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Near Duplicate Identification With Spatially
Aligned Pyramid Matching
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Abstract—A new framework, termed spatially aligned pyramid
matching, is proposed for near duplicate image identification. The
proposed method robustly handles spatial shifts as well as scale
changes, and is extensible for video data. Images are divided into
both overlapped and non-overlapped blocks over multiple levels.
In the first matching stage, pairwise distances between blocks
from the examined image pair are computed using earth mover’s
distance (EMD) or the visual word with χ2 distance based method
with scale-invariant feature transform (SIFT) features. In the sec-
ond stage, multiple alignment hypotheses that consider piecewise
spatial shifts and scale variation are postulated and resolved using
integer-flow EMD. Moreover, to compute the distances between
two videos, we conduct the third step matching (i.e., temporal
matching) after spatial matching. Two application scenarios are
addressed—near duplicate retrieval (NDR) and near duplicate
detection (NDD). For retrieval ranking, a pyramid-based scheme
is constructed to fuse matching results from different partition
levels. For NDD, we also propose a dual-sample approach by
using the multilevel distances as features and support vector
machine for binary classification. The proposed methods are
shown to clearly outperform existing methods through extensive
testing on the Columbia Near Duplicate Image Database and
two new datasets. In addition, we also discuss in depth our
framework in terms of the extension for video NDR and NDD,
the sensitivity to parameters, the utilization of multiscale dense
SIFT descriptors, and the test of scalability in image NDD.

Index Terms—Near duplicate detection, near duplicate re-
trieval, spatially aligned pyramid matching.

I. Introduction

NEAR duplicate images or videos refer to a pair of
images or videos in which one is close to the exact

duplicate of the other. There are two different conventional
definitions of the term “near duplicate images” [3]: 1) two
near duplicate images are perceptually identical, in which
the differences comprise of noise, editing operations, small
photometric distortions etc, and 2) in a more general case,
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two near duplicate images are captured from the same 3-D
scene, but they are from different viewpoints and may have
different illumination conditions. In this paper, we focus on the
second case, which is more challenging due to the presence
of significant piecewise spatial shifts, scale and photometric
variations (see Figs. 1 and 2). Similarly as in [3], we also
define two videos as near duplicate videos if they share a
large percentage of near-duplicate frames.

There are two related tasks in near duplicate identification
(NDI): near duplicate retrieval (NDR) and near duplicate
detection (NDD) [29], [31]. NDR aims to find all images or
videos that are near duplicates to an input query image or
video, which can be formulated as a ranking problem. NDD
aims to detect all duplicate image or video pairs from all
possible pairs from the image or video source, which can be
considered as a two-class classification problem. NDR has
broad applications in copyright infringement detection and
query-by-example application, and NDD has been used to link
news stories and group them into threads [29] as well as filter
out the redundant near duplicate images or videos in the top
results from text keywords based web search [24]. As shown
in [29] and [31], NDD is more difficult than NDR. Given
600 images with 150 near duplicate pairs, NDR requires only
that a duplicity ranked list be generated for each query image
based on comparison to the other 599 images. Conversely,
NDD involves correctly classifying 150 image pairs from
179 700 candidate pairs, a task which is less forgiving.

Zhang and Chang [29] formulated a stochastic attributed
relational graph matching framework for NDI, in which each
vertex is used to represent compositional parts from the
detected interest points and each edge is used to characterize
part relations. The graph parameters were computed through a
learning algorithm based on expectation-maximization. How-
ever, the graph matching method involves a complex process
of stochastic belief propagation and thus identification speed is
slow [31]. In [21], Vaiapury et al. extended the image matching
method in [14] for near duplicate video identification. Based
on PCA-scale-invariant feature transform (SIFT), Ke et al. [8]
developed a point set matching method, while Zhao et al. [31]
and Wu et al. [24] proposed one-to-one symmetric matching
algorithms. However, because of the large number of interest
points in images (possibly exceeding 1000), direct matching
based on interest points is extremely time-consuming and
inappropriate for online NDI. While both works also proposed
new index techniques to accelerate the matching speed, the
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retrieval performances generally drop after the use of indexing.
For NDI, Tang and Gao [19] proposed to use the cascade
structure to efficiently integrate different types of features, and
Wu et al. [25] selected the best feature to cope with different
types of image transformations. Recently, Chum et al. [3] used
a bag-of-words model [12], [18] to deal with SIFT features
for large-scale NDI, and proposed a new indexing technique
based on min-Hash to accelerate the image matching. How-
ever, the indexing technique generally degrades the retrieval
performance. More importantly, all the existing methods [3],
[8], [19], [21], [24], [25], [29], [31] did not explicitly cope with
the challenges in NDI from significant spatial shifts and scale
variations.

Distances between images or videos are crucial in NDI.
Image matching methods based on local SIFT features have
demonstrated remarkable performance for object recognition
and localization as well as scene classification [5], [10], [12],
[13], [18], [30], in which the SIFT descriptors are extracted
from densely sampled regions or the salient regions detected
by salient region detection algorithms. Several methods, [e.g.,
earth mover’s distance (EMD) [17] and pyramid match kernel
(PMK) [5]], were proposed to directly calculate the distance
between two images, which may have unequal length of SIFT
descriptors. Other methods [18] represented each image as a
bag of orderless visual words by quantizing each SIFT descrip-
tor to a visual word with clustering methods (e.g., K-Means).
Then χ2 distance or other distance between two images is
calculated based on the tf (term frequency) features or tf-idf
(term frequency-inverse document frequency) features. Zhang
et al. [30] experimentally reported that the performances of
two classification methods based on EMD and χ2 distances
are generally comparable for object recognition.

Recently, multilevel matching methods were also proposed
for efficient distance computation and demonstrated promising
results in different tasks, such as object recognition, scene
classification and event recognition in news video and con-
sumer video [4], [5], [12], [13], [26], [27]. They involved
pyramidal binning in different domains (such as feature, spatial
and temporal domain) and led to improved performances
resulting from information fusion at multiple levels [2], [5],
[12], [13], [26]. The first work PMK is much faster than other
existing image matching methods (e.g., EMD), because the
computational complexity of PMK is linear in the number of
features. The prior work spatial pyramid matching (SPM) [12]
quantized SIFT descriptors into visual words and employed the
fixed block-to-block matching for scene classification based
on the observation that the images from the same scene have
similar spatial configurations. Observing that one video clip
is usually comprised of multiple stages of event evolution, we
proposed a multilevel temporal matching technique, referred to
as temporal pyramid matching (TPM) [26] here, to recognize
events in broadcast news videos. In TPM, one video clip is
divided into non-overlapped subclips, and the subclips across
different temporal locations may be matched. However, even
when TPM is converted to the spatial domain, TPM cannot
cope with the full range of spatial shifts because of its strict
non-overlapped partitioning scheme. Moreover, TPM does not
consider scale variations.

