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Cellular Phenotype Recognition for High-Content 
RNA Interference Genome-Wide Screening

JUN WANG,1,4 XIAOBO ZHOU,1,2 PAMELA L. BRADLEY,3,5 SHIH-FU CHANG,4

NORBERT PERRIMON,3 and STEPHEN T. C. WONG1,2

Genome-wide, cell-based screens using high-content screening (HCS) techniques and automated fluorescence microscopy gen-

erate thousands of high-content images that contain an enormous wealth of cell biological information. Such screens are key to

the analysis of basic cell biological principles, such as control of cell cycle and cell morphology. However, these screens will ulti-

mately only shed light on human disease mechanisms and potential cures if the analysis can keep up with the generation of data.

A fundamental step toward automated analysis of high-content screening is to construct a robust platform for automatic cellular

phenotype identification. The authors present a framework, consisting of microscopic image segmentation and analysis compo-

nents, for automatic recognition of cellular phenotypes in the context of the Rho family of small GTPases. To implicate genes

involved in Rac signaling, RNA interference (RNAi) was used to perturb gene functions, and the corresponding cellular pheno-

types were analyzed for changes. The data used in the experiments are high-content, 3-channel, fluorescence microscopy images

of Drosophila Kc167 cultured cells stained with markers that allow visualization of DNA, polymerized actin filaments, and the

constitutively activated Rho protein RacV12. The performance of this approach was tested using a cellular database that contained

more than 1000 samples of 3 predefined cellular phenotypes, and the generalization error was estimated using a cross-validation

technique. Moreover, the authors applied this approach to analyze the whole high-content fluorescence images of Drosophila cells

for further HCS-based gene function analysis. (Journal of Biomolecular Screening 2008:29-39)

Key words: high-content screening, RNA interference, microscopic image segmentation, phenotype feature extraction and

selection, phenotype classification
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INTRODUCTION

FLUORESCENCE MICROSCOPY IMAGES OF CELLS stained to

reveal complex cellular structures, such as cytoarchitecture,

are considered to be “high-content” images due to the large

amount of information they contain. These images reveal numer-

ous biological readouts, including cell size, cell viability, DNA

content, cell cycle, and cell morphology. With such a wealth of

biological information in high-content images, scientists now

perform high-content screens (HCS) in disease diagnosis and

prognosis, as well as drug target validation.1,2 The application of

high-throughput screening (HTS) procedures coupled with auto-

mated microscopy to generate large quantities of high-content

image data can be used to identify genes or small molecules

involved in a particular complex biological process.

A gene’s function can be assessed by analyzing alterations

in a biological process caused by absence or disruption of 

that gene. In Drosophila cells, specific and reproducible loss-

of-function phenotypes can be generated by the addition of

gene-specific double-stranded RNA (dsRNA), which causes

reduction or elimination of target gene expression by a process

known as RNA interference (RNAi).3 Automated fluorescence

microscopy then allows unattended acquisition of unbiased cel-

lular images in large quantity. A rate-limiting factor in realizing

the full potential of cellular and molecular imaging studies is

the ability to automate the analysis of the large number of

images generated in such screens because currently, scientists

have to resort to the slow manual analysis of complex pheno-

types. Thus, a major advance in the field of HCS would be to

automate the extraction of patterns and convert them into cel-

lular signatures that can be used to answer in-depth biological

questions.
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Automating HCS image analysis could allow functional

analysis of complex cellular processes that require information

about individual cells.4 In a small-scale screen using manual

analysis of fluorescence microscopy images, we observed a

wide range of phenotypes with affected cytoskeletal organiza-

tion and cell shape.5,6 Genome-wide screens, however, produce

huge volumes of image data not amenable to manual analysis.

Thus, without the aid of proper automated image analysis tech-

niques, it becomes intractable to characterize morphological phe-

notypes quantitatively and to identify genes and their dynamic

relationships on a genome-wide scale. Therefore, it is critical and

urgent to develop automated, reliable, and fast methods to identify

and quantify cellular phenotypes as the basis for a computerized

image scoring system.

