrolled lighting and paper positioning,
in contrast to the controlled setting for image scanning.

3. APHYSICAL MODEL FOR IMAGE RECAPTURING
PROCESS

A cascaded dichromatic model [5] was proposed to explain
the origin of the micro-texture on a paper surface which ap-
pears mainly in the specularity component of a recaptured im-
age. However, to resolve the micro-texture, the recaptured im-
age needs to have a sufficiently high resolution. Such high-
frequency characteristic of a display medium is merely one of
the many physical properties of a recaptured image. To explain
these properties in a comprehensive manner, a more general
physical model is needed for the image recapturing process.

3.1. A General Image Recapturing Model

As shown in Fig. 1 (b), a recapturing process involves three
stages, i.e., the first capture, the display, and the second cap-



ture or recapture. Assume that the first capture is performed
using any camera c; of any resolution and type, the display is
done through a medium m and the second capture is performed
using a camera cy. The scene radiance of the first capture, Ji,
is captured by c¢; to produce a digital image

Ii(x) = fi(Ji(z)), )

where f; is the camera response function for ¢;. I3 is repro-
duced on a medium m and the reproduced image is not exactly
the same as /7 due to the limitation of the reproduction devices
such as printers and LCD display. The reproduced image on m
can be written as

I(2) = fm (L1 (2)). )

Note that the surface property of the reproduced image on
medium m can be drastically different from that of the origi-
nal 3D scene that gives rise to J;. When I, is displayed in the
real-world and illuminated by the environment light, the way
the incident light is reflected from the display medium m is de-
termined by the surface property of m and the reflected radiance
may be different from 7,,,. For instance, the specular fine texture
that is observed on a recaptured image is due to both the spatial
and reflectance properties of the printing paper. Considering
such deviation from I,,,, we can model the reflected radiance
observed by the second camera cs as

Irecap(m) = fg(lm(l')a(l‘) + R(J?)(l - Oé(l‘))), (3)

where f5 is the camera response function of c,, R is the radiance
arising from the recapturing setting and the display medium,
and o weights the effect of R. R accounts for the specular fine
texture of a printing paper, the backlight that transmits through
the paper, as well as the large region of highlights arises from
the flat geometry of the printing paper. Furthermore, when the
real scene around the reproduced image I, is captured by cs,
the region other than I,,, can also be modelled by R.

3.2. Features Inspired by the General Model

As shown in Fig. 1 (a), for producing a real-scene image, we
simply capture the scene radiance, .J;, using the end-user cam-
era ca,

Ireal(m) = fZ(Jl(x)) (4)
While the complete recaptured model can be obtained from
Eq. (3) by replacing I,,, with Eq. (1) and I; with Eq. (2),

Irecap(x) = fa(fm(f1(J1(z)))a(z) + R(z)(1 — a(z))). (5)

Contrasting Eq. (4) and Eq. (5) gives us clues for detecting the
recaptured image from the real-scene image. The clues include
the difference in the radiometric non-linearity arising from the
various response functions f1, f> and f,,,, the possible backlight
and patches of highlight for a recaptured image, the contextual
information from the background scene of a recaptured image,
the distinct properties of the display medium for a recaptured
image, chromatic properties of the printing devices, and so on.
The following section describes features that characterize the
above-mentioned properties.

3.3. Physics-based Features

From the application point of view, a single-view recaptured im-
age detector may be used in uncontrolled lighting and varying
background environment. For example, the laptop user may per-
form face authentication anytime and anywhere. If the attacker
uses an LCD screen to display the first capture, the brightness
of the screen can be adjusted to achieve the best effect. Further-
more, the attacker may use any method and device to get the
first capture. Therefore, the features for recaptured image de-
tection should be general and not restricted to a specific setting.
Specifically, the features for describing the photometric prop-
erties of a recaptured image should cater for diverse lighting
conditions, and the device-related features should be capable of
modeling various devices. Since a recaptured image could be
of any natural scene, the features should be image-content in-
dependent. Bearing in mind these desired properties, we do not
make specific assumption on lighting, types of printing or imag-
ing devices, and image content when devising the following set
of features.

3.3.1. Background Contextual Information

Some portion of a recaptured image may contain the real scene
background, which can be considered as a form of contextual in-
formation. The background portion is generally different from
the display medium with reproduced content. By assuming that
the display medium is usually at the center, the background con-
textual information and its contrast to the display medium por-
tion can be exploited by dividing an input image into M x N
non-overlapping blocks and extract features from each of the
blocks independently. The contrast between the bordering back-
ground portion and the central display medium portion will re-
flect on the spatial distribution of the features.

