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ABSTRACT 

 
The proposed shot boundary determination (SBD) algorithm 
contains a set of finite state machine (FSM) based detectors for 
pure cut, fast dissolve, fade in, fade out, dissolve, and wipe. 
Support vector machines (SVM) are applied to the cut and dissolve 
detectors to further boost performance. Our SBD system was highly 
effective when evaluated in TRECVID 2006 (TREC Video 
Retrieval Evaluation) and its performance was ranked highest 
overall. 
 

1. INTRODUCTION 
 
Shot boundary determination has been widely studied for the last 
decade. Some of the early work can be found in [1-4].  TRECVID 
[5] further stimulates the interest and effort in automatic 
segmentation, indexing, and content-based retrieval of digital video 
in a broad research community. New systems and algorithms have 
been constantly reported from all TRECVID participants over the 
years, e.g., IBM, Tsinghua University, Columbia University, 
CMU, KDDI, etc.. Researchers at AT&T started to tackle 
multimedia content processing and indexing in the early 1990’s, 
and Shahraray reported a scene change detection algorithm in 1995 
[3]. With the limited computation power (90M CPU) and system 
memory (8M) available at that time, as well as the constraints of 
real time and low latency, the original algorithm was designed to 
be effective and highly efficient. The adopted visual features were 
intensity histogram and image matching with 1 dimensional 
motion compensation by projection. A single finite sate machine 
(FSM) was designed to detect all types of scene changes and report 
camera motions, including panning and tilting. An improved 
version of this algorithm is adopted in the MIRACLE system, a 
video search engine, at AT&T [8]. 

Thanks to current computation power, there is a lot of room to 
extend the existing algorithm. Three major improvements are: 1) 
Two-dimension motion compensation, 2) utilizing color 
information in addition to intensity values, 3) instead of using a 
single FSM, multiple FSM-based detectors are adopted to track 
different types of shot boundaries, e.g., cut, fade in/out, dissolve, 
wipe, etc.. The new architecture is more flexible and modularized: 
each detector is independently designed and adjusted, and 
additional detectors can be easily plugged in to capture any new 
types of shot boundaries.  

In this paper, we report the AT&T SBD system evaluated in 
TRECVID 2006. The paper is organized as follows. Section 2 
gives an overview of the SBD system. Section 3 describes the 
adopted visual features and Section 4 illustrates the six shot 
boundary detectors. Result fusion is briefly addressed in Section 5. 
Evaluation results are presented and discussed in Section 6, and 
finally we draw our conclusions in Section 7. 

 

2. OVERVIEW 
 
There are three main components in our SBD system: visual feature 
extraction, shot boundary detectors, and result fusion. Fig. 1 shows the 
high level diagram of the SBD system.  The top level of the algorithm 
runs in a loop, and every loop processes one video frame. Each new 
frame and the associated visual features are saved in circular buffers. 
The loop continues until all frames in the MPEG file are processed. 

 
Fig. 1. Overview of the SBD system 

  
Given the wide varieties of shot transitions, it is difficult to handle 

all of them using a single detector. Our system adopts a “divide and 
conquer” strategy. We devised six independent detectors, targeting for 
six dominant types of shot boundaries in the SBD task. They are cut, 
fade in, fade out, fast dissolve (less than 5 frames), dissolve, and wipe. 
Essentially, each detector is a finite state machine (FSM), which may 
have different number of states. Finally, the results of all detectors are 
fused and the overall SBD result is generated in the necessary format. 
 

3. FEATURE EXTRACTION 
 
For each frame, we extract a set of visual features, which can be 
classified into two types: intra-frame and inter-frame visual features. 
The intra-frame features are extracted from a single, specific frame, 
and they include color histogram, edge, and related statistical features. 
The inter-frame features rely on the current frame and one previous 
frame, and they capture the motion compensated intensity matching 
errors and histogram changes.  

Fig. 2 illustrates how these visual features are computed. The 
resolution of the TRECVID evaluation sequences is 352x240 pixels. 
The visual features are extracted from a central portion of the picture, 
which we called the region of interest (ROI). The ROI is marked by a 
dashed rectangle in Fig. 2, overlaid on the original image. The choice 
of the ROI size is based on two considerations: 1) The ROI covers the 
majority of the image and effectively eliminates the letterbox for wide 
screen content. 2) The ROI avoids the border effect in the following 
feature extraction steps. 



