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ABSTRACT 

 

In this paper, we attempt to provide a comprehensive and high-level review of audio-

visual features that can be extracted from the standard compressed domains, such as MPEG-1 

and MPEG-2. The paper is motivated by the myriad of active research works in extraction and 

application of compressed-domain features in various fields, such as indexing, filtering, and 

manipulation. Compressed domain approaches avoid expensive computation and memory 

requirements involved in decoding and/or re-encoding. Selected features are categorized into 

four groups – spatial visual (e.g., color, texture, edge, shape), motion (e.g., motion field, 

trajectory), audio (e.g., energy, spectral features, pitch), and coding (e.g., bit rate, frame/block 

type). For each feature, we briefly discuss the extraction methods, computational complexity, 

potential effectiveness in applications, and possible limitations caused by compress-domain 

approaches. Finally, we briefly describe audio-visual features specified in the MPEG-7 standard 

and discuss the possibility of extracting them in the compressed domain. 

 

 

Keywords: features, video indexing, audio indexing, compressed-domain, multimedia, 

compression, MPEG-1, MPEG-2, MPEG-7. 
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I. Introduction 

Recent advances in computer, telecommunications, and consumer electronics industries 

have brought huge amount of multimedia information to a rapidly growing audience. More and 

more digital audio and video data are made available over the Internet. Traditional TV broadcast 

is moving into the digital and interactive era. People are starting to get high-speed network 

connections via DSL and cable modem. Multimedia content provides rich information to 

consumers, but also poses challenging problems of management, delivery, access, and retrieval 

because of its data size and complexity. 

 

In recent years, there has been active research trying to address these problems and make 

multimedia information efficiently accessible to the user. Researchers from signal processing, 

computer vision, and other related fields have generated a large body of knowledge and 

techniques.  These techniques generally fall into one of the following research areas. 

 

• Video indexing – Research in this area aims at creating compact indices for large video 

databases and providing easy browsing and intelligent query mechanisms [3, 10, 33, 39]. 

Potential applications include multimedia databases, digital libraries, and web media 

portals. 

 

• Video filtering and abstraction – Research in this area tries to generate an abstract 

version of the video content that is important or interesting by extracting key portions of 
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the video [46, 58]. This can be used for personalized video delivery, intelligent digital 

video recording devices, and video summaries for large multimedia archives. 

 

• Audio indexing and analysis – Research in this relatively new area includes audio 

classification, audio indexing and retrieval, music retrieval, etc [41, 53, 71]. Efforts have 

also been made in combining audio information with visual information to help index and 

analyze video content. 

 

Besides these general areas, there is also some research with more specific objectives, 

which exploits knowledge in various domains. This has produced some interesting applications 

such as event detection in sports programs, anchorperson detection in news, and so on. However, 

techniques proposed in these applications are often limited to their application domains. 

 

In all these areas, one critical and challenging issue is to extract features from multimedia 

data. Low-level features are compact, mathematical representations of the physical properties of 

the video and audio data. They greatly reduce the amount of data to be analyzed, provide metrics 

for comparison, and serve as the foundation for indexing, analysis, high-level understanding, and 

classification. Much research work has been done to investigate various visual and audio 

features, their extraction methods, and their application in various domains. In fact, the ISO/IEC 

International Standard MPEG-7 (ISO/IEC JTC1/SC29/WG11 N3752) is currently developing a 

set of descriptors (i.e., features) and description schemes for the description of multimedia 

content. 
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In this paper we will give an overview of state-of-the-art algorithms and tools using video 

and audio features. In particular, we will investigate features that can be efficiently extracted 

from compressed video and audio data. The reasons that we are interested in compressed-domain 

features are as follows. First, much of the multimedia content available today is in compressed 

format already, and most of the new video and audio data produced and distributed will be in 

standardized, compressed format. Using compressed-domain features directly makes it possible 

to build efficient and real-time video indexing and analysis systems. Second, some features, such 

as motion information, are easier to extract from compressed data without the need of extra, 

expensive computation. Of course, most features can be obtained from uncompressed data as 

well, usually with a higher precision but at a much higher computational cost. In practical 

systems, tradeoff between efficiency and accuracy can be explored. Compressed-domain and 

uncompressed-domain approaches can also be combined. For example, the compressed-domain 

approach is used to select candidates while the uncompressed-domain approach is used to find 

the most accurate results. 

 

In this paper we will review compressed-domain features in the following categories: 

spatial visual features (such as color and texture), motion features, coding features, and audio 

features. Fig. 1 illustrates the hierarchy of audio-visual features used in video/audio indexing and 

analysis. Examples are also given for commonly used features in different categories. Note that 

meta-information, although very important for video/audio indexing, is beyond the scope of this 

paper. In our review, we will focus on selected features that can be extracted or estimated 

directly in the compressed domain, without trying to be exhaustive. We will also discuss several 

representative applications using these features. The purpose is to show how these low-level 



 6 

features can be extracted, integrated, and used effectively for basic video indexing tasks (e.g., 

shot boundary detection), as well as applications that need to detect structures, semantic-level 

concepts, or events from the video (e.g., sports video analysis). Again, we focus on compressed-

domain approaches. Finally, we will summarize a subset of effective and relatively robust 

features, which can be estimated directly in the compressed domain, and compare qualitatively 

these features in terms of efficiency, effectiveness, and limitations. Fig. 2 provides a concise list 

of these features with brief summaries and indices pointing to respective sections of this paper. 

We will also give an overview of important visual and audio descriptors included in the current 

MPEG-7 committee draft and discuss the possibility of extracting these descriptors from 

compressed video and audio. 

 

The paper is organized as follows. Section II gives a brief overview of the MPEG-1/2 

video and audio standards. Sections III, IV, and V include reviews of spatial visual features, 

motion features, and video coding features, respectively. In Section VI we discuss some 

important applications using the video features in previous sections. Section VII investigates 

audio features and their applications. Section VIII summarizes and evaluates a set of 

representative video and audio features, and briefly discusses MPEG-7 visual and audio 

descriptors (Section VIII.5). Section IX concludes the paper and discusses future directions. 

 

II. Overview of Multimedia Compression Standards 

International standards such as MPEG-1 and MPEG-2 have become very successful in 

several industries, including telecommunications, broadcast, and entertainment. The amount of 

multimedia data in these formats is growing rapidly. Other standards like MPEG-4 and H.26x 
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share many fundamentals of video and audio coding with MPEG-1 and MPEG-2. Therefore, 

many features we discuss in this paper can be extended to those standards as well. 

1. Video Compression Technology 

Digital video needs to be compressed for the purpose of efficient storage and 

transmission. Video compression technology encompasses a wide range of research areas such as 

communications, information theory, image processing, computer vision, psychophysics, etc.  

Years of active research in these fields have culminated in a series of video coding standards like 

MPEG-1, MPEG-2, H.26x, and so on. These standards share some core techniques such as 

block-based transform coding, predictive coding, entropy encoding, motion-compensated 

interpolation, etc. The most important ones are block-based transform coding and motion 

compensation. 

 

Block-based transform coding reduces the spatial redundancy in digital video (or digital 

images). The substantial correlation between neighboring pixels is greatly reduced in transform 

coefficients. These coefficients do not need to be coded with full accuracy and can be entropy-

coded efficiently for compression. The 8x8-block discrete cosine transform (DCT) is most 

widely used for its near-optimal performance and high speed using fast algorithms. A typical 

encoding sequence using the DCT in shown in Fig. 3. Note that in video compression other 

techniques are also involved, so that the actual encoder diagram is much more complex. In 

MPEG-1 and MPEG-2 video, the DCT is also used to encode differential data and residue errors 

after motion compensation. 
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Block-based motion compensation significantly reduces the temporal redundancy in 

digital video, as illustrated in Fig. 4. A best match of the same dimension is found for each block 

in the current frame, so that only the difference (residue error) between the block and its match 

needs to be coded. In MPEG-1 and MPEG-2, backward and bi-directional motion compensations 

are also used. These techniques provide a much higher coding efficiency than encoding each 

frame without looking at its adjacent frames for similarities. The unit of motion compensation is 

usually 16x16 blocks, termed macroblocks (MB) in MPEG video. The frequency of motion 

compensation and how it is done are flexible to allow for the tradeoff between encoding 

complexity and performance. 

2. MPEG-1 and MPEG-2 Video 

MPEG-1 and MPEG-2 are defined in ISO/IEC International Standards 11172 and 13818, 

respectively. MPEG-1 and MPEG-2 video coding uses the DCT transform to reduce spatial 

redundancy and block-based motion compensation to reduce temporal redundancy. There are 

five layers in an MPEG video bit stream: group of pictures (GOP), picture, slice, macroblock 

(MB), and block. 

