Chapter 9
Cortically-Coupled Computer Vision

Paul Sajda, Eric Pohlmeyer, Jun Wang,
Barbara Hanna, Lucas C. Parra,
and Shih-Fu Chang

Abstract We have developed EEG-based BCI systems which couple human vi-
sion and computer vision for speeding the search of large images and image/video
databases. We term these types of BCI systems “cortically-coupled computer vi-
sion” (C3Vision). C3Vision exploits (1) the ability of the human visual system to
get the “gist” of a scene with brief (10’s—100’s of ms) and rapid serial (10 Hz) image
presentations and (2) our ability to decode from the EEG whether, based on the gist,
the scene is relevant, informative and/or grabs the user’s attention. In this chapter
we describe two system architectures for C3Vision that we have developed. The sys-
tems are designed to leverage the relative advantages, in both speed and recognition
capabilities, of human and computer, with brain signals serving as the medium of
communication of the user’s intentions and cognitive state.
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9.1 Introduction

Today we are faced with more information on a daily basis than ever before. Con-
stantly evolving digital recording devices that can capture large amounts of spatial
and/or temporal data, ever increasing digital storage capacities and multitudes of
multimedia applications are just a few factors that create this “information tsunami”.
Searching for something of interest, making rapid decisions and being attentive to
relevant information are becoming increasingly complex tasks.

Various technologies, driven by diverse fields of research, have been developed
to assist us in consuming information. Yet the fact is that the human capacity to an-
alyze information and make inferences about our surrounding environment remains
unsurpassed. For example, our ability to recognize objects is extraordinarily robust,
and with trillions of neuronal connections, our brain can react extremely fast to an
external stimulus: we respond to the information we receive in the “blink of an eye”
(Gladwell 2005), before we are even aware of it.

Recently we, as well as others, have been investigating the application of brain
computer interfaces (BCI) for dealing with issues in image search, retrieval and
triage (Gerson et al. 2006; Parra et al. 2008; Kapoor et al. 2008; Bigdely-Shamlo et
al. 2008). Our group has developed an approach which we term cortically coupled
computer vision (C3Vision) where the goal is to synergistically couple computer
vision with human vision, via on-line real-time decoding of EEG while users’ view
images as a rapid serial visual presentation (RSVP) (Gerson et al. 2006). As well
as being a method for maximizing throughput, the use of RSVP is motivated by our
ability to make very rapid and accurate decisions. The ability of the human visual
system to do this has sometimes been characterized as getting the “gist” of a scene
(Oliva 2005) in a few hundred milliseconds. The C3Vision approach exploits our
ability to decode EEG signals that are related to detection and recognition in rapidly
shown images (Thorpe et al. 1996; Keysers et al. 2001; Gerson et al. 2006). One of
the key signals we exploit in our system is the P300. The P300 is an evoked response
in the EEG which reflects perceptual “orienting” or shift of attention which can be
driven by the content of the sensory input stream (Linden 2005).

In this chapter we review our work in C3Vision, focusing on two architectures we
have developed. The first architecture is tailored to a visual search problem, where
a user must find targets in an extremely large image (on the order of 30 K x 30 K
pixels). For this case computer vision serves as a pre-processor to select potential
areas of interest, creating chips (or regions of interest—ROISs) of these areas which
are subsequently presented to the user via RSVP while the user’s EEG is decoded
to generate an “interest score” used to rank or prioritize the ROIs (see Fig. 9.1A).
Given this first step “triage”, the user can proceed to search the large image with
the added capability of jumping to locations in the scene which grabbed his/her’s
attention during the RSVP EEG decoding phase. In Section 9.3 we describe this
system and demonstrate results for remote sensing.

