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ABSTRACT 

This paper presents new methods for automatically 
integrating, summarizing and evaluating multimedia 
knowledge. These are essential for multimedia 
applications to efficiently and coherently deal with 
multimedia knowledge at different abstraction levels such 
as perceptual and semantic knowledge (e.g., image 
clusters and word senses, respectively). The proposed 
methods include automatic techniques (1) for interrelating 
the concepts in the multimedia knowledge using 
probabilistic Bayesian learning, (2) for reducing the size 
of multimedia knowledge by clustering the concepts and 
collapsing the relationships among the clusters, and (3) for 
evaluating the quality of multimedia knowledge using 
notions from information and graph theory. Experiments 
show the potential of knowledge integration techniques 
for improving the knowledge quality, the importance of 
good concept distance measures for clustering and 
summarizing knowledge, and the usefulness of automatic 
measures for comparing the effects of different processing 
techniques on multimedia knowledge. 
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1. INTRODUCTION 

This paper focuses on the integration, summarization and 
evaluation of multimedia knowledge representing 
perceptual or semantic information about the world 
depicted by, or related to an annotated image collection. 
Existing techniques are domain specific and do not 
generalize to arbitrary multimedia knowledge. Knowledge 
is usually defined as facts about the world and is often 
represented as concepts and relationships among the 
concepts, i.e., semantic networks. Concepts are 
abstractions of objects, situations, events or perceptual 
patterns in the world (e.g., a color pattern and concept 
Car); relationships represent interactions among concepts 
(e.g., color pattern one visually similar to color pattern 
two, and "sedan" specialization of "car"). 

Automatic knowledge integration, summarization and 
evaluation are essential for multimedia applications 
because multimedia applications often deal with 
multimedia knowledge at different abstraction levels such 
as perceptual and semantic knowledge (e.g., image 
clusters and word senses, respectively), which are usually 
extracted using different techniques. This diverse 
multimedia knowledge needs to be integrated to be uses in 
a coherent and meaningful way by applications. 
Furthermore, it is often necessary to reduce the 
multimedia knowledge in order to keep the most 
representative and useful multimedia knowledge, before 
or after the knowledge integration. Hence, ways to 
quantify the consistency, completeness and conciseness of 
the multimedia knowledge are essential to evaluate and 
compare any of these knowledge integration and 
summarization techniques. 

Related work on multimedia knowledge integration 
includes generic pattern classification techniques. In 
particular, Bayesian Networks (BNs) allow the discovery 
of the statistical structure of a domain but they are not 
optimized for multimedia. There is a lot of work in the 
literature on building and fine-tuning classifiers for 
recognition of objects and scenes in images [17,20,22], 
among other multimedia; however, these are usually 
constrained to a specific domain and trained on skewed 
data sets. Prior work on multimedia knowledge 
summarization has been limited to efforts in network and 
concept reduction such as EZWordNet [14] and VISAR 
[7]. EZ.WordNet.1-2 are coarser versions of the English 
dictionary WordNet generated by collapsing similar word 
senses and by dropping rare word senses [14]. This 
process is governed by five rules manually designed by 
researchers for WordNet so they are not applicable to 
other knowledge bases or other kinds of knowledge such 
as perceptual knowledge. WordNet organizes English 
words into sets of synonyms (e.g., "rock, stone") and 
connects them with semantic relations (e.g., 
generalization) [15]. VISAR is a hypertext system for the 
retrieval of textual captions [7]. One of the functionalities 
of the VISAR system is the representation of the retrieved 
citations as a network of key concepts and relationships. 
Several reduction operators are used in this process (e.g., 
replace two concepts for a common ancestor) but the 
reduction operators are again manually defined and 



lacking generality. Furthermore, the methodology 
followed by some of the reduction operators is not clearly 
specified. Prior work relevant to multimedia knowledge 
evaluation includes manual evaluation of semantic 
ontologies [9] and automatic but application-oriented 
evaluation of multimedia knowledge [1]. 

This paper presents new methods for integrating, 
summarizing and evaluating multimedia knowledge. In 
contrast to prior work, our techniques are automatic and 
generic applying to any multimedia knowledge that can be 
expressed as a set of concepts (e.g., image clusters and 
word senses), relationships among concepts (e.g., feature 
descriptor similarity, and generalization and aggregation 
relations), and instances of concepts (i.e., images and/or 
text representing the concepts). These methods are 
developed and used within the IMKA (Intelligent 
Multimedia Knowledge Application) system [4], which 
aims at extracting useful knowledge from multimedia and 
implementing intelligent applications that use that 
knowledge. The IMKA system uses the MediaNet 
framework to represent multimedia knowledge [5], which 
is presented in the next section. 

In the IMKA system, the integration of multimedia 
knowledge consists of discovering new relationships 
between the concepts in the knowledge. The proposed 
approach for multimedia knowledge integration is based 
on building meta-classifiers for the concepts and learning 
statistical dependencies among them using a Bayesian 
network. The summarization of multimedia knowledge 
aims at reducing the size of the knowledge (in terms of 
number of concepts and relationships) by grouping similar 
concepts together. The IMKA system summarizes 
multimedia knowledge by calculating the distances 
between concepts using a novel concept distance measure, 
by grouping similar concepts into super-concepts, and by 
collapsing the relationships among super-concepts. 
Knowledge summarization could either precede or 
proceed knowledge integration; in fact, multimedia 
knowledge can be integrated and summarized in multiple 
stages and in different order. This paper also proposes 
automatic techniques for measuring the consistency, the 
completeness and the conciseness of multimedia 
knowledge based on information theory and graph notions 
such as entropy and graph density. Experiments show the 
potential of knowledge integration techniques for 
improving the knowledge quality, the importance of good 
concept distance measures for clustering and summarizing 
knowledge, and the usefulness of automatic measures for 
comparing the effects of different processing techniques 
on multimedia knowledge. 