A robust high-content, image-based genome analysis system

using image processing and pattern analysis techniques requires

an automated informatics framework that includes the following

components: cellular segmentation, cellular morphology and tex-

ture feature extraction, cellular phenotype classification, and clus-

tering analysis (Fig. 1). In this article, we investigate image-based

cellular phenotype recognition for large-scale, high-content RNAi

screening. First, individual cells are identified by segmentation

using the deformable model7 and the watershed method using

CellProfiler.8 Then, we scrutinized the geometric properties and

appearance of 3 distinct cellular phenotypes by extracting 5 types

of features—namely, wavelet features, moment features, Haralick

co-occurrence features, region property features, and problem-

specific shape descriptors. To improve the classification perfor-

mance and reduce the computational cost, we used a genetic

algorithm to select a subset of the most discriminative features.

Finally, 4 different classification models were trained to predict

the phenotypes of test cells. We validated the classifier with HCS

image data of Rho GTPase activity in Drosophila cells. In the

phenotype identification experiments, the classifier correctly 

recognized 87.94% normal cells, 67.41% spiky cells, and 70.10%

ruffling cells (detailed description of the predefined phenotypes in

the “High-content images of Rho GTPase activity” subsection)

and achieved an overall accuracy of 76% on all 3 phenotypes.

Considering the complexity and diversity of cellular phenotypes

in the fluorescence images, this is acceptable for genome-wide

analysis. Moreover, during the study on gene expression function

analysis using RNAi HCS, the gene effects are evaluated based on

the statistical properties on a population of cells in the whole

screen, which is much more robust than phenotype representation

of individual cells.

MATERIALS AND METHODS

High-content images of Rho GTPase activity

Rho proteins are required for the cytoskeletal reorganization

critical to cell shape change and migration, as well as many other

cellular processes in multiple cell types.9 Extensive work in

mammalian cell culture systems using dominant negative and

constitutively active mutant forms of the Rho protein Rac demon-

strated the contribution of Rac to specific cytoskeletal structures,

such as lamella.9 Moreover, Rac is required for the invasive

behavior of breast cancer cells and is thus an important player in

cancer metastasis.10 To identify novel downstream effectors that

mediate Rac cellular responses, we have developed a Drosophila

cell-based assay for GTPase function that can be used in combi-

nation with high-throughput RNAi technology to screen for

dsRNAs that block GTPase activity. Specifically, we use the

Drosophila Kc167 embryonic cell line, which consists of small

(10 µm) and uniformly round cells. Visualizing the actin

cytoskeleton with phalloidin staining reveals little filamentous

actin (F-actin) cytoskeletal structure in Kc167 cells: only small

puncta and nonuniform cortical expression are seen.

To facilitate HCS, we generated a construct containing

sequences encoding a GFP-RacV12 fusion protein under the tran-

scriptional control of a copper sulfate (CuSO4)–inducible pro-

moter on the same plasmid with a hygromycin resistance gene.

We used dsRNA specific to predicted Drosophila genes to elicit

the RNAi response, which mimics loss-of-function mutations in

the targeted gene.11 To perform the screen, dsRNAs were robot-

ically arrayed individually in 384-well plates. Drosophila cells

were plated in each well, where they were taken up the dsRNA

from the culture media. After 3 days of incubation at 25 °C,

RacV12 expression was induced with 0.75 mM CuSO4 for 24 h.

The cells were then fixed in 4% formaldehyde and stained to

visualize DNA and actin using 4′,6-diamidino-2-phenylindole

(DAPI) and fluorescently labeled phalloidin, respectively.

Two or 3 images per well in each of 3 channels (ultraviolet

[UV], fluorescein isothiocyanate [FITC], and tetramethyl rho-

damine isothiocyanate [TRITC]) were acquired by automated

microscopy with a Universal Imaging AutoScope, a Nikon TE300

Wang et al.
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FIG. 1. The information-processing pipeline of the automatic cellular

phenotype analysis system for high-content screening (HCS) mainly

consists of image segmentation, cellular feature extraction, feature selec-

tion and reduction, and phenotype classification.
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inverted fluorescence microscope, using a 40× air objective.

A single focal plane of the highest intensity was chosen automat-

ically by the focusing software within the Metamorph program.

An example of the 3-channel RNAi fluorescence images used for

cytological profiling is shown in Figure 2. The DNA channel

shows the nuclei of cells (Fig. 2a). The actin channel reveals the

cytoskeletal structure, used to determine the morphology of cell

bodies (Fig. 2b). Because relatively little visual information is

available from the GFP-RacV12 channel (Fig. 2c), cytological pro-

filing was based on analyzing cell shapes in the actin channel.

Each image was visually examined to determine if the dsRNA

altered the cell morphology induced by RacV12.

