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Abstract

In this paper, we attempt to provide a comprehensive and high-level review of audio-

visual features that can be extracted from the standard compressed domains, such as

MPEG-1 and MPEG-2. The paper is motivated by the myriad of active research works

in extraction and application of compressed-domain features in various fields, such as index-

ing, filtering, and manipulation. Compressed-domain approaches avoid expensive computa-

tion and memory requirements involved in decoding and/or re-encoding. Selected features

are categorized into four groups—spatial visual (e.g., color, texture, edge, shape), motion

(e.g., motion field, trajectory), audio (e.g., energy, spectral features, pitch), and coding

(e.g., bit rate, frame/block type). For each feature, we briefly discuss the extraction methods,

computational complexity, potential effectiveness in applications, and possible limitations

caused by compress-domain approaches. Finally, we also discuss the possibilities of extract-

ing some important MPEG-7 visual and audio descriptors directly from the compressed

domain.
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1. Introduction

Recent advances in computer, telecommunications, and consumer electronics in-

dustries have brought huge amount of multimedia information to a rapidly growing

audience. More and more digital audio and video data are made available over the
Internet. Traditional TV broadcast is moving into the digital and interactive era.

People are starting to get high-speed network connections via DSL and cable mo-

dem. Multimedia content provides rich information to consumers, but also poses

challenging problems of management, delivery, access, and retrieval because of its

data size and complexity.

In recent years, there has been active research trying to address these problems

and make multimedia information efficiently accessible to the user. Researchers from

signal processing, computer vision, and other related fields have generated a large
body of knowledge and techniques. These techniques generally fall into one of the

following research areas.

• Video indexing: research in this area aims at creating compact indices for large vi-
deo databases and providing easy browsing and intelligent query mechanisms (Ar-

dizzone et al., 1996; Chen et al., 1998; Kobla et al., 1996; Naphade et al., 1998).

Potential applications include multimedia databases, digital libraries, and web

media portals.

• Video filtering and abstraction: research in this area tries to generate an abstract
version of the video content that is important or interesting by extracting key por-

tions of the video (Saur et al., 1997). This can be used for personalized video de-

livery, intelligent digital video recording devices, and video summaries for large

multimedia archives.

• Audio indexing and analysis: research in this relatively new area includes audio

classification, audio indexing and retrieval, music retrieval, etc (Patel and Sethi,

1995; Sundaram and Chang, 2000a; Zhang and Kuo, 1999b). Efforts have also

been made in combining audio information with visual information to help index
and analyze video content.

Besides these general areas, there is also some research with more specific objec-

tives, which exploits knowledge in various domains. This has produced some inter-

esting applications such as event detection in sports programs, anchorperson

detection in news, and so on. However, techniques proposed in these applications

are often limited to their application domains.

In all these areas, one critical and challenging issue is to extract features from

multimedia data. Low-level features are compact, mathematical representations
of the physical properties of the video and audio data. They greatly reduce the

amount of data to be analyzed, provide metrics for comparison, and serve as

the foundation for indexing, analysis, high-level understanding, and classification.

Much research work has been done to investigate various visual and audio fea-

tures, their extraction methods, and their application in various domains. In

fact, the ISO/IEC International Standard MPEG-7 has specified a set of descrip-

tors (i.e., features) and description schemes for the description of multimedia

content.
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In this paper we will give an overview of state-of-the-art algorithms and tools us-

ing video and audio features. In particular, we will investigate features that can be

efficiently extracted from compressed video and audio data. The reasons that we

are interested in compressed-domain features are as follows. First, much of the mul-

timedia content available today is in compressed format already, and most of the
new video and audio data produced and distributed will be in standardized, com-

pressed format. Using compressed-domain features directly makes it possible to

build efficient and real-time video indexing and analysis systems. Second, some fea-

tures, such as motion information, are easier to extract from compressed data with-

out the need of extra, expensive computation. Of course, most features can be

obtained from uncompressed data as well, usually with a higher precision but at a

much higher computational cost. In practical systems, trade-off between efficiency

and accuracy can be explored. Compressed-domain and uncompressed-domain ap-
proaches can also be combined. For example, the compressed-domain approach is

used to select candidates while the uncompressed-domain approach is used to find

the most accurate results.

In this paper we will review compressed-domain features in the following catego-

ries: spatial visual features (such as color and texture), motion features, coding fea-

tures, and audio features. Fig. 1 illustrates the hierarchy of audio-visual features used

in video/audio indexing and analysis. Examples are also given for commonly used

features in different categories. Note that meta-information, although very impor-
tant for video/audio indexing, is beyond the scope of this paper. In our review, we

will focus on selected features that can be extracted or estimated directly in the com-

pressed domain, without trying to be exhaustive. We will also discuss several repre-

Fig. 1. Hierarchy of commonly used features in video/audio indexing and analysis.
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sentative applications using these features. The purpose is to show how these low-

level features can be extracted, integrated, and used effectively for basic video index-

ing tasks (e.g., shot boundary detection), as well as applications that need to detect

structures, semantic-level concepts, or events from the video (e.g., sports video anal-

ysis). Again, we focus on compressed-domain approaches. Finally, we will summa-
rize a subset of effective and relatively robust features, which can be estimated

Fig. 2. Summary of a subset of effective and fairly robust features.
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directly in the compressed domain, and compare qualitatively these features in terms

of efficiency, effectiveness, and limitations. Fig. 2 provides a concise list of these fea-

tures with brief summaries and indices pointing to respective sections of this paper.

We will also discuss the possibilities of extracting some MPEG-7 descriptors from

compressed video and audio.
The paper is organized as follows. Section 2 gives a brief overview of the MPEG-

1/2 video and audio standards. Sections 3–5 include reviews of spatial visual features,

motion features, and video coding features, respectively. In Section 6 we discuss

some important applications using the video features in previous sections. Section

7 investigates audio features and their applications. Section 8 summarizes and eval-

uates a set of representative video and audio features, and briefly discusses the pos-

sibilities of extracting some MPEG-7 visual and audio descriptors from the

compressed domain (Section 8.5). Section 9 concludes the paper and discusses future
directions.

2. Overview of multimedia compression standards

International standards such as MPEG-1 and MPEG-2 have become very suc-

cessful in several industries, including telecommunications, broadcast, and entertain-

ment. The amount of multimedia data in these formats is growing rapidly. Other
standards like MPEG-4 and H.26x share many fundamentals of video and audio

coding with MPEG-1 and MPEG-2. Therefore, many features we discuss in this pa-

per can be extended to those standards as well.

2.1. Video compression technology

Digital video needs to be compressed for the purpose of efficient storage and

transmission. Video compression technology encompasses a wide range of research
areas such as communications, information theory, image processing, computer vi-

sion, psychophysics, etc. Years of active research in these fields have culminated in

a series of video coding standards like MPEG-1, MPEG-2, H.26x, and so on. These

standards share some core techniques such as block-based transform coding, predic-

tive coding, entropy encoding, motion-compensated interpolation, etc. The most im-

portant ones are block-based transform coding and motion compensation.

Block-based transform coding reduces the spatial redundancy in digital video (or

digital images). The substantial correlation between neighboring pixels is greatly
reduced in transform coefficients. These coefficients do not need to be coded with

full accuracy and can be entropy-coded efficiently for compression. The 8� 8-block
discrete cosine transform (DCT) is most widely used for its near-optimal perfor-

mance and high speed using fast algorithms. A typical encoding sequence using

the DCT is shown in Fig. 3. Note that in video compression other techniques are also

involved, so that the actual encoder diagram is much more complex. In MPEG-1 and

MPEG-2 video, the DCT is also used to encode differential data and residue errors

after motion compensation.
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Block-based motion compensation significantly reduces the temporal redundancy

in digital video, as illustrated in Fig. 4. A best match of the same dimension is found

for each block in the current frame, so that only the difference (residue error) be-
tween the block and its match needs to be coded. In MPEG-1 and MPEG-2, back-

ward and bi-directional motion compensations are also used. These techniques

provide a much higher coding efficiency than encoding each frame without looking

at its adjacent frames for similarities. The unit of motion compensation is usually

16� 16 blocks, termed macroblocks (MB) in MPEG video. The frequency of motion

compensation and how it is done are flexible to allow for the trade-off between en-

coding complexity and performance.

2.2. MPEG-1 and MPEG-2 video

MPEG-1 and MPEG-2 are defined in ISO/IEC International Standards 11172

and 13818, respectively. MPEG-1 and MPEG-2 video coding uses the DCT trans-
form to reduce spatial redundancy and block-based motion compensation to reduce

Fig. 3. Block diagram of a typical encoding sequence using the DCT.