The paper is organized as follows. Section 2 defines and 
exemplifies multimedia knowledge by presenting the 
multimedia knowledge representation framework 
MediaNet. Sections 3, 4 and 5 describe the proposed 
methods for multimedia knowledge integration, 

summarization and evaluation, respectively. Section 6 
presents the experiment setup and results in evaluating the 
proposed techniques. Finally, section 7 concludes with a 
summary and a discussion of future work. 

2. MEDIANET 

MediaNet is a unified knowledge representation 
framework that uses multimedia information for 
representing semantic and perceptual information about 
the world. The main components of MediaNet include 
concepts, relations among concepts, and media 
representing concepts and relationships. Examples of 
media are images, text and feature descriptors such as 
color histogram. MediaNet extends and differs from 
related work such as the Multimedia Thesaurus [21] in 
two ways: (1) in combining perceptual and semantic 
concepts in the same network, and (2) in supporting 
perceptual and semantic relationships that can be 
represented by media. 

Concepts can represent either semantically meaningful 
objects (e.g., car) or perceptual patterns in the world (e.g., 
texture pattern). MediaNet models the traditional semantic 
relations such as generalization and aggregation but adds 
additional functionality by modeling perceptual relations 
based on feature descriptor similarity and constraints (e.g., 
condition on the distance of the color histograms). For 
example, perceptual knowledge for an image collection 
could be image clusters constructed based on visual and 
text feature descriptor similarity, and feature descriptor 
similarity and statistical relationships among the clusters 
[2]. Semantic knowledge for an annotated image 
collection could be the senses of the words in the textual 
annotations and semantic relationships among them as 
given by the electronic dictionary WordNet; the sense of 
each word could be disambiguated by matching the 
textual annotations of all the images in a cluster with the 
definitions of each possible sense [3]. In MediaNet, both 
concepts and relationships are defined and/or exemplified 
by multimedia information such as images, video, audio, 
graphics, text, and audio-visual feature descriptors. 
Feature descriptors can also be associated to the 
multimedia content (e.g., color histogram for images and 
tf*idf for textual annotations). 

An example of multimedia knowledge represented using 
MediaNet is shown in Figure 1. Weights and probabilities 
can be assigned to the concepts, relationships, and media 
representations in MediaNet to capture positive and 
negative examples of concepts and user feedback, in other 
words, the process of extracting semantics from percepts 
(i.e., automatic text annotation using visual feature 
descriptors). MPEG-7 is an international standard for the 
description of multimedia that has the potential to 
revolutionize current multimedia representation and 
applications [16]. Multimedia knowledge expressed using 



the MediaNet framework can be encoded using MPEG-7 
description tools, in particular, using the tools for 
describing semantics and models of multimedia [5]. 
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Figure 1: Example of multimedia knowledge. 

3. MULTIMEDIA KNOWLEDGE 
INTEGRATION 

The process of integrating multimedia knowledge consists 
of discovering relationships among concepts in 
multimedia knowledge to enable applications to make a 
coherent and meaningful use of diverse multimedia 
knowledge. As described in the previous section, the input 
multimedia knowledge is a set of concepts and 
relationships among concepts where both concepts and 
relationships can be either semantic or perceptual, and 
represented by different media such as images and text. 
Feature descriptors can also be associated with the images 
and the textual annotations. 

 

Figure 2. Multimedia knowledge integration process. 

The proposed approach for multimedia knowledge 
integration consists of three steps, as shown in Figure 2: 
(1) building meta-classifiers for the concepts, (2) building 
a Bayesian Network (BN) whose nodes are the trained 
meta-classifiers and whose initial topology is the one of 
the known multimedia knowledge; and (3) adding the 
learned statistical relationships from the Bayesian network 
to the multimedia knowledge. This section describes each 
step. In Figure 2, dotted ellipses and dash lines represent 
perceptual concepts and relationships, respectively; plain 

ellipses and plain lines represent semantic concepts and 
relationships, respectively; and arrow lines represent 
media representations of concepts. Other figures in this 
paper follow the same conventions. 

3.1 Meta-Classifier Building 
In the first step, one or more classifiers are built for each 
concept and, from these, a meta-classifier per concept. 
Meta-classifiers are trained to predict the presence of 
concepts in images or their associated textual annotations 
based on their visual and text feature descriptors. 

A classification algorithm is a procedure for selecting a 
hypothesis from a set of alternatives that best fits a set of 
observations [8]. Classifiers basically learn how to predict 
the class (i.e., the value of the class attribute) of an input 
(given feature attributes of the input). The IMKA system 
uses a diverse set of classification algorithms: Naïve 
Bayes, Support Vector Machine (SVM), Neural Network 
(NN) and k-Nearest Neighbor (KNN) classifiers. The 
rationale for selecting each algorithm follows. The Naïve 
Bayes classifier is a very simple classifier. SVM and NN 
classifiers are slow at training but quick at classification. 
The KNN classifier can be trained quickly but it is slow at 
classification. Finally, the NN classifier requires large 
training sets whereas the KNN classifier does not. 