The prominent 3 cellular phenotypes observed in this assay

have specific morphological characteristics that can be identi-

fied and quantified automatically. Cells with the normal pheno-

type have a smooth contour, and the actin intensity in the cell

body is even (Fig. 3a). Cells with the spiky phenotype have

actin-rich, spike-like protrusions at the periphery (Fig. 3b). For

the ruffling cellular phenotype, cell body size is increased and

actin accumulates with variable intensity and patterns (Fig. 3c).

Fluorescence image segmentation

The first step to automating the identification of cellular phe-

notypes in high-content images is to partition the images into

regions that correspond to individual cells. Segmentation of these

fluorescence microscopy images consists of 2 steps. The first step

is to extract individual nuclei from the DNA channel, and the sec-

ond step is to extract the individual cell bodies, using the F-actin

channel. The entire segmentation procedure should provide

detailed shape and boundary information of individual cells. The

DNA signal is fairly strong, protruding from a relatively uniform

dark background; thus, nuclei are easily segmented by a his-

togram thresholding technique. This approach correctly segments

most isolated nuclei, but it is unable to segment touching-together

or overlapping nuclei. Therefore, we applied a watershed algo-

rithm to separate attached objects, as presented by Chen et al.12

Although nuclear segmentation is straightforward, cytoplasmic

Cellular Phenotype Recognition for RNAi Genome-Wide Screening
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FIG. 2. An example of the fluorescence microscopy image. Images are taken in 3 channels of Drosophila Kc167 cells stained with 4′,6-

diamidino-2-phenylindole (DAPI) to visualize DNA (a) and tetramethyl rhodamine isothiocyanate (TRITC)–labeled phalloidin to visualize F-

actin (b); these cells also express a GFP-RacV12 fusion protein (c). The 3-channel merged color image is shown in d.

FIG. 3. Drosophila Kc167 cells have different cellular phenotypes:

(a) normal, (b) spiky, and (c) ruffling. The upper row is the image of

the F-actin channel, and the bottom row is the merged color images;

green is F-actin and red is DNA.
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segmentation remains a challenging task due to intensity variation

and cellular phenotype diversity.

A large array of segmentation algorithms have been devel-

oped in the past 30 years; however, there is no state-of-the-art

technique that segments fluorescence microscopy images with

robust performance and tolerable computation cost.13-15 In our

work, we used 2 recently developed segmentation techniques, a

deformable model by Xiong et al.7 and the watershed method

implemented in CellProfiler,16 both of which were specially

designed for segmenting fluorescence cellular images.

The validation of image segmentation results is difficult as it

is expensive and time-costly to create a ground truth segmentation

result. In our work, we validated the segmentation results in 2

aspects: 1) comparison of the 2 automated computer techniques and

2) comparison with manual segmentation results. Qualitatively, we

can draw some general conclusions about the 2 automated methods

from this study. First, both methods work well to segment the 

normal cellular phenotypes. The reason for this lies in the smooth

shape and even intensity distribution of fluorescence in cells with

the normal phenotype. Second, the performance of both methods

is degraded when processing cells with complicated textures 

and boundaries. The spiky phenotype, with its jaggy contour, is

especially difficult to segment accurately. Third, when cells are

close to or touching each other, the CellProfiler method gener-

ates fragmental boundaries, whereas the deformable model

method captures accurately the complex boundaries. Fourth, the

CellProfiler method is much faster than the deformable model

method, which is computationally costly. An example comparing

the segmentation results is shown in Figure 4. Although both

automated methods are capable of segmenting many cells appro-

priately, neither automated method is capable of discerning all

cell boundaries. Although more accurate segmentation of such

complex images is always desirable, we argue that reasonable

performance in phenotype classification may be attainable by

combining existing segmentation results with innovative tech-

niques of feature extraction, selection, and machine learning

methods. We validate such approaches with experimental results

described in the following sections.

Phenotype feature extraction

As stated earlier, HCS images contain a variety of phenotypes.

In our study of Drosophila Kc167 cells, the most prominent cel-

lular phenotypes were categorized as normal, spiky, and ruffling.

Automated phenotype identification relies on feature extraction,

the most critical step for pattern recognition problems. Even for a

single cellular phenotype, the overall shape and appearance can

be quite different because the cells could be in different stages of

a certain phenotype. To capture the geometric and appearance

properties, we extracted 5 types of features: wavelet features,

Zernike moments features, Haralick features, region property fea-

tures, and phenotype shape descriptor features.