The second architecture, presented in Section 9.4, addresses an image retrieval
application, using EEG decoded during RSVP presentation to generate an interest
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Fig. 9.1 Strategies for integrating computer vision with EEG-based image triage. The goal is to
re-rank images in a database so that the result is a dense ranking, with images of interest at the
front of the database, given an initial ranking that is sparse. In system A a very large database is
processed by model based computer vision to generate a candidate set of images that might be of
interest to the user. The computer vision model is tuned to have a high sensitivity at the cost of
specificity. The user is presented with rapid sequences of images labeled as potentially interesting
by computer vision while high-spatial density EEG (/64 channels) is recorded. An EEG decoder
is trained on data collected from subjects while they look at imagery from an unrelated database
and pay attention for target specific or “interesting” imagery in the rapid sequences. The trained
EEG decoder is used to process EEG signals while the user observes the barrage of images in
the sequence, with the result being an interest score used to re-rank the database. This leads to a
dense ranking of the database (note dark gray vs light gray, indicating the database has become
more dense in term of the “concentration” of interesting images). System B starts by randomly
sampling the database and passing on the samples as rapid sequences to a human user. Note that
in this case, the volume of imagery assessed by the human is small, compared with the computer
vision in System A, due to speed and fatigue limitations. However an advantage of System B is
that the human is able to look for images which are specifically of interest to him/her and which
might be difficult to define in terms of a prior model for computer vision. The EEG interest score
is used to re-rank images and pass labels to an exemplar based computer vision system which then
propagates predicted labels into the database and returns a re-ranking based on the propagated
labels. System C combines systems A and B so that computer vision operates both at the front end
and back end of the system

score usable for training a feature based computer vision system (see Fig. 9.1B).
The computer vision system derives training labels from the EEG interest score and
propagates them to re-rank the image database and retrieve for the user those images
which match what grabbed his/her attention. Below we begin by describing how we
decode the EEG and map it to an “interest score”. For additional technical details
readers are referred to Gerson et al. (2006), Parra et al. (2008), Wang et al. (2009b),
Sajda et al. (2010).
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9.2 The EEG Interest Score

Given an RSVP paradigm for presenting a rapid sequence of images to the subject,
we simultaneously record EEG, using 64 scalp electrodes, and map the activity to an
“interest score” for each image. The interest score is meant to reflect how much of
a user’s attention was directed toward an image. From a neuro-science perspective
it can be seen as the single-trial correlate of the P300-related orienting response,
though as can be seen in Fig. 9.2 we allow for flexibility in this definition. The
algorithm we use for decoding the EEG, and ultimately mapping it to an interest
score, has been described previously (Gerson et al. 2006; Parra et al. 2008). Briefly,
our approach begins with the linear model,
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Fig. 9.2 Using hierarchical discriminant component analysis to construct EEG interest scores.
Shown is the forward model for the discriminating component at each time window, which can
also be seen as the normalized correlation between the component activity in that window and
the data (Parra et al. 2005). The series of 10 spatial maps thus shows that the spatial distribution
of the forward model of the discriminant activity changes across time. Activity at 300-400 ms
has a spatial distribution which is characteristic of a P3f, which has been previously identified by
our group and others (Gerson et al. 2005; Makeig et al. 1999) during visual oddball and RSVP
paradigms. In addition, the parietal activity from 500-700 ms is consistent with the P3b (or P300)
indicative of attentional orienting. Other significant discriminant signals can be found at earlier and
later time and often vary from subject to subject and the specifics of the experimental paradigm,
e.g. presentation speed. The 10 components characterized by the scalp maps are linearly integrated
to form a single classification score, which can be represented via the class-conditional histograms.
This classification score is used as the “interest score” in our C3Vision systems
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where x;, represents the electrical potential measured at time ¢ for electrode i on the
scalp surface, while w; represents the spatial weights which will be learned based
on a set of training data. The goal is to combine voltages in the electrodes linearly
such that the sum y is maximally different between two conditions—e.g. “target of
interest” vs “distractor”. We also assume that this maximally discriminant activity
is not constant but changes its spatial distribution within the second that follows the
presentation of an image—i.e. we assume a stationarity time 7 of approximately
100 ms. Thus we find distinct optimal weight vectors, wy; for each 100 ms window
following the presentation of the image (index k labels the time window):