3.3.2. Spatial Distribution of Specularity

It has been shown that specularity distribution on a surface is
indicative of its geometry [10]. As the geometry of a display
medium is commonly flat, the specularity distribution for a re-
captured image could be different from that of a real-scene im-
age as the real-scene objects may not be flat. Another cause
of difference for specularity distribution is due to the image re-
capturing process. In general, the specularity observed in a re-
captured image is a superposition of the specularity from the
first capture and that from the second capture (recapture). The
superposition of specularity may result in a distinctive spatial
distribution. Fig. 2 shows an example of such effect. Fig. 2 (a)
and (b) are respectively a real-scene image and its correspond-
ing recaptured image. Fig. 2 (c) and (d) are the specular com-
ponent (contrast-adjusted for clearer visualization) extracted re-
spectively from images in Fig. 2 (a) and (b) using Tan et al’s
method of diffuse-specular decomposition [11]. The food in the
bowl shows little specularity in the real-scene image. During the
image recapturing process, secondary specularity gives rise by
the direct reflection from the printing paper is homogeneously
distributed across the recaptured image. As a result, specularity



Fig. 2. An example to explain the spatial distribution of specu-
larity. (a) Real-scene image. (b) Recaptured image. (c) Specu-
lar component of the image shown in (a). (d) Specular compo-
nent of the image shown in (b). The spatial distribution is more
homogeneous in (d) than in (c).

is seen across the bowl portion. To extract this feature, we first
decompose the image using Tan et al.’s method to get the spec-
ular component, I [11]. As regions with homogenous intensity
such as the bright blue sky for an outdoor scene and the por-
tion of the image suffering from saturation are often mistakenly
extracted as specularity, we only consider the specularity in the
regions with higher gradient measure and within the intermedi-
ate intensity range, 1.5 * py, < I, < 4% py_, where py_ is the
mean of the specularity image. The ratio of specularity in an
image block is computed as a feature with dimension one.

3.3.3. Surface gradient

If we consider image recapturing as an image rendering pro-
cess, it would have a different non-linear response compared to
that of a camera. From Eq. (5), we can see that the non-linear
response of a recaptured image is a composite of the responses
from the first camera, the intermediate printing, and the second
camera, while the the non-linear response of a real-scene im-
age only comes from second camera, i.e., the end-user camera.
In [4], Ng et al. showed that the non-linearity on the response
can be characterized using the image gradient or more effec-
tively using the image gradient on the image manifold. There-
fore, we include image gradient in our physics-based feature
set. The dimension of the surface gradient feature is 31. Due to
the high dimensionality, we extract the feature from the image
globally instead of from each individual block.

3.3.4. Color histogram

As we know, the color gamut is different for different color ren-
dering devices [12]. During the stage of reproducing the im-
age content on a physical medium, both f; and f,, may intro-
duce some device related color signatures. Fig. 3 shows two ex-
amples of how f,,, may introduce some color features into the
recaptured image. Fig. 3 (a) shows a real-scene image, while
Fig. 3 (b) and (c) show the corresponding recaptured images
where the first-capture image is respectively printed on an of-
fice printing paper using a laser color printer and displayed on
an LCD display. It is observed that the color printer introduces
some red tint into the recaptured image, while the LCD screen
introduces some blue tint into the recaptured image. To extract
this feature, the 3 x 3 x 3 HSV color histogram of an image

is computed on each image block. The dimension of this color
feature within each block is 9.

() (b)

Fig. 3. Examples to explain the color features introduced by the
content reproduction process. (a) Real-scene image. (b) Recap-
tured image in which the attack picture is printed on an office
printing paper using a laser color printer. (c) Recaptured im-
age in which the attack picture is displayed on an LCD screen.
The printer introduced the red tint in (b) while the LCD display
introduced the blue tint in (c).

3.3.5. Contrast

A recent study shows that the laser printer has a lower contrast
ratio than an actual real scene [12], and this represents another
feature of the content reproduction devices. To extract the con-
trast in each block, the image is first transformed into a gray
level image. Within each block of the image, local contrast, i.e.,
the ratio of the maximum to the minimum value, is computed
in the n X m non-overlapping sub-blocks. The maximum local
contrast within each block is taken as the contrast measurement
of the block. The dimension of contrast feature within each
block is 1.

3.3.6. Chromaticity

As pointed out in [12], the color gamut for the real scene and
various types of color reproduction devices are significantly dif-
ferent. They correspond to different color coverage on the CIE
1931 z-y chromaticity space which is shown in Fig. 4. The
white point (,y) = (3,3) in the chromaticity space corresponds
to a color with equal energy for the three primary colors, while
the boundary of the horse-shoe-shaped color space corresponds
to fully saturated colors. We model the extent and shape of the
color coverage for an image with the covariance of the image
color distribution in the CIE 1931 z-y chromaticity space by
assuming the center being the white point. To extract the chro-
maticity covariance features, an RGB image is first transformed
into the CIE XY Z color space and the chromaticity compo-
nents, r = ﬁ and y = ﬁ are calculated. We then
compute the covariance of the (x,y) color by assuming the white
point as the center. A 2 X 2 symmetric covariance matrix is
computed from every block and the three unique elements in
the upper triangular portion of the covariance matrix are used as
the chromaticity feature.

