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ABSTRACT
Recent advances in computer technology have made digital
image tampering more and more common. In this paper, we
propose an authentic vs. spliced image classification method
making use of geometry invariants in a semi-automatic man-
ner. For a given image, we identify suspicious splicing ar-
eas, compute the geometry invariants from the pixels within
each region, and then estimate the camera response function
(CRF) from these geometry invariants. The cross-fitting er-
rors are fed into a statistical classifier. Experiments show a
very promising accuracy, 87%, over a large data set of 363
natural and spliced images. To the best of our knowledge, this
is the first work detecting image splicing by verifying camera
characteristic consistency from a single-channel image.

1. INTRODUCTION

As computer technology advances, tampered photos become
more and more popular, which can cause substantial social
impact. Two famous examples include a 1994 TIME maga-
zine cover image of O.J. Simpson’s face whose skin was de-
liberately darkened and a photomontage on L.A. Times front
page in 2003 showing a spliced soldier pointing his gun at a
group of Iraqi people. The saying ”seeing is believing” is no
longer true in this digital world, and one would naturally ask
whether the photo he/she receives is a real one.

In the past, people used active approaches to tackle digi-
tal image tampering. This was typically done by embedding
watermarks in an unperceptible way. At the point of verifi-
cation, the image is fed into an authentication engine. If the
embedded watermark is successfully extracted, then the im-
age is claimed authentic, otherwise, tampered.

However, in practice, very few images are created with
watermarks. Under most circumstances active approaches fail
because there is no watermark to detect. This gives rise to
research activities in passive blind image authentication that
handle images with no prior added hidden information.

Defining an authentic image itself is a challenging task.
One needs to carefully draw the line between common im-
age operations (eg. compression) and malicious attacks (eg.
copy-and-paste of human figures in order to alter image se-

mantics). There are two common properties that an authentic
image must bear: natural scene quality and natural imaging
quality [1]. The former relates to the consistency in light-
ing and reflection patterns of the scene, while the latter indi-
cates an authentic image must be one that went through some
image acquisition device. Therefore an image with inconsis-
tency between the light direction and the shadows is not au-
thentic because it fails to satisfy the natural scene quality, and
an image generated by photomontage fails to meet the natural
imaging quality since different parts of the image do not share
consistent characteristics of imaging devices.

2. PREVIOUS WORK

To determine if an image is authentic or tampered, one can an-
alyze the inconsistency within the image, eg. lighting or im-
age source. Farid et al have developed techniques for spliced
image detection by object lighting inconsistency [2]. Lin et al
proposed a colinearity based spliced image detection method
by observing the abnormality in the camera response func-
tions (CRF) [3]. Memon et al used cross color channel fea-
tures to detect whether two images came from the same cam-
era [4]. Lukáš et al used pattern noise correlation to identify
the camera source of an image [5].

Another image tampering approach is based on the statis-
tical point of view. Such methods extracted visual features
from natural images and attempted to model their statistical
properties, which were then used to distinguish spliced from
natural images. Ng et al applied bicoherence along with other
features to detect spliced images [6]. Farid et al used wavelet
features to classify natural images and computer graphics [7].
Ng et al also looked at a similar problem using geometric fea-
tures motivated by physical models of natural images [1].

3. PROPOSED APPROACH

We propose an approach to distinguish authentic images from
spliced ones. Although there can be countless possible defi-
nitions for ’authentic images’, we restrict ourselves to those
taken by the same camera. Our approach is mainly motivated
by the intuition that authentic images must come from the
same camera - inconsistency in camera characteristics among



different image regions naturally leads to detection of suspi-
cious cases.

Our method is semi-automatic at this stage. While a user
inspects an image, he/she may raise suspicion that some areas
are produced by tampering. In such a case, he/she may label
the image into three distinct regions: region from camera 1,
region from camera 2, and the interface region between them.

We estimate the CRF from each region using geometry
invariants and check if all these CRF’s are consistent with
each other using cross-fitting techniques. Intuitively, if the
data from a certain region fits well to the CRF from another
region, this image is likely to be authentic. Otherwise, if it fits
poorly, then the image is very likely to be spliced. Finally, the
fitting statistics are fed to a learning-based method (support
vector machine) to classify the images as authentic or spliced.