Yo=Y wiixis, t=T.2T.....(k—DT,kT. 9.2)

2

These different y;, are then combined in an average over time to provide the
optimal discriminant activity over the entire second of data, with the result being
our “interest score”, yys for the image

YIS= )Y vk 9.3)
t k

For on-line implementation purposes we use the method of Fisher Linear Dis-
criminants to train coefficients w;; within each time window of time. The coeffi-
cients vy are learned using penalized logistic regression after all exemplars have
been observed. Because of the two step process of first combining activity in space,
and then again in time, we have termed this algorithm “Hierarchical Discriminant
Component Analysis”. Figure 9.2 plots the spatial filters that are learned for each
time window and shows the subsequent hierarchical integration which enables us to
construct interest scores, based on the classifier output. Note in the figure that the
scores distribute as a function of whether the image was a target of interest or not.

9.3 C3Vision for Remote Sensing

We first consider architecture A in Fig. 9.1 with computer vision followed by RSVP
and EEG decoding. The application we will consider is for remote sensing. In re-
mote sensing, analysts must search images that are several hundreds of giga-pixels
in size. In particular, intelligence analysts routinely search very large satellite images
in order to find and monitor objects and regions of interest (Fig. 9.3A). As part of
their work-flow, analysts use specialized software (e.g. Remoteview, by Overwatch
Systems) that lets them rapidly load, display and zoom/pan such images. They con-
duct their searches using various strategies depending on their level of experience
and expertise. Figure 9.3B shows for example the raster scanning search pattern
followed by an image analyst during a test. Given the size of the images, this typi-
cal search process can be lengthy and inefficient. For example a trained analyst may
need 60 minutes to complete the review of a 30 K x 30 K image, and may only iden-
tify the targets of interest in the last few minutes of the review. However, searches



138 P. Sajda et al.

Fig. 9.3 A. Satellite image to be searched. B. Traditional search approach shows a smooth and
continuous path. C. Search in which areas are prioritized by EEG triage. Shaded areas in B & C
represent regions analyzed by the analyst

could be significantly enhanced and accelerated with means to prioritize the search,
and help analysts focus their attention on regions with high target probability.

Leveraging the high sensitivity of computer vision with the high specificity of
human visual recognition, we have developed a C3Vision Remote Sensing System,
based on the architecture of Fig. 9.1A. In this system potential target regions are
automatically identified by computer vision and image chips centered on potential
targets are generated and then presented as RSVP to the user. Centering the image
chips on potential targets improves the detection performance during the triage, as
targets are better foveated when presented to the analysts at a rapid pace. The EEG
scores computed during the RSVP are used to prioritize which regions of the image
should be searched first, leading to search patterns like those shown in Fig. 9.3C.

Using C3Vision in this way improves on the analysts’ typical work-flow by of-
fering a first pass in which they can very rapidly review thousands of image chips
extracted from the large satellite image and identify those that will be of most in-
terest to them, as shown in Fig. 9.4. They can then move to a more in-depth second
pass during which they can review high priority areas first, thus accelerating and
managing their search more efficiently.

This architecture combines three major components: 1. computer vision based
automated region selection and target detection; 2. real-time recording and decoding
of EEG signals and 3. the interface used to exploit the prioritized image analysts.
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Fig. 9.4 Analyst work-flow with the C3Vision architecture. Potential target regions are automat-
ically identified, and image chips constructed with potential targets centered on those regions.
Image chips are triaged using rapid image presentation and classification of neural activity. The
results are then reviewed by order of priority in existing specialized software with the help of a
dedicated visualization interface

