
DISCOVERING MEANINGFUL MULTIMEDIA PATTERNS
WITH AUDIO-VISUAL CONCEPTS AND ASSOCIATED TEXT

L. Xie†, L. Kennedy†, S.-F. Chang†, A. Divakaran§, H. Sun§, C.-Y. Lin‡

†Dept. of Electrical Engineering, Columbia University, New York, NY
‡IBM T.J. Watson Research Center, Hawthone, NY
§Mitsubishi Electric Research Labs, Cambridge, MA

ABSTRACT

The work presents the first effort to automatically annotate the
semantic meanings of temporal video patterns obtained through
unsupervised discovery processes. This problem is interesting in
domains where neither perceptual patterns nor semantic concepts
have simple structures. The patterns in video are modeled with
hierarchical hidden Markov models (HHMM), with efficient algo-
rithms to learn the parameters, the model complexity, and the rel-
evant features; the meanings are contained in words of the speech
transcript of the video. The pattern-word association is obtained
via co-occurrence analysis and statistical machine translation mod-
els. Promising results are obtained through extensive experiments
on 20+ hours of TRECVID news videos: video patterns that as-
sociate with distinct topics such asel-ninoandpolitics are identi-
fied; the HHMM temporal structure model compares favorably to
a non-temporal clustering algorithm.

1. INTRODUCTION

This paper presents solutions towards discovering meaningful struc-
tures in video in multiple modalities. Structures, or patterns, in
temporal sequences refer to the repetitive segments that bear con-
sistent characteristics in the observations and the dynamics. Auto-
matic identification of structures from video is an interesting topic
for both theoretical problems on learning in multi-modality and
applications on multimedia content organization.

Supervised learning techniques are capable of learning the tar-
get structure once the domain knowledge is encoded in the train-
ing data, the choice of the feature set, the construction of the sta-
tistical model, and the design of the learning algorithms. Unsu-
pervised structure discovery, on the other hand, tries to find sta-
tistical descriptions of the structures with much less information
available. It has been shown [1] that interesting game states in
sports videos can be revealed without supervision using a few low-
level features. Temporal structures identified by pure computa-
tional criteria awaits association and evaluation withmeaningsbe-
fore they become usable. This association can be manually per-
formed when meanings in the original content are unambiguous
and few, such as in sports programs. However, in domains with
more general and diverse content, such as news videos, tagging
structures with meanings is no longer a straight-forward task, and
the difficulty comes from the large number of topics present and
the inherent complexity in the large hierarchy ofmeanings. In pro-
duced video content, the prevalence of metadata, such as closed
captions, speech transcript, gamestats or screenplays, provides a
complimentary channel of semantic information for bridging this
gap.

In this work, we aim to discover meaningful structures in audio-
visual concept space with the additional information provided in
the metadata. An audio-visual concept space is a collection of ele-
mentary concepts such as “people”, “building”, and “monologue”
each of which was learned from low-level features in a separate su-
pervised training process [2]. We believe that such mid-level con-
cepts offer a promising direction to revealing the semantic mean-
ings in patterns, since grouping and post-processing beyond the
signal level is deemed a vital part for the understanding of sensory
inputs [3], and multi-modal perception is no less complicated than
perception in individual senses. Temporal structures in the audio-
visual sequence, characterized by the strength in each concept, the
mutual dependency among concepts and their temporal evolutions,
are captured by a hierarchical hidden Markov model (HHMM),
learnable with statistical inference techniques such as Expectation-
Maximization (EM) and Monte Carlo method. Once a description
of temporal structure is in place, the first step towards understand-
ing its meaning is to examine the co-occurrence statistics between
the structure labels and words obtained from the metadata such as
speech transcripts or screenplays. The co-occurrence statistics are
further refined by estimating an underlying generative probability
between the labels and the words with machine translation mod-
els. These techniques were first proposed by Brown et. al. [4],
and later used to associate images blobs with words [5, 6]. The
former [5] was set in a context with clean text labels that can be
treated as concepts in themselves; while the latter [6] operates on
the keyframes in video shots without taking into account the tem-
poral structure. We use news videos as the test domain and find
promising associations from the video patterns to distinct topics
such asel-ninoor politics, we have also demonstrated the advan-
tage of using a dynamic structure model over a plain clustering
alternative.

