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Abstract

Semantic concepts cement the ability to correlate visual
information to higher-level semantic concepts. Traditional
image search leverages text associated with images, a low-
level content-based matching, or a combination of the two.
We propose a new system that uses 374 semantic concepts
(derived from the LSCOM lexicon [6]) to semantically facil-
itate fast exploration of a large set of video data. This new
system, when coupled with traditional image search tech-
niques produces a very intuitive and fruitful design for tar-
geted user interaction.

1 Introduction

The signal processing community has long studied low-
level features and derived high-level features (or semantic
concepts) for large image databases. High-level concepts
are generally learned using patterns discovered over a set
of images, where machine learning techniques are used to
create discrete classifiers and provide a deterministic scores
for concept similarity. At the root of high-level features,
two primary approaches are commonly used. One approach
analyzes low-level content similarity to find common pat-
terns and the other, more commonly used in the computer
vision field, is to try to learn explicit object descriptors,
often involving its geometry or a majority of the object’s
views. While more exact, establishing a single appearance
for an object may prove difficult or computationally infea-
sible. For example, the semantic concept of a tree, has an
infinite number of visual appearances must be learned to
have a model generic enough to be accurate. We extend our
approach to a diverse set semantic concepts, so we adopt the
first approach, based on low-level content similarity.

Content-based search and indexing is a diverse task that
has been well studied, but an optimal general solution is still
not available. Early experiments on large image databases
first extracted low-level image features and attempted to
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heuristically search and match content over a given dataset
[10]. Later, authors conjectured that brief text descriptions
(often referred to as tags) could be associated with image re-
gions and language processing techniques were introduced
to couple image and text features [1]. The breadth of ad-
ditional approaches is quite large, as authors experimented
with local region correlation [12], multi-modal features in
complex machine learning environments [2], and even ex-
plored image correlation in a concept space [5]. While each
approach has had gains in its targeted area, none have pro-
vided a complete answer for searching where fast-response
user interaction is required.

In this work, we leverage the scores of a large set of se-
mantic classifiers to enable the user to quickly navigate a
large, diverse image database derived from captured broad-
cast television. We apply previous classifier methods pre-
sented in other works and instead focus on enabling user
interaction over the automatically computed concept space.
The remainder of this paper is divided into three major sec-
tions: section 2 has descriptions of our system and features,
section 3 details our experiments and our collected dataset,
and finally section 4 contains concluding remarks and de-
scribes future work.

2 Architecture and features

Our system design capitalizes on the modular design of
several image processing and data management components
to maximize performance in a parallel environment. As
discussed in the last section, the Miracle platform [3] was
developed at AT&T Labs to capture, index, and search a
large set of video data. This platform then allows a va-
riety of conetnt clients to search, browse, and retrieve the
indexed video data; PDA’s, portable game devices, and
even cell phones can navigate recorded media and playback
bandwidth-appropriate media. For this work, we integrated
low-level feature extraction and high-level feature classi-
fiers to further navigate a very large video corpus. The fol-
lowing sections describe the Miracle system, features used
for semantic classification, the integration steps for seman-
tic information, and finally our user interface.



2.1 Miracle

Miracle [3],[7] is an ongoing research project at AT&T
Labs aimed at creating automated content-based media pro-
cessing algorithms and systems to collect, organize, index,
mine, and re-purpose video and multimedia information.
Figure 1 illustrates the overview structure of the Miracle
system. Miracle is composed of three main modules: con-
tent acquisition, content processing, and content server. The
content acquisition module records selected broadcast TV
programs from a variety of sources, including Digital Satel-
lite System (DSS) receiver, Cable TV (CATV), and Digital
TV (DTV) terrestrial broadcasting. The content processing
module transcodes the acquired content into different for-
mats and extracts the embedded hierarchical content struc-
ture for query and browsing purposes. The content server
module performs multimedia information retrieval and pro-
vides a user friendly interface, such that the users are able
to effectively search interesting content in the large media
archive and pleasantly browse the retrieved media clips us-
ing preferred devices, either a standard desktop or a PDA.

Figure 1. Architecture of the Miracle system.

The current Miracle acquisition module is built on Mi-
crosoft XP Media Center Edition (MCE) platform. MCE
machine is a full fledged PVR (Personal Video Recorder)
system, having the capability to schedule a single or a se-
ries of recordings of TV programs with integrated EPG sup-
port. MCE records a television show in DVR-MS file for-
mat, similar to Microsoft’s ASF (Advanced Streaming For-
mat), which allows the creation of key PVR functionalities
like time-shifting, live pause, and simultaneous record and
playback.