While there is a vast body of computer vision research on object/region detec-
tion, the C3Vision architecture itself is agnostic to the choice of a particular method.
Such a choice is best guided by the task for which the system is used. The scenario
presented here involves targets classes that are known a priori, enabling the use
of a model based approach. In particular, we have implemented and tested a frame-
work that extracts low-level features specific to aerial object classes. The framework
then infers object classes with a grammar-based reasoning engine that uses domain
knowledge and the relationship between object features (see Sajda et al. 2010 for
more details). As the image size is typically large and the target detection needs
only to be within a few pixels, target detection is only performed on a subsample of
image pixels, for example a uniform grid with user specified density. The detection
framework associates a confidence score with each pixel in the subsample. Image
chips are generated based on those detections with a score exceeding a predefined,
task-based threshold.
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The image chips are then presented to the analyst as RSVP, using a pace of 5
to 10 Hz (i.e. 200-100 ms per image). While they are presented, EEG signals are
recorded using a 64 electrode EEG recording system (ActiveTwo, Biosemi, Ger-
many) in a standard 10-20 montage and at a 2048 Hz sampling rate. Image chips
are presented in blocks, typically 100 image chips long. Since detection perfor-
mance can degrade when target occurrences are too seldom or too frequent, each
block is constructed to satisfy a certain target prevalence. In particular, for each
block, a number of image chips are randomly drawn from the computer vision
list, based on expected true and false positive rates, and additional chips are drawn
from a pool of “distractors” in order to achieve the desired block size and preva-
lence.

As the EEG stream is acquired, a classifier based on the hierarchical discriminant
component analysis, described above, assigns an EEG interest score to each image
chip in real time. The EEG classifier is trained at the beginning of a presentation
session, with 20 to 30 blocks each containing two known but randomly placed (in
the sequence) targets. The content of the training sequences can be related to the
content of the test sequences to better familiarize the user to the paradigm and tar-
gets. However, from a neuro-physiological perspective, training is not dependent on
the choice of imagery, since the classifier is in fact tuned to P300 events. To fur-
ther help users modulate their responses and obtain better training, feedback can be
given at the end of each block, for example by providing a visual indication of how
the classifier can re-order the target images within a block based on the EEG interest
scores.

The list of prioritized chips is reviewed for validation via a dedicated visualiza-
tion interface that interacts directly with the analysts’ dedicated software. Analysts
validate target locations by clicking on corresponding x, y coordinates, which can
then be saved in analyst specific products such as shape files. The visualization in-
terface controls the software’s viewport, forcing it to show areas centered on the x, y
coordinates of the original large image corresponding to the centers of the chips by
descending order of EEG interest. Those “jumps” can be triggered by user inputs
(e.g. pressing a next button) or be automatically paced. Analysts experimenting with
the system have provided positive feedback on both approaches, reporting that the
latter helps them rapidly focus their decisions, while the former gives them greater
control over the review process.

The architecture has been tested in the course of four semi-operational tests, in-
volving a minimum of 4 image analysts each and imagery from a variety of sen-
sors: EO-gray-scale cameras, EO-color cameras and SAR. Here we show the results
of tests where each analyst had to perform three search tasks: 1. look for POLs
(Petroleum Oil Lubricant storage); 2. look for airfields in a SAR image; 3. look for
buildings in a large EO gray-scale image. For each search task, the times at which
image analysts had clicked on a target pixel location was recorded for both baseline
and image assisted searches. As a result, several metrics were computed to compare
baseline and assisted searches: area throughput at matched sensitivity, i.e. the num-
ber of pixels searched per unit time while keeping the baseline and assisted number
of targets found the same, detection rate, i.e. the number of targets found over time,
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Table 9.1 Throughput comparison between baseline search and C3Vision for the remote sensing
application

Task 1 Task 2 Task 3
(POLs—MSI) (Airfields—SAR) (Buildings—EO)

Avg throughput improvement ~ 3.21 11.01 3.16
Standard deviation 0.42 3.48 0.52
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Fig. 9.5 Average number of target detections as a function of time across subjects and for each
task. Dashed lines are for baseline and solid lines are using C3Vision

and sensitivity. For each task, the system was shown to improve on the baseline area
throughput by at least 300% on average (see Table 9.1), as well as on the baseline
detection rates (see Fig. 9.5). At the same time, the overall sensitivity and number
of false positives were kept the same or moderately improved upon, highlighting the
capacity of the system to drastically accelerate search without degrading detection
performance.
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9.4 C3Vision for Image Retrieval

