Rotation, Scale and Translation Resilient Public Watermarking for Images

Ching-Yung Lina, Min Wub, Jeffrey A. Bloomc, Matt L. Millerc, Ingemar J. Coxc, Yui Man Luid

aColumbia University, New York, NY
bPrinceton University, Princeton, NJ
cNEC Research Institute, Princeton, NJ
dSignafy Inc., Princeton, NJ

January 24, 2000
Motivation: Print-and-Scan Process

- Pixel Value Distortion
- Geometric Distortion:
 -- Rotation, Scale,
 -- Translation, Crop
 Change of Boundary, Padding
Public Watermarking surviving Geometric Distortion

Identification
10101011100

Information
NECI

Characteristics: *Invisible, Robust and Blind*

- Previous Work:
Outline

- **Proposal:**
 - Embedding watermarks by shaping an invariant one-dimensional feature vector derived from the log-polar map of DFT of image.

- **Implementation Difficulties and Solutions:**

- **Experiments:**
 - False positive tests for 10,000 images;
 - Robustness tests for 2,000 images.

- **Conclusion and Future Work**
Discrete Fourier coefficients of discrete images after RST

• **Rotation** in spatial domain \Rightarrow **Rotation** in frequency domain

\[
x_R(t_1, t_2) = x(t_1 \cos \theta - t_2 \sin \theta, t_1 \sin \theta + t_2 \cos \theta) \xrightarrow{F} X(f_1 \cos \theta - f_2 \sin \theta, f_1 \sin \theta + f_2 \cos \theta) = X_R(f_1, f_2)
\]

• **Scaling without change of boundary** in spatial domain \Rightarrow

Scaling in frequency domain

\[
x_S(t_1, t_2) = x\left(\frac{t_1}{\lambda_1}, \frac{t_2}{\lambda_2}\right) \xrightarrow{F} X(\lambda_1 f_1, \lambda_2 f_2) = X_S(f_1, f_2)
\]

• **Translation** in spatial domain \Rightarrow **Phase shift** in frequency domain

• **Scaling with boundary change, Cropping** in spatial domain \Rightarrow **Noise** in frequency domain
The Log-Polar Map of Fourier Coefficients

- Log-Polar Map
 - Rotation: shift in the θ axis
 - Scale: shift in the log r axis.
 - Translation: no effect on the magnitudes.

Projection along the log r axis:
- Cyclic shift for rotation,
- Invariant to scaling.

For RST (uniform scaling)
Watermark Embedding: Feature Vector Shaping

- Extract a Noise-Like Feature Vector and change it to a watermark pattern

Spread Spectrum:
\[f(F_w) = f(F) + W \]

Feature Vector Shaping
\[f(F_w) \approx W \]

- Extract a Noise-Like Feature Vector and change it to a watermark pattern
Difficulties and Solutions

• Log-Polar Map of Fourier Coefficients:
 \textit{Solutions} \Rightarrow Zero-Padding, bilinear interpolation from the magnitudes of DFT coefficients.

• Inverse Log-Polar Map (1-to-many, many-to-1 mapping):
 \textit{Solutions} \Rightarrow Estimate changes from the log-polar map, and iterative embedding on the DFT coefficients.

• Noise-Like Feature Vector:
 \textit{Solutions} \Rightarrow Local Variance, Whitening filter, Summing logs, Summing $g(\theta) + g(\theta + 90)$

• Visual Quality:
 \textit{Solutions} \Rightarrow Constraint on the DFT Coefficient Variations.
DFT coefficients after rotation

- Characteristics: “cross” effect, Cartesian sampling points

 => **Solutions**: Estimate the cross positions from boundary/larger values
Algorithm for generating feature vector

1. Zero-padded to double image size
2. Calculate the magnitudes of log-polar coefficients, $|Fm|$, from DFT magnitudes
3. Summation of the log of the Fourier-Mellin magnitudes along log r axis
4. Combine values in orthogonal directions
 \[g_1(\theta) = g_0(\theta) + g_0(\theta+90^\circ) \]
5. Subtract $g(\theta)$ by its global mean, (whitening filter)
6. The Feature Vector
 \[fv = g(\theta_1, ..., \theta_n) \]
Experiments: Print-and-Scan

Original Image [384x256] Watermarked Image, PSNR 43.8dB, $\rho=0.84$, $Z=7.02$

After Print & Scan, Crop to 402x266 => $\rho=0.80$, $Z=6.46$

After PS, Crop to 360x240 & JPEG CR: 95:1 => $\rho=0.64$, $Z=4.30$
Experiments: False Positive
(10,000 images from Corel Image Library, 10 different watermarks)
Experiments: Robustness
(ROC curves of 2,000 images)

Rotation
(4°, 8°, 30°, 45°)

Scale down
(5%, 10%, 15%, 20%)

Translation
(5%, 10%, 15%, 20%)

Scale Up
(5%, 10%, 15%, 30%)
Experiments: Robustness (ROC using 2,000 images)

JPEG Compression (100, 90, 80, 70)
Conclusion and Future Work

Conclusion:

• The watermarking method:
 – Utilize a signal that changes in a trivial manner as a result of RST.
 – Feature Vector Shaping: Embedding One-dimensional Watermark.

Related Work:

Future Work:

• Extensive test on the print-and-scan images.
• Enhance the robustness of the system in embedding multiple-bits watermark, and cropping.