A classifier is trained to predict the presence of a concept 
in an image based on a given combination of visual and 
textual feature descriptors associated with the image or its 
textual annotations. Therefore, the feature attributes input 
to each classifier for an image are a subset of the feature 
descriptors associated with the image. The class attribute 
that the classifier is trying to predict will have labels such 
as {presence, no presence} or {strong presence, weak 
presence, no presence} that indicate different strengths of 
the presence of a concept in an image. In the case of two-
class classifiers (e.g., SVMs), several classifiers are used 
to learn more than two classes by using the one-per-class 
coding technique [8]. Multiple classifiers can be trained 
for the same concept using different combinations of 
feature descriptors or different classification algorithms. 
All the classifiers for a concept are combined into a meta-
classifier, if needed, using bagging, boosting or stacking 
techniques [8] 

The input feature attributes for building the classifiers of a 
concept are the visual and text feature descriptors 
associated with the images in the multimedia knowledge. 
The IMKA system uses several visual and text feature 
descriptors [2]. The supported visual feature descriptors 
are color histogram, Tamura texture, and edge direction 
histogram globally for images; and mean LUV color, 
aspect ratio, number of pixels, and position locally for 
automatically-segmented image regions. The IMKA 
system also implements two of the most popular schemes 
for representing textual annotations: tf*idf, term frequency 

+descriptors+descriptors 

Meta - 
Classifiers 
BN nodes 

BN learned topology 
BN initial topology 

Descriptor 
centroids Descriptor

centroids

(1) Meta - 
Classifier 
Building (3) Relation 

Learning 

(2) BN 
Building 

“stone” 

“rock” 
“sky” 

“sunset” 

“stone” 

“sunset”

“sky”



weighted by inverse document frequency; and log 
tf*entropy, logarithmic term frequency weighted by 
Shannon entropy of the terms over the documents. The 
feature descriptors can be normalized before being 
inputted to the classifiers by adjusting the mean and 
variance of each bin to zero and one, respectively. Feature 
descriptor normalization is desirable especially when 
classifiers deal with multiple feature descriptors. 

Apart from the feature attributes, each image is associated 
a score indicating the strength of the presence of each 
concept in the image. These concept-presence scores are 
quantized uniformly into a given number of levels, which 
correspond to the labels of the class attribute for the 
classifiers. The concept-presence scores are automatically 
initialized during the multimedia knowledge extraction 
process, e.g., likelihood that a sense is the real meaning of 
a word annotating an image [3]. The initial values are 
propagated along the multimedia knowledge network. For 
example, if an image contains the concept Dog with a 
given probability, it also contains the concept Animal 
with, at least, the same probability because concept 
Animal is a generalization of concept Dog. In the IMKA 
system, concept-presence scores can be propagated not 
only through specialization/generalization relations but 
also through any relation from the relationship’s source to 
target and/or vice versa given some weights. These 
propagation relation weights can be either learned or 
specified by an expert. Common values for propagation 
relation weights are shown in Table 1. 

3.2 Bayesian Network Building 
The second step in the multimedia knowledge integration 
process is to build a Bayesian network using the meta-
classifiers constructed in the previous step and the 
network of multimedia knowledge. 

Bayesian Networks (BNs), also known as Belief 
Networks, are directed graphical models that allow 
representing joint probability distributions of several 
random variables in a compact and efficient way [8]. The 
nodes of a Bayesian network represent the random 
variables, which are specified by conditional probability 
distributions. In the case of discrete random variables, the 
conditional probability distribution of a node is a table 
that lists the probability that the child node takes on each 
of its different values for each combination of the values 
of its parents. Several conditional independence 
assumptions apply to Bayesian networks. The lack of arcs 
among nodes represents conditional independence among 
the nodes. Moreover, a node in a Bayesian network is 
independent of its ancestors given its parents. 

A Bayesian network is fully specified by the topology or 
structure of the graph, and the parameters of each 
conditional probability distribution. It is possible to learn 
both the structure and the parameters of a Bayesian 

network for a given domain; however, the former is much 
harder than the latter. Learning the structure of Bayesian 
networks is especially hard when there is not prior 
knowledge of the Bayesian network's topology. However, 
once constructed for a domain, a Bayesian network can be 
used for probabilistic inference or reasoning about the 
domain; it can answer arbitrary questions about any 
conditional or joint probability of one or more of the 
random variables. 

Bayesian networks are used during the multimedia 
knowledge integration process to learn statistical 
dependencies among concepts in the multimedia 
knowledge. Two reasons prompted the selection of 
Bayesian networks for this task. First, there are algorithms 
to learn statistical dependencies among the nodes in a 
Bayesian network by learning the structure of a Bayesian 
network. If the nodes in a Bayesian network represent 
concepts, then, the algorithms are actually learning 
statistical relationships among the concepts. The second 
reason is that once built, the Bayesian network can answer 
arbitrary probabilistic questions about the concepts, thus 
functioning as a knowledge classifier in itself. 

A Bayesian network is built for multimedia knowledge 
that needs to be integrated as follows. The nodes of the 
Bayesian network are the meta-classifiers built as 
described in section 3.1; each node is thus indirectly 
representing a concept in the multimedia knowledge. The 
values of the nodes are the class labels of the meta-
classifiers. The topology of the Bayesian network is 
initialized to the topology of the multimedia knowledge 
network; this is the best guess for the network topology 
based on prior knowledge. The initial multimedia 
knowledge from an image collection could be, for 
example, the perceptual and semantic knowledge directly 
extracted from the collection [2,3] or some multimedia 
knowledge summary. Bayesian networks cannot have 
directed cycles so certain arcs in the initial network may 
need to be removed to avoid directed cycles. The IMKA 
system uses the Markov Chain Monte Carlo (MCMC) 
algorithm called Metropolis-Hastings (MH) [10] to learn 
the topology of the Bayesian network. The training data 
for learning the Bayesian network is obtained by 
classifying the images in the multimedia knowledge using 
all the meta-classifiers. 

3.3 Relationship Learning 
The third step in the multimedia knowledge integration 
process is to add the newly learned statistical relationships 
among concepts to the multimedia knowledge. 