Due to explosive growth of visual content on the Web, such as personal photographs
and video, there is an emerging need for efficient and accurate systems to rapidly an-
alyze visual information. One of the ultimate goals for automated computer vision or
media content analysis is to detect and recognize objects, scenes, people, and events
in images or videos. A common framework used in such efforts is to learn object
models from a pool of training data, which may have been wholly or partly anno-
tated over pre-defined object classes. Such a learning framework has been shown to
be powerful. However, it is limited in its scalability to large-scale applications. One
of the main barriers is the dependence on the manual annotation process, which is
laborious and time consuming. To overcome this, efforts have been reported using
interactive annotation with relevance feedback and active learning in order to reduce
the required manual input.

We consider a C3Vision system for image retrieval using the architecture shown
in Fig. 9.1B (and more specifically in Fig. 9.6A). In this architecture, neural signals
measured via EEG are used to detect generic objects of interest (OOI) presented
in a series of images, while computer vision exploits the EEG labels within the
context of a graph-based visual pattern mining algorithm. For the EEG-based OOI
detection, only a relatively small subset of images (on the order of few hundred) is
first randomly sampled from a larger image database and presented as visual stimuli
to the subject. From this window into the larger image collection, the EEG interest
detector can identify a small set of highly ranked images to be used as a group of
‘pseudo positive’ labels for the pattern discovery module. This module then refines
and propagates the labels throughout the entire database of images, returning a larger
set of images related to those to which the subject showed the greatest interest. In
this way, subject participation is minimized, yielding just sufficient information for
the neural state decoder and the pattern mining module to effectively infer objects
that have attracted a users attention and generate labels for all the images in the
collection. Thus, while subjects are only required to review a small subset of the
database (avoiding long EEG recording sessions and fatigue), they can still obtain
access to a large number of images that interest them.

The imagery used to test the image retrieval architecture was taken from the Cal-
tech 101 database. This database is a well known set of images that are commonly
used to evaluate object detection and recognition algorithms (Fei-Fei et al. 2004).
It is composed of 101 different image categories, with all the images having been
taken from the web. As the categories have large intra class variation and represent a
diverse set of image types, while still only consisting of images that have been well-
defined, it provides a good testbed for the image retrieval architecture. The Caltech
images do vary considerably in both resolution in scale, however. To control for any
such fluctuations in image size impacting the subjects’ visual responses and fixation
capabilities during the RSVP, we selected a subset of categories from the Caltech
101 database to serve as the experimental database. These categories all contained
images of similar scale and resolutions, and the images could easily be re-scaled to
a consistent size (with negligible distortion) to provide the desired uniformity in the
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Fig. 9.6 System design for image retrieval. (A) Images are sampled from the image database and
presented as RSVP to the user while EEG is simultaneously recorded. EEG interest scores are cal-
culated and used to rank the samples based on their score. Concurrently, the entire image database
is mapped to a graph structure based on image-based feature similarity. The graph structure is than
provided labels derived from the EEG interest scores and these labels are propagated in the graph
to re-rank the entire image database. Since the labels derived from EEG interest scores are con-
sidered noisy, there is a label refinement/sensitivity analysis step which is used to maximize the
value of the labels. (B) From the perspective of the graph based model, the interest scores derived
from EEG during the RSVP presentation of images can be seen as improving the discovery of
manifolds in the feature space of the images. These manifolds represent object categories which
are of interest to the user and which are similar in terms of the feature space in which they reside

visual input during the RSVP. The experimental database thus consisted of 62 of the
Caltech 101 database categories for a total of 3798 images (42% of the total Caltech
101 images).