The rest of this paper is organized as follows, Section 2 dis-
cusses the unsupervised discovery of video patterns using HHMM,
Section 3 presents algorithms for associating the patterns with the
speech transcript; Section 4 includes the experiment results on
news videos; Section 5 summarizes this work and discusses open
issues.

2. UNSUPERVISED LEARNING OF VIDEO PATTERNS

Solutions to unsupervised structure discovery address two objec-
tives in one pass: finding a statistical description of the structure
and locating the corresponding segments in the sequence. We are
interested in models that describe the properties of each individ-
ual video unit (frame or shot) as well as the temporal transitions
among these units. Distinct appearance and transition patterns ex-



ist in produced video contents such as TV programs and feature
films, and a two-level HHMM is a model with an efficient infer-
ence algorithm suitable for this purpose. We use the algorithms
described in an ealier work [1] to learn the HHMM; a summary is
presented in Sections 2.1 and 2.2 for completeness.

Our feature set consists of the confidence values from twelve
concept detectors obtained from the IBM concept detection sys-
tem in TRECVID evaluations [7, 2]. The confidence scores are
obtained by fusing the results of multiple support vector machine
(SVM) classifiers applied to the key frame of each shot1 in the
video. We uniformly quantize the scores into three levels before
learning the HHMM. The concepts are{weather, people, sports,
non-studio, nature-vegetation, outdoors, news-subject-face, female
speech, airplane, vehicle, building, road}, selected from the 16
TRECVID-evaluated concepts that have a reported average preci-
sion greater than50%. Using shots as the basic analysis units is
advantageous for the news domain, because the production syn-
tax usually produces clear cuts, and the content within a shot is
usually consistent. We use this concept space mainly for its avail-
ability and performance assurance, while the choice of an optimal
concept space or a proper concept lexicon is still an open question.

2.1. Hierarchical hidden Markov models

HHMM is a generalization of HMM with hierarchical control struc-
ture in the hidden states while also being a specialization of Dy-
namic Bayesian network (DBN). The parameter setΘ of a two-
level HHMM consists of within-level and across-level transition
probabilities and emission parameters that specifies the distribu-
tion of observations conditioned on the state configuration. The
model parameters can be estimated efficiently via EM with a com-
plexity O(T ), whereT is the sequence length. The size of the
HHMM state-space represents the number of interesting structures
in the data, and it is often desirable to determine the size auto-
matically rather than manually supply a fixed value. Reverse-jump
Markov chain Monte Carlo (MCMC) provides an effective compu-
tational framework for stochastically searching the space of HH-
MMs of all sizes. Details of this approach are in [1].

2.2. Maintaining a group of models

The pattern discovery method above can be used on any feature
set – leading to the question of which features are relevant, where
relevance refers to agreement among a group of features to rep-
resent a target concept. In an unsupervised learning context, the
criteria forrelevancebecome relative to the numerous concepts si-
multaneously present but not explicitly pinpointed in the content.
Therefore, given the originalD-dimensional feature set, we main-
tain a pool ofM models learned overM different feature subsets
(M ¿ 2D) to further explore the meanings in the clusters. We use
mutual information criteria to measure the relevance of features
with respect to each other, we then run a clustering algorithm over
the mutual information to group the features, followed by redun-
dance removal in each feature group with Markov blanket filtering,
as detailed in [1].

3. ASSOCIATING STRUCTURE WITH METADATA

The quest for meanings in the temporal structures begins by asso-
ciating HHMM labels(taking values from apattern lexicon) to to-
kens(from aword lexicon) in the metadata stream. The objective
of this association is two-fold: tagging structures with meanings
and assessing the goodness of them.

1A shotrefers to a continuous camera take in both time and space.
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Fig. 1. Generating co-occurrence statistics from the HHMMlabels
and wordtokens.