 
Fig. 2. Visual feature extraction 

 
Within the ROI, we extract the histogram of red, green, blue, 

and intensity channels and compute a set of common statistics, 
including the mean, the variance, the skewness (the 3rd order 
moment), and the flatness (the 4th order moment). We also extract a 
visual feature called histogram dynamic range, which roughly 
measures how wide the histogram spreads. To compute the 
intensity dynamic range, we first search the histogram from both 
ends, until the accumulated mass of both sides is more than 2%. 
The dynamic range is the difference of these two values. 

For each pixel in the ROI, we compute its discontinuities in the 
horizontal (with respect to vertical) direction by Sobel operators 
[6]. If the value is higher than a preset threshold, the pixel is 
labeled as horizontal (resp. vertical) edge pixel. Finally, we use the 
ratio of the total number of horizontal (resp. vertical) edge pixels to 
the size of ROI as an edge based feature.  

The temporal derivative (delta) of a feature (e.g., histogram 
mean) is fitted by a second-order polynomial to make it smooth. 
The delta values of histogram mean, variance, and dynamic range 
are computed as additional visual features.  

Motion features are extracted based on smaller blocks within 
the ROI. Specifically, in Fig. 2, we split the ROI (288x192 pixels) 
into 24 blocks (6 by 4), each with the size 48x48 pixels. Based on 
our observations, motion information extracted from bigger block 
sizes (e.g., 48x48) is more reliable than those from smaller sizes 
(e.g., 8x8). The search range of motion vector for each block is set 
to 32x32. It could be either an exhaustive search for better 
accuracy or a hierarchical search for higher efficiency. The motion 
features for each block, e.g., block k, include the motion vector 
(MVk), the best matching error (MEk), and the matching ratio 
(MRk). The matching ratio is the ratio of the best matching error 
with the average matching error within the searching range, and it 
measures how good the matching is. The value is low when the 
best matching error is small and the block has significant texture. 
Based on the motion features of all blocks, we select the dominant 
motion vector and its percentage (the ratio of the number of blocks 
with this motion vector to the total number of blocks) as frame 
level features. We then rank all MEk (resp. MRk), and compute the 
order statistics, including the mean, MEA; the median, MEM; the 
average of the top 1/3, MEH; and the average of the bottom 1/3, 
MEL (resp. MRA, MRM, MRH, MRL). These features are effective 
in differentiating the localized visual changes (e.g., foreground 
changes only) from the frame wised visual changes. For example, 
high MRH with low MRA indicates a localized transition. 

Totally, we extract 88 visual features for each frame. Interested 
readers can find more details in [9].  

 
4. SHOT BOUNDARY DETECTORS 

 
Fig. 3 illustrates the general FSM structure for all shot boundary 
detectors. State 0 is the initial state. When the transition start event 
is detected, the detector enters the sub FSM, which detects the 
target transition pattern, and locates the boundaries of the 
candidate transition. If the sub FSM fails to detect any candidate 
transition, it returns to state 0, otherwise, it enters state N. State N 

further verifies the candidate transition with more strict criteria, and if 
the verification succeeds, it transfers to state 1, which indicates that a 
transition is successfully detected, otherwise, it returns to the initial 
state. Although the six detectors share the same general FSM structure, 
their intrinsic logic and complexity is quite different. In the rest of this 
section, we briefly discuss all the individual detectors. For more 
details, please refer to [9]. 

 
Fig. 3. General FSM for transition detectors 

  
4.1. Cut detector 
  
Cut detector uses a state variable, AverageME, to track the average 
value of matching errors. Its initial value is set to 5.0, and it is updated 
whenever the state is 0 with the following IIR filter, 

15.0*85.0* AMEAverageMEAverageME +=  (1) 
If the current mean matching error, MEA, is larger than 5 times of 

AverageME, the sub FSM is activated. The main roles of the sub FSM 
are to check whether the candidate boundary has the local maximum 
matching error, and to introduce a 3-frame delay for verification. The 
Verify() function compares all pairs of frames in the neighborhood 
(within 3 frames) of the boundary, such that false cuts introduced by 
camera flashes can be effectively removed.  

We also developed a cut verification engine based on a support 
vector machine (SVM) [7]. Assuming k is the end frame of a candidate 
cut, we extract four groups of features. The first group is the original 
visual features (88 dimensions) of frame k. The second group is the 
mean and the standard deviation of all features within an 11-frame 
window centered at k. The third and the last group of features are the 
same statistics on a 21-frame window and a 31-frame window. All 
these features are concatenated into a 616-dimension feature vector as 
SVM input. More details of SVM training are shown in Section 4.7. 