Each test sequence involved the users being presented with 1000 images ran-
domly selected from the 62 categories. The images were shown in 10 blocks of 100
images each, with the images within each block being shown at 6 Hz for the RSVP.
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During each test sequence, the users were instructed to look for images from one of
three target categories: Starfish, Chandeliers, and Dalmatians. The RSVP sequence
of 1000 images were then repeated (in a random order) with the participant being in-
structed to attend to images from the next target category. The ordering of the target
categories was varied between subjects. All EEG data from four subjects (who were
familiar with EEG work, but who had not been exposed to this experiment), were
again recorded during these tests using a 64 channel system (ActiveTwo, Biosemi,
Germany) in a standard 10-20 montage, with a sampling rate of 2048 Hz.

The hierarchical discriminate component analysis algorithm was used to create
the interest detector component of the image retrieval architecture, see Fig. 9.60A.
The format of the training data used to create the detector matched the test data
(blocks of 100 images, shown at 6 Hz), with the training images being taken from
the Caltech 256 database to differentiate the training and testing data. Similarly
to the testing data though, only a subset of relatively similarly sized Caltech 256
images were used for the training database, with several 101 categories that are
typically part of the 256 database also having been removed. Typically 25-30 blocks
of images (with exactly 2 target images randomly positioned within each block)
were presented during the training session, with the subjects being instructed to
attend to either soccer balls or baseball gloves as the training target category. The
20 images ranked most highly by the interest detector were then given to the pattern
discovery module so that other images similar to those could be identified from the
full image database.

The pattern discovery subsystem starts with construction of an affinity graph,
which captures the pairwise visual content similarity among nodes (corresponding
to images) and the underlying subspace structures in the high dimensional space
(as shown in the right part of Fig. 9.6B). Such a construction process is done offline
before user interaction. The small set of pseudo positive labels generated by the EEG
based interest detector is fed to the initially unlabeled graph as assigned labels for
a small number of nodes, which are used to drive the subsequent processes of label
identification, refinement, and propagation. Graph based semi-supervised learning
techniques (Wang et al. 2008) play a critical role here since we will rely on both
the initial labels and the large pool of unlabeled data points throughout the diffusion
process.

Assume that the generic interest detector outputs the EEG score
e={ej, e, ...,e,} from a RSVP sequence X = {x1, X3, ..., X, } shown to the sub-
ject.! Previous work has shown that the existing semi-supervised methods cannot
handle cases with extremely noisy labels (Wang et al. 2009a). In order to refine the
noisy EEG scores, our method first extracts the salient image pattern and recovers
the visual consistency among the top ranked images. In other words, an improved
interest measurement f is estimated using an image based representation and ini-
tial EEG scores as {X, e} — f. We formulate the following process of EEG label
refinement and visual pattern mining.

IFor an RSVP image sequence, the decoded EEG score vector e = {ey, e2, ..., e,} is usually nor-
malized as e¢; €[0,1],i =1,...,n.
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1. Convert the image representation to a visual similarity graph X — G =
{V, E, W}, where vertices V are the image samples X and the edges E with
weights W measure the pairwise similarity of images.

2. Transfer the interest scores to pseudo EEG labels e = {e1,e2,...,e,} >y =
{1, y2, ..., yu}. In other words, a binarization function g(-) is applied to convert
EEG scores to EEG labels as y = g(e), where y; € {1,0} and y; =1 for ¢; > €,
otherwise y; = 0. The value € is called interest level for discretizing the EEG
scores.”

3. Apply the bivariate regularization framework to define the following risk func-
tion

E, (£ y)=QEy) +yVs® 9.4

which imposes the tradeoff between the smoothness measurement Vg (f) of func-
tion f and empirical error Q(f, y). Specifically, the function smoothness is evalu-
ated over the undirected graph G.

4. Alternatively minimize the above risk function with respect to f and y to finally
achieve the optimal f*

= argnflin E, (£ y). (9.5)
¥

Finally, the propagated label predictions over the entire graph can be used to gen-
erate annotations for every single image in the collection, or to re-rank the images
based on the detection scores. The top ranked results, as shown in Fig. 9.7B, are ex-
pected to be more accurate (in terms of both precision and recall) than the baseline
of using EEG based detection alone.

