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ABSTRACT driven. The object-centered approaches are based on the bottom
. . o perception model in computer vision, they explicitly iden-
We present novel algorithms for detecting generic visual everii les and tracks objects/agents [5, 6] and infers their actions

from video. Target event models will produce binary de- . ! L o .
o : ; and interactions via either deterministic grammar [5] or statis-
cisions on each shot about classes of events involving ob- X R
ical measures of evolution or sequence similarities [6]. The

ject actions and their interactions with the scene, sudiras feature-driven approaches [12] typically extract object- and

plane taking offexiting cag, riot. While event detection has event- independent descriptors from the video stream, and

been studied in scenarios with strong scene and imaging at%en learn an event model from the statistical distributions

sumptions, the detection of generic visual events from an un- . . . .
. . and evolutions of the descriptor streams. It is worth noting,
constrained domain such as broadcast news has not been X

) hat th ject- h Il i
plored. This work extends our recent work [3] on event detec- owever, that t € object centered approaches usuaty require
strong assumptions regarding the camera setup and the scene

t'(.)n by (1) using a nov?l l_)ag-of-features representation alon]%r object segmentation and tracking, in addition to having
with the earth movers’ distance to account for the temporal . ; : X
trong assumptions on how many objects can be involved in

varlatlpps W't.h'n ashot, (2) learn the |m.porltance among INPUk. o ovent. The feature-driven approaches, on the other hand,
modalities with a double-convex combination along both dif- .
rely on low-level features that does not directly reflect the se-

ferent kernels and different support vectors, which is in turn L . .
. . . ; antics in the scene, and they are typically better suited to
solved via multiple kernel learning. Experiments show tha . ;
: o describe events that span multiple shots.
the bag-of-features representation significantly outperforms
the static baseline; multiple kernel learning yields promising

performance improvement while providing intuitive explana- QU recent work [3] detects events from visual concept

tions for the importance of the input kernels. streams, extracts features from variable-length multidimen-
sional streams with hidden Markov models (HMM), which
1. INTRODUCTION are then used to learn a classifier for the event class. This

We are concerned with detecting visual event classes froffOrk extends our prior work [3] in two aspects: (1) model-

video, i.e., deciding if a video shot contain a class of event{Nd @ shot as a collection of frames and the use a new dis-

involving object actions and their interactions with the scenel2nce metric, the earth-mover's distance to compute the (dis-

such asairplane taking off exiting cat riot, etc. In the past Jsimilarity between shots; (2) learning the importance among

few years, the detection of generic visual concepts has réj_if'ferent input streams by formulating the multi-stream deci-

ceived much attention through large-scale benchmarking agion function into a double-convex combination of both the

tivities [10]. Therein the focus has been mainly on extract-fj'ﬁerent similarity measures and the support vectors, which

ing features and building models for static images and vide&® in turn solved via mu.ItipIe kernel !e&_lrning (MKL). Exper-
frames, where the dynamic aspect of video has been unddfients show that the distance metric induced by the bag-of-
emphasized. Modeling time and content evolution in generif@Mes approach significantly outperform both the static base-

video content (e.g., television broadcast) is a hard problefi’€S and the HMM-based approaches, and MKL increase av-

due to large scene diversity and imaging variations. Yet mod€r@d€ Precision by% from an SVM baseline, while learning

eling temporal events is crucial to generating rich metadata tBerneI weights with rich ontological explanations.

video content, without which the afore-mentioned dynamic

concept categories will remain undetectable. In the rest of this paper, Section 2 defines the problem
Prior approaches to visual event modeling and detectiofcope of visual event detection and gives an overview of the

mostly fa" in two Categories: object_centered and featureevent detection workflow. Section 3 describes the modeling of

video shots as a bag of frames and the computation of EMD

*This material is based upon work funded in part by the U. S. Governfor deriving a inner product between two shots. Section 4
ment. Any opinions, findings and conclusions or recommendations expressliéi, . . . .
in this material are those of the author(s) and do not necessarily reflect t esents the algorlthm for fusmg different cues using MKL.

views of the U.S. Government. Section 5 reports our experimental results followed by a con-
clusion in Section 6.




