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Abstract

In this paper, we address the scalability issue
plaguing graph-based semi-supervised learn-
ing via a small number of anchor points which
adequately cover the entire point cloud. Crit-
ically, these anchor points enable nonpara-
metric regression that predicts the label for
each data point as a locally weighted av-
erage of the labels on anchor points. Be-
cause conventional graph construction is inef-
ficient in large scale, we propose to construct
a tractable large graph by coupling anchor-
based label prediction and adjacency matrix
design. Contrary to the Nyström approxi-
mation of adjacency matrices which results
in indefinite graph Laplacians and in turn
leads to potential non-convex optimization
over graphs, the proposed graph construction
approach based on a unique idea called An-
chorGraph provides nonnegative adjacency
matrices to guarantee positive semidefinite
graph Laplacians. Our approach scales lin-
early with the data size and in practice usu-
ally produces a large sparse graph. Experi-
ments on large datasets demonstrate the sig-
nificant accuracy improvement and scalabil-
ity of the proposed approach.

1. Introduction

In pervasive applications of machine learning, one fre-
quently encounters situations where only a few labeled
data are available and large amounts of data remain
unlabeled. The labeled data often suffer from difficult
and expensive acquisition whereas the unlabeled data
can be cheaply and automatically gathered. Semi-
supervised learning (SSL) (Chapelle et al., 2006)(Zhu,
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2008) has been recommended to cope with the very
situations of limited labeled data and abundant unla-
beled data.

With rapid development of the Internet, now we can
collect massive (up to hundreds of millions) unlabeled
data such as images and videos, and then the need for
large scale SSL arises. Unfortunately, most SSL meth-
ods scale badly with the data size n. For instance, the
classical TSVM (Joachims, 1999) is computationally
challenging, scaling exponentially with n. Among vari-
ous versions of TSVM, CCCP-TSVM (Collobert et al.,
2006) has the lowest complexity, but it scales as at
least O(n2) so it is still difficult to scale up.

Graph-based SSL (Zhu et al., 2003)(Zhou et al., 2004)
(Belkin et al., 2006) is appealing recently because it is
easy to implement and gives rise to closed-form solu-
tions. However, graph-based SSL usually has a cubic
time complexity O(n3) since the inverse of the n × n
graph Laplacian is needed1, thus blocking widespread
applicability to real-life problems that encounter grow-
ing amounts of unlabeled data. To temper the cubic
time complexity, recent studies seek to reduce the in-
tensive computation upon the graph Laplacian manip-
ulation. (Delalleu et al., 2005) proposed a nonpara-
metric inductive function which makes label predic-
tion based on a subset of samples and then truncates
the graph Laplacian with the selected subset and its
connection to the rest samples. Clearly, such a trunca-
tion ignores the topology structure within the major-
ity part of input data and thereby loses considerable
data information. (Zhu & Lafferty, 2005) fitted a gen-
erative mixture model to the raw data and proposed
the harmonic mixtures to span the label prediction
function, but it did not explain how to construct a
large sparse graph such that the proposed harmonic
mixtures method can be scalable. (Tsang & Kwok,
2007) scaled up the manifold regularization technology
first proposed in (Belkin et al., 2006) through solving

1It is not easy yet to exactly solve the equivalent large-
scale linear systems.
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the dual optimization problem of manifold regulariza-
tion subject to a sparsity constraint. (Karlen et al.,
2008) trained large scale TSVMs by means of stochas-
tic gradient descent and a multi-layer architecture.
(Zhang et al., 2009) applied the Nyström approxima-
tion to the huge graph adjacency (or affinity) matrix,
but there is no guarantee for the graph Laplacian ma-
trix computed from the Nyström-approximated adja-
cency matrix to be positive semidefinite, which leads to
non-convex optimization. (Fergus et al., 2010) speci-
fied the label prediction function using smooth eigen-
vectors of the graph Laplacian which are calculated
by a numerical method. However, this method relies
on the dimension-separable data density assumption
which is not always true.