The goal of the multimedia processing is to extract a
semantically meaningful index to facilitate query response
and to transcode the media in different format for easy
browsing. Figure 2 shows the diagram of the Miracle pro-
cessing module. The source of the processing module is a
DVR-MS file, and the processing results are stored in two
databases: the media database for serving the content and
the content index database for content query purpose.

The metadata in DVR-MS includes some key informa-
tion about the show, for example, the program ID, the

Figure 2. The Miracle processing module.

broadcast time, and some brief description of the content
coming from the EPG; metadata is extracted and saved in
the content index database. While a high quality video
is usually more pleasing and may carry more information,
video replay is not always an option. A different visual pre-
sentation of the video content can be done by selecting a
subset of representative frames to convey the visual infor-
mation. We use the algorithms discussed in [8], [9] for
performing content-based sampling. This algorithm detects
abrupt and gradual transitions in the video sequence, and the
set of frames retained generates a compact representation of
the video program.

Closed captions (CC) contain rich content information
about the program, are used to search for appropriate video
segments. Unfortunately, CC is normally not synchronized
with the audio, which noticeably affects the quality query
resutls. So, a large vocabulary automatic speech recog-
nition (ASR) is used to generate transcripts for the audio
stream. After ASR, either parallel text alignment is per-
formed to align the timing information from the automatic
speech transcription with the more accurate CC transcrip-
tion or we import high quality off-line transcripts of the
program when they become available. A case restoration
module system uses a rule-based capitalization algorithm
trained from multiple sources, including AP newswire data
and online stories published by national media companies
to restore case information in CC and ASR transcripts. To
better index and present the content, named entities, includ-
ing country names, person names, locations, titles, etc. are
extracted from the textual stream.

In the content structure generation block all content in-
dex information is combined and a page/paragraph structure
of the media is created. Each paragraph is composed of one
scene cut frame and a set of related CC sentences. Such
structure effectively represents the video data in a manner
that is easy for users to browse the content nonlinearly.

Due to the wide range of accessing devices with
different network and video rendering capabilities, the



DVR-MS files are transcoded to three Windows Me-
dia Video (WMV) formats: standard definition (SD)
video (2Mbps/640x480/29.97fps), VHS-quality video
(600Kbps/320x240/29.97fps), and low bandwidth (LB)
video (150Kbps/224x168/15fps). On a modern desktop
PC, the user can enjoy the standard definition video, and a
PDA user can smoothly playback the low bandwidth video.

To motivate research and development, we implemented
and continue to maintain a fully functioning prototype video
search engine. Figure 3 shows a results page for a user
query for “life on mars”. In addition to document meta-
data, multimedia paragraphs are displayed with closed cap-
tion text; images and text link directly to the video or other
media (as per the user preference), or the user may se-
lect “full program” to browse through a particular program.
User may execute the query on different databases including
speech or transcription data. The Miracle search engine cur-
rently operates on an archive of more than 41,000 discrete
video broadcasts that have been collected and automatically
indexed over a twelve year period.

Figure 3. Results page with document ex-
cerpts for user query in Miracle

2.2 Concept computation

In this paper, Miracle was augmented to index low-level
image similarity and semantic concepts. We use 374 classi-
fier models (derived from the LSCOM lexicon [6]) trained
over data in the TRECVID 2005 development set and pub-
lished in [11]. TRECVID is an annual international eval-
uation of video processing tasks including shot boundary
detection, high-level feature detection, and image search.
TRECVID provides participants with a large collection of

video data over which experiments are conducted and pre-
sented in an anual workshop. The training data is a set of
over 64k TRECVID keyframes with positive and negative
labels from multiple human annotators. Low-level features
are extracted for three modalities: grid-based color mo-
ments, a global edge direction histogram, and global Gabor
texture responses. Support vector machine (SVM) models
were trained independently for each modality for each of
the 374 concepts. In our work, we extract features for the
three modalities above and apply the pre-trained models to
a new, large set of images. It should be noted that we first
resize all images to match the same size as the training data
and use the same executables to extract and model low-level
features. To derive a final score for each model, we average
the output of the three modality classifiers. Thus, the final
output of concept computation is a vector of 374 high-level
concept scores for each keyframe in a video.