Fig. 4. Block-based motion compensation.
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temporal redundancy. There are five layers in an MPEG video bit stream: group of

pictures (GOP), picture, slice, macroblock (MB), and block.

MPEG-1 video (ISO/IEC IS 11172-2) focuses on the coding of non-interlaced vi-

deo at bit rates up to 1.5Mbps, with a typical picture size of 352� 240. MPEG-1 is
optimized for CD-ROM applications, and has been widely used in Video CD (VCD)
applications and general-purpose video storage and archiving.

MPEG-2 video (ISO/IEC IS 13818-2) targets the coding of higher resolution video

(e.g., 720� 480 picture size) with fairly high quality at bit rates of 4–9Mbps. It aims
at providing CCIR/ITU-R quality for NTSC, PAL, and SECAM, and supporting

HDTV quality, at data rate above 10Mbps, real-time transmission, and progressive

and interlaced scan sources. MPEG-2 video has been successfully used in Digital

Versatile Disc (DVD) and is the standard for future Digital TV broadcast. Although

similar to MPEG-1 video in fundamental components, there are several new features
of MPEG-2 video such as

• Frame-picture and field-picture structure (allowing interlaced video).
• More flexible and sophisticated motion compensation (frame/field/dual prime).
• 4:2:2 and 4:4:4 macroblock formats.
• New scan for intra-block DCT coefficients.
• Scalability.
More details can be found in the standards (ISO/IEC IS 11172-2; ISO/IEC IS

13818-2) and textbooks (Haskell et al., 1997) on MPEG-1/2 video.

2.3. MPEG audio

MPEG audio (ISO/IEC IS 11172-3; ISO/IEC IS 13818-3; ISO/IEC IS 13818-7)

aims at coding of generic audio signal, including speech and music. MPEG audio

coders are perceptual subband coders that utilize the auditory masking phenomenon

(Rabiner and Juang, 1993). The encoder constantly analyzes the incoming audio sig-

nal and determines the so-called masking curve, the threshold under which addi-
tional noise will not be audible to the human auditory system. The input signal is

split into a number of frequency subbands. Each subband signal is quantized in such

a way that the quantization noise will not exceed the masking curve for that sub-

band. Fig. 5 shows the basic structure of an MPEG-1 audio encoder.

MPEG-1 audio (ISO/IEC IS 11172-3) provides single-channel and two-channel

audio coding at 32, 44.1, and 48 kHz sampling rate. Three different layers (namely

Layers I, II, and III) are defined. These layers represent a family of encoding algo-

rithms with increasing encoder complexity, performance, and encoding/decoding de-
lay. Layer III has the highest encoder complexity and the best coding performance,

but the longest encoding/decoding delay. The predefined bit rates range from 32 to

448 kbps for Layer I, from 32 to 384 kbps for Layer II, and from 32 to 320 kbps for

Layer III.

MPEG-2 audio BC (ISO/IEC IS 13818-3) is a backward-compatible multi-

channel extension to MPEG-1 audio. Bit rate ranges are extended to 1Mbps. Au-

dio sampling rates are also extended towards lower frequencies at 16, 22.05, and

24 kHz.
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MPEG-2 audio AAC (ISO/IEC IS 13818-7) is a non-backward-compatible, very

high-quality audio coding standard for 1–48 channels at sampling rates of 8–96 kHz,

with multi-channel, multi-lingual, and multi-program capabilities. Three profiles of

AAC provide varying levels of coding complexity and scalability.

Due to its relatively low coding quality, applications of MPEG-1 Layer-I audio

are usually limited to audio storage in solid-state circuitry, off-line storage and edit-

ing of audio, etc. MPEG-1 Layer-II audio has more applications in commercial

products such as Video CDs and MPEG-1 encoders. So far the most successful
MPEG audio standards is MPEG-1 Layer-III audio, also known as MP3. Recent ex-

plosion of web sites offering MP3 music clips, along with the debut of portable MP3

players, has attracted much attention and shown a huge potential of this standard in

commercial products and services.

MPEG-2 audio, especially AAC, is a relatively new comer to the audio entertain-

ment world. The industry has already produced an array of widely deployed proprie-

tary audio coding standards, which aim at providing multi-channel, high-quality

surround sound for movie theaters and home entertainment systems. These standards
include Dolby Digital (using Dolby AC-3 audio coding. Dolby Laboratories, 1997),

DTS, SDDS, etc., many of which are based on perceptual audio coding techniques.

3. Spatial visual features

In this section we review spatial visual features that can be extracted from MPEG

compressed video. These features can be used to characterize individual video
frames, as well as JPEG compressed images. They can also be applied to a group

of video frames to characterize their aggregate visual property. Motion features,

which are temporal visual features, will be discussed in the next section.

3.1. DCT DC image sequence

DCT DC image sequence is an iconic version of the original video. Although at a

lower resolution, it captures the key content and is very efficient for visual feature

Fig. 5. Basic structure of an MPEG-1 audio encoder.
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extraction. All DCT coefficients, including the DC value, are readily available for I-

frames in MPEG video. For P- and B-frames, however, only the residue error after

motion compensation is DCT transformed and coded. To get the DCT coefficients in

motion-compensated frames, Chang and Messerschmit (1995) developed a com-

pressed-domain algorithm that computes DCT coefficients in translated blocks. This
is based on the fact that the DCT is a linear transform. The algorithm becomes very

efficient if only part of the DCT coefficients (e.g., the DC coefficient) is needed. Yeo

and Liu (1995a), as well as Shen and Delp (1995), also proposed efficient algorithms

to approximate DCT DC values for P- and B-frames.

Once the DCT DC image sequence is constructed, features can be extracted (e.g.,

vectors formed by the YUV values of the DC images, and used for shot boundary

detection, key frame extraction, and other video indexing purposes (Chen et al.,

1998; Kobla et al., 1997a; Yeo and Liu, 1995b)).
The DCT DC sequences sometimes give better or more robust results for tasks

like shot boundary detection because of its low-pass filtering nature. Note that for

MPEG-1 video and some MPEG-2 video, the 4:2:0 macroblock format is used, so

that the color resolution is half the intensity resolution (i.e., 8� 8 sub-sampled for
intensity, 16� 16 sub-sampled for chrominance).

3.2. Color

Color features, such as color histogram, have been proved to be effective in image

and video indexing and retrieval. For compressed video, color features can be ex-

tracted from the DCT DC sequence described above or other forms of progressively

decompressed sequences. Sometimes intensity values are used instead of colors (i.e.,

the chrominance components are ignored), but in general intensity-only features

offer much less information and are not as effective as color features for video

indexing.

In image and video indexing, colors are frequently converted from RGB values to
other perceptual color spaces, such as HSV, YUV, YCbCr, etc., because they are clo-

ser to human�s color perception models. In MPEG video, colors are converted to

YCbCr components. Therefore, it is easy to extract chrominance information and

use them to compute approximate hue and saturation values if needed.

Tan et al. (1999a) use the absolute difference of block color histograms as the dis-

similarity measure between two video frames. Dynamic programming is used to

compare video clips of different length. DC sequences are used in their experiments

of video query by an example clip.
Won et al. (1999) use DC values of Y, Cb, and Cr, along with other features, to

form a feature vector for each video frame for shot boundary detection purposes.

The feature vector consists of hue histogram, luminance histogram, and macroblock

edge types. Cb and Cr values are used to approximate hue and saturation of colors

for the computation of the hue histogram. The hue histogram consists of six bins,

representing the hues of six pure colors: red, yellow, green, cyan, blue, and magenta.

To compute the hue histogram, hue/saturation values of colors are compared with

each of the pure colors, and values are added to the corresponding bin inverse to
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the hue/saturation distance from that pure color. Thus, the hue histogram indicates

the dominant hue, if there is any, in a video frame.

Other researchers useYUVcolor histogram fromDC sequences to detect video shot

boundaries, either by histogram intersection (Yeo and Liu, 1995b) or direct pair-wise

comparison (Chen et al., 1998). Intensity histogram, combined with projection histo-
grams (computed by projecting the intensity of a video frame on to the x- and y-axes),
has also been used for shot boundary detection (Patel and Sethi, 1997).

3.3. Texture and edge

Textures and edges are fine structures in images and video frames, and require

pixel-level processing to extract them. Unfortunately, this is usually not possible in

compressed video without significant amount of decoding. However, because tex-
tures and edges correspond to mid-to-high-frequency signals in the DCT frequency

domain, it is possible to obtain some level of texture and edge information by ana-

lyzing the frequency components (i.e., DCT coefficients). Coefficients in the 8� 8
DCT block can be classified into frequency bands that roughly correspond to

smooth areas, horizontal and vertical edges, and noisy areas (Ho and Gersho, 1989).

