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ABSTRACT

We present novel algorithms for detecting generic visual events
from video. Target event models will produce binary de-
cisions on each shot about classes of events involving ob-
ject actions and their interactions with the scene, such asair-
plane taking off, exiting car, riot. While event detection has
been studied in scenarios with strong scene and imaging as-
sumptions, the detection of generic visual events from an un-
constrained domain such as broadcast news has not been ex-
plored. This work extends our recent work [3] on event detec-
tion by (1) using a novel bag-of-features representation along
with the earth movers’ distance to account for the temporal
variations within a shot, (2) learn the importance among input
modalities with a double-convex combination along both dif-
ferent kernels and different support vectors, which is in turn
solved via multiple kernel learning. Experiments show that
the bag-of-features representation significantly outperforms
the static baseline; multiple kernel learning yields promising
performance improvement while providing intuitive explana-
tions for the importance of the input kernels.

1. INTRODUCTION

We are concerned with detecting visual event classes from
video, i.e., deciding if a video shot contain a class of events
involving object actions and their interactions with the scene,
such asairplane taking off, exiting car, riot, etc. In the past
few years, the detection of generic visual concepts has re-
ceived much attention through large-scale benchmarking ac-
tivities [10]. Therein the focus has been mainly on extract-
ing features and building models for static images and video
frames, where the dynamic aspect of video has been under-
emphasized. Modeling time and content evolution in generic
video content (e.g., television broadcast) is a hard problem
due to large scene diversity and imaging variations. Yet mod-
eling temporal events is crucial to generating rich metadata to
video content, without which the afore-mentioned dynamic
concept categories will remain undetectable.

Prior approaches to visual event modeling and detection
mostly fall in two categories: object-centered and feature-
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driven. The object-centered approaches are based on the bottom-
up perception model in computer vision, they explicitly iden-
tifies and tracks objects/agents [5, 6] and infers their actions
and interactions via either deterministic grammar [5] or statis-
tical measures of evolution or sequence similarities [6]. The
feature-driven approaches [12] typically extract object- and
event- independent descriptors from the video stream, and
then learn an event model from the statistical distributions
and evolutions of the descriptor streams. It is worth noting,
however, that the object-centered approaches usually require
strong assumptions regarding the camera setup and the scene
for object segmentation and tracking, in addition to having
strong assumptions on how many objects can be involved in
the event. The feature-driven approaches, on the other hand,
rely on low-level features that does not directly reflect the se-
mantics in the scene, and they are typically better suited to
describe events that span multiple shots.

Our recent work [3] detects events from visual concept
streams, extracts features from variable-length multidimen-
sional streams with hidden Markov models (HMM), which
are then used to learn a classifier for the event class. This
work extends our prior work [3] in two aspects: (1) model-
ing a shot as a collection of frames and the use a new dis-
tance metric, the earth-mover’s distance to compute the (dis-
)similarity between shots; (2) learning the importance among
different input streams by formulating the multi-stream deci-
sion function into a double-convex combination of both the
different similarity measures and the support vectors, which
is in turn solved via multiple kernel learning (MKL). Exper-
iments show that the distance metric induced by the bag-of-
frames approach significantly outperform both the static base-
lines and the HMM-based approaches, and MKL increase av-
erage precision by5% from an SVM baseline, while learning
kernel weights with rich ontological explanations.

In the rest of this paper, Section 2 defines the problem
scope of visual event detection and gives an overview of the
event detection workflow. Section 3 describes the modeling of
video shots as a bag of frames and the computation of EMD
for deriving a inner product between two shots. Section 4
presents the algorithm for fusing different cues using MKL.
Section 5 reports our experimental results followed by a con-
clusion in Section 6.



2. SEMANTIC CONCEPTS AND EVENTS

The termvideo eventhas been loosely used in the computer
vision and multimedia research community. For instance, any
of the following three scenarios qualifies as an event ofper-
son/people running: (1) from a fixed surveillance camera, de-
tect a particular person runs in a particular direction (e.g., into
building A). (2) one or more person(s) runs in any direction
seen from any continuous camera take within a few seconds.
(3) athlete(s) prepare and set off at the blast of a start re-
volver, several cameras take turns to follow them through the
tracks and the scene ends in a closeup upon completion of the
race. Each of these scenarios have very different assumptions
about the scene, the imaging conditions and the time span of
the event, therefore they typically call for different detection
strategies. In this work we focus on the second scenario, i.e.,
detecting the presence and absence of an event class within
a shot from any camera. Solutions to this sub-category can
generate an importance class of annotations, help reduce the
need for camera calibration and help build better search and
navigation systems, most of which are useful for open-source
surveillance, consumer data and other data domains.