To solve the problems mentioned above, in Section II
we propose a two-stage spatially aligned pyramid matching
(SAPM) framework. This paper was initially published in [28].
We divide the images into increasingly finer non-overlapped
and overlapped blocks at multiple levels, as shown in Fig. 1(a)
and (b). Matching is carried out in two stages. In the first stage
matching, we compute the pairwise distances between any two
blocks from two images with SIFT features, in which EMD
based algorithm and the visual word with χ2 distance based
method [30] are employed (We refer to our method as SAPM
and SAPM-tf, respectively). The second stage is a block-
alignment stage where different block correspondences at the
same level as well as across different levels are hypothesized.
The output of SAPM or SAPM-tf is a set of 45 characteristic
multilevel distances, each of which approximately measures
the validity of a specific hypothesis, involving spatial shift
and scale change. These distances can be used in a single
ranking measure for retrieving near duplicate images. For
the NDD task, we also propose a dual sample approach by
using the multilevel distances as 45D features and support
vector machine (SVM) [1], [22] for binary classification.
Additionally, our method can be readily extended to deal with
videos by adding a temporal matching stage.

We conducted exhaustive experiments, reported in Sec-
tion III, to demonstrate the effectiveness of SAPM. These
experiments demonstrate that: 1) for image NDR, at each
independent level, better performance is achieved by dividing
query images into non-overlapped blocks and database images
into overlapped blocks, while the best results are obtained
by fusing information from multiple levels; 2) for image
NDR and NDD, SAPM generally outperforms SPM and TPM;
Moreover, our best results are also significantly better than the
recent work [31] for Image NDR and NDD; and 3) for video
NDR and NDD, SAPM also outperforms SPM and TPM.

The main contributions of this paper include the following.
1) SAPM and SAPM-tf use a novel multilevel matching

framework to explicitly address piecewise spatial shifts
and scale variations. We develop a new method for video
NDI by incorporating a temporal matching stage.

2) We also propose a dual sample approach by using the
multilevel distances as features and SVM for binary
classification.

II. Spatially Aligned Pyramid Matching

To solve the problem of near duplicate identification, a
framework comprising two stages of matching is developed.
An image x is divided into 4l non-overlapped blocks at level-
l, l = 0, . . . , L − 1 in a manner similar to SPM [12], with
the block size set as 1/2l of the original image dimensions.
As Lazebnik et al. [12] noted that performance does not
increase beyond three levels, we likewise fix L = 3. A finer
partition is also used in which overlapped blocks with size
equaling 1/2l of the original image dimensions are sampled
at a fixed interval, typically 1/8 of the image width and height.
The denser tiling is intended for subimage matching at finer
spatial displacements than that of the non-overlapped partition
described above. Two kinds of partitions are illustrated in
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Fig. 1. Illustration of spatially aligned pyramid matching at level-2.
(a) and (b) Pair of near duplicate images, which are divided into 4 × 4
non-overlapped blocks and 7 × 7 overlapped blocks (as shown with different
colors), respectively. (c) 16 × 49 distance matrix between any two blocks.
(d) 16 × 49 integer flow matrix, which indicates the matching relationship
between any two blocks. In this paper, we experimentally compare different
overlapped and non-overlapped block partition schemes, and then we observe
that the best results for Image NDR are obtained by dividing the query image
and the database image into non-overlapped blocks and overlapped blocks,
respectively.

Fig. 1(a) and (b). There are a total of five block partition
categories, for which we use p = {0, 1, 2, 3, 4} to indicate
partitions designated as level-0 non-overlapped (L0-N), level-
1 non-overlapped (L1-N), level-1 overlapped (L1-O), level-2
non-overlapped (L2-N), and level-2 overlapped (L2-O). The
total number of blocks in these five categories are 1, 4, 25, 16,
and 49, respectively. We represent image x in the pth partition
category as {xp

r , r = 1, . . . , Rp}, where xp
r denotes the rth

block and Rp is the total number of blocks. Image y in the qth
partition category is represented as {yq

c , c = 1, . . . , Cq}, where
yq

c and Cq are similarly defined. For simplicity, we omit the
superscripts p and q unless needed.

A. First Stage Matching

In the first matching stage, the goal is to compute the
pairwise distances between any two blocks xr and yc. Each
block is represented as a bag of orderless SIFT descriptors,
and a distance measure is specified that can handle two
sets of descriptors with unequal cardinalities. An EMD-based
algorithm or χ2 distance based method [30] is used because
of demonstrated effectiveness in several different applications
[17], [30].

1) EMD: The EMD is used to measure the similarity be-
tween two signatures B1 and B2. In a manner similar to that de-
scribed by Zhang et al. [30], the set of descriptors in block xr is
clustered to form a signature B1 = {(µ1, wµ1 ), . . . , (µm, wµm

)},
where m is the total number of clusters, µi is the center
of the ith cluster and wµi

is the relative size of the ith
cluster. EMD is relatively robust to the number of clusters in
object recognition, as both demonstrated in our experiments
(see Section III-A-1) and in [30]. In this paper, we have
three different levels in which m is set as 40, 20 and 20,
respectively. The weight wµi

is equivalent to the total supply
of suppliers or the total demand of consumers in the original
EMD formulation. The set of descriptors in block yc is also

clustered to form its signature B2 = {(ν1, wν1 ), . . . , (νn, wνn
)},

where n is the total number of clusters, and νi and wνi
are

defined similarly. The ground distance between µi and νj is
defined as dij , with the Euclidean distance being used in this
paper due to simplicity and demonstrated success in [30]. The
EMD between xr and yc can be computed by

Drc =

∑m
i=1

∑n
j=1 f̂ijdij

∑m
i=1

∑n
j=1 f̂ij

(1)

where f̂ij is the optimal flow that is determined by solving the
following linear programming problem:

f̂ij = arg min
fij

m∑

i=1

n∑

j=1

fijdij

s.t.
m∑

i=1

n∑

j=1

fij = min

⎛

⎝
m∑

i=1

wµi
,

n∑

j=1

wνj

⎞

⎠ fij ≥ 0

n∑

j=1

fij ≤ wµi
1 ≤ i ≤ m

m∑

i=1

fij ≤ wνj
1 ≤ j ≤ n. (2)

Given that the Euclidean distance is a metric and the total
weight of each block is constrained to be 1, it follows therefore
that the EMD distance defined above is a metric [17] (whereby
the properties of non-negativity, symmetry and triangle in-
equality hold). The complexity of EMD is O(m3log(m)) [17]
when the total number of clusters in two blocks are the same,
i.e., m = n. The distances between all pairs of blocks are
obtained after the first stage of matching. Fig. 1 (c) presents a
visual representation of the 16 × 49 distance matrix, where
brighter intensities indicate higher distance values between
corresponding blocks.