Bao et al. (2000) use energy histogram of low-frequency DCT coefficients as the

matching feature of video frames to detect shot transitions. This feature can be seen

as a rough description of the global texture pattern in the video frame.
Zhong et al. (1999) compute sums of amplitude of AC coefficients in the first row

and first column of the DCT coefficient matrix and use them as the criteria for initial

segmentation of caption blocks in compressed video. This works because rapid

changes in intensity (in both directions) introduced by character lines raise the en-

ergy level in the corresponding DCT frequency bands. In other words, caption

blocks have a distinctive texture pattern that is reflected in the DCT coefficients.

There also have been some efforts on edge extraction from compressed video.

Shen and Sethi (1996b) show that AC energy of DCT blocks can be used to detect
areas of high activity. Observing that DCT AC coefficients are linear combinations

of pixel intensity values in the 8� 8 block, they use the ideal step-edge model and
derive approximate edge orientation, offset, and strength parameters using only

DCT AC coefficients. The result is coarse edge segments that can be used for video

indexing tasks like shot boundary detection based on the change ratio of edge maps

(Zabin et al., 1995). They also investigate convolution-based edge detection in com-

pressed images by merging symmetric-kernel convolution with the IDCT procedures

(Shen and Sethi, 1996a). Compared with conventional convolution-based edge detec-
tion, a speedup of 3–10 times is achieved with comparable results. However, large

convolution kernels (e.g., 17� 17 pixels) are necessary to reduce the artifacts intro-
duced by JPEG and MPEG compression schemes. Therefore, this method becomes

less efficient and can be applied to only a small subset of MPEG video frames due to

the computational complexity.

Song and Ra (1999) use edge block energy to classify DCT blocks into edge blocks

and non-edge blocks. Using the 3� 3 Sobel operators, they show that the energy

of the resulted gradient block can be approximated using the first few DCT AC
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coefficients. The result is a rough block edge map that is 1/64th the size of the video

frame, which indicate high-activity areas.

3.4. DCT coefficients

DCT coefficients are sometimes used directly in applications such as shot bound-

ary detection. DCT coefficients are readily available in I-frames, but not in P- and B-

frames. Additional computation (full or partial decoding) is needed to obtain DCT

coefficients in P- and B-frames. Note that DCT coefficients of low-intensity blocks

are prone to coding noise, which should be considered when using them for indexing

or matching.

3.4.1. Correlation between DCT coefficients of two frames

Arman et al. (1993) use a subset of DCT coefficients of a subset of blocks to form

feature vectors for each frame. Then the angles between the feature vectors of differ-

ent frames are used to measure their similarity. They use this method to detect shot

boundaries and show its effectiveness for cut detection. The computational complex-

ity is relatively high, because inner product is involved in the calculation.

3.4.2. DCT block difference

Zhang et al. (1995) compare the relative difference of all coefficients in a DCT
block to measure the similarity between two DCT blocks. A cut is detected if a large

amount of blocks have changed significantly in terms of DCT block difference. This

method involves less computation than the above one.

3.4.3. Variance of DCT DC coefficients

Meng et al. (1995) use this feature to measure the variation of gray level intensity

in I- and P-frames. Gradual transitions like dissolve can be detected by identifying a

characteristic parabolic curve between two higher and relatively flat variance levels.

4. Motion features

In compressed video, motion information is captured in some form like motion

vectors in MPEG video. However, motion vectors are just a rough and sparse ap-

proximation to real optical flows, and are prone to be inaccurate when used to indi-

cate real motion of macroblocks.
Extra care should be taken when using motion vectors. In MPEG video frames,

the following areas are most likely to have erroneous motion vectors: (a) boundary

blocks, and, (b) large smooth areas. Usually, some kind of morphological or median

filter should be applied to the motion vector field to remove anomalies, before they

are used for analysis and indexing. Also, motion vectors are more sensitive to noise

in magnitude than in direction. Therefore, a median filtering based on magnitude is

usually sufficient. More sophisticated methods have also been proposed using reli-

ability metrics to get rid of erroneous motion vectors (Yoshida and Sakai, 1995).
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4.1. Motion information extracted from motion vectors

Motion information can be extracted for block, regions, objects, and whole video

frames for motion query and object/region tracking.

4.1.1. Global motion field

Ardizzone et al. (1999) use global motion field to model the global motion in video

sequences for similarity query. The idea is to divide a frame into 4 or 16 quadrants,

each with a motion feature consisting of magnitude and direction. For magnitude,

average value is used, and the query can be specified by high or low magnitude.

For directional feature, either average or dominant motion vector direction (such

as the largest bin in angle histogram), as well as angle histogram (90 directions, 4�
each) is computed. Note that the number of bins should not be too large, because
MPEG motion vectors are sparse in inter-coded frames. The authors have also

derived similar motion features using optical flows in the pixel domain (Ardizzone

et al., 1996).

4.1.2. Motion-based segmentation

Besides visual features like color and texture, motion information can be used to

segment inter-coded video frames. This is usually very efficient compared with spatial

feature-based methods. In the case that a large object moves over a uniform back-
ground, a simple binarization based on the magnitude of motion vectors could ex-

tract a reasonable foreground region, approximated by macroblocks. Otherwise,

some form of clustering technique is necessary. Also, as mentioned above, motion

vectors are usually pre-processed to remove anomalies.

Ardizzone et al. (1999) use a sequential labeling method to segment video frames

based on their similarity of motion vectors (both magnitude and angle). They also

use a clustering method to extract regions with dominant motions using histograms

of motion vector magnitudes. Each dominant region is then defined by size and
average motion.

Eng and Ma (1999) use an adaptive median filter to improve MPEG motion vec-

tor accuracy and propose an unbiased fuzzy clustering technique to extract dominant

video objects.

4.1.3. Block-level motion analysis

Dimitrova and Golshani (1995) use the MPEG motion vectors in P- and B-frames

to approximate the movement of macroblocks.Macroblock tracing is used to retrieve
low-level motion information. In the middle-level motion analysis, averaging or clus-

tering method is used to extract object motion for rigid and non-rigid objects, respec-

tively. At the high-level analysis, a set of trajectories is associated with an activity

defined using domain knowledge.

Kobla et al. (1997b) propose flow estimation that adopts similar ideas. It uses mo-

tion vectors in MPEG P- and B-frames to estimate the motion (termed flow) in every

frame in terms of backward-predicted motion vectors, regardless of the original pre-

diction mode. For example, in MPEG video with only I- and P-frames, the flow of
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each frame (except the last P-frame in the GOP) can be estimated by reversing the

forward-predicted motion vectors. If B-frames are present, one can estimate the flow

between the B-frame and its reference frame (P-frame or I-frame) first, by reversing

forward-predicted motion vectors, or using backward-predicted motion vectors di-

rectly. Flows between two B-frames can then be derived based on their respective
flows from the same reference frame.

4.1.4. Representation and matching of motion trajectories

Dimitrova and Golshani (1995) use several representations of trajectories for var-

ious matching purposes as follows: exact motion trajectory (start position and trajec-

tory coordinates), B-spline curves, chain code (for approximate matching), and

differential chain code (for qualitative matching). Wavelet transforms can also be

used to generate a multi-resolution representation of trajectories.

4.1.5. Accumulated motion

Accumulated motion at the global or object level has been used in several appli-

cations as well. For example, such motion features have been used to detect impor-

tant events in special applications like sports.

Saur et al. (1997) use the accumulated camera panning motion to detect fast break

in basketball games. The accumulation is reset to zero when the motion changes

direction. A peak in the accumulated panning motion is a candidate for fast
breaks.

4.2. Camera operation and object motion

Camera motion is an important feature in video indexing. Foreground moving

objects can be extracted by differentiating camera motion and object motion. Cam-

era motion should be taken into account in shot segmentation. Otherwise, there will

be false alarms of shot boundaries. Furthermore, in some specific applications, mod-
els of camera motion can be used to detect important events (e.g., fast breaks in bas-

ketball games).

Camera operation usually causes a global and dominant motion flow in the video

sequences. However, when dominant motion of a large object is present concur-

rently, it changes the global motion field and camera operation estimation becomes

less reliable. One solution is to remove the outliers of motion vectors that do not fit

well with the global motion models, and iterate the estimation process of camera

motion.