 

MPEG-1 video [25] focuses on the coding of non-interlaced video at bit rates up to 1.5 

Mbps, with a typical picture size of 352 x 240. MPEG-1 is optimized for CD-ROM applications, 

and has been widely used in Video CD (VCD) applications and general-purpose video storage 

and archiving. 

 

MPEG-2 video [27] targets the coding of higher resolution video (e.g., 720 x 480 picture 

size) with fairly high quality at bit rates of 4 to 9 Mbps. It aims at providing CCIR/ITU-R quality 
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for NTSC, PAL, and SECAM, and supporting HDTV quality, at data rate above 10 Mbps, real-

time transmission, and progressive and interlaced scan sources. MPEG-2 video has been 

successfully used in Digital Versatile Disc (DVD) and is the standard for future Digital TV 

broadcast. Although similar to MPEG-1 video in fundamental components, there are several new 

features of MPEG-2 video such as 

• Frame-picture and field-picture structure (allowing interlaced video) 

• More flexible and sophisticated motion compensation (frame/field/dual prime) 

• 4:2:2 and 4:4:4 macroblock formats 

• New scan for intra-block DCT coefficients 

• Scalability 

 

More details can be found in the standards [25, 27] and textbooks [21] on MPEG-1/2 

video. 

3. MPEG Audio 

MPEG audio [26, 28, 29] aims at coding of generic audio signal, including speech and 

music. MPEG audio coders are perceptual subband coders that utilize the auditory masking 

phenomenon [44]. The encoder constantly analyzes the incoming audio signal and determines 

the so-called masking curve, the threshold under which additional noise will not be audible by 

the human auditory system. The input signal is split into a number of frequency subbands. Each 

subband signal is quantized in such a way that the quantization noise will not exceed the masking 

curve for that subband. Fig. 5 shows the basic structure of an MPEG-1 audio encoder. 
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MPEG-1 audio [26] provides single-channel and two-channel audio coding at 32, 44.1, 

and 48 kHz sampling rate. Three different layers (namely Layers I, II, and III) are defined. These 

layers represent a family of encoding algorithms with increasing encoder complexity, 

performance, and encoding/decoding delay. Layer III has the highest encoder complexity and the 

best coding performance, but the longest encoding/decoding delay. The predefined bit rates 

range from 32 to 448 kbps for Layer I, from 32 to 384 kbps for Layer II, and from 32 to 320 kbps 

for Layer III. 

 

MPEG-2 audio BC [28] is a backward-compatible multi-channel extension to MPEG-1 

audio. Bit rate ranges are extended to 1 Mbps. Audio sampling rates are also extended towards 

lower frequencies at 16, 22.05, and 24 kHz. 

 

MPEG-2 audio AAC [29] is a non-backward-compatible, very high-quality audio 

coding standard for 1 to 48 channels at sampling rates of 8 to 96 kHz, with multi-channel, multi-

lingual, and multi-program capabilities. Three profiles of AAC provide varying levels of coding 

complexity and scalability. 

 

Due to its relatively low coding quality, applications of MPEG-1 Layer-I audio are 

usually limited to audio storage in solid-state circuitry, off-line storage and editing of audio, etc. 

MPEG-1 Layer-II audio has more applications in commercial products such as Video CDs and 

MPEG-1 encoders. So far the most successful MPEG audio standards is MPEG-1 Layer-III 

audio, also known as MP3. Recent explosion of web sites offering MP3 music clips, along with 
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the debut of portable MP3 players, has attracted much attention and shown a huge potential of 

this standard in commercial products and services. 

 

MPEG-2 audio, especially AAC, is a relatively new comer to the audio entertainment 

world. The industry has already produced an array of widely deployed proprietary audio coding 

standards, which aim at providing multi-channel, high-quality surround sound for movie theaters 

and home entertainment systems. These standards include Dolby Digital (using Dolby AC-3 

audio coding [15]), DTS, SDDS, etc, many of which are based on perceptual audio coding 

techniques. 

 

III. Spatial Visual Features 

In this section we review spatial visual features that can be extracted from MPEG 

compressed video. These features can be used to characterize individual video frames, as well as 

JPEG-compressed images. They can also be applied to a group of video frames to characterize 

their aggregate visual property. Motion features, which are temporal visual features, will be 

discussed in the next section. 

1. DCT DC Image Sequence 

DCT DC image sequence is an iconic version of the original video. Although at a lower 

resolution, it captures the key content and is very efficient for visual feature extraction. All DCT 

coefficients, including the DC value, are readily available for I-frames in MPEG video. For P- 

and B-frames, however, only the residue error after motion compensation is DCT transformed 

and coded. To get the DCT coefficients in motion-compensated frames, Chang and 
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Messershmidt [9] developed a compressed-domain algorithm that computes DCT coefficients in 

translated blocks. This is based on the fact that the DCT is a linear transform. The algorithm 

becomes very efficient if only part of the DCT coefficients (e.g., the DC coefficient) is needed. 

Yeo and Liu [63], as well as Shen and Delp [50], also proposed efficient algorithms to 

approximate DCT DC values for P- and B-frames. 

 

Once the DCT DC image sequence is constructed, features can be extracted (e.g., vectors 

formed by the YUV values of the DC images, and used for shot boundary detection, key frame 

extraction, and other video indexing purposes [64, 10, 32]). 

 

The DCT DC sequences sometimes give better or more robust results for tasks like shot 

boundary detection because of its low-pass filtering nature. Note that for MPEG-1 video and 

some MPEG-2 video, the 4:2:0 macroblock format is used, so that the color resolution is half the 

intensity resolution (i.e., 8 x 8 sub-sampled for intensity, 16 x 16 sub-sampled for chrominance). 

2. Color 

Color features, such as color histogram, have been proved to be effective in image and 

video indexing and retrieval. For compressed video, color features can be extracted from the 

DCT DC sequence described above or other forms of progressively decompressed sequences. 

Sometimes intensity values are used instead of colors (i.e., the chrominance components are 

ignored), but in general intensity-only features offer much less information and are not as 

effective as color features for video indexing. 

 



 13 

In image and video indexing, colors are frequently converted from RGB values to other 

perceptual color spaces, such as HSV, YUV, YCbCr, etc., because they are closer to human’s 

color perception models. In MPEG video, colors are converted to YCbCr components. 

Therefore, it is easy to extract chrominance information and use them to compute approximate 

hue and saturation values if needed. 

 

Tan et al. [55] use the absolute difference of block color histograms as the dissimilarity 

measure between two video frames.  Dynamic programming is used to compare video clips of 

different length. DC sequences are used in their experiments of video query by an example clip. 

 

Won et al. [62] use DC values of Y, Cb, and Cr, along with other features, to form a 

feature vector for each video frame for shot boundary detection purposes. The feature vector 

consists of hue histogram, luminance histogram, and macroblock edge types. Cb and Cr values 

are used to approximate hue and saturation of colors for the computation of the hue histogram. 

The hue histogram consists of six bins, representing the hues of six pure colors: red, yellow, 

green, cyan, blue, and magenta. To compute the hue histogram, hue/saturation values of colors 

are compared with each of the pure colors, and values are added to the corresponding bin inverse 

to the hue/saturation distance from that pure color. Thus, the hue histogram indicates the 

dominant hue, if there is any, in a video frame. 

 

Other researchers use YUV color histogram from DC sequences to detect video shot 

boundaries, either by histogram intersection [64] or direct pair-wise comparison [10]. Intensity 
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histogram, combined with projection histograms (computed by projecting the intensity of a 

video frame on x and y axis), has also been used for shot boundary detection [42]. 

3. Texture and Edge 

Textures and edges are fine structures in images and video frames, and require pixel-level 

processing to extract them. Unfortunately, this is usually not possible in compressed video 

without significant amount of decoding. However, because textures and edges correspond to 

mid-to-high-frequency signals in the DCT frequency domain, it is possible to obtain some level 

of texture and edge information by analyzing the frequency components (i.e., DCT coefficients). 

Coefficients in the 8 x 8 DCT block can be classified into frequency bands that roughly 

correspond to smooth areas, horizontal and vertical edges, and noisy areas [23]. 

 

Bao et al. [5] use energy histogram of low-frequency DCT coefficients as the matching 

feature of video frames to detect shot transitions. This feature can be seen as a rough description 

of the global texture pattern in the video frame. 