In this paper, we propose a large graph construction
approach to efficiently exploit all data points. This
approach is simple and scalable, enjoying linear space
and time complexities with respect to the data size.

2. Overview

We try to address the scalability issue pertaining to
SSL from two perspectives: anchor-based label predic-
tion and adjacency matrix design.

2.1. Anchor-Based Label Prediction

Our key observation is that the computational inten-
siveness of graph-based SSL stems from the full-size la-
bel prediction models. Since the number of unlabeled
samples is huge in large scale applications, learning
full-size prediction models is inefficient.

Suppose a soft label prediction function f : R
d 7→ R

defined on the input samples X = {xxxi}
n
i=1. Without

loss of generality, we assume that the first l samples are
labeled and the rest remain unlabeled. To work un-
der large scale, (Delalleu et al., 2005)(Zhu & Lafferty,
2005) made the label prediction function be a weighted
average of the labels on a subset of anchor (landmark)
samples. As such, if one can infer the labels associ-
ated with the much smaller subset, the labels of other
unlabeled samples will be easily obtained by a simple
linear combination.

The idea is to use a subset U = {uuuk}
m
k=1 ⊂ R

d in which
each uuuk acts as an anchor point since we represent f
in terms of these points, i.e.,

f(xxxi) =

m
∑

k=1

Zikf(uuuk), (1)

where Zik’s are sample-adaptive weights. Such a label
prediction essentially falls into nonparametric regres-

sion (Hastie et al., 2009). Let us define two vectors
fff = [f(xxx1), · · · , f(xxxn)]

⊤ and aaa = [f(uuu1), · · · , f(uuum)]⊤,
and rewrite eq. (1) as

fff = Zaaa, Z ∈ R
n×m, m ≪ n. (2)

This formula serves as a main disposal of scalable SSL
because it reduces the solution space of unknown la-
bels from large fff to much smaller aaa. This economi-
cal label prediction model eq. (2) surely mitigates the
computational burden of the original full-size models.

Importantly, we take these anchor points {uuuk} as
k-means clustering centers instead of randomly sam-
pled exemplars because it turns out that k-means clus-
tering centers have a stronger representation power to
adequately cover the vast point cloud X .

2.2. Adjacency Matrix Design

Recall that in the literature an undirected weighted
graph G(V,E,W ) is built on n data points. V is a
set of nodes with each vi representing a data point
xxxi, E ⊆ V × V is a set of edges connecting adja-
cent nodes, and W ∈ R

n×n is a weighted adjacency
matrix which measures the strength of edges. Obvi-
ously, edge connections in graphs are crucial to the
outcome. One broadly used connecting strategy is the
kNN graph which creates an edge between vi and vj
if xxxi is among k nearest neighbors of xxxj or vice versa.
The time cost of kNN graph construction is O(kn2),
so even this conventional graph construction approach
is infeasible in large scale. Although we may employ
approximate kNN graph construction to save the time
cost, the large matrix inversion or large-scale linear
system solving involved in manipulating large graphs
remains a big hurdle.

On the other hand, it is unrealistic to save in memory a
matrix W as large as n×n. Hence, designing memory
and computationally tractable W constitutes a major
bottleneck of large scale graph-based SSL. We should
find an approach to parsimoniously represent W for
large graphs.

2.3. Design Principles

Now we investigate some principles for designing Z
and W tailored to large scale problems.

Principle (1) We impose the nonnegative normaliza-
tion constraints

∑m

k=1 Zik = 1 and Zik ≥ 0 to main-
tain the unified range of values for all predicted soft
labels via regression. Themanifold assumption implies
that contiguous data points should have similar labels
and distant data points are very unlikely to take sim-
ilar labels. This motivates us to also impose Zik = 0
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when anchor uuuk is far away from xxxi so that the regres-
sion on xxxi is a locally weighted average in spirit. As a
result, Z ∈ R

n×m is nonnegative as well as sparse.

Principle (2) We require W ≥ 0. The nonnegative
adjacency matrix is sufficient to make the resulting
graph Laplacian L = D−W (D ∈ R

n×n is a diagonal
matrix with entries being Dii =

∑n

j=1 Wij) positive
semidefinite (Chung, 1997). This nonnegative prop-
erty is important to guarantee global optimum of many
graph-based SSL methods.