4.2.1. Common camera operations

Various basic camera operations used in video production have been defined. A

typical set consists of pan, tilt, zoom, dolly, track, and boom, as described in Akutsu

et al. (1992). A slightly different set is defined in Tan et al. (1995) as pan, tilt, zoom,

swing, and translation, in which pan, tilt, and swing are the rotation around the x-,
y-, and z-axis, respectively. In many applications, however, only pan, tilt, and zoom
factors are considered.
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4.2.2. Camera operation estimation based on physical models

These methods start with a physical model of the camera in the 3-D space, with

some kind of projection that maps the object onto the camera�s image plane. They
estimate the parameters involved in the projected model, and the camera operations

can be derived from these parameters. Usually some iterative algorithm is applied.
Tan et al. (1995, 1999b) propose a camera motion estimation method based on the

physical model of the camera and 3-D coordinate transforms. The camera operation

is modeled as a combination of rotations about the three axes and a translation of the

coordinates. The zoom operation is modeled as a scaling function of object projec-

tion onto the image plane. The object is assumed to be a rigid body. Under the

assumptions that (1) the rotations are small (or a high-sampling rate), and (2)

the translation is minimal (or a high-sampling rate), the model can be reduced to

a 6-paramter one.
In Tan et al. (1995), the parameters are initially estimated using four pairs of pixel

correspondences, and then refined using a recursive algorithm (the Kalman filter). In

Tan et al. (1999b), motion vectors of compressed video are used as correspondences.

The mean and variance of the estimated prediction error are calculated. Motion vec-

tors that fall beyond a certain range are declared as outliers, and are excluded in the

next iteration of the parameter estimation process. Experiments show that usually 2

or 3 iterations are sufficient for convergence. A simplified and faster version of the

above algorithm, which is a 3-parameter one, considers only pan, tilt, and zoom fac-
tors (Tan et al., 1999b). In this case a closed-form solution exists for the estimation

of the three parameters. Note that this simplified model takes out the perspective dis-

tortion factors in the original model, so that the scene is assumed to be planer, which

is approximately true when the object is far away from the camera.

Tse and Baker (1991) model global motion with two parameters, a zoom factor

and a 2-D pan factor. The camera is modeled as a projective plane and the motion

of the camera is small between frames, hence the pan effect is a displacement of ob-

jects in successive frames. The method assumes that motion vectors are mainly
caused by global motion. Removing motion vectors that are not consistent with

the estimated motion helps refine the estimation. This method is similar to the sim-

plified model in Tan et al. (1999b).

Taniguchi et al. (1997) estimate camera motion to reconstruct panoramic icons

for video browsing purposes. They use simple pan and tilt to model camera opera-

tions and use the least square error method to estimate the camera motions. They

propose several criteria to validate the estimated parameters as follows: duration

(the camera motion lasts for more than a specific period of time), smoothness of
the camera operation, and goodness of fit (MSE minimized by camera operation

compensation should be significantly smaller).

Bergen et al. (1992) propose a hierarchical motion estimation framework in which

various motion models can be used. The affine model is a 6-parameter motion model

that is suitable for situations where the camera is far away from the background.

Meng and Chang (1996) use it for camera motion estimation. The idea is to minimize

the estimated motion and the compensated one in the least square error sense. Pan

and zoom factors can be derived using the six estimated parameters. Patti et al.
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(1997) also use this affine model for dominant global motion estimation in the appli-

cation of extracting high-quality stills from interlaced video.

4.2.3. Camera operation estimation based on dominant motion

These methods estimate camera operations by looking at the motion vectors
directly. They do not adopt explicit physical camera models like those men-

tioned above. Usually different operations (e.g., pan and zoom) are estimated

separately.

Zhang et al. (1995) use sum of difference between motion vectors and the modal

vector to determine pan and tilt. Zooming is detected by the change of signs of mo-

tion vectors across the center of zoom, as zooming often results in a pattern of

many motion vectors pointing to or away from the zooming center. The problem

is that a combination of zoom and pan is difficult to detect, since it considers them
separately. Large object motion may also cause significant noise. One solution is

to separate regions of different motion. However, if the moving object covers most

of the frame, this will still be a problem. To quantitatively measure the camera

operations, the method proposed by Tse and Baker (1991) is used for zoom and

pan.

Akutsu et al. (1992) investigate video indexing by motion vectors. They first

used a block matching method to estimate motion vectors similar to most MPEG

encoders. Then they consider the camera operations separately and model each
type of operation with different features of optical flows such as vector conver-

gence point, and vector magnitude. Hough transform is used to estimate the con-

vergence points, and a 3-parameter model is used to extract the magnitude of

camera motions.

Kobla et al. (1996) estimate camera pan and tilt by detecting dominant motion in

the video frames. Motion vectors are counted to generate directional histogram (in

eight directions), and a dominant direction of motion is declared if the largest bin

is at least twice as big as the second largest one. For zoom detection, the existence
of focus of contraction (FOC) or focus of expansion (FOE) is detected. It is a simple

voting method by extending each motion vector and voting for all the macroblocks it

passes through. In addition, it also assumes that the motion vectors near the FOE

and FOC are small and the magnitude of motion vectors increases with the distance

to the FOE/FOC.

4.3. Statistical information of motion vectors

Rather than estimating camera motions from the motion vectors, the following

work measured the statistical features of the motion vectors and used them for in-

dexing.

4.3.1. Motion smoothness

Akutsu et al. (1992) define motion smoothness as the ratio of blocks that have sig-

nificant motion vectors over blocks whose motion vector has changed significantly.

They used this parameter along with inter-frame changes to detect shot boundaries.
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4.3.2. Amount of motion activity in video frames

Divakaran and Sun (2000) uses average motion vector magnitude as one of the fea-

tures of a video frame. They then use this average value to threshold all the motion

vectors in the frame and count the numbers of short, medium, and long runs of zeros,

in raster-scan order. These numbers indirectly expresses the size, shape, and number
of moving objects and are good indicators of the motion feature of the video frame.

For example, a frame with a single large object can be easily distinguished from a

frame with several small objects.

Wolf (1996) uses the amount of motion in video frames to help select key frames

in a video sequence. Although in Wolf (1996) motion is estimated using optical

flow, the principle can be applied to MPEG video using motion vectors. The

amount of motion is defined as the summation of magnitude of motion vector com-

ponents in a frame, and a curve is drawn with respect to frame numbers. Key
frames are then selected by detecting valleys between large peaks in this curve,

which correspond to relatively still frames between two video segments with large

amount of motion.

4.3.3. Motion histogram

Motion histogram is a compact representation of global or regional motion in vi-

deo frames. Either direction or magnitude can be used as the histogram index. Kobla

et al. (1996) and Ardizzone et al. (1999) have used motion vector histograms exten-
sively for the detection of camera pan, tilt, and many other purposes.

Although working in the uncompressed domain, Davis (1998) also uses motion

histograms to help recognize simple human movements such as left arm fanning

up, two arms fanning up, and crouching down. The directional histogram for each

body region has 12 bins (30� each), and the feature vector is a concatenation of
the histograms of different body regions. The motion vectors are derived from the

so-called motion history image (MHI), which is basically the accumulation of differ-

encing images of the silhouettes of human body.

4.3.4. 2-D tensor histogram

Ngo et al. (2000) introduces the 2-D tensor histogram to model the distribution of

texture orientations in temporal slices of a video sequence, which inherently reflects

motion trajectories in the video. Temporal slices are a set of 2-D images with one

dimension as time t, and the other as either the x or y image dimension, if we view

the video as a 3-D image volume.

Structure tensors are first constructed by computing partial derivatives (in time di-
mension and one spatial dimension) of the slices and summing up their products in

local windows. A rotation angle is then estimated using the structure tensor to indi-

cate the direction of local gray-level change. A 2-D tensor histogram is finally calcu-

lated to model the distribution of the local orientations, with one time dimension and

the other as a 1-D orientation histogram. The amount of motion is also embedded in

the histogram by computing a certainty value when estimating local orientations.

Therefore, the 2-D tensor histogram provides statistical information of video motion

in a compact form.
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Ngo et al. (2001) demonstrate that by analyzing the 2-D tensor histogram and us-

ing motion features derived from it, one can capture dominant motion patterns in a

video, segment foreground/object motion from background/camera motion, and

cluster video shots based on motion and color information in sports videos. Al-

though motion information is extracted from the tensor histogram, instead of
the motion vectors in compressed video, the processing can be done in the MPEG

domain.

5. Video coding features

Video coding features are simple, but readily available information that can be

easily extracted while parsing the video bit stream. In some cases, such simple fea-
tures can be quite useful. Since MPEG only standardizes the decoding part, coding

features may be sensitive to the actual encoder used.