Denote a video shot asv in a video collectionV with
t = 1, . . . , tv frames in each shot. Each shot has a label
yv = ±1 denoting whether or not the event of interest exist in
any part of the shot. The event recognition workflow include
three steps: (1) Descriptor computation that extracts a feature
descriptor sequencexv,t from the frame at timet from each
shotv. (2) Temporal feature extraction that computes either a
fixed-length vector for each shot, or a distance/similarity met-
ric for each pair of shots directly. (3) Decision learning, where
an SVM or similar discrimination and combination strategies
are learned on the feature vector or distance metric.

For step (1) we choose a few descriptors base on the na-
ture of the target classes and from prior experiences on the
performance of different descriptors [10, 1]. Desirable de-
scriptors should be invariant to real-world scene and imaging
variations as well as being capable to model a wide range of
concepts. A carefully-chosen set of semantic concepts, for
example, can have strong correlation with a wide range of
target events as well as provide intuitive explanations to the
learned event models, as shown previously [1, 3]. For step (2)
in our prior work [3] the temporal feature is extracted with
HMM. A pair of HMM is trained for each dimension of the
concept stream on examples in and out of the event class, re-
spectively. The HMM are evaluated on each of the shots and
a feature vector is obtained from either of the following two
strategies (1) state-occupancy histogram fraction of time each
shot stays in any hidden state. (2) Fisher information score
denoting the sensitivity of the HMM parameters with respect
to the data sequence being evaluated. While able to capturing
the temporal evolution of multi-dimensional feature streams,
HMM is naturally constrained by the choice of model size and
the Markov assumptions about the hidden states. Therefore
we explore an alternative representation for temporal streams

and feature combination strategies in the next two sections.

3. SIMILARITY MEASURE VIA BAGS OF
FEATURES

In this section, we present a bags-of-features representation
and an corresponding algorithm to compute the similarity be-
tween two shots. Here the temporal order of frames in the
same shot is ignored and their descriptors are treated as a
“bag” of orderless features. Similar representations have been
successfully applied to information retrieval [4] where text
keywords in the same document are collected into a bag, and
general object matching and recognition [13], where the fea-
tures from local image patches are collected ignoring the lo-
cation of the patches. The main advantage of this represen-
tation over explicitly representing the content and location
of each word or image patch are in its invariance to gram-
mar and phrasing in text or geometric and photometric vari-
ations in the image. It also alleviates the computationally
expensive process of finding the correspondence among the
words/patches between two documents or images. Here we
use the bag-of-features representation along the temporal di-
mension for the event detection problem. This representation
is invariant to temporal scale change and mis-alignment in
different event instances.

With this representation we need a strategy to compare
two shots, i.e., computing the similarity between two shots of
different durations. We can, for example, collect aggregate
statistics for the entire shot, such as a histogram over vector-
quantized bins [4]. However using a histogram ignores the
inherent similarity among different centroids, it would also be
corrupted by noisy outlier frames from inaccurate shot bound-
ary segmentations. One distance measure that simultaneously
overcomes these two limitations is the Earth Mover’s Dis-
tance (EMD) [8]. EMD finds a minimum weighted distance
among all pair-wise distances between the two bags of point
subject to weight-normalization constraints. Intuitively, EMD
allows a partial match between the two collections, it also in-
corporates a ground-distance measure that takes into account
the similarity between the histogram alphabets. EMD has
shown promising performance in applications such as content
based image retrieval [8] and object recognition [13].

The process for computing the distance between two shots
are illustrated in Fig. 1. To compare the frame collection
within two shotsu, v ∈ V, we cluster the two collections
and form their respective signaturesU = {(ui, wui), i =
1, ..,m} andV = {(vj , wvj ), j = 1, .., n}, wherem,n are
the total number of clusters,ui, vj are the cluster centers and
wui , wqi are the respective weights of clustersi and j, set
as the size of the cluster, i.e., the fraction of frames that the
cluster contains. We also have as input aground distancema-
trix dij between cluster centersui andvj , for i = 1, ..,m,
j = 1, .., n. The Earth Mover’s Distance between the shots
u and v is a linear combination of the ground distancedij
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Fig. 1. Computing the Earth Mover’s Distance between two shots.

weighted by theflowfij between any two clustersi andj:

d(u, v) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

(1)

Where an optimal flow matrixfi,j is obtained from the fol-
lowing linear program:

min
∑m

i=1

∑n
j=1 fijdij (2)

w.r.t. fij , 1 ≤ i ≤ m, 1 ≤ j ≤ n

s.t. fij > 0,
∑n

j=1 fij ≤ wui ,
∑m

i=1 fij ≤ wvj ,∑m
i=1

∑n
j=1 fij = min{∑m

i=1 wui ,
∑n

j=1 wvj}

Intuitively, this linear program solves for the best matching
frame pairs in two collections, while the weight-normalization
constraints ensure that each frame has enough match in the
other collection. The EMD matrix can be transformed into
a kernel with the exponential function as shown below, and
Support Vector Machine (SVM) is used to learn a separation
between shots that belong to the event classes and others. The
hyper-parameterA is set toκA0, where the normalization fac-
tor A0 is the mean of all distances between all training shots.
We obtain the optimal scaling factorκ from cross-validation.

