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Camera Response Functions for Image Forensics:
An Automatic Algorithm for Splicing Detection

Yu-Feng Hsu and Shih-Fu Chang, Fellow, IEEE

Abstract—We present a fully automatic method to detect
doctored digital images. Our method is based on a rigorous
consistency checking principle of physical characteristics among
different arbitrarily shaped image regions. In this paper, we
specifically study the camera response function (CRF), a funda-
mental property in cameras mapping input irradiance to output
image intensity. A test image is first automatically segmented into
distinct arbitrarily shaped regions. One CRF is estimated from
each region using geometric invariants from locally planar irra-
diance points (LPIPs). To classify a boundary segment between
two regions as authentic or spliced, CRF-based cross fitting and
local image features are computed and fed to statistical classifiers.
Such segment level scores are further fused to infer the image
level authenticity. Tests on two data sets reach performance levels
of 70% precision and 70% recall, showing promising potential
for real-world applications. Moreover, we examine individual
features and discover the key factor in splicing detection. Our
experiments show that the anomaly introduced around splicing
boundaries plays the major role in detecting splicing. Such finding
is important for designing effective and efficient solutions to image
splicing detection.

Index Terms—Camera response function (CRF), image foren-
sics, splicing detection, tampering detection.

I. INTRODUCTION

W ITH the ease of digital image manipulation, like
copy-and-paste (splicing), image forgery has become

a common concern and verification of content integrity has
become increasingly important. An intuitive and promising
approach to image forgery detection is to examine the consis-
tency of inherent physics-based attributes among different parts
of an image. These attributes can be natural-scene related, for
example, lighting, shadow, and object geometry; or they can
be imaging device properties such as camera response function
(CRF), demosaicking filter, and sensor noise statistics. Any
image that fails to show consistency in these two aspects may
be considered as suspects of forgery. Such approaches are
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passive—no active mechanisms are needed to generate and
embed additional signatures into images.

Recent research in computer vision and image processing
has studied various physical characteristics of imaging devices.
A typical camera imaging pipeline is illustrated in Fig. 1. The
light rays (radiances) are first refracted through the optical
lens and recorded onto the CCD (or CMOS) sensor. Since
the CCD sensor only records a single color channel signal,
a demosaicking color filter is needed to interpolate the CCD
output into a multispectral image (the irradiance, usually in
RGB or CMYK color spaces). The following component, CRF,
transforms the interpolated irradiance signal nonlinearly to
compensate for the measurable dynamic range, producing the
final output, denoted as brightness or intensity. Components
in this pipeline, such as the CCD sensor, demosaicking filter,
and the CRF, may possess unique characteristics to camera
models or even to camera units. If successfully extracted,
these physical attributes can be used as the “fingerprint” of the
capturing source. Some prior works have proposed fingerprint
recovery methods for image source identification, including
demosaicking filter [1]–[3], CCD sensor noise [4], CRF [5]–[9]
and inherent relations between different color channels within
the camera [10]. They have also led to consistency checking
schemes based on demosaicking inconsistency [1]–[3], CCD
sensor noise [11], CRF abnormality [12], and CRF inconsis-
tency [13].

Common inconsistency checking usually estimates the most
likely source model given a test image, and checks whether
there is inconsistency between any parts and the overall esti-
mated model [1], [3], [11]. In this paper, on the other hand, we
address the more general question whether physical attributes
from two image parts are from the same source without needing
to estimate the overall model. This may be formulated as hy-
pothesis testing or discriminative classification, requiring ap-
propriate similarity measures [13]–[15].

We focus on camera-signature-based inconsistency measures
in this paper, particularly CRF. Among all available signatures,
CRF has been extensively studied with many robust estima-
tion methods proposed [5]–[8], [16]–[19]. However, the space
of CRFs has been observed to be extremely dense: CRFs from
different cameras can appear very close to each other. There-
fore, the consistency measure computed directly from the CRFs
would not be effective for splicing detection. One needs more
relevant physical cues, e.g., splicing-induced anomalies.

In this paper, we introduce an automatic image splicing de-
tection method based on CRF consistency checking. The ob-
jective is to construct a system free of human labor without se-
verely compromising its detection power. An overview of our
approach is given in Fig. 2. We run CRF estimation on each of
the automatically segmented image regions, construct a feature
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Fig. 1. Camera imaging pipeline.