The learned topology of the Bayesian network basically 
reveals important statistical relationships among the 
concepts in the multimedia knowledge. These 
relationships are compared with the known relationships 
among the concepts in the multimedia knowledge. A 



statistical relationship is added to the multimedia 
knowledge for each arc between two concepts in the 
Bayesian network that does not already have a 
corresponding relationship in the initial multimedia 
knowledge. New statistical relationships could be added 
to the multimedia knowledge for each arc in the learned 
Bayesian network; however, some of these statistical 
dependencies are likely to be caused by already known 
relationships among the concepts. 

4. MULTIMEDIA KNOWLEDGE 
SUMMARIZATION 

This section presents techniques for automatically 
summarizing arbitrary multimedia knowledge by reducing 
the knowledge size in grouping similar concepts together. 
During this process, the number of concepts and 
relationships in the multimedia knowledge is reduced by 
grouping similar concepts into super-concepts and 
collapsing the relationships among the concepts in two 
super-concepts into a super-relationship. 

The proposed approach for multimedia knowledge 
summarization consists of three steps, as shown in Figure 
3: (1) obtaining the distances among the concepts in the 
multimedia knowledge; (2) clustering concepts based on 
the concept distances; and (3) reducing the concepts and 
the relationships in the multimedia knowledge based on 
the concept clusters. This section discusses each step in 
detail. In a preliminary stage, the least frequent concepts 
can be discarded from the multimedia knowledge and 
weights can be assigned to concepts for personalized 
knowledge summarization. 

 
Figure 3. Multimedia knowledge summarization process. 

4.1 Concept Distances 
The first step in summarizing multimedia knowledge is to 
calculate the distances among concepts in the multimedia 
knowledge. Concept distances are calculated based on the 
concept statistics and the topology of the multimedia 
knowledge. 

There are many proposed methods for calculating 
semantic distance or similarity among concepts in 
semantic concept networks such as WordNet. Some 
methods rely uniquely on the hierarchical specialization/ 
generalization relationships among concepts [12,13] 
whereas others take into account all the semantic relations 
[19]. There are methods that use exclusively the concept 
network topology [13,19] while others combine both 
concept network topology information and text corpus 
statistics (e.g., concept probabilities) [12]. The most 
commonly used concept network for calculating semantic 
relatedness is WordNet [12,13,19]. Recent work evaluated 
five semantic distance measures using WordNet [6], 
including [12] and [13], in a real-word spelling error 
correction system in which [12] was found to outperform 
the rest. 

The semantic measure described in [12] only considers 
the specialization/generalization concept hierarchy in 
WordNet. The weight or distance of the relationship 
between a child concept c and a parent concept par(c) is 
the Information Content (IC), as defined in information 
theory, of the child concept given the parent concept, i.e., 
of encountering an instance of the child concept c given 
an instance of the parent concept par(c), as follows: 

c))log(p(par(log(p(c))
par(c))clog(p(par(c))cIC(par(c))dist(c, Jiang

+−=
−==  (1)

where p(c) is the probability of encountering an instance 
of concept c. It is important to note that an instance of a 
child concept is always an instance of the parent concept 
and, therefore, p(c∩par(c)) = p(c). Then, the distance 
between any two concepts c and c’ in the concept 
hierarchy reduces to the following expression: 

)))log(p(c'(log(p(c)) )))c'c,log(p(dcp(2
)c'dist(c, Jiang

+−∗
=  (2)

where dpc(c, c’) is the deepest common ancestor of both 
concepts c and c’. 

The IMKA system uses a novel concept distance measure 
that also uses concept statistics but is not limited to 
specialization/generalization concept relationships. The 
proposed concept distance measure generalizes measure 
[12] to an arbitrary concept network with different 
relations among concepts similar to measure [19]. 
Assuming binary relations, the distance of a relationship r 
between concept c and concept c’ is the summation of the 
information content of concept c given concept c’ and 
relationship r, and of the information content of concept c’ 
given c and relationship r, as follows: 
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where p(c) is still the probability of encountering an 
instance of concept c; p(c/c’,r) is the probability of 
encountering an instance of concept c given an instance of 
concept c’ through relationship r. The intuition behind 
Equation (3) is the following: if a relationship makes two 
concepts almost interchangeably, i.e., p(c/c’,r) and 
p(c’/c,r) are close to 1, the concepts are very similar given 
that relationship; if not, they are dissimilar. The distance 
between any two concepts is calculated as the total 
distance of the shortest distance path between the two 
concepts in the concept network. Therefore, the proposed 
concept distance satisfies the non-negative and inequality 
properties of a distance function. 

If the concept network is a specialization/generalization 
concept hierarchy, the proposed concept distance measure 
(see Equation (3)) simplifies to the semantic distance 
measure [12] (see Equation (2)). In this case, concept c’ is 
the parent of concept c, c’ = par(c), and r is the 
specialization/generalization relationship among them. 
The proof is straight forward realizing that an instance of 
concept c is always an instance of the parent concept 
par(c) and, therefore, log(p(par(c)/c,r) is zero. 

There are different approaches toward calculating the 
probabilities of concepts such as WordNet's senses in a 
text corpus. The approach often used in conjunction with 
Equation (2) obtains the frequency of each concept c as 
follows: 

∑
∈

=
words(c)w

Richardson |)concepts(w|
freq(w)freq(c)  (4)

where words(c) is the set of words representing all the 
descendants of concept c in the generalization concept 
hierarchy including concept c, freq(w) is the frequency of 
concept w in the text corpus (i.e., word occurrence), and 
concepts(w) is defined as the set of concepts represented 
by word w [18]. As for WordNet's senses, this approach 
assumes concepts are represented by one or more words 
(e.g., “rock, stone”), and that the same word can represent 
more than one concept at the same time (e.g., “rock, 
stone” and “rock, candy”). Concept probabilities are then 
calculated from the concept frequencies as follows: 

N
freq(c)p(c)Richardson =  (5)

where N is the total number of distinct words 
representing, at least, one concept. Please, note that a 
concept that is an ancestor for all the rest of the concepts 
will have a probability of exactly 1. 