Principle (3) We prefer sparse W because sparse
graphs have much less spurious connections between
dissimilar points and tend to exhibit high quality.
(Zhu, 2008) has pointed out that fully-connected dense
graphs perform worse than sparse graphs empirically.

Intuitively, we would use the nonnegative sparse ma-
trix Z to design the nonnegative sparse matrix W .
Actually, in the next section, we are able to design Z
and W jointly and generate empirically sparse large
graphs. On the contrary, the recently proposed Pro-
totype Vector Machine (PVM) (Zhang et al., 2009)
designed Z and W separately, producing improper
dense graphs. In addition, when using the Nyström
method to approximate a predefined W like a kernel
matrix, PVM fails to preserve the nonnegative prop-
erty of graph adjacency matrices. Therefore, PVM
cannot guarantee that the graph Laplacian regulariza-
tion term appearing in its cost functions is convex, so
PVM suffers heavily from local minima. Crucially, we
are not trying to approximate any predefined W ; in-
stead, we design it directly to cater for the nonnegative
and sparse properties.

3. AnchorGraph: Large Graph

Construction

3.1. Design of Z

We aim at designing a regression matrix Z that mea-
sures the underlying relationship between raw samples
X and anchors U (note that U is outside X ). Follow-
ing Principle (1) in the last section, we desire to keep
nonzero Zik for s (< m) closest anchors to xxxi. Exactly,
the Nadaraya-Watson kernel regression (Hastie et al.,
2009) defines such Zik based on a kernel function Kh()
with a bandwidth h:

Zik =
Kh(xxxi,uuuk)

∑

k′∈〈i〉 Kh(xxxi,uuuk′)
∀k ∈ 〈i〉, (3)

where the notation 〈i〉 ⊂ [1 : m] is the set saving the
indexes of s nearest anchors of xxxi. Typically, we may
adopt the Gaussian kernel Kh(xxxi,uuuk) = exp(−‖xxxi −
uuuk‖

2/2h2) for the kernel regression.

With the consideration that the kernel-defined weights
are sensitive to the hyperparameter h and lack a mean-
ingful interpretation, we obtain them from another
perspective: geometric reconstruction similar to LLE
(Roweis & Saul, 2000). Concretely, we reconstruct
any data point xxxi as a convex combination of its clos-
est anchors, and the combination coefficients are pre-
served for the weights in nonparametric regression.
Let us define a matrix U = [uuu1, · · · ,uuum] and denote
by U〈i〉 ∈ R

d×s a sub-matrix composed of s nearest
anchors of xxxi. Then, we propose Local Anchor Embed-
ding (LAE) to optimize the convex combination coef-
ficients:

min
zzzi∈Rs

g(zzzi) =
1

2
‖xxxi − U〈i〉zzzi‖

2

s.t. 1⊤zzzi = 1, zzzi ≥ 0 (4)

where s entries of the vector zzzi correspond to s com-
bination coefficients contributed by s closest anchors.
Beyond LLE, LAE imposes the nonnegative constraint
and then the convex solution set to eq. (4) constitutes
a multinomial simplex

S =
{

zzz ∈ R
s : 1⊤zzz = 1, zzz ≥ 0

}

. (5)

In contrast to the regression weights as predefined in
eq. (3), LAE is more advantageous because it provides
optimized regression weights that are also sparser than
the predefined ones.

Standard quadratic programming (QP) solvers can be
used to solve eq. (4) but most of them need to com-
pute some approximation of the Hessian and are thus
relatively expensive. We apply the projected gradient
method, a first-order optimization procedure, to solve
eq. (4) instead. The updating rule in the projected
gradient method is expressed as the following iterative
formula

zzz
(t+1)
i = ΠS(zzz

(t)
i − ηt∇g(zzz

(t)
i )), (6)

where t denotes the time stamp, ηt > 0 denotes the
appropriate step size, ∇g(zzz) denotes the gradient of g
at zzz, and ΠS(zzz) denotes the simplex projection oper-
ator on any zzz ∈ R

s. Mathematically, the projection
operator is formulated as

ΠS(zzz) = argmin
zzz′∈S

‖zzz′ − zzz‖. (7)

Such a projection operator has been implemented effi-
ciently in O(s log s) (Duchi et al., 2008), which is de-
scribed in Algorithm 1.