 

Zhong et al. [72] compute sums of amplitude of AC coefficients in the first row and first 

column of the DCT coefficients matrix and use them as the criteria for initial segmentation of 

caption blocks in compressed video. This works because rapid changes in intensity (in both 

directions) introduced by character lines raise the energy level in the corresponding DCT 

frequency bands. In other words, caption blocks have a distinctive texture pattern that is reflected 

in the DCT coefficients. 
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There also have been some efforts on edge extraction from compressed video. Shen and 

Sethi [49] show that AC energy of DCT blocks can be used to detect areas of high activity. 

Observing that DCT AC coefficients are linear combinations of pixel intensity values in the 8 x 8 

block, they use the ideal step-edge model and derive approximate edge orientation, offset, and 

strength parameters using only DCT AC coefficients. The result is coarse edge segments that can 

be used for video indexing tasks like shot boundary detection based on the change ratio of edge 

maps [67]. They also investigate convolution-based edge detection in compressed images by 

merging symmetric-kernel convolution with the IDCT procedures [48]. Compared with 

conventional convolution-based edge detection, a speedup of 3 to 10 times is achieved with 

comparable results. However, large convolution kernels (e.g., 17 x 17 pixels) are necessary to 

reduce the artifacts introduced by JPEG and MPEG compression schemes. Therefore, this 

method becomes less efficient and can be applied to only a small subset of MPEG video frames 

due to the computational complexity. 

 

Song and Ra [51] use edge block energy to classify DCT blocks into edge blocks and 

non-edge blocks. Using the 3 x 3 Sobel operators, they show that the energy of the resulted 

gradient block can be approximated using the first few DCT AC coefficients. The result is a 

rough block edge map that is 1/64th the size of the video frame, which indicate high-activity 

areas. 

4. DCT Coefficients 

DCT coefficients are sometimes used directly in applications such as shot boundary 

detection. DCT coefficients are readily available in I-frames, but not in P- and B-frames. 

Additional computation (full or partial decoding) is needed to obtain DCT coefficients in P- and 
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B-frames. Note that DCT coefficients of low-intensity blocks are prone to coding noise, which 

should be considered when using them for indexing or matching. 

a. Correlation between DCT coefficients of two frames 

Arman et al. [4] use a subset of DCT coefficients of a subset of blocks to form feature 

vectors for each frame. Then the angles between the feature vectors of different frames are used 

to measure their similarity. They use this method to detect shot boundaries and show its 

effectiveness for cut detection. The computational complexity is relatively high, because inner 

product is involved in the calculation. 

b. DCT block difference 

Zhang et al. [68] compare the relative difference of all coefficients in a DCT block to 

measure the similarity between two DCT blocks. A cut is detected if a large amount of blocks 

have changed significantly in terms of DCT block difference. This method involves less 

computation than the above one. 

c. Variance of DCT DC coefficients 

Meng et al. [37] use this feature to measure the variation of gray level intensity in I- and 

P-frames. Gradual transitions like dissolve can be detected by identifying a characteristic 

parabolic curve between two relatively flat variances. 
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IV. Motion Features 

In compressed video, motion information is captured in some form like motion vectors in 

MPEG video. However, motion vectors are just a rough and sparse approximation to real optical 

flows, and are prone to be inaccurate when used to indicate real motion of macroblocks. 

 

Extra care should be taken when using motion vectors. In MPEG video frames, the 

following areas are most likely to have erroneous motion vectors: a) boundary blocks, and, b) 

large smooth areas. Usually, some kind of morphological or median filter should be applied to 

the motion vector field to remove anomalies, before they are used for analysis and indexing. 

Also, motion vectors are more sensitive to noise in magnitude than in direction. Therefore, a 

median filtering based on magnitude is usually sufficient. More sophisticated methods have also 

been proposed using reliability metrics to get rid of erroneous motion vectors [66]. 

1. Motion Information Extracted from Motion Vectors 

Motion information can be extracted for block, regions, objects, and whole video frames 

for motion query and object/region tracking. 

a. Global motion field 

Ardizzone et al. [2] use global motion field to model the global motion in video 

sequences for similarity query. The idea is to divide a frame into 4 or 16 quadrants with each 

quadrant a motion feature in terms of magnitude and direction. For magnitude, average value is 

used, and the query can be specified by high or low magnitude. For directional feature, either 

average or dominant motion vector direction (such as the largest bin in angle histogram), as well 

as angle histogram (90 directions, 4 degree each) is computed. Note that the number of bins 
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should not be too large, because MPEG motion vectors are sparse in inter-coded frames. The 

authors have also derived similar motion features using optical flows in the pixel domain [3]. 

b. Motion-based segmentation 

Besides visual features like color and texture, motion information can be used to segment 

inter-coded video frames. This is usually very efficient compared with spatial feature-based 

methods. In the case that a large object moves over a uniform background, a simple binarization 

based on the magnitude of motion vectors could extract a reasonable foreground region, 

approximated by macroblocks. Otherwise, some form of clustering technique is necessary. Also, 

as mentioned above, motion vectors are usually pre-processed to remove anomalies. 

 

Ardizzone et al. [2] use a sequential labeling method to segment video frames based on 

their similarity of motion vectors (both magnitude and angle). They also use a clustering method 

to extract regions with dominant motions using histograms of motion vector magnitudes. Each 

dominant region is then defined by size and average motion. 

 

Eng and Ma [16] use an adaptive median filter to improve MPEG motion vector accuracy 

and propose a unbiased fuzzy clustering technique to extract dominant video objects. 

c. Block-level motion analysis 

Dimitrova and Golshani [12] use the MPEG motion vectors in P- and B-frames to 

approximate the movement of macroblocks. Macroblock tracing is used to retrieve low-level 

motion information. In the middle-level motion analysis, averaging or clustering method is used 
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to extract object motion for rigid and non-rigid objects, respectively. At the high-level analysis, a 

set of trajectories is associated with an activity defined using domain knowledge. 

 

Kobla et al. [34] propose flow estimation that adopts similar ideas. It uses motion vectors 

in MPEG P- and B-frames to estimate the motion (termed flow) in every frame in terms of 

backward-predicted motion vectors, regardless of the original prediction mode. For example, in 

MPEG video with only I- and P-frames, the flow of each frame (except the last P-frame in the 

GOP) can be estimated by reversing the forward-predicted motion vectors. If B-frames are 

present, one can estimate the flow between the B-frame and its reference frame (P-frame or I-

frame) first, by reversing forward-predicted motion vectors, or using backward-predicted motion 

vectors directly. Flows between two B-frames can then be derived based on their respective 

flows from the same reference frame. 

d. Representation and matching of motion trajectories 

Dimitrova and Golshani [12] use several representations for trajectories for various 

matching purposes as follows: exact motion trajectory (start position and trajectory coordinates), 

B-spline curves, chain code (for approximate matching), and differential chain code (for 

qualitative matching). Wavelet transforms can also be used to generate a multi-resolution 

representation of trajectories. 

e. Accumulated motion 

Accumulated motion at the global or object level has been used in several applications as 

well. For example, such motion features have been used to detect important events in special 

applications like sports. 
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Saur et al. [46] use the accumulated camera panning motion to detect fast break in 

basketball games. The accumulation is reset to zero when the motion changes direction. A peak 

in the accumulated panning motion is a candidate for fast breaks. 

2. Camera Operation and Object Motion 

Camera motion is an important feature in video indexing. Foreground moving objects can 

be extracted by differentiating camera motion and object motion. Camera motion should be taken 

into account in shot segmentation. Otherwise, there will be false alarms of shot boundaries. 

Furthermore, in some specific applications, models of camera motion can be used to detect 

important events (e.g., fast breaks in basketball games). 

 

Camera operation usually causes a global and dominant motion flow in the video 

sequences. However, when dominant motion of a large object is present concurrently, it changes 

the global motion field and camera operation estimation becomes less reliable. One solution is to 

remove the outliers of motion vectors that do not fit well with the global motion models, and 

iterate the estimation process of camera motion. 

a. Common camera operations 

Various basic camera operations used in video production have been defined. A typical 

set consists of pan, tilt, zoom, dolly, track, and boom, as described in [1]. A slightly different set 

is defined in [56] as pan, tilt, zoom, swing, and translation, in which pan, tilt, and swing are the 

rotation around the x-, y-, and z-axis, respectively. In many applications, however, only pan, tilt, 

and zoom factors are considered. 
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b. Camera operation estimation based on physical models 

These methods start with a physical model of the camera in the 3-D space, with some 

kind of projection that maps the object onto the camera’s image plane. They estimate the 

parameters involved in the projected model, and the camera operations can be derived from these 

parameters. Usually some iterative algorithm is applied. 