2.3 Concept system architecture

Once concept scores are computed, we must index the
data in a robust and scalable form, illustrated in figure 4.
Following the modular design of the Miracle platform, we
store the concept scores for each image and similarity to
other keyframes in individual XML files for each program.
At the same time the XML file is created, we also insert
all of the concept scores for a new video into an online
database; in our implementation we used a MySQL back-
end. For fast searching, a single row in our table has only
three columns: concept id, image id, and concept score.
This combination of online and offline data allows a fast
search of concept scores across the image database, while
minimizing the amount of scores that must be loaded into
memory from our xml-based file system.

2.3.1 Depth bounding for scalability

One problem that must be addressed when dealing with
very large sets of data is that of storage and indexing. To
optimally manage the scores from the 374 concepts, we
keep only the top L scores for each concept in the on-
line database. Not only is this a reasonable way to con-
trol database size, but given the fact that most users do not
traverse a large number of search results (i.e. given 1000
results, most users will only browse the top 500), it is also
an amicable solution aligned to user expectations. While
the exact performance numbers may differ, we find that an
L on the order of 10000 is acceptable.

2.3.2 Aggregate statistics

Aggregate statistics are derived from the sub-sampled
concept scores described in the previous section. Statis-
tics for the minimum, maximum, and average scores for
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Figure 4. Visual illustration of Miracle concept
processing framework.

each concept are computed and stored in individual rows
in the online database. These statistics allow us to confi-
dently construct score filters for each concept, instead of
using ad-hoc thresholds and unstable heuristics. This ap-
proach also adheres to scalability requirements because as
new captured data arrives (as is expected in the Miracle
framework) the statistics can easily be recomputed during
a non-critical time of day, but the overall concept filtering
system will not suffer a significant performance loss if this
update is delayed.

2.3.3 Suggested concepts

One critical component of our system is the ability to
suggest concepts based on a given result set. We have vi-
sually illustrated a suggestions scenario in figures 5(a) and
5(d). Given any result set (perhaps from a text search, im-
age similarity search, or even the results of a concept filter),
we choose the top N images for analyis. For each concept,
i ∈ [1, C], we compute the fraction of results, πi, that have
a score greater than each concept’s statistical average score,
µi. To assist the user in understanding how the final sug-
gested concept was chosen, we also output this count in the
final user interface.

πi =
∑N

n=1 count(sni ≥ µi)
N

Each result fraction is then scaled by the performance, αi,
of each respective concept by its performance on a labeled
test set and then select the top M scoring concepts among
all final scores CM ⊂ {α1π1, ... ,αiπi}.

We acknowledge that using the statistical mean of scores
is prone to error for a classifier that has particularly poor

performance. A more robust method for calculating a
threshold for each concept could be derived by detecting
the score where the biggest mutual information loss occurs.
However, we defer this improvement for future iterations of
the concept system.

2.3.4 Scoring filtered results

After the addition of a new concept filter, we must re-
compute the scores for the current set of results. Recomput-
ing scores with a set of inclusive concept filters, A ⊂ C, is
straightforward; simply average the scores sni of all inclu-
sive concepts i ∈ [1, A] for all result images n ∈ [1, N ].

sn =
∑A

i=1 sni

A

Recomputing scores with a set of exclusive filters, B ⊂ C,
is also simple, but instead of adding scores for excluded
concepts j ∈ [1, B], we conditionally remove result images
n with excluded concept scores snj greater than the statis-
tical mean score for that concept µj .

sn =

{ ∑A

i=1
sni

A (snj < µj)∀j
0 otherwise

For an in-depth discussion of filters an their impact on
actual experiments, please see section 3.3.

2.4 User interface

For any truly useful interactive system, there must exist
an intuitive and responsive user interface. For this purpose,
we implemented a web-based interface using server-side
scripting (PHP), cascading style sheets (CSS), and asyn-
chronous web client requests (AJAX). Given the size of our
dataset and the need to have high performance regardless of
scale, we also integrated both file-based XML storage and
online SQL indexing systems (see 2.3).

There are three major goals for our interface design:
quickly expose the user to a variety of images, allow fast in-
teraction with related images, and leverage concept scores
to quickly guide the user towards concept filters that best
partition the current set of images. Each of these goals is
exemplified in parts of figure 5 and explained below.