3.1. Camera Response Function
CRF is one of the most widely used camera characteristics.
It transforms irradiance values received by CCD sensors into
brightness values that are output to film or digital memory. As
different cameras have different response functions, CRF can
serve as a natural feature that identifies the camera model.

In this paper, we will use the following convention:
R = f(r) (1)

to denote the irradiance (r), the brightness (R), and the CRF
(f ). f can be as simple as a gamma transform:

R = f(r) = rα (2)

Or a more general form, called the linear exponent model [8]:
R = f(r) = rα+βr (3)

We will use the linear exponent model for CRF’s in this paper.

3.2. Geometry Invariants
Geometry invariants are used in [8] to estimate the CRF from
a single-channel image. Taking the first partial derivative of
Eq. (1) gives us Rx = f ′(r)rx, Ry = f ′(r)ry . Taking the
second derivative, we get

Rxx = f ′′(r)r2
x + f ′(r)rxx

Rxy = f ′′(r)rxry + f ′(r)rxy

Ryy = f ′′(r)r2
y + f ′(r)ryy (4)

All subscripts denote the derivative in that corresponding di-
rection. Now suppose the irradiance is locally planar, i.e.,
r = ax + by + c, we have rxx = rxy = ryy = 0. Then

Rxx

R2
x

=
Rxy

Rxry
=

Ryy

R2
y

=
f ′′(r)

(f ′(r))2
=

f ′′(f−1(R))

(f ′(f−1(R)))2
(5)

This quantity, denoted as A(R), can be shown to be inde-
pendent of the geometry of r. As shown in [8], if CRF is a
gamma transform as in Eq. (2), then A(R) is related to the
gamma parameter as follows

A(R) = (
α− 1

α
)R−1 (6)

Define
Q(R) =

1

1−A(R)R
(7)

Then for gamma transform, Q(R) = α, which carries the
degree of nonlinearity of the CRF. When the CRF takes the
linear exponent form, Q(R) becomes

Q(R) =
(βr ln(r) + βr + α)2

α− βr
(8)

From a region, we extract the points that satisfy the locally
planar assumption, and compute their Q(R)’s. We then esti-
mate the CRF in an iterated manner [8]. Each CRF is repre-
sented by its linear exponent parameters (α, β).

3.3. Cross-fitting
The idea of cross-fitting came from speaker transition de-
tection [9], where several models are trained from different
speakers and used to fit a certain segment to determine if it is
a transition. Here we use the same framework with Q(R) as
the model representing a camera.

We divide the image into three regions: region 1 poten-
tially from camera 1, region 2 potentially from camera 2, and
region 3 near the suspicious splicing boundary.

For each region, we extract the points satisfying the lo-
cally planar assumption, compute their Q(R)’s, and estimate
the CRF. With three regions, we get four sets of points and
parameters:{Rk, Qk(R)} and (αk, βk) where k ∈ {0, 1, 2, 3}.
{R1, Q1(R)}, {R2, Q2(R)}, and {R3, Q3(R)} are points from
regions 1, 2, and 3, respectively. {R0, Q0(R)} is the com-
bined set from the entire image. If regions 1 and 2 are indeed
from different cameras, then {R1, Q1(R)} should fit poorly
to (α2, β2), and vice versa. Also, if region 3 really contains
the splicing boundary, then either its parameters (α3, β3) will
exhibit abnormality or {R3, Q3(R)} will fit in a strange man-
ner to (α3, β3), same with (α0, β0) and {R0, Q0(R)}. Taking
into account all of these considerations, we use a six dimen-
sional feature vector to represent an image:

[s11, s22, s12, s21, s3, s0] (9)

where sij (i, j ∈ {1, 2}) is the fitting score of {Ri, Qi(R)} to
CRF (αj , βj), given by the root mean square error (RMSE)

sij =

vuut 1

Ni

NiX
n=1

[Qi(R)n − (βjrn ln(rn) + βjrn + αj)2

αj − βjrn
]2

(10)
Ni is the total number of extracted points in region i.