K(u, v) = exp{− 1
A

d(u, v)}

4. COMBINING AND SELECTING AMONG
MULTIPLE CUES

In visual recognition applications we often have more than
one type of cues from the data. They can come in the form
of different types of descriptors, such as color-correlogram or
semantic concepts, or in the form of different types of feature
design from common features, such as the choices for mod-
eling time and computing similarity in Sections 3 and prior
work [3]. Two questions naturally arise: (1) Can we collec-
tively use these multiple cues to make better prediction of the
concept? (2) Can we simultaneously learn the importance of
each of the input cues?

We consider multiple cue fusion in the context of SVM-
like kernel classifiers, i.e., linear fusion for learning a linear
discriminant in a high-dimensional feature space as shown in

Fig. 2(a). Denote the pool of training shots asvi, i = 1, .., the
collection ofk different kernels asKj(·, ·), j = 1, ..k. There
are several popular practices for this task [11].
Fig. 2(b) depicts “early-fusion”, i.e., concatenating input vec-
tors or averaging the different kernel values to arrive at a sin-
gle kernelK̄(vi, ·), and then learn a single SVM for class sep-
aration. Denote the support vector weights asαi, the decision
function for a test examplêv is then written as

ŷ =
∑

i

αiK̄(vi, v̂). (3)

Fig. 2(c), nick-named “late-fusion”, corresponds to learning
k SVMs independently and average the decision values, with
αi,j the kernel-specific support vector weights, in this case
the decision value is computed as in Equation (4).

ŷ = 1/k
∑

j

∑

i

αijKj(x̂, xi). (4)

These fusion schemes has two notable drawbacks: (1) nei-
ther take into account the relative importance among different
kernels, (2) the “late fusion” requiresk rounds of training for
different SVMs, leading not only to increased computational
requirements in training time, but also a larger trace of the
model that increases the classification time and memory re-
quirements. It is also possible to learn another layer of SVM
for kernel weights on the decision values from the individ-
ual SVMs, however this not only increases the computational
complexity, but also needs to stratify the training data and is
more prone to over-fitting.

To complement the existing fusion schemes in these two
aspects, we explore the Multiple Kernel Learning (MKL) de-
cision function in the form of Equation (5) and Fig. 2(d) for
multi-cue fusion in visual recognition, i.e., learning linear
weightsµj among the kernelsj = 1, ..k with shared support
vector weightsαi.

ŷ =
∑

j

∑

i

µjαiKj(x̂, xi) (5)

Proposed recently by Bach and Jordan [2], this decision func-
tion can also be viewed as one SVM with support vector weights
αi over a ”hyper-kernel”

∑
j µjKj(·, vi). Compared to the
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Fig. 2. Learning class discrimination with multiple kernels. Yellow
crosses (×) denotes support vectors; red, green and blue denotes dif-
ferent kernels and their weights. (a) Linear classifier in the feature
space. (b) A single SVM, or averaging kernels. (c) Averaging multi-
ple SVMs. (d) Multiple Kernel Learning with shared support vectors
and learned kernel weights.

early and late-fusion schemes, the number of parameters of
MKL is close to those of the early fusion, and the set of ker-
nel weights naturally lends to interpretations of the result.

It is shown [2] that this problem can be formulated in its
dual form as Problem (6), i.e., solving for optimal nonnega-
tive linear coefficientsµj ≥ 0 so that the trace of

∑k
j=1 µjKj

remains constant (chosen to be equal tod = tr(
∑k

j=1 Kj))
and so that the soft margin SVM is optimized with respect to
this linear combination of the kernel matrices.

min
γ2

2
− e>λ (6)

s. t. λ>DyKjDyλ ≤ tr(Kj)
d

γ2 j = 1, . . . , k

whereDy is the diagonal matrix with the labelsy on the diag-
onal andC is the soft margin penalty parameter determined
with cross-validation. This problem can in turn be converted
into a standard form of second-order-cone programming, and
we obtain its solutions with the convex solver Sedumi [9].