Another way to understand this approach is that, first, 
strict concept frequencies are found for each concept 
without taking into account the specialized concepts or 
descendants; then, concept frequencies are propagated 
recursively through the specialization/generalization 
concept hierarchy from child concepts to direct parent 
concepts; and, finally, concept probabilities are calculated 
using Equation (5). In formulistic terms, this means that 
Equation (4) can be also expressed as follows: 

∑
∈

=
s(c)descendantc'

Richardson )(c'freq'freq(c)  (6)

given 

∑
∈

=
(c)words'w

Richardson |)concepts(w|
freq(w)(c)freq'  (7)

where words'(c) is defined as the set of words strictly 
representing concept c, without considering the words of 
the descendants of concept c. 

The IMKA system generalizes this procedure of obtaining 
concept probabilities to an arbitrary concept network with 
several types of relationships among concepts. First, strict 
concept frequencies are found for each concept without 
taking into account related concepts. The multimedia 
knowledge contains the information of which concepts are 
instantiated in which images, and how many times a 
concept is instantiated in an image. For example, images 
are assigned to the concepts corresponding to the senses 
of all the words in the associated textual annotations, with 
the same frequency. The strict frequency of concept c is 
calculated as follows: 

∑
∈

=
images(c)i

i)freq(c,(c)freq'  (8)

where freq(c,i) is the number of times concept c is 
instantiated in image i. As an example, the concept House 
would have a frequency of five for an image whose textual 
annotations contain the word "house" five times. 

In the second step, the concept frequencies are propagated 
in the concept network recursively through the 
relationships among concepts. Considering a relationship r 
that connects concepts c and c’, a different fraction of the 
frequency of concept c will be added to the frequency of 
concept c’ based on relationship r, and vice versa. As an 
example, for the specialization/generalization relation, if 
concept c specializes concept c’, the frequency of concept 
c is added in full to the frequency of concept c’, but zero 
in the opposite direction. The propagation weights for 
each relation could be specified by an expert or learned 
automatically using machine learning techniques. In 
formulistic terms, the total frequency of concept c in the 
image collection is calculated as follows: 



∑ ∑
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where neighbors(c) is the set of concepts directly 
connected to concept c through relationships, 
relations(c,c’) is the set of relationships connecting 
concepts c and c’, and w(r) is the propagation weight for 
relationship r (see Table 1 for examples). To avoid loops, 
concepts are only allowed to contribute once to the 
frequency of another concept. The relations in the 
multimedia knowledge affect the concept frequencies and, 
therefore, the distances among the concepts through w(r). 

Finally, the concept probabilities are calculated based on 
the concept frequencies using the following formula: 
















=

∑
∈ )concepts(Kc

(c)freq'
freq(c)1,minp(c)  

(10) 

where K is the multimedia knowledge being summarized 
and concepts(K) is the set of concepts in multimedia 
knowledge K. The concept frequencies are not exclusive 
that is the reason for dividing by the summation of strict 
concept frequencies instead of the summation of total 
concept frequencies. Also, due to the propagation of 
concept frequencies through relations other than 
specialization/generalization relations, the total frequency 
for some concepts may be larger than the summation of 
strict concept frequencies. 

4.2 Concept Clustering 
The second step in the multimedia knowledge 
summarization process is to cluster the concepts based on 
the distances among them. The concepts are clustered into 
a given number of clusters, the desired number of 
concepts in the multimedia knowledge summary. 

The IMKA system supports several data clustering 
algorithms such as the k-means algorithm, the Ward 
algorithm, the k-Nearest-Neighbor algorithm (KNN), the 
Self-Organizing Map algorithm (SOM) and the Linear 
Vector Quantization algorithm (LVQ). A modified KNN 
clustering that generates a given number of clusters is 
selected for clustering the concepts. The KNN clustering 
algorithm was selected to cluster concepts in multimedia 
knowledge because of the continuity and the non-globular 
shape of the resulting clusters. Moreover, the KNN 
clustering algorithm does not use or require a specific 
distance function. The input of the KNN clustering 
algorithm [11] is the number of shared neighbors kt, and 
the k nearest neighbors, in order from closest to farthest, 
for each data item to be clustered. The algorithm groups 
every pair of data items that have at least kt shared 
neighbors. The vote of shared neighbors can be weighted 
according to their positions in the ordered k nearest 

neighbors (e.g., sharing the second neighbor counting 
twice as much as sharing the third neighbor). In the KNN 
clustering algorithm, the number of resulting clusters is 
determined indirectly by the value of kt. 

The KNN clustering algorithm is modified slightly to 
generate a given number of clusters. Whereas the KNN 
clustering algorithm merges the clusters of two data items 
with at least kt shared neighbors, the modified KNN 
clustering algorithm merges the clusters of the two data 
items with the largest number of shared neighbors until a 
given number of clusters is reached. Weighting of shared 
neighbors is also supported as well as the reduction of the 
number of shared neighbors based on data item weights. If 
a data item is more important (i.e., it has a higher weight), 
then, the data item will have fewer shared neighbors and 
be clustered with fewer other data items; it will tend to 
maintain its own identity. A centroid for each cluster is 
obtained as the data item in the cluster with maximum 
accumulated weighted shared neighbors to the rest of the 
data items in the cluster. 