To achieve faster optimization, we employ Nesterov’s
method (Nesterov, 2003) to accelerate the gradient de-
cent in eq. (6). As a brilliant achievement in the op-
timization field, Nesterov’s method has a much faster
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Algorithm 1 Simplex Projection

Input: A vector zzz ∈ R
s.

sort zzz into vvv such that v1 ≥ v2 ≥ · · · ≥ vs
find ρ = max{j ∈ [1 : s] : vj −

1
j
(
∑j

r=1 vr − 1) > 0}

compute θ = 1
ρ
(
∑ρ

j=1 vj − 1)

Output: A vector zzz′ = [z′1, · · · , z
′
s]

⊤ such that z′j =
max{zj − θ, 0}.

Algorithm 2 Local Anchor Embedding (LAE)

Input: data points {xxxi}
n
i=1 ⊂ R

d, anchor point matrix
U ∈ R

d×m, integer s.
for i = 1 to n do

for xxxi find s nearest neighbors in U , saving the index
set 〈i〉;
define functions g(zzz) = ‖xxxi − U〈i〉zzz‖

2/2, ∇g(zzz) =

U⊤
〈i〉U〈i〉zzz − U⊤

〈i〉xxxi, and g̃β,vvv(zzz) = g(vvv) + ∇g(vvv)⊤(zzz −

vvv) + β‖zzz − vvv‖2/2;

initialize zzz(1) = zzz(0) = 1/s, δ−1 = 0, δ0 = 1, β0 = 1,
t = 0;
repeat

t = t+ 1, αt =
δt−2−1

δt−1

set vvv(t) = zzz(t) + αt(zzz
(t) − zzz(t−1))

for j = 0, 1, · · · do

β = 2jβt−1, zzz = ΠS(vvv
(t) − 1

β
∇g(vvv(t)))

if g(zzz) ≤ g̃β,vvv(t)(zzz) then

update βt = β and zzz(t+1) = zzz
break

end if
end for

update δt =
1+

√

1+4δ2
t−1

2

until zzz(t) converges;
zzzi = zzz(t).

end for
Output: LAE vectors {zzzi}

n
i=1.

convergence rate than the traditional methods such as
gradient descent and subgradient descent. We describe
LAE accelerated by Nesterov’s method in Algorithm
2. After solving the optimal weight vector zzzi, we set

Zi,〈i〉 = zzz⊤i , |〈i〉| = s, zzzi ∈ R
s (8)

and Z
i,〈i〉

= 0 for the rest entries of Z. To summa-

rize, we optimize the weights used for anchor-based
nonparametric regression by means of data reconstruc-
tion with contiguous anchors. For each data point, the
LAE algorithm converges within a few iterations T in
practice. Ultimately, LAE outputs a highly sparse Z
(a memory space of O(sn)) with a total time complex-
ity O(smn+ s2Tn).

3.2. Design of W

So far, we have set up m anchors (cluster centers) to
cover a point cloud of n data points, and also designed

a nonnegative matrix Z that supports the economical
label prediction model shown in eq. (2). Intuitively, we
may design the adjacency matrix W using Z as follows

W = ZΛ−1Z⊤, (9)

in which the diagonal matrix Λ ∈ R
m×m is defined

as Λkk =
∑n

i=1 Zik. Immediately, such a defined ad-
jacency matrix W satisfies Principle (2) since Z is
nonnegative. Further, we find out that nonnegative
sparse Z leads to empirically sparse W when the an-
chor points are set to cluster centers such that most
data point pairs across different clusters do not share
the same set of closest cluster centers. Accordingly, W
satisfies Principle (3) in most cases2.