2) χ2 Distance: An alternative method is to construct a
global texton vocabulary by clustering the SIFT descriptors
from the training set, in which SIFT descriptors are vector
quantized into visual words with token frequency (tf) fea-
tures extracted from each block [18]. Suppose the tf features
for any two blocks xr and yc are represented as B̂1 =
[µ̂(1), µ̂(2), . . . , µ̂(H)]T and B̂2 = [ν̂(1), ν̂(2), . . . , ν̂(H)]T ,
where H is the size of the texton vocabulary. The distance
Drc between any two blocks xr and yc is calculated based on
the χ2 distance as

Drc =
1

2

H∑

i=1

(µ̂(i) − ν̂(i))2

µ̂(i) + ν̂(i)
. (3)

In this paper, our multilevel matching methods are referred
to as SAPM and SAPM-tf, respectively, in which the first stage
of matching uses the EMD based matching algorithm or the
χ2 distance based method.

B. Second Stage Matching

In the second stage of matching, the goal is to have the
blocks from one query image x aligned to corresponding
blocks in its near duplicate image y. This differs from the fixed
block-to-block matching used in SPM [12] in that one block
may be matched to another block at a different position and/or
scale level in our proposed SAPM and SAPM-tf framework,
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allowing it to cope with piecewise spatial translation and scale
variation.

Suppose the total number of blocks in x and y are R and C,
and the pair-wise distances between any two blocks are Drc,
r = 1, . . . , R and c = 1, . . . , C. The alignment process involves
computing a flow matrix F̂rc comprising binary elements,
which represent unique matches between blocks xr and yc.
For cases when R = C, this can be formulated as an integer
programming problem embedded within a linear programming
framework as suggested by [26]. The following theorem is
utilized.

Theorem 1 ([7]): The linear programming problem

F̂rc = arg min
Frc

C∑

r=1

C∑

c=1

FrcDrc s.t.

0 ≤ Frc ≤ 1 ∀r, c

C∑

c=1

Frc = 1 ∀r

C∑

r=1

Frc = 1 ∀c (4)

will always have an integer optimum solution when solved
with the simplex method.1

If R �= C, then assuming that R < C without loss of
generality, the EMD formulation for block matching has to
be broadened to

F̂rc = arg min
Frc

R∑

r=1

C∑

c=1

FrcDrc s.t.

0 ≤ Frc ≤ 1 ∀r, c

C∑

c=1

Frc = 1 ∀r

R∑

r=1

Frc ≤ 1 ∀c. (5)

Nevertheless, the formulation in (4) can be re-established
from (5) by 1) adding C−R virtual blocks in image x, and 2)
setting Drc = 0, for all r satisfying R < r ≤ C. Hence for any
solution of (4), a flow matrix for (5) can simply be obtained by
removing the elements related to the virtual blocks. An integer
solution for (4) with virtual blocks can then be obtained via the
simplex method as indicated by Theorem 1, from which the
integer solution for (5) may be easily extracted. An outcome of
this process is illustrated in Fig. 1(d), indicating the matches
of the local image areas in two images (e.g., face, text, etc.).
With F̂rc, we denote the distance measure from x to y as

S(x → y) =

∑R
r=1

∑C
c=1 F̂rcDrc

∑R
r=1

∑C
c=1 F̂rc

. (6)

Fig. 2 illustrates the differences between SPM [12], TPM
[26], and SAPM at level-2, in which three blocks from each
query image [i.e., Fig. 2(a)] and their matched counterparts in
the near duplicate images [i.e., Fig. 2(b), (c), and (d)] are
highlighted, with color of the outlines denoting correspon-
dence. Spatial shifts and scale variations (which also result
in spatial shifts) between the near duplicate images are highly
obvious. The fixed block-to-block matching approach of SPM
[12] is unable to handle such non-proximal spatial changes. To
enable comparison with the TPM method, we converted TPM

1This problem can be also formulated as a minimum-weight bipartite graph
matching problem [15]. However, the main focus of this paper is to propose a
general framework for NDI. To be consistent with the EMD in the first stage
matching, we formulate it as an integer-flow EMD, which is solved via the
simplex method.

Fig. 2. Comparison of three pyramid matching methods at level-2. Three
blocks in the query images [i.e., (a)] and their matched counterparts in near
duplicate images [i.e., (b), (c), (d)] are highlighted and associated by the same
color outlines.

to the spatial domain to obtain the result in Fig. 2(c), which
is equivalent to allowing matching between blocks in different
spatial positions across the two compared images. However,
the TPM results were still poor as the strict non-overlapped
block partitioning scheme does not cope with the full range
of spatial changes. When compared with SPM and TPM,
results from SAPM were much better, which demonstrates its
robustness against spatial shifts and scale variations.

The following details of our method are noteworthy.

1) SAPM and SAPM-tf preserve some amount of spatial
proximity information in the higher levels (i.e., level-1
and level-2). The interest points in one spatial block are
restricted to match to only interest points within another
block in SAPM and SAPM-tf at a certain level, instead
of arbitrary interest points within the entire image as is
the case in the classical bag-of-words model (e.g., SPM
at level-0) [12], [18].

2) Suppose we divide image x and y into blocks with the
pth and qth partition category, respectively, we denote
the distance measure from xp to yq as S(xp → yq),
which can be calculated with (6). There are in total
25 distances2 addressing different variations between
the two images: a) if the query image was divided
into non-overlapped blocks (e.g., L2-N) and the corre-
sponding database images were divided into overlapped
blocks (e.g. L2-O) at the same level, spatial shifts
and some degree of scale change are addressed (e.g.,
S(xL2−N → yL2−O)); b) larger scale variations are con-
sidered by matching the query image and the database
images at different levels [e.g., S(xL1−N → yL2−O)].
Our method can potentially cope with a broad range
of scale variations by using denser scale and spatial
sampling; Subimage cropping is also considered (e.g.,
S(xL0−N → yL1−O) and S(xL1−O → yLO−N )), which
can be treated as a special case of scale variation; c)
ideally, SAPM and SAPM-tf can deal with any amount
of spatial shift and scale variation by using denser scale
and spatial sampling.