 

Tan et al. [56, 57] propose a camera motion estimation method based on the physical 

model of the camera and 3-D coordinate transforms. The camera operation is modeled as a 

combination of rotations about the three axes and a translation of the coordinates. The zoom 

operation is modeled as a scaling function of object projection onto the image plane. The object 

is assumed to be a rigid body. Under the assumptions that (1) the rotations are small (or a high 

sampling rate), and (2) the translation is minimal (or a high sampling rate), the model can be 

reduced to a 6-paramter one. 

 

In [56], the parameters are initially estimated using 4 pairs of pixel correspondences, and 

then refined using a recursive algorithm (the Kalman filter). In [57], motion vectors of 

compressed video are used as correspondences. The mean and variance of the estimated 

prediction error is calculated. Motion vectors that fall beyond a certain range are declared as 

outliers, and are excluded in the next iteration of the parameter estimation process. Experiments 

show that usually 2 or 3 iterations are sufficient for convergence. A simplified and faster version 

of the above algorithm, which is a 3-parameter one, considers only pan, tilt, and zoom factors 

[57]. In this case a closed form solution exists for the estimation of the three parameters. Note 

that this simplified model takes out the perspective distortion factors in the original model, so 



 22 

that the scene is assumed to be planer, which is approximately true when the object is far away 

from the camera. 

 

Tse and Baker [59] model global motion with two parameters, a zoom factor and a 2-D 

pan factor. The camera is modeled as a projective plane and the motion of the camera is small 

between frames, hence the pan effect is a displacement of objects in successive frames. The 

method assumes that motion vectors are mainly caused by global motion. Removing motion 

vectors that are not consistent with the estimated motion helps refine the estimation. This method 

is similar to the simplified model in [57]. 

 

Taniguchi, et al. [58] estimate camera motion to reconstruct panoramic icons for video 

browsing purposes. They use simple pan and tilt to model camera operations and use the least 

square error method to estimate the camera motions. They propose several criteria to validate the 

estimated parameters as follows: duration (the camera motion lasts for more than a specific 

period of time), smoothness of the camera operation, and goodness of fit (MSE minimized by 

camera operation compensation should be significantly smaller). 

 

Bergen et al. [6] propose a hierarchical motion estimation framework in which various 

motion models can be used. The affine model is a 6-parameter motion model that is suitable for 

situations where the camera is far away from the background. Meng and Chang [36] use it for 

camera motion estimation. The idea is to minimize the estimated motion and the compensated 

one in the least square error sense. Pan and zoom factors can be derived using the six estimated 
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parameters. Patti et al. [43] also use this affine model for dominant global motion estimation in 

the application of extracting high quality stills from interlaced video. 

c. Camera operation estimation based on dominant motion 

These methods estimate camera operations by looking at the motion vectors directly. 

They do not adopt explicit physical camera models like those mentioned above. Usually different 

operations (e.g., pan and zoom) are estimated separately. 

 

Zhang et al. [68] use sum of difference between motion vectors and the modal vector to 

determine pan and tilt. Zooming is detected by the change of signs of motion vectors across the 

center of zoom, as zooming often results in a pattern of many motion vectors pointing to or away 

from the zooming center. The problem is that a combination of zoom and pan is difficult to 

detect, since it considers them separately. Large object motion may also cause significant noise. 

One solution is to separate regions of different motion. However, if the moving object covers 

most of the frame, this will still be a problem. To quantitatively measure the camera operations, 

the method proposed by Tse and Baker [59] is used for zoom and pan. 

 

Akutsu et al. [1] investigate video indexing by motion vectors. They first used a block 

matching method to estimate motion vectors similar to most MPEG encoders. Then they 

consider the camera operations separately and model each type of operation with different 

features of optical flows such as vector convergence point, and vector magnitude. Hough 

transform is used to estimate the convergence points, and a 3-parameter model is used to extract 

the magnitude of camera motions. 
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Kobla et al. [33] estimate camera pan and tilt by detecting dominant motion in the video 

frames. Motion vectors are counted to generate directional histogram (in 8 directions), and a 

dominant direction of motion is declared if the largest bin is at least twice as big as the second 

largest one. For zoom detection, the existence of Focus of Contraction (FOC) or Focus of 

Expansion (FOE) is detected. It is a simple voting method by extending each motion vector and 

voting for all the macroblocks it passes through. In addition, it also assumes that the motion 

vectors near the FOE and FOC are small and the magnitude of motion vectors increases with the 

distance to the FOE/FOC. 

3. Statistical Information of Motion Vectors 

Rather than estimating camera motions from the motion vectors, the following work 

measured the statistical features of the motion vectors and used them for indexing. 

a. Motion smoothness 

Akutsu et al. [1] define motion smoothness as the ratio of blocks that have significant 

motion vectors over blocks whose motion vector has changed significantly. They used this 

parameter along with inter-frame changes to detect shot boundaries. 

b. Amount of motion activity in video frames 

Divakaran and Sun [14] uses average motion vector magnitude as one of the features of a 

video frame. They then use this average value to threshold all the motion vectors in the frame 

and count the numbers of short, medium, and long runs of zeros, in raster-scan order. These 

numbers indirectly expresses the size, shape, and number of moving objects and are good 

indicators of the motion feature of the video frame. For example, a frame with a single large 

object can be easily distinguished from a frame with several small objects. 
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Wolf  [61] uses the amount of motion in video frames to help select key frames in a video 

sequence. Although in [61] motion is estimated using optical flow, the principle can be applied 

to MPEG video using motion vectors. The amount of motion is defined as the summation of 

magnitude of motion vector components in a frame, and a curve is drawn with respect to frame 

numbers. Key frames are then selected by detecting valleys between large peaks in this curve, 

which correspond to relatively still frames between two video segments with large amount of 

motion. 

c. Motion histogram 

Motion histogram is a compact representation of global or regional motion in video 

frames. Either direction or magnitude can be used as the histogram index. Kobla et al [33] and 

Ardizzone et al [2] have used motion vector histograms extensively for the detection of camera 

pan, tilt, and many other purposes. 

 

Although working in the uncompressed domain, Davis [11] also uses motion histograms 

to help recognize simple human movements such as left arm fanning up, two arms fanning up, 

and crouching down. The directional histogram for each body region has twelve bins (30 degree 

each), and the feature vector is a concatenation of the histograms of different body regions. The 

motion vectors are derived from so called Motion History Image (MHI), which is basically the 

accumulation of differencing images of the silhouettes of human body. 
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V. Video Coding Features 

Video coding features are simple, but readily available information that can be easily 

extracted while parsing the video bit stream. In some cases, such simple features can be quite 

useful. Since MPEG only standardizes the decoding part, coding features may be sensitive to the 

actual encoder used. 

1. Macroblock Type Information 

Macroblocks in I-frames are all intra-coded. P-frames have forward-predicted 

macroblocks, as well as intra-coded and skipped ones. B-frames have the most complex 

situation, in which each macroblock is one of the five possible types: forward-predicted, 

backward-predicted, bi-directional predicted, intra-coded, and skipped. The numbers of these 

types of macroblocks, as well as the ratios between them, in P- and B-frames provide useful 

information for video indexing and analysis purposes. 

 

Kobla et al. [30] use the numbers of forward-predicted and backward-predicted 

macroblocks in B-frames to determine if a slow-motion replay is present in MPEG video. In an 

earlier paper [33], macroblock type information is also used to detect shot boundaries. 

 

Nang et al. [38] compare the macroblock types of the same macroblock position in 

adjacent B-frames. Macroblock type changes are listed exhaustively and assigned different 

dissimilarity values. Accumulation of all the macroblock dissimilarity values in one frame is 

used to detect shot boundaries. 
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Zhang et al. [68] use the ratio of the number of intra-coded macroblocks over the number 

of valid motion vectors in a P- or B-frame to determine abrupt shot changes that occur in inter-

coded frames. Similarly, Meng et al. [37] use the ratio between the number of intra-coded 

macroblocks and the number of forward-predicted macroblocks to detect scene changes in P and 

B frames. 

 

Saur et al. [46] compare the number of intra-coded blocks in P-frames with the 

magnitude of motion to determine if the frame is wide-angle or close-up in typical basketball 

video. A shot is classified by classifying all P-frames in it and a majority voting. The intuition is 

that in a close-up shot there are often large objects (e.g., players) entering or leaving the view, 

causing a significant number of macroblocks in P-frames to be intra-coded. This number is large 

compared with the magnitude of motion in a close-up shot.  