We term the large graph G described by the adjacency
matrix W in eq. (9) AnchorGraph. Eq. (9) is the core
finding of this paper, which constructs a nonnegative
and empirically sparse graph adjacency matrix W via
crafty matrix factorization. Furthermore, it couples
anchor-based label prediction and adjacency matrix
design via the common matrix Z. Hence, we only need
to save Z, linear in the data size n, in memory as it not
only contributes to the final label prediction but also
skillfully constructs the AnchorGraph. The resultant
graph Laplacian of the AnchorGraph is derived by L =
D − W = I − ZΛ−1Z⊤ where the diagonal degree
matrix D equals the identity matrix.

Theoretically, we can derive eq. (9) by a probabilis-
tic means. As the presented LAE algorithm derives Z
from a geometrical reconstruction view, this matrix Z
actually unveils a tight affinity measure between data
points and anchor points. That is sound in the sense
that the more an anchor uuuk contributes to the recon-
struction of a data point xxxi, the larger the affinity be-
tween them. To explicitly capture the data-to-anchor
relationship, we introduce a bipartite graph (Chung,
1997) B(V,U , E). The new node set U includes nodes
{uk}

m
k=1 representing the anchor points and E contains

edges connecting V and U . We connect an undirected
edge between vi and uk if and only if Zik > 0 and
designate the edge weight as Zik. Then the cross ad-
jacency matrix between {vi}

n
i=1 and {uk}

m
k=1 is Z and

the full adjacency matrix for the bipartite graph B is

thus B =

[

0 Z
Z⊤ 0

]

∈ R
(n+m)×(n+m) where Z1 = 1.

A toy example for B is visualized in Fig. 1.

Over the bipartite graph B, we establish stationary
Markov random walks through defining the one-step
transition probability matrix as P = (DB)−1B in

2In an extreme case, if a hub anchor point exists such
that a large number of data points are connected to it then
W may be dense.
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Figure 1. A bipartite
graph representation of
data points v1, · · · , v6
and anchor points
u1, u2. Zik captures the
data-to-anchor relation-
ship (Z21 + Z22 = 1).
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(a) 100 anchor points
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(b) 10NN graph
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(c) AnchorGraph

Figure 2. The two-moon problem of 1200 2D points. (a) 100 anchor points by k-means clus-
tering (m = 100); (b) 10NN graph built on original points; (c) the proposed AnchorGraph

with s = 2 built on original points.

which DB ∈ R
(n+m)×(n+m) is a diagonal matrix with

entries beingDB
ii =

∑n+m

j=1 Bij . By doing so, we obtain
the transition probabilities in one time step as follows

p(1)(uk|vi) =
Zik

∑m

k′=1 Zik′

= Zik, p(1)(vi|uk) =
Zik

∑n

j=1 Zjk

∀i ∈ [1 : n], ∀k ∈ [1 : m].
(10)

Obviously, p(1)(vj |vi) = 0 and p(1)(ur|uk) = 0 since
there are no direct edges connecting them. Let
us contemplate the two-step transition probabilities
p(2)(vj |vi) and have the following proposition.

Proposition 1. Given one-step transition probabili-
ties defined in eq. (10), the transition probabilities in
two time steps are

p(2)(vj |vi) = p(2)(vi|vj) =

m
∑

k=1

ZikZjk

Λkk

. (11)

Proof. We exploit the chain rule of Markov random
walks to deduce

p(2)(vj |vi) =

m
∑

k=1

p(1)(vj |uk)p
(1)(uk|vi)

=

m
∑

k=1

Zjk
∑n

j′=1 Zj′k

Zik =

m
∑

k=1

ZikZjk

Λkk

which does not depend on the order between i and j,
so we complete the proof.

Proposition 1 indicates

Wij = p(2)(vj |vi) = p(2)(vi|vj) (12)

which interprets the designed adjacency matrix in a
probabilistic measure and thereby testifies the cor-
rectness of our design. It is noticeable that we may

also define graph adjacency matrices using the higher-
order transition probabilities such asW ′

ij = p(4)(vj |vi),
but this leads to a denser adjacency matrix W ′ =
ZΛ−1Z⊤ZΛ−1Z⊤ and increases the computational
cost as well.