3) The following observations can be established from (5):
a) if p = q, S(xp → yq) = S(yp → xq); b) if p �= q,
S(xp → yq) may not be equal to S(yp → xq). This
is obvious because xp includes different blocks from

2There are only 25 distances because S(xp → yq) = S(yq → xp) according
to [17] and the above analysis on virtual blocks.
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xq, and also yp and yq. The two distances are different
because the block partitioning schemes are different,
hence we describe the distance measure as asymmetric.

4) For purposes of comparison, another possible weighting
scheme is also used in which normalizing weights 1/R

and 1/C were applied to the two signatures to replace
the unit weights 1 in (5). We denote the distance measure
from x to y in this case as S̃(xp → yq), which is again
asymmetric. We compare the two different weighting
schemes for Image NDR in Section III-A-1.

C. Fusion of Information From Different Levels for NDR

Previous work incorporating pyramid matching [5], [12],
[13], [26] demonstrated that better results were achieved when
multiple resolutions were combined, even in situations when
the results obtained using individual resolutions were not
accurate. In this paper for NDR, distances from different levels
were directly fused

SFuse(x → y) = h0S(x0 → y0) +
L−1∑

l=1

hlS(x2l−1 → y2l) (7)

where hl is the weight for level-l. As in [26], we considered
separately the use of equal weights and unequal weights.
Our experiments demonstrated that the results from different
weighting schemes are comparable, similar to the findings
obtained for TPM [26].

D. Dual Sample Approach for NDD

As a ranking problem, NDR can be directly conducted
based on the distance measures from SAPM. NDR is thus
easier than NDD and amenable to the use of asymmetric
distance measures. NDD, conversely, is essentially a two-
class classification problem, i.e., an image pair is classified
as a duplicate or non-duplicate, which in any case requires
symmetric measures. For classification, we need a proper
representation for the image pair or video pair. One possibility
is to compute the difference vector of features in the two
images, but our experiments indicate that such raw differences
were insufficient for detecting duplicate images with large
variations. Instead, we establish new input features comprising
45 matching distances for the NDD task, with the expectation
that near-duplicate image pairs will cluster around the origin
in this new feature space while dissimilar image pairs will be
far from the origin.

Recall that each weighting scheme in the second stage
matching outputs 25 distances, forming a combined 50 dis-
tances, except that S(xp → yp) = S̃(xp → yp) for p =
0, . . . , 4, which means there are only 45 unique distances. In
order to bypass the problem of asymmetric distance measures,
the kth pair of images (say images x and y) is represented as
two samples, denoted as t1

k ∈ R45 and t2
k ∈ R45, where t1

k is
comprised of the 45 distances from x to y, and t2

k is comprised
of another 45 distances from y to x. The same class label
(1 or 0) is assigned for t1

k and t2
k . Denote T as the total number

of image pairs in the training set, the training samples are then
represented as {t1, . . . , t2T } = {t1

1, t
2
1, . . . , t

1
T , t2

T }. Subsequently,
classification is done through SVM. In the testing stage, SVM

outputs two decision values η1
k and η2

k for the kth pair of
images, and then the final decision value is computed via a
sigmoid-like function

ηk =
0.5

1 + exp (−η1
k)

+
0.5

1 + exp (−η2
k)

. (8)

While other approaches to handle the asymmetric matching
may be possible (e.g., average or aggregation in a long vector),
the dual sample approach mentioned above is preferred so that
patterns associated with individual feature of the asymmetric
pair can be preserved and used to detect near duplicates.

E. Extension to Video NDI With Temporal Matching

In the case of video NDI, a third stage of temporal match-
ing is added after the previous two spatial matching stages.
Following the same approach as in spatial matching, EMD is
employed here as well. Suppose one video clip V1 comprises
{x(1), x(2), . . . , x(M)}, where x(i) is the ith frame and M is
the total number of frames of V1, while another video clip
V2 comprises {y(1), y(2), . . . , y(N)}, where N and y(j) are
similarly defined. After the two stages of SAPM matching,
pair-wise distances S(x(i) → y(j)) between every two frames
x(i) and y(j) are obtained. The dij distances in (1) and (2)
are set as S(x(i) → y(j)), and the existing EMD framework
can be directly employed to compute the distances from V1 to
V2. Fig. 3(a) and (e) displays sample frames from two video
sequences, while Fig. 3(b) shows the pairwise distance matrix
between any two frames obtained from the SAPM framework.

We also consider the two possible weighting schemes of
normalized weights (1/M, 1/N) and unit weights for temporal
matching. With normalized weights, the flow matrix comprises
continuous elements. With unit wights 1, the flow matrix
comprises only binary elements 0 or 1 (see Theorem 1). The
flow matrices under these two schemes are also shown in
Fig. 3(c) and (d). Our experiments demonstrate that the use of
unit weights is comparable or slightly better than normalized
weights in temporal matching for Video NDR. Since we
defined two videos as near duplicate if they shared a large
percentage of near-duplicate frames, the temporal matching
scheme with unit weights is logically more appropriate. The
distances from the two weighting schemes are combined as
features in video NDD.

Suppose the complexity of matching two images is O(H)
and the total numbers of frames in two video clips are the same
(i.e., M = N), the complexity of matching two video clips
is O(HM2 + M3 log(M)), where O(HM2) is the complexity
to calculate the pair-wise distance between any two images
and O(M3 log(M)) is the complexity of temporal matching
using EMD. Currently, the most computationally expensive
component in our matching framework is the EMD calculation
due to its super-cubic complexity. In the future, we plan to
use the recently proposed fast earth mover’s distances [16]
for speedup because it is reported that the distance can be
calculated by an order of magnitude faster than the original
implementation [17]. Large-scale video NDI may be addressed
through a two-step approach in the future: 1) we represent
one video sequence as one keyframe and employ SAPM (or
SAPM-tf) to rapidly filter out a large portion of irrelevant
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Fig. 3. Illustration of temporal matching in Video NDI. (a) and (e) Two
video clips and their frames. (b) Pair-wise distance matrix between any two
frames from SAPM based spatial matching. (c) and (d) Two flow matrices
under two different weighting schemes in temporal matching.

videos; and 2) re-rank the remaining videos using SAPM
(or SAPM-tf) + temporal matching (TM) based on all the
frames of video clips to further improve the identification
performance.

III. Experiments

Extensive experiments were conducted to test the effective-
ness of SAPM and SAPM-tf. The primary dataset used is the
Columbia Near Duplicate Image Database [29], in which the
images were collected from TRECVID 2003 corpus [20]. We
additionally annotated another near duplicate image database,
referred to in this paper as the New Image Dataset, in which
the images were chosen from key-frames of the TRECVID
2005 and 2006 corpus [20]. Very significantly, the New Image
Dataset contains much greater variation in spatial translations
and scale variations as compared to the Columbia dataset. In
both datasets, there are 150 near duplicate pairs (300 images)
and 300 non-duplicate images. The new data set is also more
challenging and realistic compared to synthesized data used
in [8], [11] as it is based on real broadcast news rather than
edits of the same image.