Fig. 2. Automatic system for local spliced region detection.

vector for each boundary segment, and train a statistical classi-
fier to classify these segments as authentic or spliced. We then
fuse segment level results to obtain image level decisions.

We evaluate the performance on both benchmark and chal-
lenging data sets. We further perform a series of feature selec-
tion experiments to discover the main contributing factor in our
detection system. The importance of the anomaly introduced
near the splicing boundary has been consistently revealed and
has led us to a new, effective feature set which indeed improves
the accuracy significantly.

The contributions of this paper are multifold. First, we de-
velop a fully automatic system with an aim to locate any ar-
bitrarily shaped spliced segment, not restricted to fixed, coarse
blocks. Second, through extensive feature selection, we discover
the splicing boundary anomaly more crucial than pair-wise at-
tribute difference. Lastly, we develop a theoretical model to pre-
dict and support the fusion results from local segment scores to
image level decisions.

Our method conceptually is most related to the work in
[12], in which suspicious boundaries are manually identified
and anomalies associated with the CRF estimated from these
selected segments are used to detect splicing. There are in-
teresting similarities and differences. Our results in feature
selection confirm that abnormal boundary segments created
by splicing indeed provide the most beneficial features for
tampering detection, justifying the focus on the boundaries
both in our work and [12]. However, our method is different in
our rich information from CRF cross fitting using locally planar
irradiance points (LPIPs) from segmented regions instead of
the anomalies only from the estimated CRF, as in [12]. Our
algorithm is also fully automatic, while [12] requires manual
selection of suspicious boundaries. Finally, we work from
segment level anomaly detection and fuse the scores to image
level classification results, a different methodology than [12].

When compared to the double quantization detection in [14],
we are able to detect arbitrarily shaped regions instead of fixed

size blocks. Also, while they determine the authenticity of in-
dividual blocks, we focus on the relations between two distinct
areas. In fact, these two types of features are complementary. In
our work reported in [20] and [21], we have explored the inte-
gration of these two distinct features and demonstrated higher
tampering detection accuracy.

This paper is organized as follows: Section II introduces the
CRF with its mathematical models and estimation methods.
Section III describes our automatic splicing detection system
followed by results in Section IV. Section V includes theoret-
ical analysis of the fusion model. The feature selection study
is then presented in Section VI with results in Section VII.
Finally, Section VIII concludes this paper.

II. CAMERA RESPONSE FUNCTION

Prior to the image output recorded on memory cards, cameras
perform various operations on the incoming light rays: linear or
nonlinear, point-wise or spatial, all of which when combined
yield visually pleasant images to human eyes. CRF, the most
salient point-wise operation, maps scene irradiance to image
brightness nonlinearly (Fig. 1) [19]. Though some emerging
camera models may add spatially varying CRFs, it is still con-
sidered valid to assume one invariant CRF per camera for ex-
isting models today. Mathematically, CRF is often denoted as a
single-variable function . Without loss of generality,
both and are assumed to be between [0, 1] although different
manufacturers may produce different dynamic ranges.

Several models have been proposed to represent CRF: one-
parameter gamma function, [6], polynomial

[18], PCA-based empirical model
of response (EMOR) [19], and the generalized gamma curve
model (GGCM) [8]. A comparison
across these models is given in [8], showing superior approxi-
mation of EMOR and GGCM over polynomial models. Consid-
ering the tradeoff between modeling power and computational
complexity, we use a first-order GGCM, .
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A. CRF Estimation

The standard CRF calibration procedure is carried out using
Macbeth Charts with known irradiances [7]–[9]. The CRF is ob-
tained by fitting a curve to the scatterplot of measured bright-
ness values against their corresponding irradiances. Such CRFs
would serve as ground truth when automatic estimation algo-
rithms are evaluated.

The interest of CRF estimation from real images has spanned
over a decade. Earlier efforts used images of the same scene
with multiple known exposures and solved for the CRF under
over-constrained conditions [16], [17]. Single-image CRF esti-
mation algorithms are only proposed recently. The method in
[6] looks for the optimal gamma function with the least higher
order correlation. The method in [7] uses RGB colinearity re-
sulted from color blending on edges, which is further extended
to grayscale images in [9]. The algorithm in [8] is based on the
observation that the ratios between partial derivatives at LPIPs
carry information solely related to the CRF but not to the image
content. Therefore, by applying an initial step to extract quali-
fying LPIPs, the CRF can be successfully recovered. This algo-
rithm is discussed with more details in Section II-B and will be
used in our splicing detection system.

