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Abstract— Our group has been investigating the development
of BCI systems for improving information delivery to a user,
specifically systems for triaging image content based on what
captures a user’s attention. One of the systems we have
developed uses single-trial EEG scores as noisy labels for
a computer vision image retrieval system. In this paper we
investigate how the noisy nature of the EEG-derived labels
affects the resulting accuracy of the computer vision system.
Specifically, we consider how the precision of the EEG scores
affects the resulting precision of images retrieved by a graph-
based transductive learning model designed to propagate image
class labels based on image feature similarity and sparse labels.

I. INTRODUCTION

The enormous growth in both computer processing and
storage capabilities mean that we now have more information
available at our fingertips than ever before. However, the
speed at which this information can be accessed far exceeds a
human’s natural ability to process it, making new techniques
that help people sort huge amounts of data and locate only
the most relevant extremely important. For example, services
such as Flickr and Google Image provide access to billions
of images, but locating just a specific type of image among
such vast resources is a significant challenge.

The somewhat complementary strengths and weaknesses
of human vision and computer vision (CV) offer an excellent
opportunity to develop Brain-Computer Interfaces (BCIs)
that integrate the two for image retrieval. BCI research has
already made significant progress using noninvasive elec-
troencephalogram (EEG) recordings to control devices such
as communication systems, computer cursors, and muscle
stimulators [1], [2], [3], [4]. This research has both reduced
the cost and increased the practicality of noninvasive BCI
systems. However, EEG recordings are inherently noisy,
and the low signal to noise currently attainable for EEG-
BCI control signals typically restricts their use to providing
assistive technology to people with disabilities. In a BCI that
combines CV with human vision, the CV could be used to
refine the output of an EEG-based image detector to both
reduce noise and determine the general image characteristics
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of interest. The CV component could then quickly analyze
additional images, returning only the most relevant to the
human vision component for evaluation. Fig. 1 shows a
BCI system architecture where a user can quickly look at
a set of images (flashed at perhaps 5-10 images per second)
randomly drawn from a large image database, with images
that captured their attention evoking an EEG signature. This
signature could be used to label an example set of interesting
images that is given to an image retrieval system, which
would then reorganize the full database (of conceivably
millions to billions of images) so that novel images that were
visually similar to those evoking the EEG signature are at
the top. This would provide a general purpose BCI system
capable of both determining what a user was interested in
(within any given image database), and then expediting a
search of the database to find additional relevant images.

In this paper we consider the specific issue of interfacing
an EEG decoding system with a computer vision system
using the hybrid approach described above. Specifically, we
investigate the output precision performance of an EEG
image detector relative to the input precision requirements
of a graph-based transductive learning model designed to
detect relevant images based on image feature similarity and
sparse labels.

II. METHODOLOGY

A. Image Database

The imagery used to test the EEG and CV systems
was taken from the Caltech-101 database [5]. To prevent
fluctuations in image size from influencing subjects’ visual
responses, only a subset of Caltech-101 images were used.
Specifically, 62 image categories (a category being images
of a common type, e.g. ’elephants’, ’grand pianos’) were

Fig. 1. BCI architecture combining EEG and computer vision components.



selected on the basis of their images being similar enough in
size to be rescaled to uniform dimensions during the visual
presentation with negligible distortion. This provided 3798
images (42% of the total Caltech-101 imagery), with, on
average, 61 images per category (STD=22, range=31-128
images per category) for the testing database.

B. Human Vision: Object Detection using EEG during Rapid
Visual Serial Processing

To identify interesting images, the subjects’ EEG activity
was mapped onto an ’interest’ score. EEG data were recorded
using a 64-electrode Biosemi (BrainProducts, Germany)
system in a standard 10-20 electrode montage. Data were
collected at 2048 Hz, with 60 Hz notch and 0.5 Hz high
pass filters. Images were presented in a Rapid Serial Visual
Presentation (RSVP) paradigm [6] in which 100 images are
displayed at 5 Hz, with self-paced rest periods (typically a
few seconds) between the 100-image blocks.

The EEG interest detector has been previously described
[7], [8]. Briefly, it is based on a linear model,

yt =
∑
i

wixit (1)

xit is EEG activity at electrode i at time t, and w is a set of
spatial (i.e. electrode) weights. Weights are learned from a set
of training data so that y maximally discriminates between
target and non-target images. Data are binned into windows
with a temporal resolution (T ) of 100ms, and weight vectors,
wit, are found for several windows following each image
presentation (k is the time window index):

ykt =
∑
i

wkixit , t = T, 2T, ....(k − 1)T, kT (2)

The ykt obtained for each time window are combined in a
weighted average to provide the final interest score (yIS):

yIS =
∑
t

∑
k

vkytk. (3)

The EEG interest detector used 1200ms of data following
each image (although the first 100ms was not included in the
detector), with the P300 ’oddball’ response providing much
of the discrimatory information [8], [9]. Fisher Linear Dis-
criminant analysis was used to create the spatial coefficients,
wik, and logistic regression was then used to determine the
temporal coefficients, vk [9].