 
 4.2. Fade in detector 
  
Fade in can be reliably detected using the intensity histogram variance. 
Low variance (not necessarily low intensity) is a strong indicator for 
the beginning of fade in.  Fade in transitions often start from a group of 
low variance frames and then the variance gradually increases until it 
becomes stabilized. 

The verification algorithm pinpoints the starting and the ending 
frames of the candidate transition based on the variance value, and it 
then measures the linearity of the standard deviation (STD) of the 
intensity (the square root of intensity variance). We use r2 as a measure 
of linearity in linear regression. Assume we have a set of pairs: {xi, yi}, 
1 ≤ i ≤ N. By min square error, we get the optimal a and b, which 
minimize the error Ereg,  
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If the linearity of the STD curve is higher than a preset threshold, 
the Verify() function returns true, otherwise, it returns false. 
  
4.3. Fade out detector 
  
Similar to the fade in detector, the fade out detector is also 
triggered by low variance frames. The verification algorithm 
checks the linearity of the standard deviation of the intensity. Very 
often, fade out and fade in transitions are adjacent, and the 
overlapped fade out /in transitions are merged into a single FOI 
transition in result fusion step. 
  
4.4. Fast dissolve detector 
  
Fast dissolve is triggered by a medium change of the matching 
error, where MEA is bigger than 2*AverageME. Let X, Y, and Z 
denote the starting frame, the ending frame, and a middle frame 
within a fast dissolve transition. We require that the duration of the 
fast dissolve transition be less than 5 frames, so it is reasonable to 
assume that there is no motion involved in the transition. With this 
assumption, Z can be written as a linear combination of X and Y, Z 
= αX + (1 - α)Y, where 0 ≤ α ≤ 1. The value of α can be 
determined by a minimum square error criterion. If the fitting error 
is smaller than a preset threshold and 0.2 ≤ α ≤ 0.8 for all middle 
frames of the transition, then the Verify() function returns true. 
  
4.5. Dissolve detector 
  
Dissolve is a procedure of linearly mixing two different scenes X 
and Y. Assuming Zi is an intermediate frame, then we can use the 
following formula to represent Zi, 

YXZ
iii
)1( !! "+= , 

where {αi} are a set of monotonically increasing values that are in 
the range of [0, 1]. Let the variances of X, Y, and Zi be σ2

X, σ2
Y, 

and σ2
Zi. If we also assume X and Y are independent, then we have, 
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If σ2
X = σ2

Y, the curve for σ2
Zi is a symmetric quadratic 

function, shown as in Fig. 4a. But in typical cases, the curve is 
more like that shown in Fig. 4b, where σ2

X is not equal to σ2
Y, and 

X and Y are not independent. When the variance of either X or Y 
is small, the variance curve may only contain either the decreasing 
or the increasing pattern, such as illustrated in Fig. 4c. 

 
Fig. 4. The variance curves of some typical dissolve transitions 

 
The sub FSM of the dissolve detector is designed to capture 

the characteristic curves shown in Fig. 4. A state variable, 
AverageVariance, is used for pinpointing the starting and ending 
frame of the dissolve transition. Its initial value is set to 3.5 and it is 
updated by following IIR filter in state 0, 

15.0*85.0* IHVianceAverageVarianceAverageVar +=   (3) 
where HVI is the intensity histogram variance.  

Verification is a key component of this FSM. The main 
challenge is that the variance curve may not be smooth due to 

motion or camera flashes in the original sequences X and/or Y. For 
verification purposes, we extract a set of heuristic features based on the 
entire transition. In this section, we only present a few interesting 
features, for more details, please refer to [9].  

From the variance curve, shown in Fig. 5, we first pinpoint the 
starting and ending frames. To do that, we start from the minimum 
variance frame in the candidate transition, and then search forward and 
backward for the maximum absolute delta variance frames, which are 
fmin and fmax in the figure. Then from fmin, we further search backward 
until the delta variance of the current frame is less than half of the delta 
variance of the next frame or 2*AverageVariance. This frame is set as 
the starting frame of the candidate dissolve. Similarly, we search from 
fmin forward, and locate the ending frame.  

  
Fig. 5. The curves of variance and delta variance 

 
Then a set of heuristic features are extracted for verification 

purpose. For example, the height of the variance curve, Δ, is the 
difference of the maximum and minimum variances within the 
transition. Knowing that the delta variance is roughly a linear curve 
between fmin and fmax, we do a linear fitting for the delta variance. We 
also compute the estimation error for each image in the transition from 
its neighboring images, and the matching error between the starting 
and ending frames of the transition.  