4. AnchorGraph Regularization

As the major contribution of this paper, the proposed
AnchorGraph resembles the classical kNN graph in
the connection structure. On the two-moon toy data,
the AnchorGraph, which is really sparse and shown in
Fig. 2(c), is close to the kNN graph shown in Fig. 2(b).
Hence, we are able to establish a graph-regularized
framework upon this AnchorGraph as it comprises all
data and exhibits high fidelity to the kNN graph.

We turn our attention to a standard multi-class SSL
setting where each labeled sample xxxi (i = 1 · · · , l)
carries a discrete label yi ∈ {1, · · · , c} from c dis-
tinct classes. We denote by Y = [yyy1, · · · , yyyc] ∈
R

l×c a class indicator matrix on labeled samples with
Yij = 1 if yi = j and Yij = 0 otherwise. Amenable
to the aforementioned anchor-based label prediction
model, we only need to solve the soft labels associ-
ated with anchors which are put in the label matrix
A = [aaa1, · · · , aaac] ∈ R

m×c in which each column vector
accounts for a class. We introduce the graph Laplacian
regularization norm ΩG(fff) = 1

2fff
⊤Lfff that has been

widely exploited in the recent papers. Tailored to each
class, we have a label prediction function fff j = Zaaaj .
Then we formulate a SSL framework as follows

min
A=[aaa1,··· ,aaac]

Q(A) =
1

2

c
∑

j=1

‖Zlaaaj − yyyj‖
2 + γ

c
∑

j=1

ΩG(Zaaaj)

=
1

2
‖ZlA− Y ‖2F +

γ

2
tr(A⊤Z⊤LZA),
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Table 1. Time complexity analysis of the proposed scalable SSL approach. n is the data size, m is # of anchor points, s
is # of nearest anchors in LAE, and T is # of iterations in LAE (n ≫ m ≫ s).

Approach find anchors design Z graph regularization total time complexity
AnchorGraphReg O(mn) O(smn) or O(smn+ s2Tn) O(m3 +m2n) O(m2n)

where Zl ∈ R
l×m is the sub-matrix according to the

labeled partition, ‖.‖F stands for the Frobenius norm,
and γ > 0 is the regularization parameter.

Meanwhile, we compute a “reduced” Laplacian matrix:

L̃ = Z⊤LZ = Z⊤(I − ZΛ−1Z⊤)Z

= Z⊤Z − (Z⊤Z)Λ−1(Z⊤Z),

which is both memory-wise and computationally
tractable, taking O(m2) space and O(m3 + m2n)
time. Subsequently, we could simplify the cost func-
tion Q(A) to follows

Q(A) =
1

2
‖ZlA− Y ‖2F +

γ

2
tr(A⊤L̃A). (13)

With simple algebra, we can easily obtain the globally
optimal solution to eq. (13):

A∗ = (Z⊤
l Zl + γL̃)−1Z⊤

l Y. (14)

As such, we yield a closed-form solution for addressing
large scale SSL. In the sequel we employ the solved soft
labels associated with anchors to predict the hard label
for any unlabeled sample as

ŷi = arg max
j∈{1,··· ,c}

Zi.aaaj
λj

, i = l + 1, · · · , n (15)

where Zi. ∈ R
1×m denotes the ith row of Z, and the

normalization factor λj = 1⊤Zaaaj , suggested as a use-
ful class mass normalization in the classical SSL paper
(Zhu et al., 2003), balances skewed class distributions.

4.1. Complexity Analysis

The proposed AnchorGraph regularization, abbrevi-
ated to AnchorGraphReg, consists of three stages: 1)
find anchors by k-means clustering, 2) design Z, and
3) run graph regularization. In each stage the space
complexity is bounded by O(m + n). In the second
stage, we may use either predefined Z in eq. (3) or
optimized Z offered by LAE. The time complexity for
each stage is listed in Table 1. We have used a fixed
number m (≪ n) of anchor points for large scale SSL,
which is independent of the data size n. Therefore,
our AnchorGraphReg approach scales linearly with the
data size n.