Grid layout: A grid-based image layout allows users
(experienced and novice) to quickly scan a high volume of
content. While experiments in other works have demon-
strated that high-speed image display is also powerful [4],
we instead encourage deep interaction with result images.
Additionally, for experienced users, we provide the abil-
ity to include concept-space and low-level similarity scores
throughout the user interface. We assert that experts can
use the relative differences in scores as they navigate a page
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Figure 5. Example navigation using grid browsing, related images, and concept-based filtering.

of results to find discontinuities in scores that are otherwise
lost in a grid-based display.

Related images: We recognize that a very powerful part
of any image-query system is the ability to find visually
related items. Towards this purpose, we allow the user to
quickly inspect other images, ranked by similarity, with-
out interrupting their browsing experience via asynchronous
web requests to our pre-computed similarity XML files. In
our current implementation, we only display similar images
that reside in the same program; in future work, we plan to
expand this display to include programs captured near the
same date.

Suggested concept filters: Perhaps the most innovative
feature of our user interface is the ability for users to quickly
see how a set of images is related in the concept space, as
described in section 2.3.3. Our interface provides a textual
description of concepts that are identified as highly active
given a set of user results. While the number of top ranking
results to consider (N ) and the number of active concepts to
suggest (M ) is adjustable, we defer discussion of ideal set-
ting selection for future work and instead choose heuristic
settings of N=20 and M=5 for our experiments. We chose
N=20 so that only the “best” results returned in a search
were considered for active concepts. We chose M=5 so
that the user is not overwhelmed with choices for concept
filtering and because after a certain depth of suggestions, the
strength of the semantic relationship to the result images is
too low.

Combining these three design components, we created
the interface shown in figure 5. As our interface is merely
a tool to explore a set of data, the search input can be a
specific video, a set of results from another query (say a
text query, as shown in figure 3), or simply the direct re-
sults from a concept search. Finally, we wish to guarantee
that the current search state can be easily revisited in fu-
ture uses of the system – either by the same user or another
user assisting remotely in the search – so throughout the
system we use absolute URLs that explicitly indicate the
current search state. With this feature, users can easily re-
visit a set of concept filters that they have constructed so

that after very similar video content is added to the index it
is easily discovered. Finally, building on top of the Miracle
system, we provide instant, in-depth content inspection in
a list form, shown in figure 3, a grid-based timeline form,
or with the content from a single keyframe streamed to the
user at an appropriate bandwidth.

3 Experiment

We analyzed the performance of our concept filtering
system over a subset of television broadcasts captured by
Miracle. Our system allows users to quickly explore a large
dataset within the semantic concept space. Even though the
performance of some classifiers may not be perfect, our sys-
tem enables user navigation through relevant semantic con-
cepts that are dynamically exposed by the data, not tradi-
tional lexical approaches. The following sections describe
the dataset, baseline classifier performance, example search
scenarios, and measurements that demonstrate our system
is very suitable for real-world scenarios.

3.1 Data subset

In this experiment, we chose one broadcaster (NBC) and
analyzed content from video captured between January and
June of 2006. During this time period five different pro-
grams were captured: Meet the Press (22) recordings, NBC
Nightly News (158) recordings, Channel 4 News at 6PM
(164) recordings, The Apprentice (13) recordings, and The
Tonight Show with Jay Leno (91) recordings for a total of
357 discrete recordings and 314 hours of video. After pro-
cessing these programs with Miracle’s content based sam-
pling algorithm (described in 2.1), 385,873 keyframes were
extracted with an average of 875 keyframes for each pro-
gram. A quick survey of the generated keyframes indicates
that there are some visual settings that are highly recurrent,
such as the talk-show set of The Tonight Show, and some
visual frames that are exact matches, commercials repeated
in this segment. At this time, we do not cluster, group, or
otherwise discriminate highly similar keyframes generated



concept filter accuracy @ 40 accuracy @ 100
basketball only 0.475 0.360

+athlete 0.575 0.490
+standing 0.675 0.530
+crowd 0.825 0.440

baseball only 0.050 0.020
+athlete 0.175 0.25
+sports 0.375 0.340
-soccer 0.525 0.440

+running 0.600 0.540
+grandstand 0.600 0.420

Table 1. Accuracy of concept filtering itera-
tions at depths of 40 and 100 results using
only data-suggested concepts.

by the content based sampling algorithm. It should be noted
that while the data in this experiment was derived from only
one television channel, the diversity of the included pro-
grams demonstrates the system’s applicability to any set of
video data.