5.1. Macroblock type information

Macroblocks in I-frames are all intra-coded. P-frames have forward-predicted

macroblocks, as well as intra-coded and skipped ones. B-frames have the most com-

plex situation, in which each macroblock is one of the five possible types: forward-
predicted, backward-predicted, bi-directional predicted, intra-coded, and skipped.

The numbers of these types of macroblocks, as well as the ratios between them, in

P- and B-frames provide useful information for video indexing and analysis

purposes.

Kobla et al. (1999a) use the numbers of forward-predicted and backward-pre-

dicted macroblocks in B-frames to determine if a slow-motion replay is present in

MPEG video. In an earlier paper (Kobla et al., 1996), macroblock type information

is also used to detect shot boundaries.
Nang et al. (1999) compare the macroblock types of the same macroblock posi-

tion in adjacent B-frames. Macroblock type changes are listed exhaustively and as-

signed different dissimilarity values. Accumulation of all the macroblock

dissimilarity values in one frame is used to detect shot boundaries.

Zhang et al. (1995) use the ratio of the number of intra-coded macroblocks over

the number of valid motion vectors in a P- or B-frame to determine abrupt shot

changes that occur in inter-coded frames. Similarly, Meng et al. (1995) use the ratio

between the number of intra-coded macroblocks and the number of forward-pre-
dicted macroblocks to detect scene changes in P- and B-frames.

Saur et al. (1997) consider the number of intra-coded blocks in P-frames with the

magnitude of motion to determine if the frame is wide-angle or close-up in typical

basketball video. A shot is classified by classifying all P-frames in it and a majority

voting. The intuition is that in a close-up shot there are often large objects (e.g.,

players) entering or leaving the view, causing a significant number of macroblocks

in P-frames to be intra-coded. This number is large compared with the magnitude

of motion in a close-up shot.
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5.2. Bit-rate information

It has been observed that abrupt changes in video streams cause bit-rate variation

in the encoded MPEG video. Feng et al. (1996) form a bit-image for each frame using

the number of bits taken to encode each macroblock. Shot boundary is detected by
comparing bit-images using a fixed threshold. Divakaran et al. (1999) and Boccig-

none et al. (2000) combine this approach with DC image sequence based method

for more robust shot boundary detection.

Frame bit rate, combined with macroblock and motion information, is also used

by Kobla et al. (1999a) to detect slow-motion replay in sports videos.

6. Common video indexing tasks and special applications using visual and motion
features

In this section we will discuss two common video indexing tasks and some special

applications that use the visual and motion features summarized in the previous sec-

tions. The purpose is to show how these features can be integrated and applied to

specific compressed-domain video indexing and analysis problems.

In the first subsection, we will focus on two common video indexing tasks, namely

shot boundary detection and gradual transition (across shots) detection. These are
essential tasks in any video indexing and analysis system, and have been studied ex-

tensively over the years with a large number of proposed techniques. In the second

subsection, we will introduce a special area of applications, which is sports video

analysis. Sports videos are one of the most widely viewed and eagerly sought after

types of video programs. With its dynamic content and potential commercial appli-

cations, this is also an area that has generated a large amount of interests in the re-

search community.

6.1. Common video indexing tasks

6.1.1. Shot boundary detection

A shot is the basic unit in video production. A video sequence is a series of edited

video shots. The transition between shots usually corresponds to a change of sub-

ject, scene, camera angle, or view. Therefore, it is very natural to use shots as the

unit for video indexing and analysis, and the first step in these applications is to seg-

ment the long video sequence into video shots. This specific task of detecting tran-
sition of video shots is usually termed shot boundary detection, scene change

detection, video segmentation, etc. Throughout this paper we use the term shot

boundary detection. Note that we will focus more on gradual transition detection

in the next section.

There has been a lot of work on shot boundary detection, especially in the uncom-

pressed domain. Most work has been focusing on pixel difference, intensity statistics

comparison, histogram distance, edge difference, and motion information. A review pa-

per on these techniques with experimental results in terms of precision-recall graphs
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can be found in Boreczky and Rowe (1996). Among these methods, histogram-based

ones have been consistently reliable, while DCT coefficient-based ones give the low-

est precision. Motion information-based methods are somewhere in between. In a re-

cent review paper, Lienhart (1999) compares four major shot boundary detection

algorithms, which include fade and dissolve detection. Extensive experimental results
also favor the color histogram based method (Boreczky and Rowe, 1996) for shot

boundary detection, instead of the computationally expensive edge-change-ratio

method (Zabin et al., 1995).

Researchers have also investigated compressed-domain shot boundary detection

techniques. One obvious approach is to apply uncompressed-domain techniques to

DCT DC image sequences using approximated features. Techniques using pixel dif-

ference, intensity statistics, and histograms are still effective on DC images with some

level of performance degradation. Experimental results of shot boundary detection
techniques on DC images and uncompressed-images are compared in Ford (1999),

using statistical performance metrics.

There are also shot boundary detection algorithms specifically proposed for

MPEG compressed video. Zhang et al. (1995) apply a multiple-pass and multiple-

comparison technique to video segmentation. Multiple passes use I-frame DCT infor-

mation to locate the rough location of scene changes, and the second pass use P- and

B-frame motion vector information to pinpoint the location. Multiple comparison

uses double thresholds to detect abrupt and gradual shot transitions.
Chen et al. (1998) use a feature vector extracted from DC image sequences called

generalized trace (GT) for shot boundary detection purposes. The vector consists of

YUV color histogram intersections (between consecutive frames), standard deviation

of YUV, numbers of three types of macroblocks (intra-coded, forward-predicted,

and backward-predicted), and flags for frame types. Differential GT has been used

for abrupt shot transition detection. More robust result is achieved using classifica-

tion methods.

Meng et al. (1995) use macroblock type counts in P- and B-frames to detect shot
boundaries. Kobla et al. (1996) use similar macroblock type information for shot

boundary detection in a more elaborate fashion. A DCT validation step is added

to account for situations where there is little motion around shot boundaries, in

which macroblock type information itself is insufficient. Two adjacent I-frames are

compared using their DC values, and blocks that change significantly are counted

and then compared with a threshold.

Other proposed techniques examine macroblock type changes (Nang et al., 1999),

motion vector changes (Fernando et al., 1999), and macroblock bit allocation informa-
tion (Divakaran et al., 1999) to detect shot boundaries.

6.1.2. Gradual transition detection

Videos in commercial TV programs are rich in editing effects, such as fade-in,

fade-out, dissolve, wipe, and much more. Some work has been done on detecting

these special effects. In compressed domain, however, most work has been focused

on gradual transition detection (e.g., fade and dissolve). A review and comparison

of some of these techniques can be found in Lienhart (1999).
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Zhang et al. (1993) use a twin-comparison algorithm to detect gradual transitions.

A lower threshold (Tt) for frame difference is used to detect potential start of transi-
tions, and a second and larger threshold (Tb) is used for accumulated difference to
detect the end of gradual transitions. Either DCT difference metrics (Zhang et al.,

1995) or pixel-domain color histogram difference (Zhang et al., 1993) can be used
for comparison.

Yeo and Liu (1995c) use the absolute difference between two DC frames as the dif-

ference metric. The plot of the difference between the ith and the (iþ kÞth frames
generates a plateau if a gradual transition is present. k is selected to be larger than

the length of most gradual transitions.

Meng et al. (1995) use the variance of DCT DC coefficients in I- and P-frames to

detect dissolve. A downward parabolic curve in the variance graph usually indicates

a dissolve.
Kobla et al. (1999b) use features of the DC image sequences (RGB/YUV values or

histograms) and apply FastMap (Faloutsos and Lin, 1995) technique (a dimension

reduction algorithm that preserves inter-sample distances) to generate VideoTrails

(Kobla et al., 1997a) of a video sequence in a lower-dimensional space. The trail

is segmented and classified into stationary and transitional trails, the latter typically

a threaded trail that corresponds to gradual transitions. In Kobla et al. (1999b), Vid-

eoTrails and the above three techniques are evaluated by running extensive experi-

ments. The advantage of this technique is that it is good at detecting the
beginning and the end of the transition, and can handle a wide variety of editing

effects.

One thing that troubles all these techniques is the presence of large object motion

and fast camera operations in dynamic scenes. This confuses the gradual transition

(e.g., dissolve) detection algorithm and results in high false-alarm rates.

6.2. Sports video analysis

Sports video is of wide interest to a large audience. Automatic indexing and anal-

ysis of sports video, preferably in the compressed domain, have great potentials in

future multimedia applications.