Similarly, sk, k ∈ {0, 3} can be computed as

sk =

vuut 1

Nk

NkX
n=1

[Qk(R)n − (βkrn ln(rn) + βkrn + αk)2

αk − βkrn
]2

(11)

3.4. SVM Classification
The six dimensional feature vectors in Eq. (9) are then fed
into SVM to classify authentic and spliced images. Both lin-
ear and RBF kernel were experimented, along with a five-fold
cross validation in search of the best parameters.



4. EXPERIMENT
4.1. Data Set
There are a total of 363 images in our dataset. 183 of them
are authentic images, and 180 are spliced ones. The authen-
tic images are taken with our four digital cameras: Canon
G3, Nikon D70, Canon EOS 350D Rebel XT, and Kodak
DCS330. The images are all in uncompressed RAW or BMP
formats with dimensions ranging from 757x568 to 1152x768.
These images mainly contain indoor scenes, eg. desks, com-
puters, or corridors. About 27 images, or a percentage of 15%
are taken outdoors on a cloudy day.

We created the spliced images from the authentic image
set using Adobe Photoshop. In order to focus only on the
effects of splicing, no post processing was performed. Each
spliced image contains contents from exactly two cameras.
To even out the contribution from each camera, we assign an
equal number of images for each camera pair. With four cam-
eras, we have a total of six possible camera pairs, so we create
30 images per pair.

As shown in Fig. 1, each image is manually labelled into
four regions: region from camera 1 far from splicing bound-
ary (dark red, equivalent to region 1 in Sec. 3.3), region from
camera 1 near splicing boundary (bright red), region from
camera 2 far from splicing boundary (dark green, equivalent
to region 2 in Sec. 3.3), region from camera 2 near splicing
boundary (bright green). Regions labelled with bright red and
bright green are then combined as the ’spliced region’ (region
3 in Sec. 3.3).

With authentic images, we choose a visually significant
area in the image and treat it as the candidate region to be
verified. (eg. in Fig. 1(a) the region to the left of the door is
treated as the spliced region).

4.2. SVM Classification
We use 11 penalty factors C and 10 Radial Basis Function
(RBF) widths γ and use cross validation to find the best set of
parameters among them. For each set of (C, γ), we divide the
training set into a training subset and a validation subset. We
train an SVM on the training subset, test it on the validation
subset, and record the testing accuracy. The cross validation
is repeated five times for each (C, γ) and the performance is
measured by the average accuracy across the five runs. At the
end, we choose the (C, γ) with the highest average accuracy
and test the classifier on our test set.

5. RESULTS

We performed six runs of both linear and RBF kernel SVM
with cross validation searching for the best parameters and
get average classification rates of 66.54% and 86.42%, re-
spectively. The standard deviations among these six runs are
1.65% and 0.71%, showing that the performance of each SVM
is rather insensitive to different runs. The highest RBF kernel
SVM classification accuracy is 87.55%, with the spliced im-
age detection rate as high as 90.74%. The confusion matrix of

(a) Authentic (b) Spliced

(c) Region labelling of (a) (d) Region labelling of (b)
Fig. 1. Examples of images in our dataset
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(a) Two CRF’s, authentic
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(b) Q-R scatterplot, authentic
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(c) Two CRF’s, spliced
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(d) Q-R scatterplot, spliced
Fig. 2. CRF’s and Q-R’s from authentic and spliced images

RBF kernel SVM with the highest accuracy is shown in Table
1.

Fig. 2 shows the estimated CRF’s and the fitted Q-R’s
from an authentic image and a spliced image. In Fig. 2(a)(c),
CRF’s from two cameras are plotted with different colors. It
can be seen that within an authentic image the two CRF’s
are closer to each other than those within a spliced image.
This is consistent with our intuition since authentic images
should have its regions coming from the same camera, hence
predicting more similar CRF’s.