2. Bit Rate Information 

It has been observed that abrupt changes in video streams cause bit-rate variation in the 

encoded MPEG video. Feng et al. [18] form a bit-image for each frame using the number of bits 

taken to encode each macroblock. Shot boundary is detected by comparing bit-images using a 

fixed threshold. Divakaran et al. [13] and Boccignone et al. [7] combine this approach with DC 

image sequence based method for more robust shot boundary detection. 

 

Frame bit rate, combined with macroblock and motion information, is also used by 

Kobla et al. [30] to detect slow-motion replay in sports videos. 
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VI. Applications Using Visual and Motion Features 

In this section we will discuss some common applications that use the visual and motion 

features summarized in the previous sections. The purpose is to show how these features can be 

integrated and applied to specific compressed-domain video indexing and analysis problems. 

1. Shot Boundary Detection 

A shot is the basic unit in video production. A video sequence is a series of edited video 

shots. The transition between shots usually corresponds to a change of subject, scene, camera 

angle, or view. Therefore, it is very natural to use shots as the unit for video indexing and 

analysis, and the first step in these applications is to segment the long video sequence into video 

shots. This specific task of detecting transition of video shots is usually termed shot boundary 

detection, scene change detection, video segmentation, etc. Throughout this paper we use the 

term shot boundary detection. Note that we will focus more on gradual transition detection in the 

next section. 

 

There has been a lot of work on shot boundary detection, especially in the uncompressed 

domain. Most work has been focusing on pixel difference, intensity statistics comparison, 

histogram distance, edge difference, and motion information. A review paper on these techniques 

with experimental results in terms of precision-recall graphs can be found in [8]. Among these 

methods, histogram-based ones have been consistently reliable, while DCT coefficient-based 

ones give the lowest precision. Motion information based methods are somewhere in between. In 

a recent review paper, Lienhart [35] compares four major shot boundary detection algorithms, 

which include fade and dissolve detection. Extensive experimental results also favor the color 
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histogram based method [8] for shot boundary detection, instead of the computationally 

expensive edge-change-ratio method [67]. 

 

Researchers have also investigated compressed-domain shot boundary detection 

techniques. One obvious approach is to apply uncompressed-domain techniques to DCT DC 

image sequences using approximated features. Techniques using pixel difference, intensity 

statistics, and histograms are still effective on DC images with some level of performance 

degradation. Experimental results of shot boundary detection techniques on DC images and 

uncompressed-images are compared in [20], using statistical performance metrics. 

 

There are also shot boundary detection algorithms specifically proposed for MPEG 

compressed video. Zhang et al. [68] apply a multiple-pass and multiple-comparison technique to 

video segmentation. Multiple passes use I-frame DCT information to locate the rough location of 

scene changes, and the second pass use P- and B-frame motion vector information to pinpoint the 

location. Multiple comparison uses double threshold to detect abrupt and gradual shot transitions. 

 

Chen et al. [10] use a feature vector extracted from DC image sequences called 

generalized trace (GT) for shot boundary detection purposes. The vector consists of YUV color 

histogram intersections (between consecutive frames), standard deviation of YUV, numbers of 

three types of macroblocks (intra-coded, forward-predicted, backward-predicted), and flags for 

frame types. Differential GT has been used for abrupt shot transition detection. More robust 

result is achieved using classification methods. 
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Meng et al. [37] use macroblock type counts in P- and B-frames to detect shot 

boundaries. Kobla et al [33] use similar macroblock type information for shot boundary detection 

in a more elaborate fashion. A DCT validation step is added to account for situations where there 

is little motion around shot boundaries, in which macroblock type information itself is 

insufficient. Two adjacent I-frames are compared using their DC values, and blocks that change 

significantly are counted and then compared with a threshold. 

 

Other proposed techniques examine macroblock type changes [38], motion vector 

changes [19], and macroblock bit allocation information [13] to detect shot boundaries. 

2. Gradual Transition Detection 

Videos in commercial TV programs are rich in editing effects, such as fade in, fade out, 

dissolve, wipe, and much more. Some work has been done on detecting these special effects. In 

compressed domain, however, most work has been focused on gradual transition detection (e.g., 

fade and dissolve). A review and comparison of some of these techniques can be found in [35]. 

 

Zhang et al. [69] use a twin-comparison algorithm to detect gradual transitions. A lower 

threshold (Tt) for frame difference is used to detect potential start of transitions, and a second and 

larger threshold (Tb) is used for accumulated difference to detect the end of gradual transitions. 

Either DCT difference metrics [68] or pixel-domain color histogram difference [69] can be used 

for comparison. 
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Yeo and Liu [65] use the absolute difference between two DC frames as the difference 

metric. The plot of the difference between the ith and the (i+k)th frames generates a plateau if a 

gradual transition is present. K is selected to be larger than the length of most gradual transitions. 

 

Meng et al. [37] use the variance of DCT DC coefficients in I- and P-frames to detect 

dissolve. A downward parabolic curve in the variance graph usually indicates a dissolve. 

 

Kobla et al. [31] use features of the DC image sequences (RGB/YUV values or 

histograms) and apply FastMap [17] technique (a dimension reduction algorithm that preserves 

inter-sample distances) to generate VideoTrails [32] of a video sequence in a lower-dimensional 

space. The trail is segmented and classified into stationary and transitional trails, the latter 

typically a threaded trail that corresponds to gradual transitions. In [31], VideoTrails and the 

above three techniques are evaluated by running extensive experiments. The advantage of this 

technique is that it is good at detecting the beginning and the end of the transition, and can 

handle a wide variety of editing effects. 

 

One thing that troubles all these techniques is the presence of large object motion and fast 

camera operations in dynamic scenes. This confuses the gradual transition (e.g., dissolve) 

detection algorithm and results in high false alarm rates. 

3. Sports Video Analysis 

Sports video is of wide interest to a large audience. Automatic indexing and analysis of 

sports video, preferably in the compressed domain, have great potentials in future multimedia 

applications. 
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a. Detecting sports video 

Sports video [46] usually has characteristic camera motions like long pans (e.g., 

following a fast break in a basketball game), as well as large magnitudes of motion, high 

percentage of shots containing significant motion, sudden camera jerks, and frequent appearance 

of text in score boards, statistics, player’s jerseys, etc. These features can be used to detect sports 

videos. 

b. Detection of slow-motion replay in sports video 

Slow-motion replay in sports video is usually achieved by slowing the frame rate of the 

playback, resulting in a single frame to be repeated several times. This causes the presence of 

still and shift frames. Kobla et al. [30] use information about macroblock types in B-frames, 

along with vector flow information, and number of bits used for encoding each frame to detect 

slow-motion replay. Still B-frames usually have a lot of forward-predicted macroblocks, while 

shift B-frames have a significant amount of backward-predicted macroblocks. Essentially, still 

B-frames contain very little new information and the number of bits used for coding them is low. 

On the other hand, the bit rate for the shift frames is higher. Therefore, in a slow-motion replay 

segment, large variations of bit rates will be observed. 

c. Automatic analysis of basketball video 

Saur et al. [46] investigate the particular domain of basketball video and use low-level 

information extracted from MPEG video to detect events like a fast break. 

 

Wide-angle shots are close-up shots are classified based on the motion vector magnitude 

and number of intra-coded blocks in P-frames. Within wide-angle shots, camera motions are 
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estimated for panning using the method proposed in [56]. The accumulated camera motion is 

used to detect the fast break event. They also tried to use the irregularities of camera motion to 

detect steal or a loose ball situation, and use some heuristics and ad hoc methods to detect 

shooting scenes. 

 

VII. Audio Features and Their Applications 

In this section we will discuss low-level audio features that can be extracted from both 

uncompressed and compressed audio signals, with their applications to audio indexing, analysis, 

and classification. The term audio here refers to generic sound signals, which include speech, 

dialog, music, songs, radio broadcast, audio tracks of video programs, noise, and mixtures of any 

of these. 

 

Much of the research work in this area has been focused on indexing and classification of 

audio clips. Recently, great interests are shown in integrating audio features with video features 

for better results in video indexing and analysis. The combination of information from both 

audio and video channels has great potentials in enhancing the power of current video indexing 

schemes. There is also some interesting research work on music retrieval using tones, notes, 

MIDI sequences, and structures of music, but this is out of the scope of our discussion in this 

paper. 

1. Audio Features 

For the purposes of audio analysis, indexing, and classification, low-level audio features 

of the sound signals must be first extracted. Although frequency-domain techniques are often 
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used, most audio feature extraction methods start with uncompressed audio signal in waveforms. 