3.2 Classifier performance

Concept classifier performance varies for a number of
reasons like labeler agreement, specificity of concept defi-
nition, number of training samples, and test data disparity,
to name a few. While the first three variations are part of
the training process discussed in [11], we would like to an-
alyze the impact of data disparity on classifier performance.
We conducted searches with two concepts from our lexicon:
basketball and baseball. These two concepts were chosen
because they contain a somewhat specific semantic (as op-
posed to sky) that does not exist as a single object (like face
or car) and because the baseline concept detectors have both
good (basketball) and poor (baseball) performance.

First, we explore the performance gains where a con-
cept classifier already has quite high performance – the bas-
ketball concept. In table 1, we indicate accuracy at result
depths of 40 images (the first browser page) and 100 im-
ages. The baseline detector has a relatively high accuracy
at both sample points, indicating that there is a good fit
between model and data. However, there are still several
negative cases (indicated by red frames) in 6(a) caused by
classifier error on one of our low-level modalities: color,
texture, or edge histogram. Fortunately, the system imme-
diately identifies a suitable set of suggested concepts that
are strongly related to our current results: athlete, standing,
and crowd (described in table 2). As we apply these filters
individually, we can see accuracy increase while the visual
relevance of suggested concepts decreases. This is particu-

concept filter suggested concepts (# in top results)
basketball only athlete (15), standing (9), scene text (8),

crowd (4), steeple (11)
+athlete standing (8), scene text (7), steeple

(12), crowd (3), mountain (4)
+standing scene text (15), crowd (5), steeple (17),

swimmer (3), dark-skinned people (19)
+crowd scene text (10), steeple (14), dark-

skinned people (19), swimmer (2), mi-
crophones (2)

baseball only cordless (4), canoe (2), athlete (2), un-
derwater (1), entertainment (1)

+athlete soccer (6), sports (9), grandstands (6),
vegetation (7), lawn (7)

+sports soccer (11), grandstands (14), running
(9), lawn (11), vegetation (8)

-soccer grandstands (12), running (9),
scene text (8), maps (4), swim-
ming pools (2)

+running grandstands (15), scene text (7), canoe
(2), vegetation (5), natural-disaster (4)

+grandstand scene text (8), tennis (3), maps (3), veg-
etation (4), indoor sports venue (17)

Table 2. Analysis of data-suggested concepts
during iterative concept filtering; concepts
already selected are not listed again in sug-
gested concepts.

larly obvious when the third positive concept filter (crowd)
is added and the accuracy at depth 100 drops. Fortunately,
this result is expected as the suggested concepts like swim-
mer and microphone are quite unrelated to basketball and
of the first 40 images, only 7 were unrelated.

Now, let us explore the performance gains of a concept
with weaker initial performance, baseball. We observe in
6(d) and table 1 that the baseline detector finds only 2 pos-
itive samples at a depth of 40 images. We can infer that
the green background of commercials and golf games has
greatly polluted the baseline results. Fortunately, with the
reasonable set of suggested concepts (figure 6) allow us start
exploring the concept space of our result images. The story
of performance gains are similar to that of the basketball
concept, with measured accuracy at depths 40 and 100 in-
creasing to some point and then tapering off, as shown by
the italicized numbers in table 1. However, with the last
concept filter applied, the accuracy jumps from the original
0.02 to the best 0.54 for baseball, which is both more signif-
icant than the basketball gain of 0.36 to 0.53 example, and
a visually satisfying result to the user.

In both examples, it is clear that with several filters al-



(a) original ’basketball‘ concept (b) add ‘athlete’ concept (c) add ‘standing’ and ‘crowd’ concepts

(d) original ’baseball‘ concept (e) add ‘athlete’ and ‘sports’ concepts (f) exclude ‘soccer’ and add ‘running’ concepts

Figure 6. Example results for “basketball” and “baseball” concepts with iterative concept filtering.

ready applied, the impact subsequent filters is greatly re-
duced, but this is not surprising either, given our method for
scoring results with multiple filters (section 2.3.4).

3.3 Utility of filtering

Traditionally, the performance gains from automatically
filtering results or learning statistical concept relationships
with concept scores are quite limited. Complications in-
volving cut-off thresholds, independent concept perfor-
mance, and the meaning of a low score are usually the main
points of contention. However, through some empirical ex-
periments (two described in this work), we demonstrate that
in an interactive environment, concept filtering can dramat-
ically improve search performance.