6.2.1. Detecting sports video

Sports video (Saur et al., 1997) usually has characteristic camera motions like long

pans (e.g., following a fast break in a basketball game), as well as large magnitudes

of motion, high percentage of shots containing significant motion, sudden camera
jerks, and frequent appearance of text in score boards, statistics, player�s jerseys,
etc. These features can be used to detect sports videos.

6.2.2. Detection of slow-motion replay in sports video

Slow-motion replay in sports video is usually achieved by slowing the frame rate

of the playback, resulting in a single frame to be repeated several times. This causes

the presence of still and shift frames. Kobla et al. (1999a) use information about

macroblock types in B-frames, along with vector flow information, and number of bits
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used for encoding each frame to detect slow-motion replay. Still B-frames usually

have a lot of forward-predicted macroblocks, while shift B-frames have a significant

amount of backward-predicted macroblocks. Essentially, still B-frames contain very

little new information and the number of bits used for coding them is low. On the

other hand, the bit rate for the shift frames is higher. Therefore, in a slow-motion
replay segment, large variations of bit rates will be observed.

6.2.3. Automatic analysis of basketball video

Saur et al. (1997) investigate the particular domain of basketball video and use

low-level information extracted from MPEG video to detect events like a fast break.

Wide-angle shots and close-up shots are classified based on the motion vector

magnitude and number of intra-coded blocks in P-frames. Within wide-angle shots,

camera motions are estimated for panning using the method proposed by Tan et al.
(1995). The accumulated camera motion is used to detect the fast break event. They

also tried to use the irregularities of camera motion to detect steal or a loose ball sit-

uation, and use some heuristics and ad hoc methods to detect shooting scenes.

7. Audio features and their applications

In this section we will discuss low-level audio features that can be extracted from
both uncompressed and compressed audio signals, with their applications to audio

indexing, analysis, and classification. The term audio here refers to generic sound sig-

nals, which include speech, dialog, music, songs, radio broadcast, audio tracks of vi-

deo programs, noise, and mixtures of any of these.

Much of the research work in this area has been focused on indexing and classi-

fication of audio clips. Recently, great interests are shown in integrating audio fea-

tures with video features for better results in video indexing and analysis. The

combination of information from both audio and video channels has great potentials
in enhancing the power of current video indexing schemes. There is also some inter-

esting research work on music retrieval using tones, notes, MIDI sequences, and

structures of music, but this is out of the scope of our discussion in this paper.

7.1. Audio features

For the purposes of audio analysis, indexing, and classification, low-level audio

features of the sound signals must be first extracted. Although frequency-domain
techniques are often used, most audio feature extraction methods start with uncom-

pressed audio signal in waveforms. The decoding of compressed audio requires much

less computation compared with video decoding, and does not pose a computational

bottleneck in real applications. Therefore, direct feature extraction from compressed

audio, although preferred, is not required in many audio applications.

The following is a list of common audio features. Many audio applications have

extracted and used some or all of these features and their variations. Not all of the

features can be easily extracted from subband-coded audio signals like MPEG audio.
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Features that are marked with an asterisk are the ones that can be directly extracted

or approximated using subband-coded audio.

7.1.1. Time-domain features (group a)

1. Short-time energy*.
2. Energy/Volume statistics*: mean, standard deviation, dynamic range, etc.

3. Silence ratio*: percentage of low-energy audio frames.

4. Zero crossing rate (ZCR): number of time-domain zero crossings within a frame.

5. Pause rate*: the rate of stop in speech due to separation of words/sentences.

7.1.2. Frequency-domain (spectral) features (group b)

1. Pitch*: fundamental frequency that reveals harmonic properties of audio.

2. Subband energy ratio*: histogram-like energy distribution over frequencies.
3. Spectral statistics*: centroid, bandwidth, etc.

7.1.3. Psycho-acoustic features (group c)

1. Four-Hz modulation energy: speech has a characteristic energy modulation peak

around the 4Hz syllabic rate.

2. Spectral roll-off point: the 95th percentile of the power spectrum, used to distin-

guish voiced/unvoiced speech.

7.2. Audio applications using audio features

The sub-section discusses some typical applications that use audio features for au-

dio indexing and classification purposes. We use the above group labels when citing

specific audio features. For example, Feature a.4 represents the zero crossing rate.

Note that sometimes a variation of one of the above features is used, which may

be slightly different in mathematical form from the original but in essence is the same

physically.

7.2.1. General audio characterization, classification, and indexing

Patel and Sethi (1995) investigate the possibility of extracting audio features di-

rectly from MPEG audio and use these features for audio characterization. Features

a.1, a.5, b.1, and b.2 are computed directly using subband coefficients of audio signals

and are used to classify MPEG audio clips into dialog, non-dialog, and silent cate-

gories. Given 81 audio clips from a movie, 96%, 82%, and 100% correct classification

rates are reported.
Zhang and Kuo (1999b) use Features a.1, a.4, and b.1 to extract low-level audio

features for audio retrieval. For coarse classification, using these features alone can

help distinguish silence, music, speech, etc. For fine classification, which is more dif-

ficult, Hidden Markov Models (Rabiner and Juang, 1993) are built for each class of

sounds, using these audio features. 90% and 80% classification rates are reported for

coarse and fine classifications, respectively. In (Zhang and Kuo, 1999a). These fea-

tures are used in a heuristic approach to segmenting audio data and classifying these

segments into silence, speech, songs, music, etc. (Zhang and Kuo, 1999a).
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7.2.2. Speech/music classification

Scheirer and Slaney (1997) collect an array of features (Features a.3, a.4, b.3, c.1,

c.2, and more) along with their statistics for speech/music classification. They use

various classification frameworks (multi-dimensional Gaussian MAP estimator,

Gaussian Mixture Model, spatial partitioning, and nearest-neighbor classifier) with
rigorous training. The best classifier achieves 94% correct classification rate on a

frame-by-frame basis.

Saunders (1996) uses statistics of zero crossing rates (ZCR, Feature a.4) to

distinguish speech and music in FM radio programs. The idea is that ZCR exhib-

its a bi-model property (vowels vs. consonants) in speech, but not in music. A

90% classification rate is reported using samples from a two-hour FM radio

program.

Srinivasan et al. (1999) use Features a.1, a.4, and b.1 to segment mixed audio into
speech and music based on heuristic rules. The task is particularly challenging be-

cause of the presence of speech-over-music, fade in and fade out, and special sounds

in the audio signal, which is actually common in real-world audio data like the audio

track of a TV broadcast. An 80% classification rate is reported, against manually

generated ground truth (i.e., a human listener decides if a mixed portion of audio be-

longs to music or speech segment.).

7.2.3. Using audio features for video indexing

Wang et al. (1997) use Features a.2, a.3, and b.3 to characterize different types of

video clips associated with the audio tracks. The purpose is to use audio information

to help understand the video content (e.g., news, weather report, commercials, or

football games). Some unique characteristics of the audio features associated with

each video type are reported.

Huang and Liu (1998) use a set of features (Features a.2, a.3, b.2, b.3, c.1, and

more) to form feature vectors for audio break detection. The result is combined with

color and motion break detection results to segment videos into scenes.
He et al. (1999) use Feature b.1 to identify the speaker�s emphasis in his/her oral

presentation, based on the observation that the speaker�s introduction of a new topic
often corresponds to an increased pitch range in his/her voice. This information,

combined with slide transition information of the presentation, is used to extract im-

portant segments and generate summaries of oral-slide presentations. This interest-

ing application shows the strength of integrating audio features with other types of

features, even meta-information.

Naphade et al. (1998) used an integrated HMM model (called multiject) taking
both audio and visual features as observations to detect events such as an explosion.

Recently, they also proposed a probabilistic framework using Bayesian networks for

semantic-level indexing and retrieval (Naphade and Huang, 2000). Sundaram and

Chang (2000a) applied a causal memory-based model in detecting audio scenes,

which are defined as segments with long-term consistent audio features. They further

extended the scene segmentation model to both audio and visual domains and inves-

tigated the alignment issues between audio and video scenes (Sundaram and Chang,

2000b).
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So far the researchwork in audio indexing and classification is still in the early stage.

There is much more to explore in this area, not only new features and feature extrac-

tion methods (from both compressed and uncompressed audio), but also high-level

methodologies that have been widely and successfully applied to speech recognition

and speaker identification fields, such as Hidden Markov Models, Gaussian Mixture
Models, classification frameworks, etc. Another important issue that requires system-

atic investigation is how to seamlessly integrate audio features with visual, textual, and

meta-information for indexing and analysis tasks in multimedia applications.