Likewise, we also annotated a near duplicate video database,
referred to in this paper as the New Video Dataset. In
TRECVID, the temporal boundaries for each shot were pro-
vided by NIST, which were used to generate the candidate
video clips. Each candidate shot was initially sampled at two
frames per second to extract image frames, followed by having
a human annotator review all extracted frames to refine the
start/end boundaries of the shot. In total, there are 50 video
near duplicate pairs (100 video clips) and 200 non-duplicate
videos. We will make these newly annotated data sets publicly
available.

For performance evaluation, we used all near duplicate
image pairs as queries. For each query, other images were
ranked based on computed distances. The retrieval perfor-
mance was evaluated based on the probability of successful
top-k retrieval [29], [31], i.e., P(k) = Qc/Q, where Qc is the
number of queries that rank their near duplicates within the
top-k positions, and Q is the total number of queries.

As NDD can be treated as a two-class classification prob-
lem, performance evaluation can be done through the use of
equal error rate (EER) and non-interpolated Average Precision
(AP) [20]. EER measures the accuracy at which the number
of false positives and that of false negatives are equal. AP has
been used as the official performance metric in TRECVID,

TABLE I

Top-1 Retrieval Performance (%) With Different Block

Partition Categories on the Columbia Database

Query Image in Database
Image L0-N L1-N L1-O L2-N L2-O
L0-N 73.7/73.7 48.0/37.7 65.3/51.7 25.3/6.3 32.7/9.7
L1-N 39.0/61.3 74.7/74.7 78.0/71.7 62.0/20.7 65.7/25.3
L1-O 52.7/61.0 56.3/62.3 76.0/76.0 13.0/14.3 54.7/23.3
L2-N 16.7/46.7 46.0/63.3 65.3/65.7 69.7/69.7 79.0/65.7
L2-O 17.0/49.3 40.0/66.7 67.0/71.3 52.0/64.3 71.0/71.0

Each table cell reports the performances (with unit weights)/(with normalized
weights).

and corresponds to the multi-point average precision value of
a precision-recall curve, and incorporates the effect of recall
when AP is computed over the entire classification result set.
For SAPM and SAPM-tf, we defaultly extract SIFT features
via the Laplacian detector [14], except that we use multiscale
dense SIFT descriptor in Section III-A-3. All the experiments
are performed on a Pentium IV-3.0GHZ server with 16 GB
RAM. The notation “L2-N → L2-O” is used to indicate a
match, in which the query and database images are L2-N and
L2-O, respectively. We may also omit L2 and use “N → O”
to indicate matching at any level.

A. Image Near Duplicate Retrieval

The experiments in this section are to investigate how well
SAPM performs under different configurations and param-
eters, and also to compare the effectiveness of SAPM to
the existing SPM and TPM methods in the task of Image
NDR. Testing was also carred out on SAPM-tf with the
SIFT descriptors extracted via Laplacian detector, as well as
SAPM-tf-Dense with the multiscale dense SIFT descriptors.
We further compared SAPM-tf and SAPM-tf-Dense to the
recent work reported in [31].

1) Comparison of SAPM Under Different Configurations
and Parameters for Image NDR: SAPM was evaluated for
the Image NDR task under different overlapped and non-
overlapped block partition schemes as well as two weighting
schemes in the second stage matching (see Section II-B).
Tables I and II show the top-1 retrieval performances from
two weighting schemes (unit and normalized weights) on the
Columbia database and New Image Dataset, respectively. In
both databases, the best results at level-1 and level-2 (shown
in bold) are obtained from “L1-N → L1-O” and “L2-N →
L2-O” with unit weights, respectively; thus these are used as
the default configuration in later experiments.

Four options are available at each level assuming the use
of unit weights (“N → N,” “O → N,” “N → O,” and “O
→ O”): 1) “N → N” restricts shift distances to be integral
multiples of block size, and does not cope with shifts that
are smaller than the block size; 2) “O → N” may contain
some query blocks which are matched to empty blocks in
the integer-flow EMD solution, resulting in information loss
from the unmatched query blocks; 3) “N → O” is the most
natural matching scheme, which is analogous to the block-
based motion estimation method used in the MPEG video
compression standard [23], in which a new image frame is di-
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vided into non-overlapped blocks and optimal reference blocks
are searched over all possible pixel locations in previous frame.
In the integer-flow EMD solution, the information content in
some blocks in the database image may not be utilized if they
are matched to padded empty blocks. This is acceptable since
our objective is to find duplicates of the query image, not
the database image; and 4) conceptually, “O → O” should
provide the most flexible matching, and its performance indeed
is the second highest among the above four options (as shown
in Tables I and II). However, it is still less effective than
“N → O.” One possible explanation is that as more noisy
matched blocks are included in this method, the normalizing
total flow [denominator in (6)] is also increased (e.g., from 16
to 49 at level 2). This results in reduced detection rates for
duplicates of partial image matches, due to normalized lower
EMD matched scores.

A further observation that can be made is that the matching
distances within the same level are consistently better than
those across different levels, especially for the Columbia
Dataset. However, for the New Image Data Set, utilizing cross-
level distances with unit weights results in significant improve-
ment when compared to the performance on the Columbia
Dataset. This can be attributed to the fact that the Columbia
Dataset has a substantially lower range of scale variation
compared to the New Image Dataset. In practice, cross-level
distances are better at handling greater scale variation, while
within-level distances work better with a smaller range of scale
variation. Ideally, SAPM and SAPM-tf can deal with any scale
variations with denser scales and grid spacings. Additionally,
the results presented in each diagonal cell of Tables I and II are
the same, because the distances computed by the two different
weighting schemes are expected to be identical in these cases.