3.1. Text processing from speech transcript
The Automatic Speech Recognition (ASR) transcript of the TREC
videos are in the form of time-stamped words(t, ŵt). The dis-
course style of a news program is usually concise and direct, hence
it suffices to stay at the level of individual words rather than going
to higher-level concepts via linguistic or semantic analysis, to rep-
resent the subject of discussion. We choose to focus on a lexicon of
frequent and meaningful words, freeing ourselves from the noise
introduced by stop words and statistically insignificant ones. The
lexicon is obtained from the TRECVID development corpus after
the following shallow parsing operations: (1) Stem the words from
ASR output, resulting in about 12,500 distincttokens; (2) Prune to-
kens that appear on average less than once in each half-hour news
video, 647 tokens survived; (3) Perform rule-based part-of-speech
tagging on the tokens [8], and only retain the 502 nouns, verbs, ad-
jectives or adverbs; (4) Further prune away a few frequent tokens
with no concrete meaning such as the verbs “be”, “do”, “have”, the
adverbs “more”, “even”, “just”, “still”, and words too common in
news programs such as “new”, “today”. Denote the set of pruned
ASR tokens from the original transcript as(t, wt), taking values
from the final lexiconW = {w1, w2, . . . , wN}.
3.2. Co-occurence analysis
As illustrated in Fig. 1, we obtain the co-occurrence statisticC(q, w)
for a HHMM label q and atokenw by counting the number of
times that the state labelq and the wordw both appear in the same
temporal segment among all video clips.

Denote the set ofK videos asS = {S1, . . . ,SK}, let each
videoSk be partitioned into a set of closed, non-overlapping seg-
mentsSk = {si, i = 1, . . . , |Sk|}. Denote the maximum-likelihood
statelabelson each shot̄s obtained with the HHMMs asqm

s̄ ∈
Qm, m = 1, . . . , M , s̄ = 1, . . . , |S̄k|, k = 1, . . . , K, wherem
indexes theM HHMM models,Qm is the state-space of them-th
HHMM, and s̄ indexes the shots in each of theK clips in the cur-
rent set of videos. The co-occurrence statisticC(qm, w), defined
as the number ofsegmentsin which both labelqm and tokenw
appear, is accumulated across all the video segments as follows,
where “

∨
” denotes logicalOR, and1() is the indicator function.

C(qm, w) =

K∑

k=1

∑

s∈Sk

∨

s̄=1,...,|S̄k|,
s̄∩s6=φ

1(qm
s̄ = qm) ·

∨
t∈s

1(wt = w) (1)

∀ qm ∈ Qm, w ∈ W



There are two natural temporal divisions in news videos on
which we can compute the co-occurrence statistics: shots1 and sto-
ries. The latter is defined as “a segment of a news broadcast with
a coherent news focus which contains at least two independent,
declarative clauses” by TRECVID. Despite the convenience of di-
rectly using shots as the temporal division on which the HHMM
labelsare generated, we find it beneficial to use stories in establish-
ing thelabel-tokencorrespondence. This is because: (1) Meanings
in news are conveyed at the story level with a sequence of shots in
the visual channel and several sentences in the speech; the transi-
tion in topics happen at story boundaries. (2) Within a shot, words
being said are often not in sync with the visual content. Eval-
uations show that co-occurrence on shots yields precisions only
about one-tenth of that of the stories while producing comparable
recalls. Without overloading the notations, the set of all stories in
videoSk is denoted asSk = {si, i = 1, . . . , Sk} hereafter.

Once the co-occurrence statistics are in place, we normalize
the co-occurrence counts to obtain the empirical conditional prob-
abilities of tokens and labels, and use these quantities as a basis for
“predicting words” in a new video clip. Since the normalization is
done within the same HHMM modelm, we omit the superscript
m in the following sections when there is no confusion.

c(w|qm) =
C(qm, w)∑
w C(qm, w)

, c(qm|w) =
C(qm, w)∑
qm C(qm, w)

(2)

3.3. Refining association with machine translation
In co-occurrence analysis, we associatedall the labels withall the
tokens present in the same story, this actually causes many en-
tries C(q, w) to receive more counts than they “deserve”. Take
an ideal example, if labelq1 and tokenw1, q2 andw2 always oc-
cur and only occur at exactly the same time, respectively; then for
each story that contains bothq1 andq2, the entriesC(q1, w2) and
C(q2, w1) will receive one extra count. In other words, we would
like to reduce thesmoothingeffects of token and label correlation
resulting from the imprecise association within each story.