The concepts in the multimedia knowledge are clustered 
using the modified KNN clustering algorithm as follows. 
The input to the clustering algorithm is the desired 
number of concepts in the multimedia knowledge 
summary, and the k nearest concepts for each concept. 
Different shared neighbor weighting schemes [11] can be 
selected as well as individual weights for the concepts 
during clustering. The result of the concept clustering is a 
set of concept clusters and a centroid for each cluster. 

4.3 Knowledge Reduction 
The final step in the multimedia knowledge 
summarization process consists of generating the 
multimedia knowledge summary using the concept 
clusters and distances among concepts. 

Once the clusters of concepts have been obtained, the 
multimedia knowledge summary is generated as follows. 
Each cluster becomes a super-concept in the summary and 
inherits the text and image representations of the cluster 
members. The most important text representation of the 
super-concept is the one of cluster centroid. If all the 
members of a cluster are semantic concepts, the super-
concept will be labeled a semantic concept; otherwise, it 
will be labeled as a perceptual concept. The type of the 
super-concept is set to the type of the cluster centroid 
(e.g., visual concept based on color histogram similarity). 
Super-relationships are created between pairs of super-
concepts based on the relationships between their cluster 
centroids in the original multimedia knowledge. The type 
of the super-relationship between two super-concepts is 
set to the type of the largest-distance relationship between 
the cluster centroids (e.g., generalization), as a worst-case 
scenario. Another possible approach for setting the type of 
a super-relationship would be selecting the most dominant 



relationship (e.g., the one that appears most often between 
the concepts grouped by the two super-concepts). 

5. MULTIMEDIA KNOWLEDGE 
EVALUATION 

This section proposes several automatic application-
independent techniques for evaluating the goodness of 
multimedia knowledge based on information and graph 
theory notions. These follow criteria used to manually 
evaluate and assess semantic ontologies and knowledge 
bases [9]. In contrast, many multimedia applications 
evaluate the quality of their multimedia knowledge by 
assessing the performance of complete applications using 
that knowledge, for example, automatic annotation 
performance of images [1]. 

A review on previous work on ontology evaluation has 
identified five criteria for the manual evaluation and 
assessment of semantic ontologies [9]. These criteria are 
the following: consistency, completeness, conciseness, 
expandability and sensitiveness. Expandability refers to 
the efforts required to add a new definition to an ontology, 
without altering the properties in the ontology. 
Sensitiveness relates to how small changes in a definition 
alter the set of well-defined properties guaranteed in an 
ontology. These two criteria are dependent on the way the 
knowledge is constructed, entered and maintained in the 
ontology so they are not considered in this section. This 
section proposes automatic ways for measuring the other 
three criteria -consistency, completeness and conciseness- 
for multimedia knowledge. 

5.1 Consistency 
Consistency refers to whether it is possible to obtain 
contradictory conclusions from valid input definitions. In 
terms of concept distances, the consistency of multimedia 
knowledge can be evaluated by calculating the spread of 
the total distances of the k shortest distance paths between 
every pair of concepts with respect to the shortest distance 
path. The larger the distance spread among concepts, the 
more inconsistent or contradictory the different paths 
connecting the concepts. 

In formulistic terms, the proposed way to measure the 
inconsistency of multimedia knowledge K is as follows: 
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where concepts(K) is the set of concepts in multimedia 
knowledge K, k is the number of shortest distance paths 
considered between concepts, and d(c,c’,i) is the distance 

between concepts c and c’ through path i. The k shortest 
distance paths are ordered from shortest to longest 
distance starting at i = 1 at to i = k. The lower ICST(K) 
for multimedia knowledge K, the more consistent the 
multimedia knowledge. 

5.2 Completeness 
Completeness refers to the completeness of both the 
ontology and the definitions in the ontology. The two 
proposed ways of evaluating the completeness of 
multimedia knowledge try to quantify the uniformity of 
the multimedia knowledge using entropy and graph 
density. The more uniform the multimedia knowledge, the 
more complete. 

The first proposed way to calculate the uniformity of 
multimedia knowledge is by calculating the entropy of 
concepts, as follows: 

∑
∈

∗−=
)concepts(Kc

log(p(c))p(c)CPT_H(K)  (12) 

where p(c) is the probability of concept c obtained as 
described in section 4.1. The higher CPT_H(K) for 
multimedia knowledge K, the more complete the 
multimedia knowledge. 

The second proposed way to calculate the uniformity of 
multimedia knowledge adapts the formula for graph 
density to weighted relationships, as follows: 
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where relations(K) is the set of relationships in 
multimedia knowledge K, and weight(r) is the weight of 
relationship r. If d(r) is the distance of relationship r and 
dmax is the maximum distance for a relationship, the 
weight of relationship r is obtained as follows: 

dmax
d(r)dmaxweight(r) −=  (14) 

The higher CPT_D(K) for multimedia knowledge K, the 
more complete the multimedia knowledge. 

Another way to measure the completeness of the semantic 
part of multimedia knowledge would be to compare it 
with an existing ontology or thesaurus, preferably, in the 
same domain for which the multimedia knowledge was 
constructed (e.g., News or Nature). However, thesauri do 
not exist for every domain. Comparing the semantic 
knowledge with general-purpose thesaurus such as 
WordNet is also not desirable because these generic 
thesauri often treat different domains with different 



degrees of detail (e.g., good coverage of Animal species 
but limited coverage of News-related concepts in 
WordNet). 