5. Experiments

In this section, we evaluate the proposed scalable
graph-based SSL approach AnchorGraphReg (AGR),
which integrates anchor-based label prediction and ad-
jacency matrix design, on three real-world datasets.
We compare it with state-of-the-art SSL approaches
and two recent scalable SSL approaches Eigenfunction
(Fergus et al., 2010) and PVM (Zhang et al., 2009).
We also report the performance of several baseline
methods including 1NN, linear SVM and RBF SVM.

For fair comparisons, we designate the same cluster-
ing centers, that act as anchor points, for PVM with
square loss, PVM with hinge loss, AGR with pre-
defined Z (denoted by AnchorGraphReg0), and AGR
with LAE-optimized Z (denoted by AnchorGraphReg).
For the two versions of AGR, we fix s = 3 to make con-
structed AnchorGraphs as sparse as possible. We use
the same RBF kernel for SVM and PVM where the
width of the RBF kernel is set by cross validation. All
these compared methods are implemented in MAT-
LAB 7.9 and run on a 2.53 GHz, 4GB RAM Core 2
Duo PC.

5.1. Mid-sized Dataset

To see if the proposed AGR can show good perfor-
mance in mid-scale, we conduct experiments on the
benchmark dataset USPS (the training part) in which
each sample is a 16× 16 digit image and there are ten
types of digits 0, 1, 2, ..., 9 used as 10 classes, summing
up to a total of 7,291. To make a SSL setting, we ran-
domly choose l = 100 labeled samples such that they
contain at least one sample from each class (note that
this setting introduces the skewed class distribution in
the labeled samples). We evaluate the baseline 1NN,
two state-of-the-art SSL methods Local and Global
Consistency (LGC) (Zhou et al., 2004) and Gaussian
Fields and Harmonic Functions (GFHF) augmented by
class mass normalization (Zhu et al., 2003), and four
versions of AGR using randomly selected anchors and
cluster center anchors.

Averaged over 20 trials, we calculate the classification
error rates for the referred methods here. The results
are displayed in Table 2 and Fig. 3. Table 2 lists a total
running time including three stages k-means cluster-
ing, designing Z, and graph regularization for every
version of AGR. The time cost of graph regulariza-
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Table 2. Classification error rates (%) on USPS-Train

(7,291 samples) with l = 100 labeled samples. m = 1000
for four versions of AGR. The running time of k-means

clustering is 7.65 seconds.

Method Error Rate Running Time
(%) (seconds)

1NN 20.15±1.80 0.12
LGC with 6NN graph 8.79±2.27 403.02
GFHF with 6NN graph 5.19±0.43 413.28
random AnchorGraphReg0 11.15±0.77 2.55
random AnchorGraphReg 10.30±0.75 8.85
AnchorGraphReg0 7.40±0.59 10.20
AnchorGraphReg 6.56±0.55 16.57
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Figure 3. Average classification error rates vs. numbers of
anchor points.

tion is quite small and can almost be ignored. From
Table 2, we know that kNN graph construction and
inverse of graph Laplacian in either LGC or GFHF
are time-consuming, so LGC and GFHF are infeasi-
ble for larger datasets. It is pleasant to observe that
the proposed AGR with m = 1000 cluster center an-
chors outperforms LGC and is comparable to GFHF,
taking much shorter running time. Fig. 3 reveals that
the cluster center anchors demonstrate a substantial
advantage over the random anchors when using them
for our approach AGR, and that the increasing an-
chor size m indeed leads to significant improvement of
classification accuracy of AGR. In addition, AGR with
LAE-optimized Z further improves the performance of
AGR with predefined Z, so we can say that the geo-
metrical strategy for designing Z makes sense.

5.2. Large Datasets

The MNIST dataset3 contains handwritten digit im-
ages from ‘0’ to ‘9’. It has a training set of 60,000
samples and a test set of 10,000 samples. We hold the
training and test samples as a whole and randomly
choose labeled samples from the whole set. The rest
samples then remain as the unlabeled data. Similar to

3http://yann.lecun.com/exdb/mnist/

Table 3. Classification error rates (%) on MNIST (70,000
samples). m = 1000 for two versions of AGR.