Finally, we discuss the performance of SAPM under dif-
ferent parameters. We fixed L = 3 based on the empirical
observation in [12] that the performance does not increase
when extending beyond three levels. As in [12], we also set
the total number of non-overlapped blocks as 1, 4 and 16
at three levels, respectively. We also need to determine the
total number of clusters m (or n) in each block at three levels
and the total number of overlapped blocks nBlk at level-1
and level-2. Here we take the matching “L1-N → L1-O”
on Columbia Dataset as an example for discussion. We set
m = n = 10, 20 and 40 and set nBlk as 3×3 and 5×5. When
nBlk is set as 3 × 3, the overlapped blocks are sampled at a
fixed interval 1

4 of the image width and height. Table III reports
the top-1 retrieval performance and the average processing
time of SAPM for matching a pair of images. We observe
that: 1) SAPM is relatively robust to nBlk and m (or n);
and 2) SAPM generally achieves better performance, if we
increase the total number of clusters m (or n) from 10 to 40
or increase the total number of overlapped blocks nBlk from
3 × 3 to 5 × 5. We observe similar trend at other levels and
on New Image Dataset. We therefore set nBlk as 5 × 5 in this
paper. Note SAPM can potentially achieve better performance
with more overlapped blocks, but the computational cost is
increased as well. Considering the tradeoff of the effectiveness
and efficiency, we set m = 20 for SAPM at level-1 and level-2.
We also set m = 40 for SAPM at level-0 because the average

TABLE II

Top-1 Retrieval Performance (%) With Different Block

Partition Categories on New Image Dataset

Query Image in Database
Image L0-N L1-N L1-O L2-N L2-O
L0-N 82.0/82.0 62.3/36.0 77.0/55.3 29.3/5.7 41.3/7.0
L1-N 51.0/72.3 79.3/79.3 87.7/80.3 71.7/17.3 79.3/21.3
L1-O 68.0/69.7 65.0/70.0 84.3/84.3 13.0/14.7 70.3/22.3
L2-N 26.3/48.0 53.0/67.3 78.0/76.3 64.7/64.7 82.7/68.7
L2-O 28.7/51.7 52.0/71.0 79.3/80.7 46.3/64.3 78.3/78.3

Each table cell reports the performances (with unit weights)/(with normalized
weights).

TABLE III

Top-1 Retrieval Performance (%) and the Average Processing

Time (ms) for Matching a Pair of Images of SAPM (‘‘L1-N →
L1-O’’) on Columbia Dataset

Top-1 Retrieval Performance (%) Average Processing Time (ms)
m & n nBlk = 3 × 3 nBlk = 5 × 5 nBlk = 3 × 3 nBlk = 5 × 5

10 76.3 77.0 2.1 5.9
20 76.3 78.0 8.8 24.4
40 78.3 78.3 43.1 120.9

TABLE IV

Top-1 Retrieval Performance (%) Comparison of SAPM, SPM

and TPM From Single Level and Multiple Levels on Columbia

Database

L0-N → L1-N → L1-N L2-N→L2-N
L0-N (or L1-O) (or L2-O)

Single-level (SPM) 73.7 76.3 73.3
Single-level (TPM) 73.7 74.7 69.7
Single-level (SAPM) 73.7 78.0 79.0
Multilevel (SPM) 76.7 / 76.0 78.0 / 77.3 / 77.7
Multilevel (TPM) 75.0 / 75.3 75.7 / 74.7 / 75.3
Multilevel (SAPM) 77.7 / 78.0 79.3 / 80.0 / 80.7

In the last three rows, the first number is from the equal weighting scheme
and the last one or two numbers in each cell are from the unequal weighting
scheme when fusing multiple levels.

processing time with m = 40 at level-0 is much less than that
of higher levels (see Table VI).

2) Comparison of SAPM With SPM and TPM for Image
NDR: We compared SAPM with SPM and TPM for cases
when matching was done at individual levels as well as when
fusing multiple levels. We tried two weighting schemes for
cases when multiple resolutions are fused: 1) equal weights,
h0 = h1 = h2 = 1; and 2) unequal weights: h0 = 1 and h1 = 2
for fusing only the first two levels as well as h0 = h1 = 1, h2 =
2 and h0 = 1, h1 = h2 = 2 for fusing all three levels. Note that
above equal weights and unequal weights based methods were
similarly suggested in the prior work [5], [12], [26]. While it
is possible to learn the optimal weights to fuse the information
from multiple levels (see [6]), the motivation of this paper is
to propose a general multilevel spatial matching framework
for NDI, rather than developing new fusion algorithms.

The results are listed in Tables IV and V, in which the
default configuration is used for SAPM at level-1 and 2. The
following observations can be made.
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TABLE V

Top-1 Retrieval Performance (%) Comparison of SAPM, SPM

and TPM From Single Level and Multiple Levels on New Image

Dataset

L0-N → L1-N → L1-N L2-N→L2-N
L0-N (or L1-O) (or L2-O)

Single-level (SPM) 82.0 82.0 71.0
Single-level (TPM) 82.0 79.3 64.7
Single-level (SAPM) 82.0 87.7 82.7
Multilevel (SPM) 85.3 / 84.3 84.7 / 81.3 / 82.3
Multilevel (TPM) 84.0 / 82.7 83.0 / 79.3 / 80.7
Multilevel (SAPM) 87.3 / 88.0 88.3 / 88.0 / 88.0

In the last three rows, the first number is from the equal weighting scheme
and the last one or two numbers are from the unequal weighting scheme when
fusing multiple levels.

1) When compared with SPM and TPM, the results from
SAPM are better at a single level (i.e., level-1 or level-
2), which demonstrates that the second stage matching
based on the integer-flow EMD in SAPM (see Section
II-B) can effectively cope with the spatial shift.

2) For SAPM, in most cases better performance can be
achieved when multiple resolutions are combined, even
for resolutions that are independently poor; moreover,
there is no single level that is universally optimal in the
two databases. Therefore, the best solution is to combine
the information from multiple levels in a principled way,
as reported in the prior work [5], [12], [26]. SAPM also
outperforms SPM and TPM after multilevel fusion.

3) For SAPM, the results from different weighting schemes
are generally comparable, similar to the findings from
[26].

4) The results from TPM are worse than SPM, a possible
explanation of which is that near duplicate images retain
somewhat similar spatial layouts, which fits the SPM
model. We also observed that the best result from fusing
the first two levels is better than that from fusing all
the three levels for SPM and TPM in New Image
Dataset, which is consistent with prior work [12], [26].
In practice, correlation of features at mid to lower spatial
frequencies can be used to adequately detect near image
duplicates.

Fig. 4 compares the best top-30 retrieval performance from
SAPM, SPM, and TPM. Again, we observe that SAPM
consistently outperforms SPM and TPM. Fig. 5 shows the
unsuccessful cases of SAPM, in which the three rows from
the top to the bottom show the query image, the correct
near duplicate database image and the wrongly retrieved top-
1 database image, respectively. We observe that the near
duplicate pairs contain significant spatial shifts and scale
variations, making Image NDR a challenging task. Another
possible reason for failure is that SIFT features may not be
discriminative enough for characterizing the complex scenes
and objects in these cases.

Finally, we analyze the algorithmic complexity and the
average processing time of SAPM. Suppose the total number
of signatures are the same, i.e., m = n, then the complexity of
EMD is O(m3log(m)) [17]. In Table VI, we report the average
processing time for matching a pair of images of SAPM, SPM,

Fig. 4. (a), (b) Comparison of best top-30 retrieval performance from SAPM,
SPM, and TPM.