8. Summary and evaluation of video and audio features

In this section we will summarize the video and audio features that we have sur-
veyed in previous sections. We do not intend to exhaustively list all the features that

we have mentioned. Instead, we will only select a subset of these features that we be-

lieve are effective, fairly robust, and useful in key applications. We will evaluate these

features in the following aspects: efficiency, effectiveness, and limitations. Efficiency

refers to the computational requirement, e.g., the number of frames that the feature

extraction process can be done per second. Effectiveness refers to the usefulness of

the feature in practical applications. Limitation refers to the constraints in practical

implementations, such as the block resolution limit imposed by MPEG compression.
Note that it is impossible for us to implement and test all these features. Therefore,

the evaluation is based on our own experience with some of these features, our col-

leagues� experience, reviews, and discussion. Although often qualitative in nature,
the evaluation aims at presenting a compact summary of important techniques in

this research field.

The features will be grouped in spatial visual, motion, coding, and audio features.

We will also discuss the possibilities of extracting some of the MPEG-7 visual and

audio descriptors from MPEG-1/2 compressed video and audio streams.
Note that when discussing the efficiency of feature extractions, we assume that the

computer being used is an average new PC, e.g., a PC with a 500MHz Pentium III

processor and 128MB of memory. We roughly describe the efficiency of each feature

extraction process by very efficient (more than 30 frames/s), efficient (10–30 frames/s),

or less efficient (less than 10 frame/s). For the effectiveness of the features, we use

highly effective to refer to robust features that are important in most key applica-

tions, and moderately effective to refer to less robust features that are useful for spe-

cific applications in limited domains.

8.1. Spatial visual features

DCTDC image sequence is highly effective in capturing the global, iconic view of a

video sequence. The construction of DCTDC sequences is very efficient using approx-

imated DC values for P- and B-frames and can be done in real time (30 frames/s or

faster). The limitation is that the last few P- and B-frames in a GOP may suffer severe

quality degradation due to error accumulation during successive approximations.
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8.1.1. Color

• DC color histogram: very efficient to extract, highly effective global feature for

frames, but resolution limited for small regions or objects.

• DC YCbCr vector: the elements of this vector are the average Y, Cb, and Cr values
of all the macroblocks in a frame. It is very efficient to extract, but needs expensive
dimension reduction technique (e.g., the method used in VideoTrails. Kobla et al.,

1997a) to make it a highly effective representation of the color feature of the video

frame.

8.1.2. Texture and edge

• DCT AC coefficient energy: very efficient to extract, moderately effective for the

approximation of texture, but may be useful in specific domains.

• DCT block edge map: efficient to extract, highly effective approximation of edge
activities, but difficult to link edge segments to form long, smooth edges.

8.2. Motion features

8.2.1. Motion vector field

• Motion vector based frame segmentation: efficient to extract, moderately effective
for the detection of large moving regions, but sensitive to motion vector errors.

8.2.2. Camera operation estimation

• 3-D coordinate, 6-parameter model: less efficient to extract, highly effective for the

estimation of most camera operations, but sensitive to motion vector errors, par-

ticularly in initial estimation.

• 3-D coordinate, 3-parameter model: efficient to extract, highly effective for the es-

timation of dominant camera operations, limited to pan, tilt, and zoom opera-

tions.

• 2-D affine model: efficient to extract, effective for the detection of pan and zoom
operations, but sensitive to motion vector errors.

8.2.3. Motion vector statistics

• Motion activity descriptor: very efficient to extract, moderately effective for rough
characterization of frame motion properties, but with limited discrimination capa-

bility.

• Motion magnitude and directional histogram: very efficient to extract, moderately
effective for local motion characterization, but with limited accuracy due to mo-
tion vector errors and the sparseness of motion vectors.

8.3. Video coding features

• Macroblock type: very efficient to extract, moderately effective for shot boundary
detection in inter-coded frames, performance affected by encoder implementa-

tion, better and more robust results can be achieved by combining it with color

features.
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8.4. Audio features

Because the amount of audio data is much smaller than video data, and decoding

of compressed audio is much cheaper than that of video, almost all of the audio fea-

tures can be highly efficiently extracted, either from compressed audio, or from un-
compressed audio waveform. Therefore, in the following evaluation of the

complexity of these features, we will only indicate whether the feature can be directly

extracted or approximated from compressed audio.

• Short-time energy: can be extracted from compressed audio. It indicates the aver-

age loudness of the audio signal in short periods, and is highly effective for silence

detection.

• Energy statistics: can be extracted from compressed audio, moderately effective for
audio classification, typically combined with other audio features.

• Silence ratio: can be extracted from compressed audio, moderately effective for au-
dio classification, typically combined with other audio features.

• Zero crossing rate: cannot be extracted from compressed audio, highly effective for
the differentiation of speech and music type of audio.

• Pitch: can be approximated using compressed audio, highly effective for the detec-
tion of harmonic properties of audio, but difficult to estimate for noisy audio and

some speech segments.

• Spectral statistics: can be approximated using compressed audio, moderately effec-
tive for music/speech classification and general audio classification, typically com-

bined with other audio features.

It can be seen from the above that audio indexing and classification usually use an

array of audio features as the foundation for further analysis. A single feature or two

are not enough. Among all these audio features, short-time energy, zero crossing

rate, and pitch are the most popular ones.

8.5. Extracting MPEG-7 descriptors from the compressed domain

MPEG-7 is an ISO/IEC international standard developed by MPEG (Moving

Picture Experts Group), the committee that also developed the MPEG-1, MPEG-

2, and the MPEG-4 standards. Formally known as Multimedia Content Description

Interface, it standardizes a set of descriptors (Ds), a set of description schemes (DSs),

a language to specify description schemes (and possibly descriptors), i.e., the Descrip-

tion Definition Language (DDL), and one or more ways to encode descriptions. A de-

scriptor is a representation of a feature, while a description scheme specifies the
structure and semantics of the relationships between its components, which may

be both Ds and DSs. With these tools, MPEG-7 aims at creating a standard for

the description of multimedia content that is useful for a wide range of applications,

such as multimedia digital libraries, broadcast media selection, multimedia editing,

home entertainment devices, and so forth. More information about MPEG-7 can

be found at the MPEG home page (http://mpeg.tilab.com).

Universal access to a great wealth of multimedia information demands tools and

techniques that help users quickly get the content they need. This has clearly been a
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driving force behind MPEG-7. Active research on content-based image/video index-

ing and retrieval also had a direct impact on the formation of MPEG-7. However,

MPEG-7 does not standardize how audio-visual features are extracted, automati-

cally or manually. Nor does it standardize how these descriptions are used for search

and retrieval. These interesting and often open questions are left to the innovations
of research communities and industries.

In this subsection, we will briefly go over some important MPEG-7 visual and

audio Ds. Particularly, we will discuss the possibilities to extract features and build

these Ds directly from MPEG-1/2/4 compressed data, as feature extraction is be-

yond the scope of MPEG-7. Looking at compressed-domain feature extraction

from the MPEG-7 perspective is valuable because the majority of multimedia con-

tents that MPEG-7 will describe are already in one of the compressed formats like

MPEG-1, MPEG-2, and MPEG-4. The MPEG-7 standard consists of seven parts,
namely, systems, description definition language, audio, visual, multimedia description

schemes, reference software, and conformance. We will focus on MPEG-7 standard

parts that are relevant to audio/visual feature extraction, i.e., parts 3 (audio) and 4

(visual). We will not try to list the descriptors exhaustively, but only highlight those

important ones. Note that the focus of this subsection is to discuss the possibility

of extracting these MPEG-7 Ds from the compressed domain, not the Ds

themselves. We comment mainly on the possibility and efficiency of the extraction

processes.

8.5.1. MPEG-7 visual

MPEG-7 visual description tools consist of basic structures and visual descriptors

for color, texture, shape, motion, localization, and others.

Basic structures

• Grid layout. This is a splitting of the image into multiple uniform-sized rectangular
regions, so that each region can be described separately. In the compressed do-
main, since only the DCT DC values are readily available, the dimension of the

rectangular regions is usually limited to integer multiples of eight pixels (i.e.,

DCT block dimension).

• Time series. This descriptor defines a temporal series of descriptors in a video seg-
ment. In the compressed domain, using a temporal series of features extracted

from the DCT DC image sequence is effective for video segmentation and match-

ing purposes.

Color descriptors

• Color space. This information is available in the MPEG-1/2 video stream (YCbCr

triplets). Transformations to other color spaces are simple and efficient.

• Dominant colors. This can be extracted using the DC image for either the whole im-
age (e.g., flag or color trademark images) or large image regions within the frame.