3.3.7. Blurriness

There are three possible scenarios that blurriness can arise in a
recaptured image. First, the first capture device or the printing
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Fig. 4. CIE 1931 z-y chromaticity space (original image cour-
tesy of Wikipedia).

device could be of low resolution. Second, the attack image
may be small and the display medium may have to be placed
outside of the focus range due to a specific recaptured setting.
For example, if the intruder uses the small-size photo on a badge
or IC (Identity Card) to intrude a face authentication system, the
photo must be placed close to the end-user camera to imitate a
life-size human face. In this setting, the display medium may
not be in the focus range of the camera. Third, if the end-user
camera has a limited depth of field, the distant background may
be blur, while the entire display medium is in focus. In this case,
the in-focus region is more likely to be of a regular shape, e.g., a
rectangular focus region for a printing paper, in contrast to a less
regular shape of a 3D object, e.g., silhouette of a human face.
The spatial distribution of a blur measure proposed by Crete
et al. [13] extracted from each image block will form a clue
for detecting the above-mentioned scenarios. The dimension of
blur feature within each block is 1.

4. DATASET AND EXPERIMENTS

4.1. Natural-Scene Recaptured Image Dataset

We constructed a recaptured image dataset of natural scene in
which human face images form a subset. The dataset includes
outdoor natural scene, indoor office or residence scene, and
close-up or distant scene. The dataset was produced with 3
camera phones (Acer M900, Nokia N95, and HP iPAQ hw6960)
which are set to auto mode whenever possible. The general res-
olution of the dataset images is set to VGA (640x480). The
Acer M900 and Nokia N95 phone have a back-facing cam-
era and a low-resolution front-facing camera, while HP iPAQ
hw6960 has only a back-facing camera. Therefore, the three
camera phones give us five distinct cameras. The resolution of
the Nokia N95 front-facing camera is of a QVGA (320x240)
resolution. The quality of the images depends on both the sen-
sor resolution and the lens quality. For example, the QVGA-
resolution images of the Nokia N95 front-facing camera appear
to be of a better quality than the VGA-resolution images of the
Acer M900 front-facing camera. For some of the recaptured
images, we try to match the background with the content on the
printed image, with the intention of minimizing the effect of the
background contextual contrast. In our recapturing setup, we

use a Nikon D90 single-lens reflex (SLR) camera to produce
images of 3216 x 2136 resolution as the first capture and HP
CP3505dn laser color printer of 1200 x 600 dpi for printing of
office paper. The high-quality first-capture camera and printer
ensure high-quality image on the printing paper with minimum
artifacts. For recapturing, we use the above mentioned cam-
era phones as the end-user device. The dataset is balanced in
the sense that we have the same image content in the real-scene
and recaptured image sets, with the intention for minimizing the
inter-class content discrepancy.

4.2. Experiments

We group the five distinct phone cameras into the categories
of front-facing cameras and back-facing cameras. We get 608
real-scene images and 589 recaptured images for back-facing
cameras, and 420 real-scene images and 410 recaptured im-
ages for front-facing cameras. We compare the performance
of our features and the wavelet statistical features [3] through
SVM classifications of the two image classes, i.e., real-scene
and recaptured. A 3x3 block structure is used for model-
ing the background contextual information when extracting the
physics-based features. The dimension of the proposed physics-
based features and the wavelets statistical features are respec-
tively 166 and 216. The results shown in Table 1 (a) are the
average accuracy for ten independent iterations of SVM classifi-
cation with random data partition and five-fold cross-validation.
For both front and back-facing cameras, the physics-based fea-
tures outperform the wavelet statistical features with a signifi-
cant margin. To further analyze the effectiveness of the scheme

Table 1. Results of dataset captured by smart phone cameras.
Smart phone cameras \ front \ back
(a) Original dataset
Proposed physical features (166dim) | 91.3% | 95.0%
Wavelets statistical features (216dim) | 84.6% | 88.0%
(b) Dataset: images are cropped at the central quarter
Proposed physical features (166dim) | 76.2% | 80.2%
Wavelets statistical features (216dim) | 67.6% | 71.1%
(c) Dataset: images are cropped at the top-left quarter
Proposed physical features (166dim) | 86.8% | 93.5%
Wavelets statistical features (216dim) | 70.8% | 81.6%

and features of the proposed method, we linearly project each
type of the features to a 2D space through Fisher discriminant
analysis. Fig. 5 shows the distribution of the six types of fea-
tures described in Sec. 3.3. The ellipses in the figure depict the
mean and the covariance of a single-class feature distribution. It
is observed that color histogram and contrast are the most effec-
tive features for our dataset, while specularity and blurriness are
less effective. To assess the capability of the methods without
the background contextual information and the distinctive white
border on the recaptured image, we extract the central portion of
the image which are supposed to cover only the display medium
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Fig. 5. 2D projection of the physical feature distribution for the

real-scene image sets (red) and the recaptured image sets (blue).

in a classification experiment. As a comparison, we perform a
similar experiment with the top-left portion of the image which
has the same size as the central image. In contrast to the central
portion, the top-left portion retains the background contextual
information and the white border. The results are also shown
in Table 1 (b) and (c). It is found that the background contex-
tual information does contribute significantly when it comes to
separating the two image classes.