Wavelet features. The discrete wavelet transformation

(DWT) has been adopted to investigate image characteristics in

both scale and frequency domains. In our work, we applied 2

important wavelets techniques, the Gabor wavelet17 and the

Cohen-Daubechies-Feauveau wavelet (CDF9/7),18 to extract

phenotype texture.

The Gabor wavelet features were developed by Manjunath

and Ma17 and are formed by a set of multiscale and multiorienta-

tion coefficients to describe texture variations in an image. The

Gabor wavelet features have been used as the texture signature

for numerous image analysis applications, such as image

retrieval, segmentation, and recognition.19,20 As defined by

Wang et al.
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FIG. 4. Two examples of the segmentation of images of Drosophila Kc167 cells: (a) F-actin staining with no segmentation, (b) manual seg-

mentation, (c) deformable model segmentation, and (d) CellProfiler segmentation.
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Daugman,20 the 2-dimensional complex-value Gabor function is

a plane wave restricted by a Gaussian envelope. After conducting

the Gabor wavelet transformation on the cell image, the real and

imaginary parts of the transformation coefficients C
R
, C

I

can be obtained. The magnitude of the transformed coefficients

C =
√

C 2
R

+ C 2
I

is used as the Gabor vector. Because the trans-

formed coefficients are computed based on pixels, this procedure

derives the magnitudes for each pixel in the image. In the texture

feature extraction method,17 the statistics, such as mean µ and

standard deviation η of these magnitudes on the entire image, are

calculated as the feature representation. Through changing the

scales and orientations, a set of feature representations can be

calculated, which provide rich texture signatures in the frequency

domain. In our experiments, 4 scales and 6 orientations are used

to compute a 70-dimensional feature (µ0,0, η0,0, µ0,1, . . . µ4,6, η4,6)

for each segmented cell.

Furthermore, we performed the 3-level CDF97 wavelet

transformation18 on images to extract additional texture signa-

tures. The minimum value, maximum value, mean value, the

median value of maximum distribution, and the standard

derivation are calculated for each transformed image. In total,

we obtained 15 wavelet features of each segmented cell.

Zernike moments features. Simply speaking, the Zernike

moments features of an image are calculated based on the par-

ticular weighted averages of the intensity values. They are gen-

erated with the basis functions of Zernike polynomials. As

classical image features, Zernike moments have wide applica-

tions.21 Here, we give a brief description for calculating Zernike

moments features for each cell: 1) calculate the center of mass

for each cell polygon image and redefine the cell pixels based

on this center; 2) compute the radius for each cell, and define the

average of the radii as R; and 3) map the pixel (x, y) of the cell

image to a unit circle and obtain the projected pixel as (x', y').

Because the Zernike moments polynomials are defined over a

circle of radius 1, only the pixels (x', y' ) within the unit circle

will be used to calculate Zernike moments. Finally, 49 Zernike

moments features are computed.

Haralick co-occurrence features. As a traditional image fea-

ture extraction technique, the Haralick co-occurrence features use

co-occurrence distribution of the gray image to generate the tex-

ture signature. Roughly speaking, given an offset on the image,

the co-occurrence distribution of the image is referred to as the

distribution of co-occurring values of pixel intensities. In our

method, a total of 14 attributes were extracted from each of the gray-

level spatial-dependence matrices.22 The extracted co-occurrence

features were as follows: angular second moment, contrast,

correlation, sum of squares, inverse difference moment, sum

average, sum variance, sum entropy, entropy, difference variance,

difference entropy, information measures of correlation, and max-

imal correlation coefficient.23

Region property. We also used a set of common region prop-

erties to describe the shape and texture characteristics of the

cells. For general texture description, the maximum, minimum

mean value, and standard deviation of the intensity in the seg-

mented cell area were used. Moreover, we used some weak

shape descriptions, such as the lengths of the longest axis l
max

and the shortest axis l
min

, the ratio l
max

⁄ l
min

, the area s of the cell,

the perimeter p of the cell, and the compactness of the cell,

which is calculated as compactness = p2 / (4π · s). If the perime-

ter of the minimum convex shape is p
c
, then the roughness is

roughness = p/pc. In all, we extracted 12 general texture and

shape features for each segmented cell region.