2. SEMANTIC CONCEPTS AND EVENTS and feature combination strategies in the next two sections.

The termvideo evenhas been loosely used in the computer

vision and multimedia research community. For instance, any 3. SIMILARITY MEASURE VIA BAGS OF

of the following three scenarios qualifies as an everjenf FEATURES

son/people running(1) from a fixed surveillance camera, de-

tect a particular person runs in a particular direction (e.g., intdn this section, we present a bags-of-features representation
building A). (2) one or more person(s) runs in any direction@nd an corresponding algorithm to compute the similarity be-
seen from any continuous camera take within a few second&veen two shots. Here the temporal order of frames in the
(3) athlete(s) prepare and set off at the blast of a start rés@me shot is ignored and their descriptors are treated as a
volver, several cameras take turns to follow them through thePag” of orderless features. Similar representations have been
tracks and the scene ends in a closeup upon completion of t§&ccessfully applied to information retrieval [4] where text
race. Each of these scenarios have very different assumptiokgywords in the same document are collected into a bag, and
about the scene, the imaging conditions and the time span 8gneral object matching and recognition [13], where the fea-
the event, therefore they typically call for different detectiontures from local image patches are collected ignoring the lo-
strategies. In this work we focus on the second scenario, i.ecation of the patches. The main advantage of this represen-
detecting the presence and absence of an event class witiifion over explicitly representing the content and location
a shot from any camera. Solutions to this sub-category ca@f €ach word or image patch are in its invariance to gram-
generate an importance class of annotations, help reduce ti@r and phrasing in text or geometric and photometric vari-
need for camera calibration and help build better search ar@fions in the image. It also alleviates the computationally
navigation systems, most of which are useful for open-sourc@xPensive process of finding the correspondence among the
surveillance, consumer data and other data domains. words/patches between two documents or images. Here we

Denote a video shot as in a video collectionV with  Use the bag-of-features representation along the temporal di-
t = 1,....t, frames in each shot. Each shot has a lapefnension for the event detection problem. This representation

