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ABSTRACT

Many electronic watermarks for still images and video content are sensitive to geometric distortions. For example,

simple rotation, scaling, and/or translation (RST) of an image can prevent detection of a public watermark. In this

paper, we propose a watermarking algorithm that is robust to RST distortions. The watermark is embedded into a

1-dimensional signal obtained by �rst taking the Fourier transform of the image, resampling the Fourier magnitudes

into log-polar coordinates, and then summing a function of those magnitudes along the log-radius axis. If the image

is rotated, the resulting signal is cyclically shifted. If it is scaled, the signal is multiplied by some value. And if the

image is translated, the signal is una�ected. We can therefore compensate for rotation with a simple search, and for

scaling by using the correlation coe�cient for the detection metric.

False positive results on a database of 10,000 images are reported. Robustness results on a database of 2,000

images are described. It is shown that the watermark is robust to rotation, scale and translation. In addition, the

algorithm shows resistance to cropping.
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1. INTRODUCTION

We examine a watermarking scheme's robustness against the geometric distortions of rotation, scale, and translation

(RST). The problem of watermark detection after geometric distortion has traditionally been approached by preceding

the detection with a registration of the suspect image in an attempt to invert the unknown distortion. When the

original image is available to the detector, registration is a well studied problem.

In a public watermark, detection must be performed without the original image. Two approaches for image

registration have been proposed in this case. One solution involves the insertion of a second watermark, which

is a speci�cally designed spatial pattern that is easily detected after geometric distortion.1,2 From the distorted

registration pattern, the RST parameters can be determined.

A second solution is to impart the recognizable structure to the data-carrying watermark itself. For example, as

suggested in [3], the watermark might be encoded with a small, rectangular pattern, and embedded several times in

the image in a tiled grid. Then, regardless of the watermark pattern, the grid structure can be recognized by looking

at the autocorrelation function of the image, which would contain a corresponding grid of peaks. These peaks can

be analyzed to identify any a�ne distortions.

In this paper, we propose a 1D watermark signal derived from the image so as to be invariant to RST distortions.

This type of signal, or descriptor, is well studied in the pattern recognition community. The current approach is similar

to the development of \strong" or \absolute" invariants based on or related to the Fourier-Mellin transform.4{12 The

terms absolute and strong refer to the fact that all information about an image except that of position, orientation

or scale is preserved. This may be important for recognition tasks, especially if the library of objects is large.

O'Ruanaidh and Pun13 �rst suggested a watermarking method based on the Fourier-Mellin transform. However,

they note very severe implementation di�culties which we suspect have hampered further work in this area. Many

of these di�culties are related to the fact that they have chosen to use a transformation that is strongly invariant.

This work was performed while all authors were employed by NEC Research Institute or Signafy Inc.



The watermark signal proposed in the current work is not based on a strong invariant, as we believe that strong

invariance is not necessary for watermarking applications.

There have been a number of other recent watermarking algorithms designed to deal with geometric distortions.

Of particular note is the recent work of Bas et al14 that inserts a signal relative to the salient features of an image.

A somewhat related set of methods is described by Maes and van Overveld15 and Rongen et al.16 These methods

are based on geometrically warping local regions of an image onto a set of random lines.

In Section 2 we describe our algorithm. It di�ers from that of [13] in two primary ways. First, we choose to

watermark a projection of the transform space. Second, the watermark embedding is based on the principle of

communication with side information.17 This is described in more detail, including the iterative procedure for

dealing with the one-to-many mapping from watermark to image space. Section 3 describes the results of a broad

range of experiments on a large database.

Before proceeding further, it is important to de�ne what we mean by the geometric distortions of rotation, scale

and translation. Speci�cally, we are interested in the situation in which a watermarked image undergoes an unknown

rotation, scale and/or translation prior to the detection of the watermark. The detector should detect the watermark

if it is present. This de�nition is somewhat obvious, so it may be more useful to describe what we are not interested

in. In particular, some watermark algorithms claim robustness to scale changes by �rst embedding a watermark at

a canonical scale, then changing the size of the image and �nally, at the detector, scaling the image back to the

canonical size prior to correlation. In our opinion, the detector does not see a scale change. Rather, the process is

more closely approximated by a low pass �ltering operation that occurs when the image is reduced in size. Similarly,

tests that rotate an image by some number of degrees and subsequently rotate the image by the same amount in the

opposite direction are not adequate tests of robustness to rotation. The same is true for translation. The common

situation we are concerned with occurs when a watermarked image is printed and then cropped or padded and

scanned back into the digital domain. In these circumstances, the image dimensions have changed both because of