Method l = 100 l = 1000
1NN 27.86±1.25 10.96±0.30
Linear SVM 26.60±1.45 13.22±0.40
RBF SVM 22.70±1.35 7.58±0.29
Eigenfunction 21.35±2.08 11.91±0.62
PVM(square loss) 19.21±1.70 7.88±0.18
PVM(hinge loss) 18.55±1.59 7.21±0.19
AnchorGraphReg0 11.11±1.14 6.35±0.16
AnchorGraphReg 9.40±1.07 6.17±0.15

the USPS experiments, the SSL setting on MNIST

also introduces the skewed class distribution in the
labeled samples. In order to accelerate the running
speed, we perform PCA to reduce the original 28 ∗ 28
image dimensions to 86 dimensions.

Averaged over 20 trials, we calculate the error rates
for eight mentioned methods with the number of la-
beled samples being 100 and 1000, respectively. The
results are listed in Table 3. Again, we observe that
AGR (m = 1000) with LAE-optimized Z is superior to
the other methods, which demonstrates that the linear
time large graph construction approach AnchorGraph

exhibits high quality, thus enabling more accurate
graph-based SSL in large scale. The two competing
large scale SSL methods, Eigenfunction and PVM,
perform worse because both of them fail to construct
good large graphs. PVM produces dense graphs, while
Eigenfunction seems to construct backbone graphs for
approximate numerical computations of eigenvectors.
As the key advantage, the proposed AnchorGraph ef-
ficiently yields an empirically sparse adjacency matrix
in which dissimilar data points would have 0 adjacency
weights. Another advantage is that AGR with opti-
mized Z introduces three parameters m, s and γ of
which we only need to tune the real-valued γ with the
other two fixed.

In order to test the performance in larger scale, we con-
struct extended MNIST by translating the original
images by one pixel in each direction, and then obtain
630,000 images like (Karlen et al., 2008). By repeating
the similar evaluation process as MNIST, we report
average classification error rates of five methods in Ta-
ble 4 given 100 labeled samples. The results including
average error rates and average running times shown
in Table 4 further confirm the superior performance of
AGR (m = 500) which achieves a 1/2-fold error rate
reduction compared to the baseline 1NN.

6. Conclusion and Discussion

Previous SSL methods scale badly with the data size,
which prevents SSL from being widely applied. This
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Table 4. Classification error rates (%) on Extended

MNIST (630,000 samples) with l = 100 labeled samples.
m = 500 for two versions of AGR. The running time of
k-means clustering is 195.16 seconds.

Method Error Rate Running Time
(%) (seconds)

1NN 39.65±1.86 5.46
Eigenfunction 36.94±2.67 44.08
PVM(square loss) 29.37±2.53 266.89
AnchorGraphReg0 24.71±1.92 232.37
AnchorGraphReg 19.75±1.83 331.72

paper tries to make SSL practical on large scale data
collections by skillfully constructing large graphs over
all data. The proposed SSL approach AGR, success-
fully addressing scalable SSL, is simple to understand,
easy to implement, yet excellent enough to be compa-
rable with state-of-the-arts. Both time and memory
needed by AGR grow only linearly with the data size,
so it can enable us to apply SSL to even larger datasets
with millions of samples.

In essence, AGR has a natural out-of-sample exten-
sion and can easily apply to novel samples once we
compute the regression weights Z.k for any novel sam-
ple. For very large datasets (millions or more) k-means
clustering may be expensive. To run AGR, we pro-
pose to adopt random anchors or try faster cluster-
ing algorithms such as random forest clustering. We
invented an effective method for mid-scale SSL prob-
lems to learn uniform graph structures in our latest
paper (Liu & Chang, 2009). However, the large scale
challenge poses an obstacle to graph learning. What
we can do in future is to further sparsify the proposed
AnchorGraph.
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