The baseline dissolve verification employs a sequence of threshold-
based criteria relying on these features. A more robust approach is to 
apply SVM on these features, and we discuss this more in Section 4.7. 
  
4.6. Wipe detector 
  
Wipe is the most ill defined transition. There are more than 20 different 
types of wipe that are commonly used in video editing and there is no 
single rule that applies to all of them. In this system, we only consider 
one common type of wipe, where the first scene gradually changes to 
the second scene, and for a certain intermediate frame, part of the 
frame comes from the first scene, and part of it comes from the second 
scene.  

A wipe is triggered by a smooth change, when the matching error 
MEA is bigger than 1.5*AverageME and less than 4*AverageME. In 
Fig. 6, we denote the starting and the ending frames of the candidate 
wipe transition as X and Y, and an intermediate frame as Zi, i = 1, ..., L 
-1, where L is the duration of the transition. We partition frame Zi into 
8x8 blocks, and find the best match with motion compensation from 
both X and Y for each block. When the matching error is too high, the 
block does not come from either X or Y. Then we compute the portion 
of blocks with match from X, denoted as xi, and the portion of blocks 
with match from Y, denoted as yi. Finally, we measure the linearity of 
xi and yi curves to verify the wipe transition.  



 
Fig. 6. Illustration of wipe verification 

  
4.7. SVM Models 
  
Support vector machines are now a standard for fast and robust 
classification. While this classifier greatly reduces training time by 
analyzing only marginal samples, care must be given to the 
training parameters and underlying kernel chosen. In our 
experiments, we evaluated both linear and radial basis functions in 
a 3-fold validation process. We searched 7 linear settings and 70 
RBF settings with random subsets of our training set split into 
80/20 percent training/testing partitions. All features are globally 
normalized with a sigmoid before feeding the SVM. 
 

5. FUSION OF DETECTOR RESULTS 
 
Fusion of detector results occurs when all frames are processed.  
We first sort the list of raw results by their starting frames and then 
merge all overlapped transitions with different priorities assigned 
to each transition type. Currently the order used is (from highest to 
lowest) FOI, dissolve, fast dissolve, cut, and wipe. The final step is 
to map the system types into two categories: cut and gradual. All 
shot boundaries except cuts are mapped into gradual. 

 
6. EVALUATION RESULTS 

 
In the TRECVID SBD evaluation, each group can submit up to 10 
runs. Fig. 7 shows the overall performance of all participants, with 
AT&T’s runs plotted with squares. In term of F-measure, our 
system achieved the best overall performance. Table I shows the 
four best submissions for AT&T’s SBD system in TRECVID2006.  

 
Table I. The best runs of AT&T’s submissions 

Performance (%)  
Category Recall Precision F-

Measure 

Report 
localized 
changes 

SVM 
Verification 

Kernel 
Overall 85.5 89.2 87.3 

Cut 88.9 90.4 89.6 
Gradual 76.5 85.6 80.8 
Frame 87.1 91.9 89.4 

No 

 
Linear 
SVM 

Overall 85.1 87.6 86.3 
Cut 89.4 90.4 89.9 

Gradual 73.6 79.5 76.4 
Frame 86.9 93.0 89.8 

No 

 
None 

Overall 83.8 90.5 87.0 
Cut 86.2 92.2 89.1 

Gradual 77.5 85.8 81.4 
Frame 87.4 92.3 89.8 

Yes 

 
RBF 2 

Overall 82.6 90.9 86.6 
Cut 86.1 92.3 89.1 

Gradual 73.1 86.9 79.4 
Frame 88.9 92.1 90.5 

Yes 

 
RBF 1 

Among these results we varied the usage of local changes and the 
inclusion of an SVM verification stage. The SVM based dissolve 
verification boosts the overall performance by 2.5% and gradual 
transition performance by 3.4%, a significant improvement when the 
initial performance is already high. The frame based gradual transition 
performance of all our 10 runs leads the other systems by more than 
3.5%, meaning the proposed gradual transition (mainly the dissolves) 
boundary location approaches are very accurate. Also, on an Intel 
3.7GHz Xeon machine, all of the proposed system runs faster than 0.4x 
real time. 

 
Fig. 7.  SBD overall performance in TRECVID2006 

 
7. CONCLUSIONS 

 
In this paper, we described a system developed for the shot boundary 
determination task in TRECVID 2006. The evaluation results show 
that our proposed SBD algorithm is effective and robust enough to 
detect several different types of cuts and gradual transitions. We also 
demonstrated that with a simple fusion of FSM’s and optional SVM 
verification, we achieved very high performance at execution times 
faster than real time. 
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