Phenotype shape descriptor. Ideally, if we precisely define the

boundary of each cell, the 3 different phenotypes of Drosophila

Kc167 cells have more obvious differences in shape rather than

texture. Because the shape information provided in the region

property features is inexact, we developed 2 additional kinds of

shape descriptors as our problem-specific features. One feature is

based on the ratio length of the central axis projection, and the

other feature is the area distribution over each equal sector.

From the original cellular patch I(x, y), the binary image f(x, y)

can be derived. The value of f(x, y) equals 1 when the pixel 

(x, y) is located in the cell area; otherwise, I(x, y) = 0. The cen-

troid of the cellular area (m
x
, m

y
) is obtained. Centered at the

centroid, we get a series of the central axis as the line Lα, shown

in Figure 5. The central projection along Lα denotes the length

of the axis. The equation of Lα is based on the angle α of the

axis and the centroid coordinate (m
x
, m

y
). The ratio length of

the central projection is defined as the length of Lα divided by

the perimeter of the cellular contour.

r
Lα

= 
1

p
�

Lα

f(x, y), (1)

where p is the same with the perimeter calculated in region

property. For each different angle α, the ratio length for the

central axis is calculated. The angles are evenly sampled with

36 different values to derive a 36-dimensional ratio length fea-

ture that represents the shape of the cellular boundary.

The second shape descriptor is based on the distribution of

sector areas. As shown in Figure 5, a fan bin Sβ centered at the

centroid is denoted. The ratio area is defined as the area of the

bin to the area of the entire cellular region.

(2)

The value of s is the same as the area calculated for the region

property feature. The entire cellular region is angle-evenly

Cellular Phenotype Recognition for RNAi Genome-Wide Screening
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�� f(x, y)

(x, y) ∈ Sβ

�� f(x, y)
(x, y) ∈ Sβ

s
=r

Sβ
= .
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partitioned into 18 sectors. Hence, the ratio area feature is con-

structed by the ratios of each sector. Figure 5b,c gives the com-

puted shape features represented by the histograms, where the

x-axis denotes the index of the sector and the value of the 

y-axis represents the percentage of area of the cell region or the

length of the cell boundary falling into this sector. These 2

shape descriptors are scale and translation invariant but rotation

variant. To achieve independence of rotation, the calculated

ratio length and ratio area are sorted by value.

Phenotype feature subset selection

Using the various feature extraction procedures, we obtained

214 texture and shape features for each segmented cell image,

covering diverse shape and texture properties. Our proposed

framework for automated HCS analysis will be able to identify

varied phenotypes in a wide range of cellular fluorescence images

through the abundance of features. However, in each specific bio-

medical application, such as the fluorescence image of Drosophila

Kc167 cells with 3 predominant phenotypes in our experiments,

a concise subset of features must be obtained using different tech-

niques for more efficient analysis. Thus, we added the automatic

feature selection as one of the kernel components in the system,

which makes the framework highly adaptable to different kinds

HCS fluorescence images.

The objective of feature selection is to remove irrelevant and

redundant features from the original feature space. Intrinsically,

feature selection is a kind of optimization procedure with a pre-

defined evaluation function. Neither global optimization nor full-

space searching is feasible for feature selection. Thus, we applied

a random search technique to derive an optimal feature subset. A

genetic algorithm (GA) is a classical random optimization

method that mimics the evolutionary process of survival of the

fittest.24 In brief, some individual feature subsets are initially cre-

ated as the candidate sets, which are so called population. In suc-

cessive iterations, the well-fitted individual subsets are selected

from the population based on the evaluation of the fitness func-

tion. This selected portion of population breeds a new genera-

tion. There are 2 operators during the breeding, crossover and

mutation. The crossover operator recombines portions of good

selected individuals and is likely to create even better individuals.

The mutation operation is executed with some low probability. A

portion of the new individuals will have some of their bits flipped.

Unlike the traditional hill-climbing optimization method, which

has the drawback of easily falling into a local optimization, the

mutation optimization can maintain the diversity during the

search for optimal solutions because it induces a random walk

through the search space. The evolution procedure of the GA can

be terminated based on conditions, such as the maximum gener-

ations, running time, or fitness value threshold, which can be

chosen based on the specific application. In our phenotype fea-

ture selection using GA, we selected the following parameters:

population size of 200, maximum generation size of 50, and

mutation rate of 0.3. In practice, we selected 12, 15, and 18 fea-

tures from the original feature set and compared the perfor-

mances (Fig. 6); the 15 features selected by the GA achieved

better performance. As a comparison study, we also used princi-

pal component analysis (PCA) to reduce the dimensionality of

the extracted features. Both GA-selected features and PCA-

reduced features are validated in the phenotype identification

experiments (see below). For the GA-selected features, in all the

3 cases (12, 15, 18 features), the region property and shape

Wang et al.