The decoding of compressed audio requires much less computation compared with video 

decoding, and does not pose a computational bottleneck in real applications. Therefore, direct 

feature extraction from compressed audio, although preferred, is not required in many audio 

applications. 

 

The following is a list of common audio features. Many audio applications have extracted 

and used some or all of these features and their variations. Not all of the features can be easily 

extracted from subband-coded audio signals like MPEG audio. Features that are marked with an 

asterisk are the ones that can be directly extracted or approximated using subband-coded audio. 

a. Time-domain features 

1. Short-time energy* 

2. Energy/Volume statistics*: mean, standard deviation, dynamic range, etc. 

3. Silence ratio*: percentage of low energy audio frames 

4. Zero crossing rate (ZCR): number of time-domain zero crossings within a frame 

5. Pause rate*: the rate of stop in speech due to separation of words/sentences 

b. Frequency-domain (spectral) features 

1. Pitch*: fundamental frequency that reveals harmonic properties of audio 

2. Subband energy ratio*: histogram-like energy distribution over frequencies 

3. Spectral statistics*: centroid, bandwidth, etc. 
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c. Psycho-acoustic features 

1. 4-Hz modulation energy: speech has a characteristic energy modulation peak 

around the 4Hz syllabic rate. 

2. Spectral roll-off point: the 95th percentile of the power spectrum, used to 

distinguish voiced/unvoiced speech. 

2. Audio Applications Using Audio Features 

The sub-section discusses some typical applications that use audio features for audio 

indexing and classification purposes. We use the above labels when citing specific audio 

features. For example, Feature a.4 represents the zero crossing rate. Note that sometimes a 

variation of one of the above features is used, which may be slightly different in mathematical 

form from the original but in essence is the same physically.  

a. General audio characterization, classification, and indexing 

Patel and Sethi [41] investigate the possibility of extracting audio features directly from 

MPEG audio and use these features for audio characterization. Features a.1, a.5, b.1, and b.2 are 

computed directly using subband coefficients of audio signals and are used to classify MPEG 

audio clips into dialog, non-dialog, and silent categories. Given 81 audio clips from a movie, 

96%, 82%, and 100% correct classification rates are reported. 

 

Zhang and Kuo [71] use Features a.1, a.4, and b.1 to extract low-level audio features for 

audio retrieval. For coarse classification, using these features alone can help distinguish silence, 

music, speech, etc. For fine classification, which is more difficult, Hidden Markov Models [44] 

are built for each class of sounds, using these audio features. 90% and 80% classification rates 
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are reported for coarse and fine classifications, respectively. In [70] these features are used in a 

heuristic approach to segmenting audio data and classifying these segments into silence, speech, 

songs, music, etc. 

b. Speech/Music classification 

Scheirer and Slaney [47] collect an array of features (Features a.3, a.4, b.3, c.1, c.2, and 

more) along with their statistics for speech/music classification. They use various classification 

frameworks (multi-dimensional Gaussian MAP estimator, Gaussian Mixture Model, spatial 

partitioning, and nearest-neighbor classifier) with rigorous training. The best classifier achieves 

94% correct classification rate on a frame-by-frame basis. 

 

Saunders [45] uses statistics of zero crossing rates (ZCR, Feature a.4) to distinguish 

speech and music in FM radio programs. The idea is that ZCR exhibits a bi-model property 

(vowels vs. consonants) in speech, but not in music. A 90% classification rate is reported using 

samples from a 2-hour FM radio program. 

 

Srinivasan et al. [52] use Features a.1, a.4, and b.1 to segment mixed audio into speech 

and music based on heuristic rules. The task is particularly challenging because of the presence 

of speech-over-music, fade in and fade out, and special sounds in the audio signal, which is 

actually common in real-world audio data like the audio track of a TV broadcast. An 80% 

classification rate is reported, against manually generated ground truth (i.e., a human listener 

decides if a mixed portion of audio belongs to music or speech segment.). 
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c. Using audio features for video indexing 

Wang et al. [60] use Features a.2, a.3, and b.3 to characterize different types of video 

clips associated with the audio tracks. The purpose is to use audio information to help understand 

the video content (news, weather report, commercials, or football games). Some unique 

characteristics of the audio features associated with each video type are reported. 

 

Huang et al. [24] use a set of features (Features a.2, a.3, b.2, b.3, c.1, and more) to form 

feature vectors for audio break detection. The result is combined with color and motion break 

detection results to segment videos into scenes. 

 

He et al. [22] use Feature b.1 to identify the speaker’s emphasis in his/her oral 

presentation, based on the observation that the speaker’s introduction of a new topic often 

corresponds to an increased pitch range in his/her voice. This information, combined with slide 

transition information of the presentation, is used to extract important segments and generate 

summaries of oral-slide presentations. This interesting application shows the strength of 

integrating audio features with other types of features, even meta-information. 

 

Naphade et al. [39] used an integrated HMM model (called multiject) taking both audio 

and visual features as observations to detect events such as an explosion. Recently, they also 

proposed a probabilistic framework using Bayesian networks for semantic-level indexing and 

retrieval [40]. Sundaram and Chang [53] applied a causal memory based model in detecting 

audio scenes, which are defined to be segments with long-term consistent audio features. In [54], 
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they further extended the scene segmentation model to both audio and visual domains and 

investigated the alignment issues between audio and video scenes. 

 

So far the research work in audio indexing and classification is still in the early stage. 

There is much more to explore in this area, not only new features and feature extraction methods 

(from both compressed and uncompressed audio), but also high-level methodologies that have 

been widely and successfully applied to speech recognition and speaker identification fields, 

such as Hidden Markov Models, Gaussian Mixture Models, classification frameworks, etc. 

Another important issue that requires systematic investigation is how to seamlessly integrate 

audio features with visual, textual, and meta-information for indexing and analysis tasks in 

multimedia applications. 

 

VIII. Summary and Evaluation of Video and Audio Features 

In this section we will summarize the video and audio features that we have surveyed in 

previous sections. We do not intend to exhaustively list all the features that we have mentioned. 

Instead, we will only select a subset of these features that we believe are effective, fairly robust, 

and useful in key applications. We will evaluate these features in the following aspects: 

efficiency, effectiveness, and limitations. Efficiency refers to the computational requirement, e.g., 

the number of frames that the feature extraction process can be done per second. Effectiveness 

refers to the usefulness of the feature in practical applications. Limitation refers to the constraints 

caused by practical implementations, such as the block resolution limit imposed by MPEG 

compression. Note that it is impossible for us to implement and test all these features. Therefore, 

the evaluation is based on our own experience with some of these features, our colleagues’ 
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experience, reviews, and discussion. Although often qualitative in nature, the evaluation aims at 

presenting a compact summary of important techniques in this research field. 

 

The features will be grouped in spatial visual, motion, coding, and audio features. We 

will also briefly review the visual descriptors, audio descriptors, and multimedia description 

schemes in the current MPEG-7 standardization process, and discuss the possibility of extracting 

some of theses descriptors from MPEG-1/2 compressed video and audio streams. 

 

Note that when discussing the efficiency of feature extractions, we assume that the 

computer being used is an average new PC, e.g., a PC with a 500 MHz Pentium III processor and 

128 MB of memory. We roughly describe the efficiency of each feature extraction process by 

very efficient (more than 30 frames/s), efficient (10-30 frames/s), or less efficient (less than 10 

frame/s). For the effectiveness of the features, we use highly effective to refer to robust features 

that are important in most key applications, and moderately effective to refer to less robust 

features that are useful for specific applications in limited domains. 

1. Spatial Visual Features 

DCT DC image sequence is highly effective in capturing the global, iconic view of a 

video sequence. The construction of DCT DC sequences is very efficient using approximated DC 

values for P- and B-frames and can be done in real time (30 frames/s or faster). The limitation is 

that the final several P- and B-frames in a GOP may suffer severe quality degradation due to 

error accumulation during successive approximations. 
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a. Color 

• DC color histogram – very efficient to extract, highly effective global feature for frames, 

but resolution limited for small regions or objects. 

• DC YCbCr vector – The elements of this vector are the average Y, Cb, and Cr values of 

all the macroblocks in a frame. It is very efficient to extract, but needs expensive 

dimension reduction technique (e.g., the method used in VideoTrails [32]) to make it a 

highly effective representation of the color feature of the video frame. 

b. Texture and edge 

• DCT AC coefficient energy – very efficient to extract, moderately effective for the 

approximation of texture, but may be useful in specific domains only. 