Data were collected from 8 subjects over 16 experimental
sessions (each subject participated in 1-3 sessions). In each
session, an interest detector was created from a set of training
data and then used for several testing RSVP sequences. The
training data consisted of 20-35 image blocks (depending
on subject performance) with two target images per block,
with training target images being baseball gloves. All the
training images (targets and distracters) were taken from the
Caltech-256 database [10] so no testing images were seen
during training. Each testing RSVP sequence involved five
100-image blocks (images taken radomly from the testing

database) in which the subject attended to a specific image
category (the target) selected by either the subject or the
experimenter. A total of 50 testing RSVPs were collected
between all the subjects, with 13 different image categories
being used as targets. Some subjects were given additional
testing RSVP sequences in which the images shown were
determined from their previous results. Informed consent
was obtained from all participants in accordance with the
Columbia University Institutional Review Board.

C. Computer Vision: Transductive Annotation by Graph

The computer vision (CV) system tested is a method
termed Transductive Annotation by Graph (TAG), a semi-
supervised learning technique that uses an example set of
images for pattern discovery, and then scores all the images
in a larger database by propagating the results through a
graph structure. Details of the algorithm can be found in
[11], but, briefly, it uses an affinity graph to quantify the
pairwise similarity between images in a database using a
predefined feature space. Then, given a set of example
images, X , with noisy labels, E (noisy meaning the example
set may include false positives), the TAG produces an interest
measurement (f ) as {X ,E} → f for all images in the
database, which allows novel images similar to the example
set to be identified. Given the noise inherent to EEG, the
TAG’s ability to work with noisy labels is critical, as they
greatly degrade the performance of many semi-supervised
methods [12]. In part, the TAG does this by promoting visual
consistency among the example set (prior to generating f ) by
replacing some example images with more likely candidates
from the larger image database (self-tuning) [11], [12].

The suitability of the feature space underlying the TAG
graph for differentiating image categories, and the quantity
and specific identity of the true and false positive images
included in the example image set will affect the TAG’s
performance. We ran simulations testing the TAG’s ability to
identify all 62 categories of the testing database as targets of
interest when given example image sets of varying quantities
of true positive images (i.e. varying precision). For each
image category (and each precision level), 50-100 example
image sets were randomly selected. TAG interest scores were
then computed for all the database images and used to find
novel images related to the target category. The quantity of
example images was held constant at 20, as several tests with
10, 40, and 60 examples suggested TAG performance was
more sensitive to the example set’s precision than to its size.

III. RESULTS

A. EEG Classifier Performance

The EEG interest detectors were able to identify target
images over distracters. The mean Az score (i.e. the area
under the ROC curve) between subjects for the testing RSVP
sequences was 0.85 (STD=0.12, N=50), significantly above
chance (chance Az=0.5, 1-sided t-test, p<<.001). Similarly,
Fig. 2 shows several typical Precision Recall (P-R) curves
(one from each subject), which also show how the detectors
generally ranked distracters lower than the targets, giving



Fig. 2. Typical Precision-Recall curves from each subject.

Fig. 3. Examples of TAG performance when identifying target images.
Performance varied with both target category and the precision of the TAG’s
input example set. Dark vertical lines show threshold precisions for ≥90%
successful results, red lines show the mean +/- STD.

high precision peaks. However, the large number of distracter
images relative to targets meant that similar quantities of
target and distracter images were often both given high ranks.
Consequently, despite high P-R peaks, using a fixed number
of the top-ranked images to create example image sets that
show what was of most interest to the user can still lead to
significant false positive rates.

B. TAG Classifier Performance

The TAG’s ability to identify a target category depended
on both the precision of the example image set it was given
and the specific target category. Fig. 3 shows the TAG sim-
ulation results for two target categories. The target precision
between the images with the 20 highest TAG scores are plot-
ted as histograms against the precision of the example image
set (darker squares indicate larger numbers of simulations
had that result). Larger numbers of true positive examples
in the TAG’s input typically improved its performance. A
bimodality is evident though, with the probability of a very
high output precision dramatically increasing for an input
precision above some threshold. This example set threshold
defines the TAG input requirements needed if the TAG is to
successfully identify that type of image as the target. If the
TAG identification is considered successful when over half
of the top 20 TAG-ranked images are targets, the threshold
can be defined as the lowest precision for which the TAG

was successful 90% of the time. The bold vertical lines in
Fig. 3 illustrate how this threshold varied between image
categories. For 18% of the image categories, the TAG had
precision thresholds below 0.5 (37% of the categories had
thresholds below 1.0). The remaining categories (63%) are
likely heavily intertwined with one or more others in the TAG
graph, preventing TAG from ever completely disassociating
them from the others.