34 www.sbsonline.org Journal of Biomolecular Screening 13(1); 2008

FIG. 5. The computation of the shape descriptor using ratio length and ratio area: (a) cellular region, central axis, and fan bin; (b) the 18-dimensional

ratio area feature; and (c) the 36-dimensional ratio length feature.
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descriptors show superior performance to other features. It is rea-

sonable because for the current set of phenotypes of Drosophila

cells, the most salient difference among the predefined cellular

phenotypes involves the geometric attributes of the cells, such as

cell shape. For example, normal cells usually have a smooth

shape; the actin-rich, spike-like protrusions of spiky cells gener-

ate complex boundaries; and ruffling is in between. As a simple

illustration, Table 1 shows some region features extracted for

the 3 example cell phenotypes in Figure 3. It is obvious that

the normal cell has the most roundness (more like a circle) and

compactness (close to 1), and the spiky cell has the most irregu-

lar shape (large compactness value and small roundness).

RESULTS

Fluorescence images of Drosophila cells

The proposed framework for automated HCS fluorescence

image analysis was validated by its application in the phenotype

classification of images of Drosophila cells. The original fluores-

cence images were 1280 × 1024 pixels and stored in a 12-bit for-

mat. Images contain 100 to 400 cells. One of the image examples

used in our experiments is shown in Figure 7, where the DNA

channel, F-actin channel, and RacV12 channel are displayed sepa-

rately. To build a cellular phenotype database, we first performed

the segmentation process on the image and then manually classi-

fied the segmented cells into 3 categories of phenotypes (normal,

spiky, and ruffling), ignoring inaccurately segmented cells. We

constructed a cellular phenotype database, including around 600

normal phenotype cells, 200 spiky phenotype cells, and 200 ruf-

fling phenotype cells. The database was used for training the clas-

sifiers and validating the proposed method.

Classification models

To evaluate the features and our system, we constructed 4

well-known classifiers—naive Bayesian classifier (NBC), lin-

ear discriminant analysis (LDA), K nearest neighbors (KNN),

and support vector machine classifier (SVC)—and used them

in the standard model based on the handbook by Duda et al.25

1) NBC is based on the Bayes theorem, with the strong con-

straint of feature independence. Although the assumption of

feature independence is not strict for real cases, NBC remains

a popular classifier because of its robustness and easy imple-

mentation. 2) LDA finds an optimal linear transformation,

which retains class separability while reducing variation within

each class. 3) KNN is an incremental and lazy classification

algorithm. This classifier is simple and easily implemented. 

4) SVC, originally explored by Vapnik,26 is an important kernel

technique used for pattern analysis. SVC can estimate a 

maximum-margin hyperplane to separate the data. Usually, the

selection of the appropriate kernel functions and the corre-

sponding parameters is vital for a real application.

Phenotype classification results

We first conducted the classification experiments on the

1000-cell-patch database. To estimate the generalization error,

we applied the 10-folder cross-validation technique. The leave-

one-out strategy, as one of the simplest and widely used versions

of cross-validation, efficiently estimated the results. The proce-

dure was repeated 100 times, and the performance is calculated

as the mean value of the 100-time tests. Both feature selection by

GA and feature reduction by PCA were tested. The GA was used

to select a subset with 12, 15, and 18 features for tests.
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FIG. 6. The evolving procedure of feature selection by the genetic

algorithm: the 3 lines represent selection of a subset with 12, 15, and

18 features. The x-coordinate is the generation and the y-coordinate is

the value of the fitness function.

Table 1. Some of the Extracted Region Features for the 

3 Cell Phenotypes Shown in Figure 3

Phenotype Normal Spiky Ruffling

Long axis 117.08 154.07 163.09

Short axis 109.28 128.21 137.74

Perimeter 401.46 916.14 595.87

Area 9992 13367 16424

Compactness 1.28 4.98 1.72

Roundness 0.95 0.58 0.89

This table confirms that the phenotype differences may be best captured by com-

pactness and roundness.