Fig. 5. Unsuccessful cases of SAPM. The three rows (from the top to the
bottom) show the query images, the correct near duplicate database images,
and the wrongly retrieved top-1 database images, respectively.

and TPM. We observe that SAPM is slower than SPM and
TPM at level-1 and level-2, because it is time-consuming to
calculate the distances between every pair of blocks of the two
images in the first stage of EMD matching. In the following,
we show that the alternative method SAPM-tf can significantly
accelerate SAPM.

3) SAPM-tf and SAPM-tf-Dense for Image NDR: We also
test the performance of SAPM-tf, in which χ2 distance based
method is used in the first stage matching (see Section II-
A-2). In practice, we employ K-Means on randomly selected
60 000 descriptors from the training images to obtain a global
texton vocabulary. Similar to [12], we set the size of the global
vocabulary as 200 at level-2 and 400 at level-0 and level-1.
Note that we do not set the size of the global vocabulary
as 400 at level-2 because we observe that the tf feature is
very sparse in this case, which degrades the performance of
SAPM-tf. Table VII reports the top-1 retrieval performance
and the average processing time for matching a pair of
images of SAPM-tf, in which we use the matching “L0-N
→ L0-N,” “L1-N → L1-O,” and “L2-N → L2-O” for three
individual levels again and we employ the equal weights to
fuse the results from all three levels. From Table VII, we
can observe that: 1) SAPM-tf achieves comparable or better
performance, when compared with SAPM; and 2) SAPM-tf
is much faster than SAPM, the total average processing time
from three levels is, respectively, reduced from 203.7 to 2.9,
and from 198.0 to 2.7 on Columbia Dataset and New Image
Dataset.

As a general image matching framework, SAPM and
SAPM-tf can also cope with multiscale dense SIFT descrip-
tors. Considering that SAPM-tf is much faster than SAPM,
we take SAPM-tf as an example to deal with the dense SIFT
descriptors, and refer to this method as SAPM-tf-Dense. In



1076 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2010

TABLE VI

Comparison of the Average Processing Time (ms) for Matching a Pair of Images of SAPM, SPM, and TPM on Columbia Dataset and

New Image Dataset

Columbia Image Dataset New Image Dataset
Level-0 Level-1 Level-2 Total Level-0 Level-1 Level-2 Total

SPM 1.2 1.0 3.6 5.8 1.2 1.0 3.5 5.7
TPM 1.2 3.9 57.4 62.5 1.2 3.9 55.1 60.2

SAPM 1.2 24.4 178.1 203.7 1.2 24.6 172.2 198.0

TABLE VII

Top-1 Retrieval Performance (%) and the Average Processing Time (ms) for Matching a Pair of Images of SAPM-tf on Columbia

Dataset and New Image Dataset

Top-1 retrieval performance (%) Average processing time (ms)
Level-0 Level-1 Level-2 Multilevel Level-0 Level-1 Level-2 Total

Columbia Dataset 73.3 80.0 78.3 80.7 0.01 0.4 2.5 2.9
New Image Dataset 84.7 90.0 81.3 90.3 0.01 0.4 2.3 2.7

TABLE VIII

Top-1 Retrieval Performance (%) and the Average Processing Time (ms) for Matching a Pair of Images of SAPM-tf-Dense on

Columbia Dataset and New Image Dataset

Top-1 retrieval performance (%) Average processing time (ms)
Level-0 Level-1 Level-2 Multilevel Level-0 Level-1 Level-2 Total

Columbia Dataset 76.3 80.7 81.3 82.3 0.01 0.3 3.1 3.4
New Image Dataset 88.0 92.7 94.7 94.7 0.01 0.3 3.1 3.4

this paper, the dense SIFT descriptors are extracted over a
grid with spacing of four pixels and at three scales. The
total number of SIFT descriptors is 14 400 for an image with
320 × 240 pixels. Similarly as in [12], we employ K-Means
on randomly selected 180 000 descriptors from three scales
of the training images to obtain a global texton vocabulary,
and we set the size of the global vocabulary as 400 at
three levels. Table VIII reports the top-1 retrieval performance
of SAPM-tf-Dense on Columbia Dataset and New Image
Dataset, in which again we use the default matching “L0-N
→ L0-N,” “L1-N → L1-O,” and “L2-N → L2-O” for three
individual levels and we employ the equal weights to fuse
the results from all three levels. We observe that SAPM-tf-
Dense outperforms SAPM-tf, which demonstrates that mul-
tiscale dense SIFT descriptors are more effective for Image
NDR.

4) Comparison with [31]: In Table IX, we compare our
best results with the recent work [31]. In representing the
average processing time of our methods SAPM-tf and SAPM-
tf-Dense, the first value only takes into account the average
processing time purely for online image matching. The other
processes, including vocabulary construction with K-means
clustering, quantization of SIFT descriptors into visual words,
and tf feature extraction, can be done off-line. The second
value in the parentheses includes the average processing time
of these off-line processes. As performed in [31], we extract
SIFT descriptors from salient regions detected by DoG interest
region detector [14]. In average, each image has thousands of
interest points. The one-to-one symmetric matching (OOS) in-
volves complex process of matching individual interest points
in two images and we observe that it is computationally

prohibitive for OOS3 to directly match two images with more
than ten thousands of interest points (e.g., the densely extracted
features). From Table IX, we can observe that: 1) SAPM-tf and
SAPM-tf-Dense outperform OOS [31], and 2) SAPM-tf and
SAPM-tf-Dense are much faster, when compared with OOS
[31].

B. Image Near Duplicate Detection

We compared SAPM with SPM, TPM and the algorithm
in [31] for Image NDD. For baseline algorithms SPM, TPM,
SAPM, and OOS, we use the three distances computed at
three independent levels from SPM, TPM and SAPM (with
default configurations) or use the distances from OOS as
input features, and further apply SVMs for classification. We
also report the results by using 45 distances as the features,
which is referred to as SAPM-45D. For SAPM and SAPM-
45D, the dual sample approach discussed in Section II-D is
used to cope with the asymmetric matching. In addition, we
report the results based on the NDD method in [31], which is
referred to as OOS-Hist. In OOS-Hist, the histograms, which
are constructed by counting the number of matched SIFT
descriptors of any pair of images at several particular ranges
of orientations, are used as features for the subsequent SVM
classification (see [31] for more details).