y» = +1 denoting whether or not the event of interest exist in'S invariant to temporal scale change and mis-alignment in
any part of the shot. The event recognition workflow includedifférent event instances.
three steps: (1) Descriptor computation that extracts a feature With this representation we need a strategy to compare
descriptor sequence, ; from the frame at time from each  two shots, i.e., computing the similarity between two shots of
shotwv. (2) Temporal feature extraction that computes either glifferent durations. We can, for example, collect aggregate
fixed-length vector for each shot, or a distance/similarity metstatistics for the entire shot, such as a histogram over vector-
ric for each pair of shots directly. (3) Decision learning, wherequantized bins [4]. However using a histogram ignores the
an SVM or similar discrimination and combination strategiesnherent similarity among different centroids, it would also be
are learned on the feature vector or distance metric. corrupted by noisy outlier frames from inaccurate shot bound-
For step (1) we choose a few descriptors base on the nary segmentations. One distance measure that simultaneously
ture of the target classes and from prior experiences on tHavercomes these two limitations is the Earth Mover’s Dis-
performance of different descriptors [10, 1]. Desirable detance (EMD) [8]. EMD finds a minimum weighted distance
scriptors should be invariant to real-world scene and imagingmong all pair-wise distances between the two bags of point
variations as well as being Capab|e to model a wide range @Ub]ect to Weight-normalization constraints. |ntuitive|y, EMD
concepts. A Carefu”y_chosen set of semantic concepts, f(ﬂ”OWS a partial match between the two CO"eCtionS, it also in-
example, can have strong correlation with a wide range oforporates a ground-distance measure that takes into account
target events as well as provide intuitive explanations to théhe similarity between the histogram alphabets. EMD has
learned event models, as shown previously [1, 3]. For step (Bhown promising performance in applications such as content
in our prior work [3] the temporal feature is extracted with based image retrieval [8] and object recognition [13].
HMM. A pair of HMM is trained for each dimension of the The process for computing the distance between two shots
concept stream on examples in and out of the event class, rare illustrated in Fig. 1. To compare the frame collection
spectively. The HMM are evaluated on each of the shots andithin two shotsu,v € V, we cluster the two collections
a feature vector is obtained from either of the following twoand form their respective signaturés = {(u;,w,,), i =
strategies (1) state-occupancy histogram fraction of time each .., m} andV = {(vj,w,,), j = 1,..,n}, wherem,n are
shot stays in any hidden state. (2) Fisher information scorthe total number of clusters,, v; are the cluster centers and
denoting the sensitivity of the HMM parameters with respecto,,,, w,, are the respective weights of clustérand j, set
to the data sequence being evaluated. While able to capturirgg the size of the cluster, i.e., the fraction of frames that the
the temporal evolution of multi-dimensional feature streamsgluster contains. We also have as inpgreund distancena-
HMM is naturally constrained by the choice of model size andrix d;; between cluster centets andv;, fori = 1,..,m,
the Markov assumptions about the hidden states. Therefoge= 1,..,n. The Earth Mover’'s Distance between the shots
we explore an alternative representation for temporal streamsand v is a linear combination of the ground distan¢g
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Fig. 1. Computing the Earth Mover’s Distance between two shots.

weighted by thdlow f;; between any two clustefsand;: Fig. 2(a). Denote the pool of training shotsigasi = 1, .., the
o collection ofk different kernels as(;(-,-), j = 1,..k. There
it 2je Jigdi are several popular practices for this task [11].
2221 Z;‘L:I fij

Fig. 2(b) depicts “early-fusion”, i.e., concatenating input vec-
Where an optimal flow matriy; ; is obtained from the fol- gle kernelK (v;, -), and then learn a single SVM for class sep-

d(u,v) = Q)

tors or averaging the different kernel values to arrive at a sin-

lowing linear program: aration. Denote the support vector weightsiasthe decision
) m <n function for a test example is then written as
min Zi:l j=1 fijdij (2)
w.rt. fi, 1<i<m,1<j<n §=> a;iK(v;,0). (3)
st fig > 0727:1 fijg S wuy, Yoty fij < wy,
S Z? L fiy = min{>3" wung}zl wy, } Fig. 2(c), nick-named “late-fusion”, corresponds to learning

k SVMs independently and average the decision values, with
Intuitively, this linear program solves for the best matchinge; ; the kernel-specific support vector weights, in this case
frame pairs in two collections, while the weight-normalizationthe decision value is computed as in Equation (4).
constraints ensure that each frame has enough match in the
other collection. The EMD matrix can be transformed into 1/kzzam (T, ;). 4)
a kernel with the exponential function as shown below, and
Support Vector Machine (SVM) is used to learn a separatio
betr\;\?een shots that belon(g to th)e event classes and ofhers TDHéese fusion schemes has two notable drawbacks: (1) nei-
hyper-parameteft is set tox Ay, where the normalization fac- ér take into account the relative importance among different

tor Ay is the mean of all distances between all training shot Iélefgre;i A (SZ\)/R/E I':;edfﬁs'ﬁgt Li?u[cr()é?rzglrj;;ssezfé:)arl:Ir&?aft?(;nal
We obtain the optimal scaling facterfrom cross-validation. 9 y P

requirements in training time, but also a larger trace of the

1 model that increases the classification time and memory re-

K(u,v) = ewp{_zd(% v)} quirements. It is also possible to learn another layer of SVM

for kernel weights on the decision values from the individ-

4. COMBINING AND SELECTING AMONG ual SVMs, however this not only increases the computational
MULTIPLE CUES complexity, but also needs to stratify the training data and is

more prone to over-fitting.
In visual recognition applications we often have more than