It turns out that we cannot just undo the correlation in both di-
mensions ofC simultaneously, however the conditional co-occurrence
c( | ) can be sharpened assuming independence of the variable
being conditioned on. A mathematical model for this type ofun-
smoothingfrom co-occurrences has been explored in the machine
translation (MT) literature [4], where the correspondence from En-
glish worde to a French wordf are recovered from aligned sen-
tences in both languages, by estimating thetranslationprobabili-
tiest(f|e) of f givene, independent of the position of the words. In
our context, it is appropriate to estimate both conditionalst(w|qm)
andt(qm|w), as there is no obvious independence in either labels
or tokens. Moreover, we do not want to lose the association to ei-
ther labels or tokens as many entries int( | ) diminishes to zero in
the estimation process. The translation parameters are estimated
with the EM algorithm, which we present from model 1 by Brown
et. al. [4] for completeness:

E : t̄(q|w) = t(w|q)∑
q t(w|q) , t̄(w|q) = t(q|w)∑

w t(q|w)
(3)

M : t(w|q) ← C(q,w)t̄(q|w)∑
w C(q,w)t̄(q|w)

, t(q|w) ← C(q,w)t̄(w|q)∑
q C(q,w)t̄(w|q)

4. EXPERIMENTS

In this section, we discuss the results of predicting the correspon-
dence using the co-occurrence statistic and refined probabilities.
Our dataset are ABC and CNN news broadcasts taken from the

TRECVID 2003 corpus, consisting of 22 half-hour clips from each
channel. Each video comes with the audio-visual stream, the ASR
words, and the ground-truth for story boundaries. We divide the
data into four 11-broadcast sets from either station and rotate their
roles as the training set and the test set. The cross-channel testing
results are notably worse than that of the same channel, therefore
we only report the latter due to space limitations.

We learn HHMMs on one of the 11-video sets (the training
set), we maintainK = 10 different models using different subset
of the 12 concepts. We use hierarchical agglomerative clustering
on mutual information (Sec. 2.2) to generate feature subsets; the
number of models is set to traverse into considerable depth into
the clusters; the resulting HHMMs typically have5 ∼ 10 dis-
tinct states. The correspondence of the state labels in all mod-
els to the word-stems in the ASR transcript (in the training set)
is then estimated according to Equations (2)(3) to produce con-
ditional confidence valuesc(w|q), c(q|w) andt(w|q), t(q|w), re-
spectively. These probabilities can be interpreted in two comple-
mentary contexts. One isauto-annotation, i.e., predicting words
upon seeing an HHMM label,c(w|q) is theprecisionvalue of this
token-prediction process on the testing set by the counting pro-
cessing in Equation (1); the other isretrieval, i.e., producing pos-
sible labels upon seeing a word, andc(q|w) is recall of this label-
retrieval process. It is easy to see, however, that the precision is
biased towards frequent tokens or infrequent labels, while the re-
call tends to be large with infrequent tokens or frequent labels.

Hence we examine an alternative measure to trade-off this
bias: thelikelihood ratioL of the estimated conditional to the prior
probability. i.e.,

Lc
w = c(w|q)/P (w), Lc

q = c(q|w)/P (q);

Lt
w = t(w|q)/P (w), Lt

q = t(q|w)/P (q);

WhereP (q) and P (w) are the empirical fraction of stories
that have labelq or tokenw, respectively. NoteLc

w = Lc
q from

the normalizing relationship in Equation 2, and we denote both
asLc hereafter. This likelihood ratio measure is essentially the
widely usedtf · idf measure in text processing [9], since we are
penalizing frequentlabelsor tokensby scaling with theirinverse
story frequency. Intuitively, L À 1 implies a strong association,
and L → 0 implies a stong exclusion, while values close to1
implies no better than random guess.

We sort all the (label, token) pairs based onLc, Lt
w andLt

q,
respectively, we then examine thesalientpairs that lie in the top
5% of eachL values. Table 1 shows details of one interesting label
identified. This is the first label (among a total of seven) in a model
learnt over the concepts{outdoors, news-subject-face, building}.
The HHMM feature emission probabilities for this label shows low
probability for the conceptoutdoorsand high probability for the
other two. The word-level precision and recall are around20%
and30 ∼ 60%, respectively; the list of words intuitively indicate
the topic of politics and legal affairs, the audio-visual content of
which often contains scenes of news-subjects and buildings; and
the word list is effectively expanded by MT. Further examining the
actual stories that contain this label (42 out of a total 216), we find
that these 42 stories cover the Iraqi weapon inspection topic with
25.5% recall and 15.7% precision, and simultaneously contain the
Clinton-Jones lawsuits with 44.3% recall and 14.3% precision at
the shot-level.