• Scalable color. This descriptor is a color histogram in HSV color space, which is

encoded by the Haar transform. In the compressed domain, this can be computed

using DC image. Accuracy of histogram may be degraded due to the small number
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of samples, where color histogram of a group of frames (GoF/GoP color) can be

used instead.

• GoF/GoP color. This is the extension of the scalable color descriptor to a video seg-
ment or a collection of still images. It may be preferred in the compressed domain

because color samples from multiple frames are accumulated for more robust
computation of the histogram, assuming that colors vary slowly within a video

segment. Average or median histogram can be used.

• Color layout. This descriptor specifies spatial distribution of colors for high-speed
retrieval or browsing. An 8x8 matrix of dominant local colors is DCT trans-

formed, quantized, and zigzag scanned. In the compressed domain, the DCT

DC image can be segmented into an 8� 8 grid layout and used to generate the ma-
trix of dominant colors.

• Color structure. Color structure information is embedded in this descriptor by tak-
ing into account colors of neighboring pixels, instead of considering each pixel

separately as in color histogram. Its main purpose is still-image matching for sim-

ilarity-based image retrieval. In the compressed domain, the DCT DC image is a

subsampled version so that the 8� 8 structuring element actually covers 64� 64
regions in the original frame. Therefore, color structures in local neighborhoods

are not preserved, and the descriptor may not have clear advantages over normal

color histogram.

Texture descriptors

• Homogeneous texture. The extraction of this descriptor involves filtering the image
with filter banks and calculating moments in corresponding subbands. It is there-

fore difficult to extract directly in the compressed domain. However, it can be used

to describe full-resolution images of key video frames.

• Texture browsing. This descriptor characterizes texture in terms of regularity,
coarseness, and directionality. The extraction is similar to the above, and is also

difficult in the compressed domain.
• Edge histogram. This descriptor represents the spatial distribution of different
types of edges. It is difficult to extract directly in the compressed domain. Due

to low resolution of the DC images and block effects, it is very hard to extract re-

liable edges from compressed video.

Shape descriptors

• Region-based shape. This descriptor uses a set of angular radial transform (ART)

coefficients to represent complex shapes. In the compressed domain, color and mo-
tion information can be used to segment video frames. This descriptor can then

be computed approximately using the segmented regions in the DC image.

Obviously, region-based shape is more reliable for large objects or regions in com-

pressed video.

• Contour-based shape. This descriptor uses the Curvature Scale-Space representa-
tion of the contour. It is difficult to extract directly in the compressed domain

due to the hard problems of reliable edge detection and contour extraction from

compressed video.
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Motion descriptors

• Camera motion: This descriptor supports an array of basic camera operations, and
captures the temporal and visual attributes of camera motion of sub-shots, either

in single or mixed mode. As we have discussed in previous sections, techniques are

available for estimating camera motion using motion vectors in MPEG video,

(Bergen et al., 1992; Meng and Chang, 1996; Tan et al., 1999b). Some of them

are able to estimate the global camera motion when there are multiple types of ba-

sic camera motion simultaneously (mixed mode), while others work better when

there is only one dominant type of camera motion.
• Motion trajectory: This descriptor is a list of key points in 2-D or 3-D Cartesian

coordinates, along with optional interpolating functions. For compressed video,

it is possible to generate motion trajectories of dominant objects or regions by

estimating region motion using MPEG motion vectors (Ardizzone et al., 1999;

Dimitrova and Golshani, 1995), although spurious motion vectors may degrade

the accuracy of the trajectories.

• Parametric motion: This descriptor characterizes the evolution of arbitrarily shaped
regions over time in terms of a 2-D geometric transform, such as the affinemodel, the
planer perspective model, and the quadratic model. It addresses both region motion

and global motion. In the compressed domain, parametric motion can be estimated

using motion vectors to approximate optical flow and adopting a 2-D geometric

transform, such as the affine model (Bergen et al., 1992; Meng and Chang, 1996).

• Motion activity: This descriptor includesmotion attributes of video segments such as
intensity of activity, direction of activity (if any), spatial distribution of activity, and

spatial/temporal localization of activity. This descriptor can be computed efficiently

using motion vectors in MPEG compressed video (Divakaran and Sun, 2000).

8.5.2. MPEG-7 audio

MPEG-7 audio tools can be put in two general categories: low-level audio de-

scription, and application-driven description. The low-level description tools are ap-

plicable to general audio data, regardless of the specific content (e.g., song or speech)

carried by the audio signal. The application-driven description tools are applicable

to specific types of audio content, such as speech, sound effects, musical instruments,

and melodies.

Low-level description tools

• Scalable series: These are abstract data types for series of scalar or vector values,
which allow temporal series of audio descriptors to be represented in a scalable

fashion. These are one of the foundations of low-level description tools.

• Audio description framework: This is a collection of low-level audio descriptors
(features), which include waveform envelope, spectrum envelope, audio power, spec-

trum centroid, spectrum spread, fundamental frequency, and harmonicity. Many of
these descriptors are similar or identical to the audio features we discussed in Sec-

tion 7. In the MPEG compressed audio (where the signal is subband coded), ex-

tractions of some of these low-level descriptors like waveform envelope and
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audio power are straightforward. For other descriptors, such as spectrum enve-

lope, centroid, spread, and fundamental frequency (pitch), subband coefficients

can be used directly for estimation, without the need to fully decode the MPEG

audio (Huang and Liu, 1998; Patel and Sethi, 1995; Wang et al., 1997).

• Silence: Silence descriptor describes silent sound segments. This can be used for
audio segmentation, or semantic-level event detection when combined with other

audio-visual descriptors. Silence can be detected in MPEG compressed audio di-

rectly (Patel and Sethi, 1995).

Application-driven description tools

• Spoken content description tools: These consist of a number of combined word and
phoneme lattices in an audio stream. By combining the lattices, the problem of

out-of-vocabulary words in speech recognition and retrieval is greatly alleviated.
Possible applications are indexing and retrieval of audio stream, and indexing

and retrieval of multimedia objects annotated with speech.

• Timbre description tools: These tools aims at describing the perceptual features
(timbre) of musical instruments that distinguish one from another even when

the sounds produced have the same pitch and loudness. A reduced set of descrip-

tors is selected for this purpose, such as log-attack time, harmonic centroid,

spread, and deviation. Possible applications are authoring tools for sound engi-

neers and musicians, and retrieval tools for producers.
• Sound effects description tools: These are a collection of tools for the indexing and
categorization of general sound effects. Potential applications include automatic

segmentation and indexing of sound tracks.

• Melody contour description tools: These tools are a compact representation of mel-
odies that allows for efficient and robust melody-similarity matching. A typical ap-

plication is query by humming, which is useful in music search and retrieval.

Although some low-level audio features can be estimated directly using com-

pressed audio signal (such as MPEG-1 audio), most of the application-driven audio

description tools mentioned above cannot be applied directly in the compressed do-

main. However, since audio signal is one-dimensional and the data volume is much

smaller compared with video, it is often affordable to fully decompress the audio sig-

nal before further analysis is done.

9. Conclusion and future directions

In this paper we survey video and audio features that can be extracted or approx-

imated using compressed video and audio like MPEG-1/2 streams. Without expen-

sive decompression, features can be efficiently extracted for large archives of

multimedia data. However, compressed-domain features have their limitations,
which are reflected in the survey, due to the lower resolution, block effects, inaccu-

rate motion vectors, etc.

We investigate spatial visual features, motion features, video coding features, and

audio features, along with their potential applications. Some important applications

H. Wang et al. / J. Vis. Commun. Image R. 14 (2003) 150–183 179



using multiple visual and motion features are discussed in a separate section. Finally,

we summarize and evaluate a small set of features that we believe are important and

fairly robust. We also discuss the possibilities of extracting MPEG-7 descriptors di-

rectly from compressed video and audio. We believe that compressed-domain feature

extraction will be valuable to MPEG-7 applications with the availability of the vast
amount of MPEG-1/2/4 content.

Comparing the MPEG-7 visual descriptors with the features that we have sur-

veyed, it becomes clear that for a feature to be successful and be able to become part

of the standard, it has to be robust, general, and cost-effective. Features whose appli-

cations are limited to a small domain typically are not included in standards.

Features alone are far from enough for video/audio indexing and analysis. Al-

though feature extractions (especially from the compressed domain) will continue

to be a research topic, there are important problems like (1) how to obtain seman-
tic-level knowledge and understanding from these low-level features, and (2) the syn-

ergic integration of features from multiple media such as video, audio, text, and

metadata. These problems are challenging and demand rigorous and systematic in-

vestigation.
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