Fig. 2(b)(d) show the scatterplots of {R, Q(R)}’s ex-
tracted from regions 1 (blue) and 2 (red). The population of
the {R, Q(R)} pool is typically around 2000. A Q-R curve is
fitted to each pool of {R, Q(R)} to obtain (α, β) in an itera-
tive manner as in [8]. With (α, β) we can construct the CRF,
so the irradiance values r’s can be related to R’s through the
CRF. And by using Eq. (8), we can plot the fitted relation-
ship between Q(R) and R, shown in blue/red curves in Fig.



Table 1. Confusion Matrix of RBF Kernal SVM
Detected As

Authentic Spliced

Actual Category
Authentic 84.42% 15.58%
Spliced 9.26% 90.74%

2(b)(d).
Both the CRF’s and Q-R relationships within an authentic

image are indeed more similar to each other than those within
a spliced image. Nevertheless, comparing Fig. 2(c) and Fig.
2(d), it is clear that the Q-R curve is more differentiating than
the CRF, which justifies the use of Q(R) rather than the CRF
itself in cross-fitting.

One would question if Q(R) is an appropriate model. To
answer this question we need to look at how this quantity dis-
tinguishes cameras and whether it carries physical intuition.
Starting from the CRF, there are several possible choices to
represent a camera: CRF, Q(R), and A(R). As shown in Fig.
2(a)(c), the CRF does not reflect very well the differences be-
tween two cameras, therefore it is not a good model. Q(R)
is a good choice since it distinguishes cameras better than the
CRF itself, as shown in Fig. 2(b)(d). Lastly, A(R) is also a
natural choice. In fact it is perfectly sensible to use A(R), ex-
cept that an additional dependency on R will be introduced if
we plug in Eq. (8) into Eq. (7), which might make the math-
ematical form of A(R) intractable. Therefore we stay with
Q(R) and use it as our cross-fitting model.

Q(R) is also physically meaningful since it is exactly equal
to the gamma parameter of the CRF. Note in Eq. (8) if β is
zero, then Q(R) reduces to α as in Eq. (7). Therefore, Q(R)
is not only physically related to the CRF, but also brings extra
advantage when it comes to distinguishing cameras.

6. DISCUSSION

Manual labelling of image regions makes our approach a semi-
automatic one. This is not entirely impractical though. One
possible scenario would be a publishing agency that handles
celebrity photographs. They usually have specific suspicious
regions: the contour around human figures. The labelling rule
becomes quite clear: label the pixels near the boundary of hu-
man figures as ’spliced region’. In fact, [3] uses a similar
semi-automatic scheme which allows users to choose suspi-
cious patches to detect CRF abnormality.

If the image has ambiguous splicing boundaries or if the
number of candidate images gets large, the manual labelling
scheme would become infeasible. In such cases, incorporat-
ing image segmentation techniques could be an aide to the
current semi-automatic scenario.

Our work is the first of spliced image detection using in-
consistency in natural imaging quality. The proposed detec-
tion method based on CRF consistency and model cross-fitting
is general. The CRF estimation operates on a single image
and does not require any calibration. Furthermore, it can be
applied to any single-channel, i.e., greyscale image, rather

than restricted to multi-channel images.
We also provided a new authentic vs. spliced image dataset,

which can serve as a benchmark dataset for spliced images.
Computationally, it takes about 11 minutes to construct a

feature vector from one image, including extracting qualify-
ing points, computing Q(R)’s, estimating (α, β), and cross-
fitting. These operations are all done on a 2.40GHz dual
processor PC with 2GB RAM. The time consuming part, how-
ever, is SVM training with cross validation. It took us a total
of five hours to obtain the best SVM parameters. As time con-
suming as it is, the SVM training can always be done offline.
SVM classification on test data is done in real time.

7. CONCLUSION

We proposed a spliced image detection method in this paper.
The detection was based on geometry invariants that relate di-
rectly to the CRF, fundamental characteristics of cameras. We
used cross-fitting to determine if an image consists of regions
from more than one camera. RBF kernel SVM classification
results showed that this approach is indeed effective in de-
tecting spliced images. We also discussed the issues of fitting
models and the application of our semi-automatic scheme.
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