• DCT block edge map – efficient to extract, highly effective approximation of edge 

activities, but difficult to link edge segments to form long, smooth edges. 

2. Motion Features 

a. Motion vector field 

• Motion vector based frame segmentation – efficient to extract, moderately effective for 

the detection of large moving regions, but sensitive to motion vector errors. 

b. Camera operation estimation 

• 3-D coordinate, 6-parameter model – less efficient to extract, highly effective for the 

estimation of most camera operations, but sensitive to motion vector errors, particularly 

in initial estimation. 
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• 3-D coordinate, 3-parameter model – efficient to extract, highly effective for the 

estimation of dominant camera operations, limited to pan, tilt, and zoom operations. 

• 2-D affine model – efficient to extract, effective for the detection of pan and zoom 

operations, but sensitive to motion vector errors. 

c. Motion vector statistics 

• Motion activity descriptor – very efficient to extract, moderately effective for rough 

characterization of frame motion properties, but with limited discrimination capability. 

• Motion magnitude and directional histogram – very efficient to extract, moderately 

effective for local motion characterization, but with limited accuracy due to motion 

vector errors and the sparseness of motion vectors. 

3. Video Coding Features 

• Macroblock type – very efficient to extract, moderately effective for shot boundary 

detection in inter-coded frames, performance affected by encoder implementation, better 

and more robust results can be achieved by combining color features. 

4. Audio Features 

Because the amount of audio data is much smaller than video data, and decoding of 

compressed audio is much cheaper than that of video, almost all of the audio features can be 

highly efficiently extracted, either from compressed audio, or from uncompressed audio 

waveform. Therefore, in the following evaluation of the complexity of these features, we will 

only indicate whether the feature can be directly extracted or approximated from compressed 

audio. 
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• Short-time energy – can be extracted from compressed audio. It indicates the average 

loudness of the audio signal in short periods, and is highly effective for silence detection. 

• Energy statistics – can be extracted from compressed audio, moderately effective for 

audio classification, typically combined with other audio features. 

• Silence ratio – can be extracted from compressed audio, moderately effective for audio 

classification, typically combined with other audio features. 

• Zero crossing rate – cannot be extracted from compressed audio, highly effective for the 

differentiation of speech and music type of audio. 

• Pitch – can be approximated using compressed audio, highly effective for the detection of 

harmonic properties of audio, but difficult to estimate for noisy audio and some speech 

segments. 

• Spectral statistics – can be approximated using compressed audio, moderately effective 

for music/speech classification and general audio classification, typically combined with 

other audio features. 

 

It can be seen from the above that audio indexing and classification usually use an array 

of audio features as the foundation for further analysis. A single feature or two are not enough. 

Among all these audio features, short-time energy, zero crossing rate, and pitch are the most 

popular ones. 

5. Brief Review of MPEG-7 Descriptors 

MPEG-7 is an ISO/IEC international standard currently under development, which is 

expected to reach the International Standard (IS) stage in the fall of 2001. Formally known as 

Multimedia Content Description Interface, it will standardize a set of descriptors (Ds), a set of 
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description schemes (DSs), a language to specify description schemes (and possibly descriptors), 

i.e., the Description Definition Language (DDL), and one or more ways to encode descriptions. 

A descriptor is a representation of a feature, while a description scheme specifies the structure 

and semantics of the relationships between its components, which may be both Ds and DSs. 

With these tools, MPEG-7 aims at creating a standard for the description of multimedia content 

that is useful for a wide range of applications, such as multimedia digital libraries, broadcast 

media selection, multimedia editing, home entertainment devices, and so forth. More information 

about MPEG-7 can be found at the MPEG website http://drogo.cselt.it/mpeg/. 

 

Universal access to a great wealth of multimedia information demands tools and 

techniques that help users quickly get the content they need. This is clearly a driving force 

behind MPEG-7. Active research on content-based image/video indexing and retrieval also has a 

direct impact on the formation of MPEG-7. However, MPEG-7 does not standardize how 

audiovisual features are extracted, automatically or manually. Nor does it standardize how these 

descriptions are used for search and retrieval. These interesting and often open questions are left 

to the innovations of research communities and industries. 

 

In this subsection, we will briefly review important MPEG-7 visual and audio Ds. 

Particularly, we will discuss the possibility to extract features and build these Ds directly from 

MPEG-1/2/4 compressed data, as feature extraction is beyond the scope of MPEG-7. Looking at 

compressed-domain feature extraction from the MPEG-7 perspective is valuable because the 

majority of multimedia contents that MPEG-7 will describe are already in compressed formats 

like MPEG-1, MPEG-2, and MPEG-4. At the La Baule meeting in October 2000, MPEG-7 
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reached the stage of Committee Draft (CD), which is sufficiently stable. Therefore, although 

MPEG-7 standardization is still ongoing, we will use documents from the La Baule meeting 

(ISO/IEC JTC1/SC29/WG11 N3673, W3703, N3704, N3751, N3752) for the review. The 

MPEG-7 standard consists of seven parts, namely, systems, description definition language, 

audio, visual, multimedia description schemes, reference software, and conformance. We will 

focus on MPEG-7 standard parts that are relevant to audio-visual feature extraction, i.e., parts 3 

(audio) and 4 (visual). We will not try to review the list of features exhaustively, but only 

highlight those important audio and visual descriptors.  

a. MPEG-7 visual 

MPEG-7 visual description tools consist of basic structures and visual descriptors for 

color, texture, shape, motion, localization, and others. 

 

Basic structures 

• Grid layout – This is a splitting of the image into multiple uniform-sized rectangular 

regions, so that each region can be described separately. In the compressed domain, since 

only the DCT DC values are readily available, the dimension of the rectangular regions is 

usually limited to integer multiples of eight pixels (i.e., DCT block dimension). 

• Time series – This descriptor defines a temporal series of descriptors in a video segment. 

In the compressed domain, using a temporal series of features extracted from the DCT 

DC image sequence is effective for video segmentation and matching purposes. 
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Color descriptors 

• Color space – This information is available in the MPEG-1/2 video stream (YCbCr 

triplets). Transformations to other color spaces are simple and efficient. 

• Dominant colors – This can be extracted using the DC image for either the whole image 

(e.g., flag or color trademark images) or large image regions within the frame. 

• Scalable color – This descriptor is a color histogram in HSV color space, which is 

encoded by a Haar transform. In the compressed domain, this can be computed using DC 

image. Accuracy of histogram may be degraded due to the small number of samples, 

where color histogram of a group of frames (GoF/GoP color) can be used instead. 

• GoF/GoP color – This is the extension of the scalable color descriptor to a video segment 

or a collection of still images. It may be preferred in the compressed domain because 

color samples from multiple frames are accumulated for more robust computation of the 

histogram, assuming that colors vary slowly within a video segment. Average or median 

histogram can be used. 

• Color layout – This descriptor specifies spatial distribution of colors for high-speed 

retrieval or browsing. An 8x8 matrix of dominant local colors is DCT transformed, 

quantized, and zigzag scanned. In the compressed domain, the DCT DC image can be 

segmented into an 8x8 grid layout and used to generate the matrix of dominant colors. 

• Color structure – Color structure information is embedded in this descriptor by taking 

into account colors of neighboring pixels, instead of considering each pixel separately as 

in color histogram. Its main purpose is still-image matching for similarity-based image 

retrieval. In the compressed domain, the DCT DC image is a subsampled version so that 
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the 8x8 structuring element actually covers 64x64 regions in the original frame. 

Therefore, color structures in local neighborhoods are not preserved, and the descriptor 

may not have clear advantages over normal color histogram. 

 

Texture descriptors 

• Homogeneous texture – The extraction of this descriptor involves filtering the image with 

filter banks and calculating moments in corresponding subbands. It is therefore difficult 

to extract directly in the compressed domain. However, it can be used to describe full-

resolution images of key video frames. 

• Texture browsing – This descriptor characterizes texture in terms of regularity, 

coarseness, and directionality. The extraction is similar to the above, and is also difficult 

in the compressed domain. 

• Edge histogram – This descriptor represents the spatial distribution of different types of 

edges. It is difficult to extract directly in the compressed domain. Due to low resolution 

of the DC images and block effects, it is very hard to extract reliable edges from 

compressed video. 

 

Shape descriptors 

• Region-based shape – This descriptor uses a set of Angular Radial Transform (ART) 

coefficients to represent complex shapes. In the compressed domain, color and motion 

information can be used to segment video frames. This descriptor can then be computed 

approximately using the segmented regions in the DC image. Obviously, region-based 

shape is more reliable for large objects or regions in compressed video. 
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• Contour-based shape – This descriptor uses the Curvature Scale-Space representation of 

the contour. It is difficult to extract directly in the compressed domain due to the hard 

problems of reliable edge detection and contour extraction from compressed video. 