© 2008 Society for Biomolecular Sciences. All rights reserved. Not for commercial use or unauthorized distribution.
 at COLUMBIA UNIV on January 31, 2008 http://jbx.sagepub.comDownloaded from 



Meanwhile, the PCA was applied to reduce the feature dimen-

sionality to 12, 15, and 39, which conserved respectively 85%,

90%, and 98% energy (Table 2). The reliability of the LDA was

also evaluated by the Cohen kappa coefficient, which was around

0.58.27 Two conclusions were derived from the experiments.

First, the GA-selected features are superior to PCA-reduced fea-

tures. Second, the LDA classifier achieved the highest perfor-

mance on both GA features and PCA features. When the 15

GA-selected features were used, the LDA classifier achieved the

best performance of more than 76% accuracy. The confusion

matrix of the LDA classifier using the 15 GA-selected features is

calculated (Table 3). Altogether, the normal phenotype was the

most easily identified, and spiky was the most difficult to iden-

tify and easily misclassified into the other 2 phenotypes (Table

4). Compared with the convenience of a LDA classifier without

any parameter optimization requirements, the performance of

SVC highly depends on the kernel selection and parameters esti-

mation. There are no efficient guidelines for the determination of

kernels. The usual empirical solution is based on an exhaustive

search of both kernel space and parameter space. Therefore,

more training data are required to avoid the overfitting problem.

In our current study, the kernel and parameter selection issue of

SVC has not been investigated because the specific classifier

optimization is not the main focus.

Sensitivity and specificity are 2 widely used criteria for eval-

uating binary testing. To investigate these 2 criteria for a certain

phenotype, we first transformed the multiple-category problem

to a 2-category problem. For example, the cellular phenotypes

were categorized as normal or abnormal, which included both

spiky and ruffling. The calculated evaluation by sensitivity and

specificity is shown in Table 4, where the result demonstrates

that the spiky cells are most likely to be misclassified as the

other 2 phenotypes.

Finally, we applied the proposed approach on whole fluo-

rescence images of Drosophila cells, which were captured for

a HCS-based gene functional analysis. An example of the

process is shown in Figure 8, indicating the output of nuclei

segmentation (Fig. 8a), cytoplasm segmentation (Fig. 8b), and
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FIG. 7. An example of fluorescence images used in our experiments: (a) DNA channel, (b) F-actin channel, and (c) RacV12 channel.

Table 2. Experimental Results of GA Features 

and PCA Features

Feature/Classifier NBC, % LDA, % KNN, % SVC, %

GA features 12 62.68 74.26 65.90 67.10

15 62.29 76.08 65.75 69.73

18 61.21 74.67 64.83 65.17

PCA features 12 59.84 64.90 60.73 61.16

18 60.26 65.33 60.96 61.18

48 53.37 68.15 59.80 59.89

All 5 types of features with 214 attributes are used. The principal component analy-

sis (PCA) features are obtained using PCA to reduce the dimensionality to 12, 18,

and 48, which conserves respectively 85%, 90%, and 98% energy. GA, genetic algo-

rithm; NBC, naive Bayesian classifier; LDA, linear discriminant analysis; KNN, K

nearest neighbors; SVC, support vector machine classifier.

Table 3. Confusion Matrix of LDA Classifier with 15 

GA-Selected Features (in Percentages)

Input/Output Normal Spiky Ruffling

Normal 86.94 3.21 9.85

Spiky 12.74 67.41 19.85

Ruffling 14.08 15.81 70.10

GA, genetic algorithm; LDA, linear discriminant analysis.

Table 4. Sensitivity and Specificity of 

Different Phenotypes (jn Percentages)

Input/Output Normal Spiky Ruffling

Sensitivity 86.94 67.41 70.10

Specificity 86.44 90.65 86.40
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cellular phenotype classification (Fig. 8c). As shown in this

figure, the extracted information from the raw images, such as

cellular segmentation and phenotype identification results, can

provide abundant quantitative information for investigating the

function of the related genes in the biological process. Hence,

one of the future directions is to apply the proposed framework

to investigate the gene function using RNAi HCS image data.