cropping and possibly scaling. There is also likely to be an associated translational shift. In this example, scaling to

a canonical size does not undo the scaling. Rather, if the cropping is not symmetric in both the rows and columns,

then scaling to a canonical size will result in a change in the image's aspect ratio. Changes in aspect ratio are not

addressed in this paper. Application of the current watermarking method to the print and scan process has been

discussed elsewhere.18

2. ALGORITHM

It is well known that the magnitude of the Fourier transform of an image after rotation, scaling, and translation is

given in as

jI 0(fx; fy)j = j�j�2
��I ���1(fxcos�+ fysin�); �

�1(�fxsin�+ fycos�)
��� (1)

where � and � are the rotation and scale parameters, respectively, and I(fx; fy) is the Fourier transform of the

original image. Rewriting in log-polar frequency coordinates yields

jI 0(�; �)j = j�j�2 jI (�� log�; � � �)j ; (2)

where � is along the log radius axis and � is along the angle axis.

Equation 2 demonstrates that the amplitude of the log-polar spectrum is scaled by j�j
�2
, that image scaling

results in a translational shift of log � along the � axis, and that image rotation results in a rotational shift of � along

the � axis. These facts are well known in the pattern recognition community and are the basis for the Fourier-Mellin

transform. The scaling will not a�ect the detection value (see Section 2.1), so the RST geometric distortion appears

as a 2D shift of the magnitude spectrum.

Lacking a fast, e�cient technique for direct computation of the log-polar Fourier transform, an interpolation

from the Cartesian Fourier transform is performed. In the current implementation, the image is padded with black,

prior to calculation of the DFT. This results in a denser sampling of the Fourier transform. The magnitudes of the

log-polar Fourier sample points are then interpolated with an inexpensive, linear interpolation from the magnitudes

of the four nearest neighbors.

The log magnitudes of the 2D log-polar spectrum are then summed over a band of radii to yield a 1D signal,

g(�) =
X
j

log (jI(�j ; �)j) 0� � � < 180�; (3)



where log values have been used to allow some equalization of the component contributions over the frequency range.

The band of radii excludes the very high and very low frequencies.

The energy in an image is seldom evenly distributed in angular frequency. Images frequently have a large amount

of energy in one group of directions, while having much lower energy in an orthogonal group of directions (consider

images containing buildings or trees and those containing seascapes or sunsets). This suggests an uneven visual

masking ability in orthogonal directions.

To minimize the impact on �delity, g(�) is divided into two halves which are added together,

g1(�
0) = g(�0) + g(�0 + 90�) 0� � � < 90�: (4)

Modi�cation of an element of g1(�), can be accomplished by hiding noise that's oriented along either angle � or

angle �+90�. This increases the likelihood that each element of the watermark can be embedded within the �delity

constraints. Clearly, g1(�) is invariant to both translation and scaling while rotations result in a circular shift of the

values of g1(�).

2.1. Watermark detection

In principle, detectors may be built that can handle watermarks encoding several bits. However, the present detector

determines only whether or not a given watermark has been embedded in a given image.

The watermark, w, is expressed as a vector of length N . To determine whether the watermark is present, an

\extracted signal", v = g1(�), is computed from the image, for N values of � evenly spaced between 0� and 90�. The

extracted signal is then compared to the watermark using the correlation coe�cient and this result is compared to

a threshold.� The correlation coe�cient is de�ned as

C =
w � vp

(w � w)(v � v)
: (5)

Correlation coe�cient is most e�ective when the elements of the two vectors, v and w, are drawn from white

distributions. For natural images, g1(�) is likely to vary smoothly as a function of �. To improve the detection

measure, the watermark and extracted vector are whitened prior to calculation of the correlation coe�cient.19 The

whitening �lter was empirically derived from signals extracted from 10,000 images in the database.20 (These images

were then excluded from use in subsequent experiments).

It is well known that the rectangular boundary of an image usually causes a \cross" artifact in the image's

energy spectrum. The cross, unrelated to the frequency content of the underlying image data, may not be subject

to the same geometric transformations as is the image data. Since the energy corresponding to this artifact lies in

perpendicular directions, it will all be projected to one small neighborhood in the extracted signal, g1(�).

Our present solution to this problem is to exclude the neighborhood around the highest-valued element of the

extracted signal. Alternative solutions that appear in the literature include multiplication of the image by a circularly-

symmetric window21 and blurring of the image edges.22 These solutions are currently under investigation.

2.2. Watermark embedding process

Watermark embedding is viewed as communications with side information at the embedder.17 Knowing the detection

process, the role of the embedder is to modify the image so as to maximize the correlation coe�cient between the

extracted signal and the target watermark vector.