5. DISCUSSIONS AND FUTURE WORKS

One limitation of our current dataset is that the scale of the re-
captured images is smaller than the corresponding real images,
e.g. images shown in Fig. 2 and Fig. 3. Another characteristics
of the dataset is the white border in the attack image which is
purposefully preserved in order to mimic a practical attack sit-
uation. The effect for the white border can be discounted if we
extract only the central part of the recaptured image, as we did
in Sec. 4.2. Our dataset collection effort is ongoing. We will in-
troduce more diversity into the new dataset particularly in terms
of the recapturing procedure by introducing more types of dis-
play medium and printing devices as well as different ways of
positioning and capturing the display medium. Such diversity
will diminish the effect of the above-mentioned biases.

We believe that our method has a great room for improve-
ment and it can be easily extended by following the physical
intuition of our method. For example, we have not exploited the
photometric features such as specularity spatial distribution and
surface gradient to the greatest extent. We will explore more
sophisticated way of extracting the photometric features.

6. CONCLUSIONS

In this paper, we propose a general physical model for the image
recapturing process, which provides a physical insight into the
recaptured image detection. The features inspired by the general
model achieve significantly better classification performance on
the low resolution (VGA or QVGA) images as compared to the
wavelet statistical features. We also present a dataset of recap-
tured and real-scene images obtained by camera phones as the
end-user device. This dataset is suitable for evaluating methods

for recaptured image detection on mobile devices.

7. ACKNOWLEDGEMENT

The authors would like to thank Dr. Robby Tan for providing the
source code for the image decomposition method, and Prof. Yun
Qing Shi for the valuable discussions. The work is supported by
A*STAR Mobile Media Thematic Strategic Research Program
of Singapore.

8. REFERENCES

[1] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 4, pp. 594-611, 2006.

[2] D. Ngo, “Vietnamese security firm: Your face is easy to fake,”
http://news.cnet.com/8301-17938_ 105-10110987.html, 2008.

[3] H. Farid and S. Lyu, “Higher-order wavelet statistics and their
application to digital forensics,” IEEE Workshop on Statistical
Analysis in Computer Vision, 2003.

[4] T.-T. Ng, S.-F. Changand Y.-F. Hsu, L. Xie, and M.-P. Tsui,
“Physics-motivated features for distinguishing photographic im-
ages and computer graphics,” ACM Multimedia, 2005.

[5]1 H. Yu, T.-T. Ng, and Q. Sun, “Recaptured photo detection us-
ing specularity distribution,” IEEE International Conference on
Image Processing (ICIP), 2008.

[6] J. Bai, T.-T. Ng, X. Gao, and Y.-Q. Shi, “Is physics-based live-
ness detection truly possible with a single image?,” IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), 2010.

[7] G.Pan, L. Sun,Z. Wu, and S. Lao, “Eyeblink-based anti-spoofing
in face recognition from a generic webcamera,” IEEE Interna-
tional Conference on Computer Vision (ICCV), Oct. 2007.

[8] T.-T. Ng, “Camera response function signature for digital foren-
sics Part II: Signature extraction,” IEEE Workshop on Informa-
tion Forensics and Security (WIFS), 2009.

[9] N.Khanna and E. J. Delp, “Source scanner identification scanned
documents,” IEEE Workshop on Information Forensics and Se-
curity (WIFS), 2009.

[10] M. Osadchy, D. Jacobs, R. Ramamoorthi, and D. Tucker, “Using
specularities in comparing 3d models and 2d images,” Computer
Vision and Image Understanding, vol. 111, no. 3, pp. 275-294,
2008.

[11] R. Tan and K. Ikeuchi, “Separating reflection components of tex-
tured surfaces using a single image,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 27, no. 2, pp. 178—
193, 2005.

[12] O. Bimber and D. Iwai, “Superimposing dynamic range,” ACM
Siggraph Asia, vol. 27, no. 5, 2008.

[13] F. Crete, T. dolmiere, P. Ladret, and M. Nicolas, “The blur ef-
fect: perccption and estimation with a new no-reference percptual
blur metric,” SPIE International Society for Optical Engineering,
2007.