Another interesting label isq6 = 3, indicating high confidence
in both of its raw concepts{people, non-studio-setting}. With a
word-list of {storm, rain, forecast, flood, coast, el, nino, admin-



prec. recall
LcLt

wLt
q token c(w|q) c(q|w) t(w|q) t(q|w)

• • • murder 0.095 0.571 0.028 1.000
• • • lewinski 0.238 0.556 0.074 0.999
• • • congress 0.119 0.556 0.032 0.985
• ◦ • alleg 0.143 0.545 0.026 0.990
• • • juri 0.167 0.500 0.055 1.000
• ◦ • judg 0.048 0.500 0.003 0.573
• ◦ • clinton 0.310 0.500 0.059 0.994
• • • presid 0.452 0.475 0.179 0.999
• ◦ • polit 0.167 0.467 0.031 0.972
• • • saddam 0.143 0.462 0.063 1.000
• • • lawyer 0.143 0.462 0.039 0.999
• ◦ • independ 0.190 0.444 0.031 0.980
• ◦ ◦ accus 0.095 0.444 0.000 0.010
• ◦ • monica 0.167 0.438 0.024 0.915
• ◦ • white 0.381 0.432 0.061 0.876
◦ ◦ • charg 0.190 0.381 0.055 0.998
◦ • • investig 0.167 0.412 0.055 1.000
◦ ◦ • offic 0.190 0.364 0.006 0.581
◦ ◦ • public 0.143 0.300 0.046 0.901
◦ ◦ • secretari 0.190 0.364 0.019 0.689
◦ • • washington 0.262 0.355 0.092 0.995

Table 1. Statistics of words associated with labelq9 = 1 before and after
MT. Note “•” denotes that the correspondingL value lies in the overall top
5%, and “◦” is for the complement. Using set A of channel ABC.

istr, water, cost, weather, protect, starr, north, plane, northern, at-
tornei, california, defens, feder, gulf}, it clearly indicates the topic
weather. In fact, it covers the el-nino and storms that prevailed the
United States in the spring of 1998 with 80% and 78% recall on
the training and testing set, respectively. Note this weather clus-
ter is found without either the original “weather” concept or any
dedicated weather sections in ABC News.

Figure 2 compares the likelihood ratioLc of the HHMMs and
the K-means clustering, the latter uses the feature set and clus-
ter size chosen by the HHMM (Sec. 2). From the graph we can
see much more strong associations (bright peaks) and exclusions
(dark valleys) in the labels obtained with HHMM than that of the
K-means, and this shows that temporal modeling is indeed effec-
tive for the news domain. Look further into the K-means clusters,
take the afore-mentioned{people, non-studio-setting} for exam-
ple, each of the six cluster labels is more spread out across all
kinds of stories (appears in at least 2/3 of all stories), which makes
its association with topics less distinctive.

It’s worth noting that: Words6= meanings. While the words
associated with a few labels are easy to decipher, most labels are
associated with diverse words from which distinct topics are diffi-
cult to find. Natural language processing techniques such as latent
semantic analysis can be employed to unveil the inherent struc-
ture in text (e.g., “white” and “house” often appear together) and
to embody the ambiguity of going from words to semantics (e.g.,
“rise” can refer to the stock index, the temperature, a higher ele-
vation, or even an angry political reaction). Furthermore, the con-
cepts in the audio-visual stream may not be those present in the
speech transcript, unlike the sentence-wise aligned bitext between
two languages [4].

5. CONCLUSION
In this paper, we propose a method for discovering meaningful
structures in video through unsupervised learning of temporal clus-
ters and associating them with metadata using co-occurrence anal-
ysis and models similar to machine translation. We are able to
find a few convincing translations between state labels and words
in the news domain. We have also observed that temporal mod-
els are indeed better at capturing the semantics than non-temporal

tokens w = 001−155
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Fig. 2. Likelihood ratioslog Lc(q, w) for HHMM (top) and K-means
(bottom). Using set A of channel ABC.

clustering.
A few interesting issues remain: (1) Using text processing

techniques to exploit the correlations inherent in raw word tokens;
(2) Joint learning of the temporal model and the semantic associa-
tion to obtain more meaningful labels.
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