B. CRF Estimation Using Geometry Invariants

In [8], the partial derivatives in the brightness domain are
shown to be related to the CRF and the irradiance information

where denote partial spatial derivatives of
the unknown geometry of irradiance. If a point has a locally
planar irradiance geometry, , then the second-
order partial derivatives in the irradiance domain
would all be zero, and the following equation holds:

(1)

This quantity, denoted as , does not carry any information
about the geometry of , i.e., . With further manipula-
tion we get another quantity

(2)

which is also independent of irradiance geometry and hence
termed Geometry Invariant (GI). It is equal to the gamma pa-
rameter if the CRF takes the gamma form. When the CRF is
represented by a first-order GGCM, is related to the pa-
rameters by

(3)

Given a single image, the CRF is estimated by first extracting
LPIPs, computing GIs (i.e., and values) using (1) and (2),
and iteratively looking for the optimal GGCM parameters to fit
the computed GI values using (3). The authors of [8] further

explored rigorous ways of LPIP selection, error metric defini-
tion, and cross color channel similarity to enhance the accuracy
of CRF estimation. Extensive experiments over multiple cam-
eras and diverse images have shown excellent estimation accu-
racy—average root mean square error (RMSE) as low as 0.0224.
More details can be found in [8].

III. AUTOMATIC SPLICING DETECTION BY CRF
CONSISTENCY CHECKING

In this section, we discuss the components in our automatic
splicing detection system.

Consistency checking is motivated by the fact that spliced
images typically contain suspicious regions with different
device signatures from other regions. If the spliced region can
be automatically located and the signature correctly recovered,
image tampering can be revealed successfully. In most sce-
narios, manual input is not available and an automated process
is demanded. This brings image segmentation into the picture,
followed by crucial tasks of device signature extraction and
consistency checking. In this work, we choose a popular seg-
mentation tool, Normalized Cuts [22], though other methods
such as Mean Shift [23] may also be considered. For device
signature extraction, we use the single-channel CRF estimation
described in Section II-B. The model-based fitting in our prior
work [13], [14] is used as consistency measures.

Instead of checking between every possible pair of segmented
regions, we focus on the authenticity of boundary segments. The
anomalous points created near splicing boundaries are expected
to be crucial. Given the segmentation results of an image, we
propose to first detect suspicious segments and infer if the whole
image contains any spliced content.

As illustrated in Fig. 2, the test image is first segmented into
several regions with qualifying LPIPs extracted and CRFs esti-
mated. To determine the authenticity of a boundary segment,
we apply cross fitting between two neighboring regions sur-
rounding the segment and self fitting data samples from the
boundary segment. The fitting scores, along with other features
extracted from the regions, are used as the feature vector rep-
resenting the segment under question. The segment is detected
as authentic or spliced using a discriminative classifier such as
support vector machine (SVM). Additionally, image level deci-
sions are obtained by fusing segment level classification results.

A. Image Segmentation

Among various image segmentation tools, Normalized Cuts
[22] is widely used because of its intuitive formulation and ro-
bust results. It treats image pixels as vertices in a graph and
their dissimilarity measures as edge weights. The output is mul-
tiple subgraphs with high similarity within each subgraph and
low similarity across distinct subgraphs. Practically, Normal-
ized Cuts requires the number of desired regions to be prede-
termined, typically from 2 to 20. As most spliced images con-
tain only one foreground object of reasonably large size, in our
experiments, we opt for a coarse setting to avoid over-segmen-
tation and excessive computation cost. The number of regions
is set to be eight based on empirical validation. Note our consis-
tency verification framework is general and different segmenta-
tion methods or settings can be easily incorporated.
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Fig. 3. (a) Different types of relations between the automatically segmented
boundaries and the true splicing boundary. (b) Definitions of regions sur-
rounding a boundary segment in our classification system. A and B are regions
adjacent to the boundary while E is the region coinciding with the boundary.