 

Motion descriptors 

• Camera motion – This descriptor supports an array of basic camera operations, and 

captures the temporal and visual attributes of camera motion of sub-shots, either in single 

or mixed mode. As we have discussed in previous sections, techniques are available for 

estimating camera motion using motion vectors in MPEG video, such as [6, 36, 57]. 

Some of them are able to estimate the global camera motion when there are multiple 

types of basic camera motion simultaneously (mixed mode), while others work better 

when there is only one dominant type of camera motion. 

• Motion trajectory – This descriptor is a list of key points in 2-D or 3-D Cartesian 

coordinates, along with optional interpolating functions. For compressed video, it is 

possible to generate motion trajectories of dominant objects or regions by estimating 

region motion using MPEG motion vectors [2, 12], although spurious motion vectors 

may degrade the accuracy of the trajectories.  

• Parametric motion – This descriptor characterizes the evolution of arbitrarily shaped 

regions over time in terms of a 2-D geometric transform, such as the affine model, the 

planer perspective model, and the quadratic model. It addresses both region motion and 

global motion. In the compressed domain, parametric motion can be estimated using 

motion vectors to approximate optical flow and adopting a 2-D geometric transform, such 

as the affine model [6, 36]. 
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• Motion activity – This descriptor include motion attributes of video segments such as 

intensity of activity, direction of activity (if any), spatial distribution of activity, and 

spatial/temporal localization of activity. As shown in [14], this descriptor can be 

computed efficiently using motion vectors in MPEG compressed video. 

b. MPEG-7 Audio 

Although less mature than MPEG-7 visual, MPEG-7 audio has reached the fairly stable 

stage of Committee Draft in the October 2000 MPEG-7 meeting at La Baule. MPEG-7 audio 

tools can be put in two general categories: low-level audio description, and application-driven 

description. The low-level description tools are applicable to general audio data, regardless of the 

specific content (e.g., song or speech) carried by the audio signal. The application-driven 

description tools are applicable to specific types of audio content, such as speech, sound effects, 

musical instruments, and melodies. 

 

Low-level description tools 

• Scalable series – These are abstract data types for series of scalar or vector values, which 

allow temporal series of audio descriptors to be represented in a scalable fashion. These 

are one of the foundations of low-level description tools. 

• Audio description framework – This is a collection of low-level audio descriptors 

(features), which include waveform envelope, spectrum envelope, audio power, spectrum 

centroid, spectrum spread, fundamental frequency, and harmonicity. Many of these 

descriptors are similar or identical to the audio features we discussed in Section VII. In 

the MPEG compressed audio (where the signal is subband coded), extractions of some of 

these low-level descriptors like waveform envelope and audio power are straightforward. 
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For other descriptors, such as spectrum envelope, centroid, spread, and fundamental 

frequency (pitch), subband coefficients can be used directly for estimation, without the 

need to fully decode the MPEG audio [24, 41, 60]. 

• Silence – Silence descriptor describes silent sound segments. This can be used for audio 

segmentation, or semantic-level event detection when combined with other audiovisual 

descriptors. Silence can be detected in MPEG compressed audio directly [41]. 

 

Application-driven description tools 

• Spoken content description tools – These consist of a number of combined word and 

phoneme lattices in an audio stream. By combining the lattices, the problem of out-of-

vocabulary words in speech recognition and retrieval is greatly alleviated. Possible 

applications are indexing and retrieval of audio stream, and indexing and retrieval of 

multimedia objects annotated with speech. 

• Timbre description tools – These tools aims at describing the perceptual features (timbre) 

of musical instruments that distinguish one from another even when the sounds produced 

have the same pitch and loudness. A reduced set of descriptors is selected for this 

purpose, such as log-attack time, harmonic centroid, spread, and deviation, etc. Possible 

applications are authoring tools for sound engineers and musicians, and retrieval tools for 

producers. 

• Sound effects description tools – These are a collection of tools for the indexing and 

categorization of general sound effects. Potential applications include automatic 

segmentation and indexing sound tracks. 
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• Melody contour description tools – These tools are a compact representation of melodies 

that allows for efficient and robust melody-similarity matching. A typical application is 

query by humming, which is useful in music search and retrieval. 

 

Although some low-level audio features can be estimated directly using compressed 

audio signal (such as MPEG-1 audio), most of the application-driven audio description tools 

mentioned above cannot be applied directly in the compressed domain. However, since audio 

signal is one-dimensional and the data volume is much smaller compared with video, it is often 

affordable to fully decompress the audio signal before further analysis is done. 

 

IX. Conclusion and Future Directions 

In this paper we survey video and audio features that can be extracted or approximated 

using compressed video and audio like MPEG-1/2 streams. Without expensive decompressions, 

features can be efficiently extracted for large archives of multimedia data. However, 

compressed-domain features have their limitations, which are reflected in the survey, due to the 

lower resolution, block effects, inaccurate motion vectors, etc. 

 

We investigate spatial visual features, motion features, video coding features, and audio 

features, along with their potential applications. Some important applications using multiple 

visual and motion features are discussed in a separate section. Finally, we summarize and 

evaluate a small set of features that we believe are important and fairly robust. We also review 

the recent status of MPEG-7 visual descriptors, and audio descriptors, and discuss the possibility 

of extracting MPEG-7 features directly from compressed video and audio. We believe that 



 51 

compressed-domain feature extraction will be valuable to MPEG-7 applications with the 

availability of the vast amount of MPEG-1/2 content. 

 

Comparing the MPEG-7 visual descriptors with the features that we have surveyed, it 

becomes clear that for a feature to be successful and be able to become part of the standard, it has 

to be robust, general, and cost-effective. Features whose applications are limited to a small 

domain typically are not included in standards. 

 

Features alone are far from enough for video/audio indexing and analysis. Although 

feature extractions (especially from the compressed domain) will continue to be a research topic, 

equally important problems are (1) how to obtain semantic-level knowledge and understanding 

from these low-level features, and (2) the synergic integration of features from multiple media 

such as video, audio, text, and metadata. These problems are important, challenging, and demand 

rigorous and systematic investigation. 
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Figure 1: Hierarchy of commonly used features in video/audio indexing and analysis. 
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Category  Feature Efficiency Effectiveness Limitations Section 

COLOR DC color histogram Very efficient High Degraded for 
small regions 

III.2 

 DC YCbCr vector Very efficient High Needs expensive 
dimension 
reduction 
techniques 

III.2 

TEXTURE & 
EDGE 

DCT AC coefficient 
energy 

Very efficient Moderate Coarse estimate 
of texture 

III.3 

 DCT block edge map Efficient High Difficult to link 
edge segments 

III.3 

CAMERA 
OPERATION 

3-D, 6-patameter 
model  

Less efficient High Sensitive to 
motion vector 
errors in initial 

estimation 

IV.2 

 Affine, 3-paramter 
model 

Efficient High Pan, tilt, and 
zoom only 

IV.2 

MOTION 
STATISTICS 

Motion activity Very efficient Moderate Rough 
characterization 

of motion 
properties 

IV.3 

 Motion histograms Very efficient Moderate Limited by 
motion vector 

errors and 
sparseness 

IV.3 

CODING 
PARAMETERS 

Macroblock type 
information 

Very efficient Moderate Affected by 
encoder 

implementation 

V.1 

AUDIO 
FEATURES 

Short-time energy Very efficient High Coarse 
representation of 

the waveform 

VII.1 

 Energy statistics Very efficient Moderate Combined with 
other features for 

classification 

VII.1 

 Silence ratio Very efficient Moderate Combined with 
other features for 

classification 

VII.1 

 

 Zero crossing rate Very efficient High Difficult to 
extract directly in 
compressed audio 

VII.1 

 Pitch Very efficient High Difficult to 
estimate for noisy 

audio 

VII.1 

 Spectral statistics Very efficient Moderate Combined with 
other features for 

classification 

VII.1 

 

Figure 2: Summary of a subset of effective and fairly robust features.



 63 

 

 

 

 

 

 

 

 

Frame 

Entropy 
coder Quantizer 

DCT  
8x8 block 

partitioning 

Color 
space 

conversion 

Compressed 
data 

 

 

 

 

 

 

Figure 3: Block diagram of a typical encoding sequence using the DCT. 
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Figure 4: Block-based motion compensation. 
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Figure 5: Basic structure of an MPEG-1 audio encoder. 