We randomly partition the data into training and test sets.
All experiments are repeated ten times with different randomly
selected training and test samples, and the means and standard

3While Zhao et al. [31] also proposed a hash indexing method for speedup,
the retrieval performance generally drops. Moreover, with a Pentium IV-
3.0GHZ machine, the reported average processing time of OOS after speedup
on the same Columbia Dataset is still much worse than our SAPM-tf.
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TABLE IX

Comparison of Top-1 Retrieval Performance (%) and the Average Processing Time (ms) for Matching a Pair of Images of OOS [32],

SAPM-tf, and SAPM-tf-Dense on the Columbia Dataset and the New Image Dataset

Top-1 Retrieval Performance (%) Average Processing Time (ms)
OOS [31] SAPM-tf SAPM-tf-Dense OOS [31] SAPM-tf SAPM-tf-Dense

Columbia Dataset 79.0 80.7 82.3 1011.0 2.9 (4.0) 3.4 (7.2)
New Image Dataset 87.0 90.3 94.7 567.2 2.7 (3.8) 3.4 (7.0)

For the average processing time of SAPM-tf and SAPM-tf-Dense, the first value includes only the processing time
purely for online matching, whereas the second value in the parentheses includes the average processing time of the
off-line processes. Note that the top-1 retrieval performance of OOS on Columbia Dataset is directly from [32].

Fig. 6. Average Precision (AP) variations of SAPM-45D, SAPM, SPM, TPM, OOS and OOS-Hist [31] with different number of negative test samples.
(a) Columbia Dataset. (b) New Image Dataset.

TABLE X

EER % Comparison of Different Algorithms for Image NDD on

the Columbia Database and New Image Dataset

Algorithm Columbia Database New Image Dataset
SPM 85.1 ± 2.0 89.7 ± 2.4
TPM 85.0 ± 2.5 90.0 ± 1.7
OOS 87.7 ± 1.8 94.3 ± 1.3

OOS-Hist [31] 88.1 ± 2.0 92.3 ± 1.3
SAPM 87.6 ± 1.9 91.3 ± 1.7

SAPM-45D 92.1 ± 1.0 95.9 ± 1.3

deviations are reported. In each run, we use 60 positive and
240 negative samples for SVM training. The total numbers
of positive and negative test samples are 90 and 5000, respec-
tively. We compare SAPM-45D and SAPM with other methods
in terms of EER and AP in Table X and XI. From Table X
and XI, we observe that: 1) by using only three distances as
features, the baseline SAPM is better than SPM and TPM
for Image NDD; and 2) the best results are from SAPM-
45D, demonstrating that SAPM-45D is a robust Image NDD
method.

Finally, we test the scalability of SAPM-45D and other al-
gorithms for Image NDD. We set the total number of negative
test samples from 5000 to 30 000 at intervals of 5000. Fig. 6
plots the AP variations of SAPM-45D and other methods with
different numbers of negative test samples. From Fig. 6, we
observe that: 1) the baseline SAPM is consistently better than
SPM and TPM, and SAPM-45D consistently achieves the best
results for Image NDD, and 2) the APs of all the methods
decrease, when more negative test samples are employed.

TABLE XI

Average Precision (AP %) Comparison of Different Algorithms

for Image NDD on the Columbia Database and New Image

Dataset

Algorithm Columbia Database New Image Dataset
SPM 61.4 ± 5.9 70.7 ± 3.8
TPM 60.1 ± 8.2 69.7 ± 4.7
OOS 72.7 ± 6.8 84.8 ± 7.6

OOS-Hist [31] 76.2 ± 5.0 82.3 ± 3.4
SAPM 65.4 ± 4.2 74.5 ± 2.1

SAPM-45D 80.8 ± 5.4 90.4 ± 1.6

C. Video Near Duplicate Retrieval and Detection

For Video NDI, the matching methods SPM, TPM and
SAPM are combined with TM, as described in Section II-E,
and are denoted as SPM+TM, TPM+TM and SAPM+TM. In
SAPM+TM, we use the default configuration when performing
SAPM.

For Video NDR, we compared the two weighting schemes
using unit and normalized weights in the third stage temporal
matching. The earlier mentioned unequal weighting scheme
is used in fusing the first two levels. The results are shown
in Fig. 7. We observe that SAPM+TM outperforms SPM+TM
and TPM+TM at level-1, and the best fused result from the
first two levels is also better. Our experiments also demonstrate
that the use of unit weights is comparable or slightly better
than normalized weights in temporal matching.

In Video NDD, the distances from the first two levels as
well as two weighting schemes in temporal matching are used
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Fig. 7. Comparison of top-1 retrieval performance from SAPM+TM,
SPM+TM and TPM+TM with normalized weight (NW) and unit weight (UW)
in temporal matching on New Video Dataset. 1: Single-level L0-N → L0-N;
2: Single-level L1-N → L1-N (or L1-O); 3: Multilevel.

TABLE XII

EER % Comparison of Different Algorithms for Video NDD on

New Video Dataset

Algorithm New Video Dataset
SPM+TM 94.3 ± 2.7
TPM+TM 94.0 ± 2.6

SAPM+TM 95.7 ± 2.7

as features. Based on the 4-D feature vector, SVM is used for
classification. In SAPM, the dual sample approach discussed
in Section II-D is used again to deal with the asymmetric
matching. Again, we randomly partition the data into training
and test sets, and all experiments were repeated ten times
with different randomly selected training and test samples. In
each run, we use 20 positive and 80 negative samples for
SVM training. The total number of positive and negative test
samples are 30 and 5000, respectively. The means and standard
deviations are reported in Table XII. From it, we observe
that SAPM+TM also outperforms SPM+TM and TPM+TM
for Video NDD.

IV. Conclusion and Future Work

In this paper, a multilevel spatial matching framework with
two stage matching has been proposed to deal with spatial
shifts and scale variations for image-based near duplicate
identification. We further conducted an additional temporal
matching stage after spatial matching to effectively compute
the distances between two videos. For the task of NDD, we
proposed a dual sample approach to cope with the asymmetric
matching. The extensive experiments on the Columbia near
duplicate database as well as two new datasets clearly demon-
strate the proposed multilevel matching framework outper-
forms the existing methods, exhibiting robustness to different
variations. We also conducted in-depth investigation of various
aspects of our framework such as parameter selection, the
utilization of multiscale dense SIFT descriptors and the test
of scalability in image NDD. To the best of our knowledge,
this paper and our initial conference version [28] are the first
general multilevel spatial matching framework for both image
and video NDI.

In the future, we plan to extend our multilevel matching
framework to better cope with large-scale video NDI by using

other effective features (e.g., space-time features [9]) as well
as developing new efficient video matching methods. We will
also investigate new algorithms to adaptively divide images
(reps. videos) into overlapped or non-overlapped blocks (reps.
space-time volumes) based on the density of SIFT features
(reps. space-time features [9]).
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