Each boundary segment is categorized into one of the fol-
lowing cases depending on the types of its neighboring sides
[Fig. 3(a)]. 1) Authentic: Both sides are from the same camera;
thus the segment under consideration is authentic. 2) Spliced:
Two neighboring regions are untampered but are from different
cameras. In this case, the segment coincides with the splicing
boundary [white dashed contour in Fig. 3(a)]. 3) Partially
aligned: One or both regions contain content from two cameras.
In other words, the automatic boundary segment only overlaps
partially with the actual splicing boundary. The notations are
illustrated in Fig. 3(b): we shall denote the two authentic sides
as area A and area B, the dilated boundary segment as area E,
and O for the union of areas A, B, and E. These notations will
be used consistently throughout this paper.

For splicing detection purposes, there is no need to distin-
guish Spliced from Partially aligned cases since they both indi-
cate the presence of the splicing operation. However, at segment
level, the authenticity of partially aligned segments is difficult
to define. As such, we only include well-defined Authentic and
Spliced segments as our training data to learn robust two-class
classifiers. Our hypothesis, as will be confirmed later by exper-
iments, is that such classifiers will still provide reasonable de-
tection power on Partially aligned cases.

B. CRF Consistency Measure via Cross Fitting

To check if a boundary segment is authentic or spliced, we
compute cross fitting errors using the estimated CRFs and

values of the selected LPIPs: For (where
are indices to areas and take values on or )

(4)

where is the index of LPIPs and the total number of LPIPs
(or ’s) from area . If areas A and B are indeed from dif-
ferent cameras, we should obtain large cross fitting errors ’s.
The above equation measures how well a CRF model

estimated in one area can be used to fit the points ex-
tracted from a different area. Plugging the CRF model from (3)
in the place of , we can set

(5)

Likewise, for , the self fitting errors are given by

(6)

(7)

Anomalous distributions of samples from areas E and O
are expected if they are not from a single camera. Thus, their
self fitting results and should exhibit distinct behav-
iors from those of authentic regions. We compute the first- and
second-order moments of these fitting errors and construct the
first set of features of a segment

(8)

(9)

where is the mean and the standard deviation.
By taking the first- and second-order moments, we look at

the collective statistics of fitting errors rather than individual
terms. As a side note, the Bayesian classifier in [8] provides an
adjustable threshold so that one can control the rate of points
falsely detected as LPIPs and explore the tradeoffs between suf-
ficient LPIPs and low errors caused by false LPIPs.

In [8], it is also found that the range of image brightness
significantly influences the CRF estimation accuracy (Fig. 4).
As the CRF specifies the relation between input irradiance and
output intensity over the entire range, a larger coverage of
in the observed samples will naturally lead to a smaller estima-
tion error. A small range, on the other hand, may induce in-
accurate CRF estimation and hence segment level false alarms.
Therefore, we add the averages and the ranges of ’s from each
area as our second feature set

(10)

(11)

where contains all the values in area and is the
range (difference between maximum and minimum values) of

’s. Each segment is thus represented by the combined 20-di-
mensional feature vector from (8) to (11).

C. SVM Classification

We use an SVM as our classifier for its wide use and proven
superiority. Practically, however, due to the complexity of image
content, spliced segments are often significantly outnumbered
by authentic ones (Table I). It implies a biased training process
toward negative samples and thus poor classification accuracy.
We adopt SVM bagging as the remedy. We divide the larger pool
(in this case the authentic segments) into subsets, each with a
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Fig. 4. Higher CRF estimation accuracy is expected when the range of the in-
tensity values ��� in the test image is higher.

TABLE I
NUMBERS OF TEST SEGMENTS AND IMAGES

similar number of samples as the smaller pool (the spliced seg-
ments) and train classifiers from these evenly populated sam-
ples. At the test stage, every segment gets classified labels and
distances to the decision boundaries, .
The distances ’s are warped to [0, 1] with a sigmoid function
and linearly fused to obtain the final label

(12)

where controls the “bandwidth” of each single distance. In
our experiment, is set to 5, and is determined empirically
through cross-validation. The decision threshold (currently set
at 0.5) can be changed to obtain different operating points in the
precision-recall curve as reported in later sections.

D. Image Level Fusion

To obtain a global decision for the image, naively averaging
over all scores of individual segments would not be appropriate,
since an image with only one spliced segment is still considered
as spliced, but the average score will be small if there are mul-
tiple authentic segments with low SVM scores.

We adopt a simple alternative—if one or more segments are
detected as spliced with scores larger than a threshold, the image
is considered spliced. This is equivalent to an OR or MAX fu-
sion model. Varying thresholds will result in different operating
points in the image level precision-recall curve.