To complement the existing fusion schemes in these two
one type of cues from the data. They can come in the form
aspects, we explore the Multiple Kernel Learning (MKL) de-
of different types of descriptors, such as color-correlogram ofr .

semantic concepts, or in the form of different types of featureCISIon function in the form of Equation (5) and Fig. 2(d) for
multi-cue fusion in visual recognition, i.e., learning linear

design from common features, such as the choices for mod-

weightsy; among the kernelg = 1, ..k with shared support
eling time and computing similarity in Sections 3 and prior

X . vector weightsy;.
work [3]. Two questions naturally arise: (1) Can we collec-
tively use these multiple cues to make better prediction of the 5
concept? (2) Can we simultaneously learn the importance of b= Z Z el (@, ) ®)
each of the input cues?
We consider multiple cue fusion in the context of SVM- Proposed recently by Bach and Jordan [2], this decision func-

like kernel classifiers, i.e., linear fusion for learning a lineartion can also be viewed as one SVM with support vector weights
discriminant in a high-dimensional feature space as shown ia; over a "hyper- kernelz 1 K;(-,v;). Compared to the



objects. We chose a subset of 13 visual events and actions
(Fig. 3) for recognition. These concepts were chosen as they
have non-negligible occurrences in the entire corpus, and that
they have intuitive ontological relationships with the 33 in-
put concepts on which automatic detection algorithms work
reasonably well. We measure Average Precision (AP) [10] at
rank 1000 from the prediction valugs

Fig. 2. Learning class discrimination with multiple kernels. Yellow Wi diff tfeat desian for the t | .
crosses ) denotes support vectors; red, green and blue denotes dif- € compare difierent leatures design forthe temporal vari-

ferent kernels and their weights. (a) Linear classifier in the featur@liONS Within a shot. For the bag-of-features representation
space. (b) A single SVM, or averaging kernels. (c) Averaging multi-We cluster shots with more then 20 frames into 20 clusters
ple SVMs. (d) Multiple Kernel Learning with shared support vectorsWith the K-means algorithm; we treat each frame in a shot
and learned kernel weights. with less than 20 frames<@ seconds) as a singleton cluster
of equal weights. Euclidean distance is used as the ground

djfstance, and then we solve the EMD program Eq.(2) to ob-

early and late-fusion schemes, the number of parameters O . . .
MKL is close to those of the early fusion, and the set of ker-Pa'n the distance between the shot-pairs. SVM is learned on

nel weights naturally lends to interpretations of the result. the kernel matrix induced from the EMD matrix using Eq.(3)

It is shown [2] that this problem can be formulated in its;Ehe soft-margm pgrametgr and thehvyldth of thedexpﬁnentlgl
dual form as Problem (6), i.e., solving for optimal nonnega- rom (_:ross-vahdanon._ This approach is compared to the Sta.lt'c
- . & baseline where SVM is learned on the RBF kernel from a sin-
tive linear coefficients; > 0 sothatthe trace Of;_, 4;K;  gje concept vector computed from the keyframe of the shot,
remains constant (chosen to be equad te tr(2§:1 Kj;))  and the HMM-based approach where one HMM is trained on

and so that the soft margin SVM is optimized with respect teeach of the 33 concept dimensions and state-occupancy his-

this linear combination of the kernel matrices. togram is used to obtain the SVM input. From the results in
9 Fig. 3 (right) we can see that both HMM and EMD-based
min T T (6) representations significantly outperform the static baseline,
2 with EMD more than doubling the average precision from the
s t. A DyK;Dy\ < @72 ji=1,....k baseline approaches. The reason for this performance gain is