The Caltech 101 image search experiments clearly demonstrated how the
C3Vision architecture was able to improve on image identification over chance or
even just using EEG detection alone (Wang et al. 2009b). The results were quanti-
fied in terms of their average precision (AP), a metric commonly used in information
retrieval, and which approximates the area under the precision recall curve (Wang
et al. 2009b). For example, the full system achieved 69.1% AP for one subject
searching for Dalmatians, as compared to 33.73% when using EEG interest detec-
tion alone, and 1.76% for chance. The precision recall curves for this particular
case are shown in Fig. 9.7A, with Fig. 9.7B illustrating how the density of target
images was increased using the full architecture (bottom panel) versus simply using
the EEG scoring (top panel). Overall, the combined EEG-pattern discovery module
showed significant improvement in eight of the twelve trials (4 subjects searching
for 3 target categories), with AP’s in those cases ranging between 25-69% (mean:
42.5%). By comparison, chance levels were 1.76% (Dalmatian), 2.26% (Starfish),
5.11% (Chandelier/Menorah), and the average APs for the EEG detection alone was
15.7%. Furthermore, even in cases where the EEG detection was below 10% AP, the
label refinement process was still able to significantly improve the image annotation
accuracy.

2In practice, the value of € is set dynamically to achieve a fixed-number ! of EEG positive labels,
ie. Y yi=L.
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Fig. 9.7 Results for image retrieval for the object class “Dalmatian” in the Caltech 101 database.
(A) Precision-recall curves for random sampling, retrieval using the EEG interest score alone and
the results using EEG + the computer vision based transductive graph (i.e. C3Vision). Note that
the C3 Vision case results in a >5x increase in recall while maintaining a 100% precision, over the
EEG score ranking alone. (B) Top 20 images for one subject, showing (a) ranking by interest scores
from EEG detector; (b) ranking by scores after label refinement in transductive graph. Adapted
from Wang et al. (2009b)

9.5 Conclusions

The C3Vision framework we describe has potentially many applications in mul-
timedia search and image retrieval. However there are several technical challenges
that remain. The results we have described have investigated essentially feedforward
one-pass processing, namely there is no feedback between the computer vision sys-
tem and human (or vice versa). However more recent work by our group has shown
that feedback can be used to improve the precision of retrieval, though this comes at
the cost of also changing the prevalence of objects of interest in the sample and thus
the potential magnitude of the neural target related signal (e.g. P300). More gen-
erally, the issue of feedback brings up the interesting problem of co-learning. The
human subject, the computer vision system and the EEG decoder can all potentially
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adapt in a feedback loop and we are currently investigating co-learning strategies
which will improve convergence to high precision recall.

Our approach in developing C3Vision has been to leverage the complementary
strengths of rapid, general-purpose scene analysis by humans and the ability of com-
puters to process vast amounts of information. Unique to our approach is that we
create an interface between the two vision systems via real-time EEG-based com-
munication channel. A current challenge in BCI system design is that state-of-the-
art decoding enables relatively low bit rates—40-60 bits per minute—far below
what other communication mediums might offer. For BCI’s which focus on assist-
ing those with neurological disease and disability, particularly those that look to
assist people that are “locked-in”, such a low bandwidth channel is better than no
channel at all and thus can substantially improve quality of life. However if BCI
systems are going to make an impact in applications in which users are essentially
neurologically healthy individuals, then the low bit rate channel of EEG must be ex-
ploited with some ingenuity. For example, in our BCI applications, we are looking
at ways in which the bits that we can obtain via the EEG channel are very diffi-
cult to measure from other channels, for example by monitoring behavior via eye-
tracking and/or button/keyboard responses. Future work will continue to investigate
approaches that exploit this low bandwidth channel in ways that give us access to
information about otherwise latent cognitive states of the user.
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