5.3 Conciseness 
Conciseness refers to whether all the information in the 
ontology is precise, necessary and useful. The conciseness 
of multimedia knowledge can be evaluated by applying 
Single-Value Decomposition (SVD) to the concept 
distance matrix to find the rank of the matrix. The number 
of non-null eigen values is compared with the number of 
concepts. The closer the number of non-null eigen values 
to the number of concepts, the more concise the 
multimedia knowledge. 

In formulistic terms, the proposed way to calculate the 
inconsistency of multimedia knowledge K is as follows: 

|)concepts(K|
rank(M)|)concepts(K|ICCS(K) −=  (15)

where M is the concept distance matrix, and rank(M) is 
the rank of the matrix M. The lower ICCS(K) for 
multimedia knowledge K, the more concise the 
multimedia knowledge. 

6. EXPERIMENTS 

Semantic and perceptual multimedia knowledge was 
integrated and summarized for a collection of images with 
associated textual annotations. The semantic and 
perceptual multimedia knowledge was generated for the 
annotated image collection using the techniques described 
in [2] and [3], respectively. The proposed multimedia 
knowledge evaluation measures were used to compare the 
proposed approaches with respect to several baseline 
approaches. The knowledge evaluation measures were 
also evaluated in these experiments by comparing their 
values for knowledge extracted from the image collection 
with the ones for random knowledge. 

6.1 Experiment Setup 
The test set was a collection of 25 images of plants from 
the Berkeley's CalPhotos collection (http://elib.cs. 
berkeley.edu/photos/). The images had short annotations 
in the form of keywords or well-formed phrases, as the 
example shown in Figure 4. 

Perceptual knowledge was extracted by clustering the 
images using the k-means clustering algorithm based on 
the color histogram of the images, the log tf*entropy of 
the textual annotations and an integrated feature vector 
with both descriptors, and by finding relationships among 
the concepts based on statistical relations among the 
clusters [2]. Semantic knowledge was constructed by 

disambiguating the sense of the words in the textual 
annotations using WordNet and the image clusters [3]. 
Relationships among the semantic concepts were 
discovered based on the relationships among words senses 
in WordNet. The resulting multimedia knowledge had 75 
semantic concepts, 15 perceptual concepts, 67 
generalization relations, 16 aggregation relations and 15 
association relations. 

 
Figure 4. Example of a plant image with corresponding 

textual annotations. 

Summaries of different sizes were generated from the 
extracted multimedia knowledge using the propagation 
relation weights shown in Table 1, among others. 
Additional statistical relationships were discovered for 
one of the multimedia knowledge summaries using 
different classifiers – Naïve Bayes, SVM and 3-Nearest 
Neighbors (3NN) classifiers – trained on the integrated 
color histogram/log tf * entropy feature descriptor. The 
concept-presence scores were quantized into two values 
representing the presence and the absence of concepts in 
images, respectively. 

Table 1: Propagation weights for some relations from 
source to target and vice versa. 

Relation Source to Target Target to Source
Equivalence 1.0 1.0 
Generalization 0.0 1.0 
Aggregation 0.5 0.5 
Statistical 0.25 0.25 
 

The criteria to evaluate the multimedia knowledge 
integration and summarization were ICST(K), CPT_H(K), 
CPT_D(K) and ICCS(K) obtained as described in section 
5. The performance of the proposed methods was 
compared to several baseline approaches. The baseline 
approach for multimedia knowledge summarization used 
the semantic distance [12] instead of the proposed concept 
distance. For multimedia knowledge integration, the 
baseline approach used the ZeroR classifier (which 
predicts the majority class). The four measures for 
multimedia knowledge evaluation were also evaluated by 
comparing the results obtained for the multimedia 
knowledge extracted from the image collection and for a 
randomized version of the multimedia knowledge. 

 
What:    Plant, flower, orchid, 
    western coralroof 
Where:    Montana, United States 
When:    1959-05-07 
Creator:    C. Webber 



6.2 Experiments Results 
Table 2, Table 3 and Table 4 show the values for 
ICST(K), CPT_H(K) and CPT_D(K) obtained in the 
experiments evaluating the proposed techniques for 
evaluation, summarization and integration of multimedia 
knowledge, respectively. The values of ICCS(K) have 
been omitted because they were zero in all the instances. 

Table 2 shows the results for the multimedia knowledge 
generated from the image collection using the proposed 
concept distance (dist(c,c’), see Equation (3)) and the 
semantic distance [12] (dist(c,c’)Jiang, see Equation (2)), 
and a random version of this multimedia knowledge. The 
random multimedia knowledge was generated by 
randomly changing the vertices of the relationships in the 
knowledge maintaining the types of the vertices. For 
example, if relationship r connected concept c and image i 
in the original multimedia knowledge, relationship r 
would connect any randomly chosen concept and image in 
the random multimedia knowledge. As expected, the 
random multimedia knowledge provides higher entropy 
than the extracted multimedia knowledge. On the other 
hand, the results for the distance spread and graph density 
of the extracted multimedia knowledge were better using 
the proposed concept distance. The semantic distance [12] 
did not perform very well because it is very conservative 
in calculating distances among concepts using only 
specialization/generalization relations. 

Table 2: Inconsistency and completeness results for 
extracted multimedia knowledge using the proposed 

concept distance and the semantic distance [12], and for 
random multimedia knowledge. 