First, we address concerns for score thresholds and con-
cept performance by collecting statistics over our given
dataset. One may argue that this approach ignores the un-
derlying question of performance because some obscure or
highly variant concepts are just hard to generalize, but we
assert that in a user-based, interactive setting the problem
of low-quality concepts can be overcome provided that the
concept model was earnestly trained on a non-random set of
images. For example, in figure 6(d) and data in table 1, we
observe that there are no instances of any baseball-related
images in the top 20 results of the baseball concept. How-
ever, through iterative filtering and the combination of other
concepts, baseball-related images are eventually moved to
high ranking positions. Second, concerns about low con-

cept scores can be answered in part by our approach, which
is ambivalent to the actual score range for a concept and in-
stead relies on collected statistics. While a numerically high
scores does imply relevance for a concept, the relationship
is non-symmetric and a numerically low score for a concept
is better likened to a noise or background model.

3.4 Execution profile

Although some processing steps in this concept system
can be time-prohibitive, the majority of this time is con-
sumed by pre-processing and not searching or indexing; this
reflects our goal of performance optimization in repeated
user tasks, not off-line machine computation. First, the
labeling of images and training of the concept models is
the most time consuming task. Quoting the original tech-
nical report for these models, which was trained on 2GHz
single-thread machines, “running even such a light-weight
training process for all 374 concepts takes approximately 3
weeks using 20 machines in parallel, or roughly more than
a year of machine time,” [11]. This time was estimated with
non-optimized, java-based execution and used an exhaus-
tive SVM parameter search for each modality model. Sec-
ond, the capture of new broadcast content and content-based
sampling (to generate image keyframes) is real-time and is
constrained only by the capture process. Third, execution
time for low-level feature extraction and concept scoring
for all 374 models occurs in roughly 0.16x and 0.78x real-
time respectively, when executed on 3.2GHz multi-core ma-



chines. Adding computation results to the online database
and file repository is on the order of seconds and an infre-
quently needed update of aggregate statistics (described in
2.3.2) completes all updates in under 5 minutes, which is
also dependent on the depth bound. Finally, a search of the
database (see 2.3.1) during an interactive session completes
in 5-10 seconds depending on the number of concept filters
applied, where subsequent searches for browsing deep into
the result list complete in about 1 second.

4 Conclusion

Semantic concept search is a very difficult task that re-
quires a robust set of features, concept models, and a well-
tempered approach for searching. Unavailable to automatic
search methods, we leverage highly responsive user interac-
tion to quickly traverse search results in the semantic con-
cept space. Building on other work that demonstrates the
benefit of concepts over low-level features alone, we pro-
vide a system that works well even with relatively poor per-
formance of individual concept classifiers.

The gradual improvements using semantic filters seen in
figure 6 demonstrate three important points. First, the use
of semantic concepts extends image search beyond what is
capable using content-based image retrieval because they
tolerate a diversity of scenes and objects. Second, while
exploring the semantic space of a set of results, users can
discover unique, data-driven relationships that were other-
wise unexpected when compared to traditional semantic ap-
proaches that rely on lexical similarity or a hand-crafted set
of rules and relationships. The user no longer needs to be fa-
miliar with the lexicon of a concept space or how each con-
cept is ontologically related. Finally, we allow users to join
several concept filters that can either include or exclude re-
sults from the returned set, which can be saved via a unique
search URL and explored again when new data is indexed
with the Miracle processing system.

4.1 Future work

This work is one of the first to enable interactive con-
cept space exploration over a very large set of diverse im-
ages. First, to position our classifier models at the state of
the art, much more complex low-level features and machine
learning frameworks can be applied [2]. However, we be-
lieve the most promising improvements will include power-
ful, potentially domain specific features like face detectors
and motion estimation features that account for temporal as-
pects of the data. Second, we plan to extend frame-based
similarity computations to include other captured broad-
casts around the same time span. This way, we can more
accurately identify duplicates like commercials and or near

duplicate material inter-program segments (like weather an-
nouncements in news broadcasts). Third, additional exper-
iments should be conducted to find the ideal L, M , and N
values that were heuristically determined in our current im-
plementation. Unfortunately, these experiments would re-
quire a large amount of user interaction data, which requires
significant time and effort to collect. Similarly, we hope to
find a more data-sensitive method for computing a threshold
value for each concept (currently derived from the statistical
mean of a concept’s scores. Finally, we also plan to incor-
porate some form of active learning or relevance feedback
that would allow the adaptation of existing models to new
data captured by Miracle.
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