Note more sophisticated image level detection models can be
developed by incorporating the spatial relationship of individual
boundary segments. For example, segments aligned with dif-
ferent parts of a large object are likely to have the same classifi-
cation (spliced or authentic). Such topics are beyond the scope
of this paper and may be addressed as future work.

IV. EVALUATION OF BASELINE SYSTEM

In this section, we present the evaluation of our proposed
method over the Basic and Advanced sets. We also test the sen-
sitivity of the method to image compression (like JPEG). The
theoretical analysis of image level fusion and comparative fea-
ture selection will be addressed in later sections.

A. Data Sets

Our benchmark data set consists of 363 uncompressed images
[13]: 183 authentic and 180 spliced. Authentic images are taken
with four cameras: Canon G3, Nikon D70, Canon EOS 350D,
and Kodak DCS330. Each spliced image has content from ex-
actly two cameras with a salient object from one image copied
and pasted onto another using Adobe Photoshop without post-
processing. We also made best efforts to ensure image content
diversity with different objects and scenes. This set will be re-
ferred to as the Basic data set. We use half of these images for
training and another half for testing. The numbers of images
used in the testing stage are listed in Table I.

The boundary segments are categorized into three sets:
Authentic, Spliced, and Partially aligned, as defined in
Section III-A. Categorization is done based on the per-
centage of its overlap with the closest splicing boundary. If the
overlap exceeds a certain threshold (e.g., 90%), it is labeled
as Spliced. If lower than another threshold (e.g., 10%), it is
labeled as Authentic. All others will be labeled as Partially
aligned (Ambiguous). As reported in Table I, within one image,
there are usually as many Partially aligned segments as Spliced
segments; therefore, Partially aligned cases must not be over-
looked. As mentioned in Section III-A, these segments are
included in the testing stage but not the training stage.

Both the CRF estimation and cross fitting computation re-
quire certain numbers of LPIPs to work well. One reasonable
question then is whether there exist enough LPIPs on the spliced
boundaries in practical situations. To verify this, we examined
our test data set and found that even without special smoothing
of filtering after splicing, most of the spliced images have at
least two or more segments that are associated with more than
100 LPIPs for each segment.

Both segment level and image level results are evaluated over
the Basic data set. We randomly partition the data set at image
level into training and test sets so that segments from the same
image will not be included in both training and test sets. In order
to see how well our classifier generalizes, we also test our de-
tector on an additional image set that include 21 authentic im-
ages and 38 high-quality spliced images using advanced vision
and graphic tools courtesy of Microsoft Research Asia. These
images are typically JPEG compressed, with matting or color
adjustment as postprocessing in addition to copy-and-paste. It
is a much more realistic and challenging set for splicing detec-
tion, hence denoted as the Advanced data set. Note the test is
performed on the new advanced spliced images without any re-
training of the classifiers.

B. Performance on the Basic Data Set

Previous works on tampering detection report detection rates
[1], confusion matrices [2], or simply case-by-case results [11],
[12]. However, we opt for the precision-recall (PR) curve due
to highly unbalanced data (Table I). The precision is defined
as the ratio of correctly detected spliced segments over all
segments classified as spliced, and the recall is the ratio of
correctly detected spliced segments over all spliced segments.
The recall rate is the same metric as detection rate, and in
one of the false alarm rate definitions, the precision is simply

False Alarm Rate ; therefore. the PR curve is arguably
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Fig. 5. PR curves for segment- and image-level splicing detection. The pro-
posed method clearly outperforms the random-guess baseline, especially for the
Basic benchmark data set.

equivalent to the common receiver operating characteristic
(ROC) curve with detection and false alarm rates.

Although the segment level classification accuracy is only
slightly better than random guess [Fig. 5(a)], our OR-based
fusion scheme for image level classification proves to be pow-
erful—70% precision, 70% recall [Fig. 5(b)]. We provide a
theoretical explanation of the performance gain by the fusion
scheme in Section V. In Fig. 5(b), we compare our results
against two random guess schemes. The first one is conducted
at the image level (referred to as random guess 1), based on
the population of spliced images in the data set. The second
one is to first perform random guess on the segment level and
then fuse these results to obtain image level decisions (random
guess 2) using the same OR function. The PR curves show that
the second scheme is better than the first one. Nevertheless,
when compared with the experimental results, it is clear that
our detector is superior to both random guess schemes.