In our ongoing study on the gene function evaluation using

RNAi HCS images, we have applied the proposed image analy-

sis technique on an image data set of 255 scanned screens,

which are captured to test individual gene knock-down effects

of 85 genes (3 sites scanned for each gene knock-down condi-

tion). Given the phenotype classification results on each image,

we compute statistical measures such as the ratio of different

cell phenotypes present in the image. Such statistics may be

used to assess the impact of knocking down each individual

gene and thus quantitatively predict the relevance of the gene

with respect to the biological problem (e.g., drug design, pro-

tein interaction) under study. In other words, we can predict a

scalar score to estimate the importance of each knocked-down

gene. Our preliminary study has shown promising results of

gene function estimation using the automatic image analysis

tool proposed in this article, comparable to the results based on

manual scoring by experts.

DISCUSSION AND CONCLUSION

Rho GTPases are essential for the cytoskeletal rearrangements

that drive morphogenesis and cell migration during normal devel-

opment, as well as in cancer metastasis. Thus, genome-wide

screens designed to identify novel components of Rho signaling

are critical to further our understanding of developmental and

cancer biology. The most fundamental and vital step for the suc-

cess of high-content RNAi genome-wide screening-based

research is the development of automated cellular phenotype

identification of high-content images.

In this report, we designed a framework for identifying a

cellular phenotype for automated HCS analysis. Cell segmen-

tation is executed using 2 recently developed fluorescence

image segmentation techniques, the deformable model and

CellProfiler method. Both of these approaches start from the

nuclear segmentation in the high-contrast DNA channel and

derive the cell body contour in the F-actin channel.

As one of the most important steps toward achieving auto-

mated phenotype classification, several different image feature

extraction methods are used to generate an extensive phenotype

descriptor of the segmented cells. Wavelet features, moment fea-

tures, and co-occurrence features are extracted to define the tex-

ture signature of the cellular phenotype. The region property

feature, as a kind of simple statistical property, is also used to

describe the phenotype feature in both intensity and region shape.

Furthermore, we designed ratio length and area-based shape fea-

tures to describe additional details of the cellular shape. A total of

214 image features are combined to create the candidate attributes

for the general purpose of phenotype classification. For specific

biomedical applications, an optimal panel of efficient phenotype

features can be selected to remove the redundant and irrelevant

information. A genetic algorithm was used to select a discrimi-

nant subset of features for the input of the classification module.

Four widely used classification methods—NBC, LDA, KNN, and

SVC—were used to identify the cellular phenotype.

Although our studies were conducted on fluorescence images

of Drosophila Kc167 cells, the proposed system is intrinsically

designed for generalized phenotype identification of HCS

images. The extracted diverse features, the feature selection pro-

cedure, and the training of classifiers guarantee that this frame-

work can be easily adapted to classify other predefined cellular

phenotypes in fluorescence microscopy images of other species.

In summary, we have built a prototype of an automatic cellu-

lar phenotype identification system for RNAi genome screening.

Clearly, the low quality of images, inaccurate segmentation tech-

niques, and imprecise biological definition of complex cellular
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FIG. 8. The segmentation results for images in Figure 7 are shown: (a) nuclei segmentation and (b) cell bodies segmentation. The phenotype

classification results are displayed in c. Red represents normal cells, green represents spiky cells and blue represents ruffling cells.
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phenotypes present extreme challenges to automated HCS analy-

sis.28 In our studies, the accuracy of classification was between

67% and 87% for different phenotypes, and the overall accuracy

was around 76%. Yi and Coppolino29 recently reported their auto-

matic ruffling classification method in the literature, which

applied ImageJ as the image analysis tool and SPSS for statistical

analysis. They used the moment features, measured metrics, and

geometric descriptor to identify ruffling and nonruffling in confo-

cal micrographs (no clear statistical performance compared with

manual ground truth reported). Ideally, the state-of-the-art auto-

matic analysis system for microscopic images is expected to 

recognize all the possible phenotypes with high efficiency and

robustness under various imaging and biological conditions.

However, note that the HCS screening data used in our experi-

ments have more challenges in terms of image complexity and

quality. Thus, even though this performance is not yet state of the

art, this accuracy should be useful for the purpose of automated

screening. Importantly, several issues need to be addressed to

improve the performance of this system. First, the current cellular

segmentation cannot achieve satisfactory results with both fast

computation and high precision. Second, some cells exhibit

ambiguous phenotypes that are difficult to classify. A conven-

tional unsupervised learning technique, clustering, may help dis-

cover new phenotypes. Regardless of these issues, our current

phenotype classification method could be applied to building a

scoring system to quantitatively evaluate fluorescence microscopy

images by establishing certain regression models based on the

ratios of each phenotype, thus providing a score that allows biolo-

gists to easily find novel genes of interest.
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