 ICST CPT_H CPT_D 
Extracted 
       dist(c,c’) 
       dist(c,c’)Jiang 

 
16.32 
16.68 

 
9.14 
6.65 

 
0.0122 
0.0084 

Random 16.50 13.77 0.0119 
 

Table 3 shows the results in summarizing the extracted 
multimedia knowledge into different number of concepts 
(i.e., knowledge summaries of 3, 9 and 18 concepts) using 
the proposed concept distance and the semantic distance 
[12]. Comparing the results in Table 2 and Table 3, the 
summarization of multimedia knowledge seems to 
increase the graph density and reduce the concept entropy. 
The summaries obtained using the proposed concept 
distance seem to consistently provide better overall 
results. As an example, although the graph density is 
higher for the summary of size 3 using semantic distance 
[12], the entropy of this summary is very small; the 
contrary seems to happen for the summary of size 18. 
Interestingly, the results for the summaries generated 
using semantic distance [12] show important oscillations 

compared to the ones obtained with the proposed concept 
distance, which are more stable. 

Table 3: Inconsistency and completeness results in 
summarizing extracted multimedia knowledge into 

different number of concepts using the proposed concept 
distance and the semantic distance [12]. 

 Distance ICST CPT_H CPT_D 
3 dist(c,c’) 

dist(c,c’)Jiang 
15.82 

1.95 
0.14 
0.08

0.1666 
0.4998 

9 dist(c,c’) 
dist(c,c’)Jiang 

15.92 
0.00 

1.79 
1.10

0.0833 
0.0000 

18 dist(c,c’) 
dist(c,c’)Jiang 

16.43 
14.87 

1.04 
2.53

0.2157 
0.0196 

 

Finally, Table 4 shows the results obtained in integrating 
the multimedia knowledge summary of nine concepts 
(whose results are in the second row of Table 3) using 
different classification algorithms. The table also includes 
the number of new statistical relationships discovered 
using each classifier. The results for the ZeroR classifier 
(which predicts the majority class) are provided for 
baseline comparison. The tendency seems to be the 
following: the fewer statistical relationships are added to 
the multimedia knowledge, the larger the entropy and the 
distance spread, and the smaller the graph density of the 
integrated knowledge. The Naïve Bayes and SVM 
classifiers seem to provide the best overall results, which 
consistently range from average to good. It is also 
important to note the different effects of using different 
classifiers in the knowledge quality. For example, Naïve 
Bayes improves upon the non-integrated multimedia 
knowledge in all measures (second row of Table 3). The 
general tendency seems to be for the distance spread to 
decrease importantly, the entropy to decrease slightly, and 
the graph density to increase slightly when adding the new 
statistical relationships. 

Table 4: Inconsistency and completeness results in 
integrating the multimedia knowledge summary of nine 
concepts using different classifiers. Column Rels is the 
number of new statistical relationships discovered using 

each classifier. 

 ICST CPT_H CPT_D Rels 
Naïve Bayes 1.47 1.59 0.2500 12 
SVM 1.23 0.64 0.2777 14 
3NN 16.26 1.93 0.1250 3 
ZeroR 1.24 0.07 0.3194 17 

 

Some global conclusions that can be drawn from the 
experimentation follows. First, all the knowledge 
evaluation measures are useful in comparing different 



multimedia knowledge, concept distance measures and 
classifiers, among others, except for the inconsistency 
measure. The inconsistency measure was not very useful 
for the multimedia knowledge in these experiments 
because it lacked equivalence relationships among 
concepts. However, the large variation of the results 
especially observed for knowledge summaries of different 
size seem to indicate the need to review the definitions of 
some of these measures. Second, the discovery of new 
statistical relationships using classifiers and Bayesian 
networks usually improves the quality of the knowledge. 
However, the use of different classifiers has different 
effects on the results, which might be due to the fact that 
the Bayesian network is learned for the meta-classifiers 
and not the concepts themselves. The Bayesian network 
could be learned using both the meta-classifiers and the 
concepts (i.e., the actual presence or absence of a concept 
in the images); however, this would require the unfeasible 
task of generating the ground truth of which concepts 
appear in which images. Third, summarizing multimedia 
knowledge seems to increase the graph density and 
decrease the concept entropy. The use of different concept 
distances in the knowledge summarization process seems 
to have a very important impact in the quality of the 
resulting summaries. The proposed concept distance 
seems to provide fairly consistent results for different 
summary sizes during knowledge summarization and 
different classifiers during knowledge integration. 

7. CONCLUSIONS 

This paper has presented novel techniques for 
automatically integrating, summarizing and evaluating 
arbitrary multimedia knowledge. In particular, it has 
proposed (1) a novel way to integrate classifiers and 
Bayesian networks to discover statistical relationships 
among concepts; (2) a new technique for calculating 
distances among concepts used by a modified KNN 
algorithm to cluster concepts with the purpose of 
generating summaries of multimedia knowledge; and (3) 
automatic ways of measuring the quality of multimedia 
knowledge in terms of consistency, completeness and 
conciseness. Experiments have shown the potential of 
knowledge integration techniques for improving the 
knowledge quality, the importance of good concept 
distance measures for clustering and summarizing 
knowledge, and the usefulness of automatic measures for 
comparing the effects of different processing techniques 
on multimedia knowledge. 

Current work is focused on extending the evaluation of 
these techniques to more images, evaluation measures, 
classification algorithms and propagation relation weights, 
among others. Other important current work aims at 
improving the efficiency of the implementation of these 
techniques in terms of processing time and memory usage 
as well as the scalability of these methods for a large 

number of images and concepts by developing heuristic 
approximations of some of proposed knowledge 
integration and summarization techniques. Future work 
will consist of implementing and evaluating applications 
that use the constructed multimedia knowledge for image 
classification and retrieval, automated concept illustration, 
and multimedia knowledge browsing, as well as, 
proposing a complexity-constraint framework for 
personalizing the quality values of the multimedia 
knowledge including complexity to specific user 
applications. Some of the remaining open issues are the 
extraction of multimedia knowledge from dynamic 
content such as video and audio, and the dynamic update 
of the knowledge based on user feedback or other external 
knowledge resources. 
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