C. Generalization to JPEG Compressed Images

In order to evaluate the performance of our algorithm under
realistic scenarios where most images are JPEG compressed,
we perform JPEG compression of three different quality factors
( and ) on the Basic data set and apply our SVM
based splicing detector. As shown in Fig. 5(a) and (b), without
retraining the classifiers, there is very little performance degra-
dation caused by compression. Although heavy compression in-
deed leads to lower segment level detection accuracy [Fig. 5(a)],
at image level, the recall rate only suffers a 5% drop at preci-
sion 70%. One interesting note is that at segment level, images
compressed with a high quality factor even outper-
form the original uncompressed data. One conjecture, though
lacking empirical verification, is that high-quality compression
may help remove certain image noise and achieve more accu-
rate CRF estimation and splicing detection.

Fig. 6. Different types of spliced images (from the Advanced data set) detected
by our method. Black: successfully detected spliced segments; gray: partially
aligned segments detected as spliced; white: authentic segments detected as
spliced.

D. Generalization to an Unseen, Challenging Data Set

When tested over the unseen Advanced data set, we observe
performance decrease at segment level as anticipated: the PR
curve is almost only as good as random guess [Fig. 5(c)]. Nev-
ertheless, at image level, a precision-recall of 70% and 70%
can still be obtained, comparable to that of the Basic data set
[Fig. 5(d)]. Note this suggests satisfactory detection even when
the trained detector is applied to new images with significantly
different splicing and postprocessing operations.

In Fig. 6, we observe that spliced images with a large object,
e.g., human face or body, are more likely to get precise seg-
mentation and correct detection, even when postprocessing is
present [Fig. 6(a) and (d)]. Images with objects similar to back-
grounds suffer from inaccurate segmentation. However, some
of the resultant partially aligned segments can still be useful, as
shown in Fig. 6(b) and (e). Lastly, images with complex tex-
tures [e.g., trees in Fig. 6(c) and lake reflections in Fig. 6(f)]
are prone to false alarms. In the last case, some images are de-
tected due to segment level false alarms. To examine the effect
of such “lucky” detection, we re-evaluate the performance to in-
clude only detection due to correct segment level detection and
found the overall accuracy slightly degrading to 63.9%.

E. Possible Attacks to Our System

Various attack strategies exist against our system. For ex-
ample, one may create a spliced image and apply another CRF
so that the image appears to be generated from only one camera.
Though this may weaken inconsistency cues, applying a CRF
will not completely conceal the differences of the original CRFs
and our method should be able to at least partially capture such
inconsistency. Similarly, if the splicing is created from two im-
ages with the same CRF, we expect the boundary self fitting
anomalies to still exist. Therefore, our design has a good chance
to survive against these two types of attacks.

Some other tampering involves local, subtle touch-ups. In that
case, if the magnitude of alteration does not exceed a certain
level, it is likely to remain undetectable by our system either
due to the miss in automatic segmentation or in segment level
splicing detection. This is, however, beyond the scope of our
work and is not the type we had originally targeted.
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We offer theoretical analysis in Section V for the segment-to-
image level performance gain.

V. SEGMENT-TO-IMAGE LEVEL PERFORMANCE GAIN:
THEORETICAL EXPLANATION

One may question why the image level classification results
appear to be much better than the segment level performance.
In this section, we present theoretical validation, demonstrating
how to arrive at image level results from segment level preci-
sion-recall through the simple OR fusion scheme.

Assuming the segment level false alarm rate and recall
at a certain decision threshold , the image level recall using
our OR fusion scheme is the probability that at least one of the
segments gets a score higher than the threshold

(13)

where is the SVM score for segment in a spliced image
, the number of authentic segments in a spliced image is de-

noted as , the number of spliced segments , and the number
of partially aligned segments . The quantity is the proba-
bility that the score of a partially aligned segment exceeds the
threshold. Note when computing , authentic images are not
involved.

In the following, the uppercase letters in the subscript and
denote whether the analysis is at the segment or image level.

The lowercase letters denote the categories of segments
or images: authentic, spliced, or partially aligned (which is only
relevant to segments but not images).

A. Conditional Probabilistic Model for OR Fusion

Equation (13) assumes every image in the data set has the
same error statistics, , , and . However, from our exper-
iments, we discover that images with different characteristics
usually result in different detection performance.