5. EXPERIMENTS AND RESULTS

We test the proposed algorithm on a set of events on a large
collection of∼80 hours of broadcast news videos in English,
Chinese, and Arabic from October to November 2004, known
as thedevelopmentcorpus of the TRECVID-2005 [10] bench-
mark. For each video shot we extract frame sequences and
generate multi-modal input streams. The frame sequence con-
tains ten frames per second from the original video. On each
frame we extract the confidence value of 33 visual concepts
obtained from an SVM classifier trained on color features.
These 33 concepts include program categories, scenes, set-
tings, people, objects and activities, which were designed to
span the common semantics in news videos [7]. The concept
models were produced as part of the TRECVID-2005 [10]
benchmark. There are over 69,000 shots in the TRECVID-
2005 collection, from which we hold out one-third as the test
set, and use the rest for training.

This corpus was manually annotated with a Large-Scale
Concept Ontology for Multimedia (LSCOM [7]) of over 400
visual concepts, including scene, people, events, actions and

objects. We chose a subset of 13 visual events and actions
(Fig. 3) for recognition. These concepts were chosen as they
have non-negligible occurrences in the entire corpus, and that
they have intuitive ontological relationships with the 33 in-
put concepts on which automatic detection algorithms work
reasonably well. We measure Average Precision (AP) [10] at
rank 1000 from the prediction valueŝy.

We compare different features design for the temporal vari-
ations within a shot. For the bag-of-features representation
we cluster shots with more then 20 frames into 20 clusters
with the K-means algorithm; we treat each frame in a shot
with less than 20 frames (<2 seconds) as a singleton cluster
of equal weights. Euclidean distance is used as the ground
distance, and then we solve the EMD program Eq.(2) to ob-
tain the distance between the shot-pairs. SVM is learned on
the kernel matrix induced from the EMD matrix using Eq.(3)
the soft-margin parameter and the width of the exponential
from cross-validation. This approach is compared to the static
baseline where SVM is learned on the RBF kernel from a sin-
gle concept vector computed from the keyframe of the shot,
and the HMM-based approach where one HMM is trained on
each of the 33 concept dimensions and state-occupancy his-
togram is used to obtain the SVM input. From the results in
Fig. 3 (right) we can see that both HMM and EMD-based
representations significantly outperform the static baseline,
with EMD more than doubling the average precision from the
baseline approaches. The reason for this performance gain is
in that the solution to the EMD linear program is sparse, and
this puts emphasis on a small set of the best pairwise matching
between two frame collections instead of on the aggregate sta-
tistics such as the mean of point clouds such as used in HMM
or approximated by the keyframe of a shot.

We test MKL as an input selection mechanism. We com-
pute one RBF kernel from the state-occupancy histogram gen-
erated by the HMM from each of the 33 input concepts [3],
and we use MKL to compute a set of kernel weights as well as
support sample weights for classification. Fig. 3 (right) shows
that the mean average precision over all events are improved
by5% with MKL compared to an early fusion of HMM-based
features. Fig. 3 (left) shows the weights assigned to the 33 in-
put concepts for the 13 target concepts. While the weights are
inevitably noisy due to sparse training examples and small
training set size, we can nonetheless spot reasonable trends
and phenomena in in this weight matrix across both the in-
put kernels and the output events. If we look horizontally
and rank the kernels by their weights for predicting a particu-
lar target concept, we can see thatstreet-battleis mostly pre-
dicted bycourt, military, people-marching, truck, explosion-
fire with over50% of the total kernel weights, concurring with
intuitive ontological correlations between the input and the
target concepts. Looking vertically at each input concept, we
can see thatairplane gets the highest weight for predicting
airplane flyingwhile its weights for other events are negligi-
ble; conceptdesertdid not get a high weight for any of the
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Fig. 3. (right) Average Precision of the different approaches. (left) Input concept weights given by MKL. X-axis: 33 input concepts; Y-axis:
13 target concepts.

target events since its detection performance is low [1].
It is worth noting that the memory and computation load

of EMD and MKL has increased compared to SVM. Both
requiring storing kernels of sizeO(n2) or O(kn2), with k the
number of kernels andn the number of training examples.
While MKL can increase average precision by10 ∼ 200%
for 8 out of the 13 target events, yet it sometimes degrades
the performance compared to early- and late- fusion. This is
because some target events exhibit very different patterns in
different input dimensions, where trading off the flexibility in
k sets of support vector weights with the kernel weights hurts
the prediction.

6. CONCLUSION

We study the problem of generic visual event detection and
propose two new algorithms from our recent work [3]. In rep-
resentation we use the earth-movers’ distance over bags-of-
features, in decision learning we use multiple kernel learning
to select and combine the information from multiple kernels.
Both techniques show very promising performance while pro-
viding intuitive explanations on which input concepts are im-
portant for predicting which output concepts. Future work
include the automatic prediction of when a particular presen-
tation or fusion scheme works for which target concepts, as
well as investigating unifies fusion schemes that solves sepa-
rate kernel weights and support vectors in one single program.
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