in that the solution to the EMD linear program is sparse, and
whereD,, is the diagonal matrix with the labejson the diag- this puts emphasis on a small s_et of the best pairwise matching
onal andC is the soft margin penalty parameter determinecf?et_wee” two frame collecnons_ instead of on the aggregate sta-
with cross-validation. This problem can in turn be convertediStics such as the mean of point clouds such as used in HMM
into a standard form of second-order-cone programming, arf@l @PProximated by the keyframe of a shot.
we obtain its solutions with the convex solver Sedumi [9]. We test MKL as an input selection mechanism. We com-
pute one RBF kernel from the state-occupancy histogram gen-
5. EXPERIMENTS AND RESULTS erated by the HMM from each of the 33 input concepts [3],
We test the proposed algorithm on a set of events on a largend we use MKL to compute a set of kernel weights as well as
collection of~80 hours of broadcast news videos in English,support sample weights for classification. Fig. 3 (right) shows
Chinese, and Arabic from October to November 2004, knownhat the mean average precision over all events are improved
as thedevelopmentorpus of the TRECVID-2005 [10] bench- by 5% with MKL compared to an early fusion of HMM-based
mark. For each video shot we extract frame sequences afgatures. Fig. 3 (left) shows the weights assigned to the 33 in-
generate multi-modal input streams. The frame sequence coput concepts for the 13 target concepts. While the weights are
tains ten frames per second from the original video. On eacimevitably noisy due to sparse training examples and small
frame we extract the confidence value of 33 visual conceptsaining set size, we can nonetheless spot reasonable trends
obtained from an SVM classifier trained on color featuresand phenomena in in this weight matrix across both the in-
These 33 concepts include program categories, scenes, sptt kernels and the output events. If we look horizontally
tings, people, objects and activities, which were designed tand rank the kernels by their weights for predicting a particu-
span the common semantics in news videos [7]. The concefdr target concept, we can see tetaket-battlds mostly pre-
models were produced as part of the TRECVID-2005 [10dicted bycourt, military, people-marching, truck, explosion-
benchmark. There are over 69,000 shots in the TRECVIDfire with over50% of the total kernel weights, concurring with
2005 collection, from which we hold out one-third as the tesintuitive ontological correlations between the input and the
set, and use the rest for training. target concepts. Looking vertically at each input concept, we
This corpus was manually annotated with a Large-Scalean see thaairplane gets the highest weight for predicting
Concept Ontology for Multimedia (LSCOM [7]) of over 400 airplane flyingwhile its weights for other events are negligi-
visual concepts, including scene, people, events, actions aide; conceptesertdid not get a high weight for any of the
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Fig. 3. (right) Average Precision of the different approaches. (left) Input concept weights given by MKL. X-axis: 33 input concepts; Y-axis

13 target concepts.

target events since its detection performance is low [1].

It is worth noting that the memory and computation load
of EMD and MKL has increased compared to SVM. Both [4]
requiring storing kernels of siz@(n?) or O(kn?), with k the
number of kernels and the number of training examples.
While MKL can increase average precision by ~ 200%
for 8 out of the 13 target events, yet it sometimes degradegs]
the performance compared to early- and late- fusion. This is
because some target events exhibit very different patterns in
different input dimensions, where trading off the flexibility in [6
k sets of support vector weights with the kernel weights hurts
the prediction.

6. CONCLUSION [7]
We study the problem of generic visual event detection and
propose two new algorithms from our recent work [3]. In rep-
resentation we use the earth-movers’ distance over bags-offg]
features, in decision learning we use multiple kernel learning
to select and combine the information from multiple kernels.
Both techniques show very promising performance while pro- 9
viding intuitive explanations on which input concepts are im-
portant for predicting which output concepts. Future work
include the automatic prediction of when a particular preseng g
tation or fusion scheme works for which target concepts, as
well as investigating unifies fusion schemes that solves sepa-
rate kernel weights and support vectors in one single prograr g
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