To partially alleviate the problem, we group the images ac-
cording to the distribution of segment types. We introduce a
three-dimensional vector to denote the numbers of segments
of different types in a spliced image. We collect all
images with the same and compute seg-
ment level for this group. Below we refine the
model into a conditional probabilistic formulation.

The segment level detection measures will be
conditioned on . Since the image level recall is obtained
through and , it is also conditioned on

(14)

From this formulation, we are ready to derive the image level
recall, image level false alarm, and image level precision.

B. Image Level Recall, False Alarm, and Precision

The overall image level recall is obtained by summing all
conditional recalls given in (14) over all possible ’s

(15)

where is proportional to the number of the spliced images
with distribution type .

The Image level false alarm will be derived through au-
thentic images. We conduct a similar conditioning procedure
and obtain the conditional segment level false alarms as-
sociated with authentic images (where denotes the number
of segments within an authentic image).

The image level false alarm is, therefore, the probability
that an authentic image is classified as spliced given that it has

authentic segments

(16)

Summing over all possible ’s, we get the overall image
level false alarm

(17)

Having obtained the image level recall and false alarm
in (15) and (17), the image level precision can be readily derived
as their weighted average

(18)

where and are the numbers of spliced and authentic im-
ages, respectively.

C. Experimental Verification of Theoretical Analysis

The objective of this subsection is to verify our theoretical
derivations with experimental results. The statistics from the
Basic data set (Section IV) are used in this procedure. Specifi-
cally, we group the spliced images according to their ’s (i.e.,

) and evaluate the image level recall value and
segment level performance for different ’s
and thresholds . From the data set, we also obtain false alarms

associated with authentic images. Probability mass func-
tions and are then constructed. These values are used
to predict image level performance .

We present the comparison between predicted and actual ex-
perimental results in Fig. 7. While they may not coincide with
each other exactly, our theoretical prediction offers a reasonable
performance estimation and is especially useful in assessing the
relative gain when fusing segment level scores to image level
decisions.

VI. FEATURE SELECTION

To further discover the main contributing factor to effective
splicing detection, we perform feature selection on the 20-di-
mensional feature vector. Re-examining (8) and (9), the original
features can be categorized into different groups with distinct
physical meanings:

1) Consistency: two-area (A, B) cross fitting
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Fig. 7. Image level PR curves: predicted versus actual (a) precision, (b) recall,
and (c) precision-recall curve.

2) Anomaly: self fitting of boundary segment (E)

3) Anomaly: Self fitting of the whole area (O)

The first group represents the consistency between two
“authentic” regions, the second extracts the information from
splicing boundaries, and the third captures the anomaly in the
whole image. Interesting issues thus arise:

A) Is two-way cross fitting between A and B sufficient for
splicing detection?

B) How important is the anomaly from splicing boundaries
(solely from E and/or collectively from O)?

C) If E and O are indeed crucial, what is the sensible way to
use them?

D) Can the anomaly related features be further amplified?
E) Based on these tests and observations, what would be the

ideal feature set for image splicing detection?
In order to answer these questions, we arrange corresponding

feature sets as follows:
A) Two-way Cross Fitting

This question can be answered by the detection perfor-
mance of compared with the whole feature set.

B) Boundary Self Fitting as Standalone Features
Here we run SVM training and testing on alone
and alone. We compare them against the results
using only to determine which factor plays the key
role: two-way cross fitting from authentic regions or the
anomaly created around splicing boundaries.

C) Boundary Self Fitting as Auxiliary Features
In addition to the above comparison, we run tests on

and to observe the impact of
and when combined with . Results from

the previous and the current arrangements will reveal the
optimal way of using boundary self fitting anomaly.

D) Amplified Anomaly
We further create another subset which treats areas A and
B as one single source C (implicitly assuming they come
from the same camera) and conduct cross fitting between
this area and area E.

The intuition is that when treating the content from dif-
ferent cameras as from the same camera, an abnormal re-
sult in CRF estimation will occur. By fitting this abnormal
CRF to the abnormal points generated from sus-
pected splicing area E, we can amplify the anomaly effect
from two separate sources. A set is created following
the same rationale.

E) Ideal Feature Subset
Based on the findings of all previous arrangements, we
arrive at a final, optimal subset of features that preserve
only the crucial components to successful detection. SVM
training and testing will be conducted to verify the detec-
tion power of such feature subset.