C. Performance Overlap Between Human and Computer
Components

How successfully the EEG and CV systems can be directly
combined into a single BCI hinges on whether the EEG mod-
ule can provide example image sets that satisfy the TAG’s
input precision requirements. Fig. 4 shows the distribution of
the TAG’s input threshold precisions (defined above) across
categories (black, plotted as fraction of categories, precisions
>1.0 are assigned to categories for which the TAG never
satisfied the success requirement). Overlaid with this is the
distribution of target image precision among the 20 highest
ranked images from the EEG interest detectors (red, plotted
as fraction of RSVP tests, mean=.20, STD=.13, n=50). The
region of overlap reflects the subset of categories for which
simply using the images with the 20 highest EEG interest
scores provides image example sets of adequate precision
for the TAG to robustly identify the target category and
effectively retrieve relevant novel images from the database.

IV. DISCUSSION

Though the precision of the EEG scores was sufficient
to yield robust image retrieval by our computer vision
module for many image categories in the test database, the
limits in the distributions’ overlap in Fig. 4 shows how
there were many cases in which the EEG-output/TAG-input
requirements were not met. Precisions of the EEG scores
are largely constrained by subject variability (both in terms
of their EEG quality and their ability to detect targets in
the RSVP task) as well as the intrinsically noisy nature of
EEG as an electrophysiological measure. The input precision
required by the TAG is largely a function of the image
database, the features used, and the graphical structure of the

Fig. 4. The overlap between the precision of the EEG interest detector
output (red, fraction of 50 RSVPs), and the input precisions needed by the
TAG (black, fraction of 62 target categories) determines how effectively
the two modules can directly interface. Vertical lines show the means of
the EEG (red, 0.20) and TAG (black, 0.61) distributions (for the TAG only
categories it captured, i.e. had precisions ≤1.0, were averaged).



model. Improving any of these aspects, whichever is found to
be the most practical, would effectively increase the overlap
in the input/output requirements of the modules shown in
Fig. 4, and improve the full BCI system.

While both modules could be improved, their dual use
means that neither must be perfect. Fig. 4 shows that the
TAG does not identify many categories regardless of the
input example set’s precision. This limitation, whether it
results from the TAG forgivably confusing categories that
are semantically different but really quite similar (e.g. cougar
face vs. cougar body), or more significant issues, such as
the graph not utilizing a sufficiently rich feature space, must
be addressed. However, the TAG does not need to identify
these ’difficult’ categories when given input sets of very
low precision; it simply needs to be able to do so when
given sets of a precision obtainable by the EEG component.
Similarly, the EEG component does not need to provide
example sets of perfect precision; it simply must satisfy
the TAG input requirements. For example, Fig. 4 shows
that EEG performance does not need to be shifted much
to match categories that are reasonably well captured by the
TAG. Thus, using entirely new EEG detection algorithms
or showing images multiple times for averaging may be
unnecessary; and simpler techniques, such as more training
for poor performers or using a better method than just taking
the top 20 when selecting the images outputted by the EEG
component, may suffice.

Another benefit of using both CV and EEG modules is
that their mutual interactions can be used to improve overall
system performance beyond simply improving the modules
independently. For example, it is easier for the TAG to
locate all target related images if its example set includes
a diverse selection of target images. Similarly, it is often
easier for the EEG module to output a higher precision
example set with larger numbers of target images in the
RSVP. Thus, rather than running both modules once in series
(as proposed so far), they could be run in a closed loop
fashion, in which the user was exposed to several RSVP

Fig. 5. Using a closed loop approach can improve the precision of the
examples provided by the EEG interest detector. (a) Distribution of the
lowest example set precisions (across categories) to return more target
images in the top 100 TAG results than were in the example set. (b) Increase
in precision of images outputted by the EEG detector during 3 closed-loop
implementations in which the TAG was used to gradually increase target
prevalence in each RSVP sequence.

sequences, with the TAG being used to gradually increase the
prevalence of target images contained in each. This eases the
requirements on both the EEG and CV components. In such
a closed-loop implementation, the TAG algorithms dedicated
to tuning the example set would be deactivated. Thus, rather
than TAG trying to reorganize the image database so that
many images related to a single category were at the top,
a rougher reorganization (requiring a lower input precision)
would result. Despite false positive images lingering in the
TAG example set, using this reorganization to select the next
RSVP sequence would still likely boost the number of target
images in the RSVP. Fig. 5a shows that the TAG requires
a quite low precision in the example image set (85% of the
categories need ≤0.4) when used to gradually increase the
prevalence of targets in this way. Fig. 5b shows an example
of how the precision of the image sets outputted by the EEG
detector improved in such a closed loop implementation (1
subject, 3 target types). In such a BCI, once the number of
target images in the RSVP was determined to be of sufficient
quantity, the full (i.e. with self-tuning) TAG algorithm would
be run to do a final reorganization of the image database.
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