VII. FEATURE SELECTION RESULTS

In this subsection, we analyze the performance of different
feature subsets described in Section VI.

A. Two-Way Cross Fitting

When excluding self fitting scores from splicing boundaries,
two-way cross fitting between areas A and B pulls the classifica-
tion performance down, as shown in Fig. 8(a), (e). At segment
level [Fig. 8(a)], it can be as dramatic as a 15% precision de-
crease when recall is low (around 20%). In Fig. 8(e), the image
level performance suffers even more than segment level: with
recall at an acceptable 80%, precision is 10% lower, and when
recall drops to as low as 30%, precision falls by 20%.

B. Boundary Self Fitting as Standalone Features

Results from the previous subsection confirm the necessity of
splicing boundary information. In this subsection, we use self
fitting scores from area E (or area O) as standalone features and
compare the results against two-way cross fitting.

In Fig. 8(b) and (f), it is worth noting that performs
only similarly as , demonstrating that the anomaly from
splicing boundaries would not work alone. However, the
anomaly included in the whole image is comparable, or
even better than the original feature set, if we choose thresholds
corresponding to recall rates higher than 45%.

We also combine and , equivalent to collecting
all the anomaly related features in the original feature set. The
segment level PR curve lies between and the original set
[Fig. 8(b)]. At image level, the PR curve is very close to the
original set, especially when recall is above 70% [Fig. 8(f)].

C. Boundary Self Fitting as Auxiliary Features

We now look at how anomaly related features ( and
) behave as auxiliary sets when added to the poorly per-
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Fig. 8. (Top row: segment level; bottom row: image level) PR curves: (a), (e) two-way cross fitting; (b), (f) boundary self fitting as standalone features; (c), (g)
boundary self fitting as auxiliary features; (d), (h) amplified anomaly.

Fig. 9. PR curves: ideal feature set.

forming two-way cross fitting . Fig. 8(c) shows that
and both boost the segment level performance of ,
with achieving much higher performance gain. At image
level [Fig. 8(g)], with does not perform consistently
better, while with performs extremely well: compa-
rable to the whole set at recall above 70% and 5%–10% higher
precision than with throughout.

Results show that the splicing induced anomaly is key to suc-
cessful detection in all possible ways of use, whether competing
with the nonanomaly related features , or serving as its
aid when used in a collaborative way.

D. Amplified Anomaly

Previous findings inspire us to extract anomaly by treating
areas A and B as one authentic area C. There is hence poten-
tial anomaly in the estimated CRF and fitting of locally planar
points if they are actually from different sources. We then con-
duct cross fitting between this area and area E. If an image is
spliced, there will be anomaly both in C and E. Compared to the

feature using alone and with , in this new fea-
ture set, we amplify the significance of the anomaly. PR curves
in Fig. 8(d) and (h) validate this claim.

E. Ideal Feature Set

Previous experiments have revealed the following:
1) Two-way cross fitting from authentic areas is not sufficient

for splicing detection.
2) Anomaly from “hybrid” areas is crucial, especially when

cross fitting between different areas.
These observations lead us to look for an ideal feature set,

making use of the anomaly in the most powerful way. We take
cross fitting components from and the full , con-
structing an optimal set

Capturing the contribution from both the anomaly and cross fit-
ting, this set performs significantly better than all subsets exper-
imented above (Fig. 9). It is even superior to the original set,
especially over the range of precision from 70% to 80%.

VIII. CONCLUSION AND FUTURE WORK

We proposed an automatic spliced image detection approach
based on geometry invariant CRF estimation, consistency
checking, and image segmentation. The method is fully passive
and automatic—neither active signature embedding nor manual
input is needed. Though the accuracy in detecting specific loca-
tion is modest, the segment to image level fusion not only works
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well on the basic benchmark set but also gives satisfactory ac-
curacies on a challenging realistic set. Results demonstrate that
our method is promising for real-world applications. Such good
performance is also verified through theoretical analysis.

With extensive feature selection, we show that the anomaly
induced near the splicing boundary is crucial to successful de-
tection, whether used as a standalone feature set or as an auxil-
iary set to other features. This comparative study has also pro-
vided deeper physical insight to design an optimal feature set
which indeed demonstrates superior performance.

Future work may include incorporation of spatial constraints
such as boundary smoothness, continuity, and alignment with
image scene context to prune classification errors and refine the
localization accuracy of specific spliced areas.
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