To apply the concept of using side information at the embedder, while maintaining acceptable �delity, Cox et

al
17 introduces the idea of a mixing function, s = f(v; w). This generates a mixed signal, s, which is perceptually

similar to v, and has a high correlation with w. The mixing function used in the current implementation simply

computes a weighted average of w and v, which is a highly sub-optimal approach. More sophisticated methods will

be explored in the future. The embedder adds the di�erence between the extracted signal and the mixed signal to

the host image.

�The use of correlation coe�cient as a detection measure is recommended in [17]. One bene�t of this metric is its indepen-

dence to scaling of the signal amplitudes.



In the current implementation the di�erence signal, at each angle, is uniformly distributed throughout all log

radii elements of the log-polar Fourier magnitudes. The modi�ed Cartesian Fourier magnitudes are then obtained

by inverting the log-polar resampling of the Fourier magnitudes. Finally, the complex terms of the original Fourier

transform are scaled to have the new magnitudes that were computed in the modi�ed Fourier transform, and the

inverse Fourier transform is applied to obtain the watermarked image.

The main implementation issue in such an approach is the inherent instability in inverting the log-polar resam-

pling. We therefore approximate this step with an iterative method in which a local inversion of the interpolation

function is used for the resampling.

Recall that, in the current implementation of the log-polar resampling, each element of the log-polar Fourier

magnitude array is a weighted average of up to four elements of the Cartesian Fourier magnitude array. Thus, the

change in the magnitude of a log-polar coe�cient can be represented as a weighted change in the magnitudes of

each of four Cartesian coe�cients. Where multiple changes to a single Cartesian coe�cient are required, a weighted

average is applied.

Successively better approximations are obtained by applying this operation iteratively. The results presented in

the next section of this paper were obtained with three iterations.

3. EXPERIMENTAL RESULTS

The following results were obtained by extracting a length 90 vector from the image and neglecting the 16 sam-

ples surrounding the peak (assumed to correspond to the DFT cross artifact). This leaves a descriptor that is 74

samples in length. The detection process involves a comparison of the watermark with all 90 cyclic rotations of

the extracted descriptor. In this section we examine the false positive behavior, e�ectiveness, and robustness of the

proposed scheme. False positive measurements were collected on 10,000 unwatermarked imagesy, and e�ectiveness

and robustness measurements were collected on 2,000 watermarked images except that scale up with cropping used

only 947 images. Watermarks were embedded with a strength that resulted in a mean SNR of 40dB.z

3.1. Probability of False Positive

A false positive or false detection occurs when the detector incorrectly concludes that an unwatermarked image

contains a given watermark. Thus, the probability of false positive is de�ned as

Pfp = P fCmax > Tg (6)

where Cmax is a detection value obtained by running the detector on a randomly selected, unwatermarked image

and T is the detection threshold. The subscript max speci�es the maximum detection value from all of the cyclical

shifts examined.

This probability is estimated empirically by applying the detector to 10,000 unwatermarked images from [20],

testing for 10 di�erent binary watermarks in each. The probability of detection (in this case false detection) is shown

as a function of threshold in Figure 1 (a). Each trace corresponds to all 900,000 correlation coe�cients obtained

using one of the 10 watermarks. The highest detection value obtained in this experiment was 0.55.

To estimate Pfp for T > 0:55, we employ the theoretical model described by Miller & Bloom.23 This model

predicts the false positive probability when an unwatermarked, extracted vector is drawn from a radially-symmetric

distribution and the correlation coe�cient, C is used as the detection metric. For a d-dimensional watermark, this

probability is

P fC > Tg = R(T; d) �

R
cos

�1(T )

0
sind�2(u)du

2
R
�=2

0
sind�2(u)du

: (7)

The whitening �lter employed in the detector makes the distribution roughly spherical, so this model is expected

to apply with d = 74. The resulting false positive rate prediction is shown as a dotted line in Figure 1 (a).

yThe images used in this test were all di�erent from, but from the same database as the 10,000 images that were used to

generate the whitening �lter.
zHere the \signal" is the image, and the \noise" is the watermark pattern.
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(a) (b)

Figure 1. Measured false positive rates plotted with theoretical estimates. (a) Individual correlation coe�cients.

(b) Final detection value

Ultimately, however, we are concerned with the probability that, for each watermark and unwatermarked image,

the maximum among 90 correlation coe�cients is greater than the threshold. These maximum detection values are

used to generate Figure 1 (b).

The model can be used to estimate an upper bound on P fCmax > Tg by observing that

P fQ0 or Q1 or : : :Qn�1g � min

 
1;
X
i

P fQig

!
: (8)

When Qi corresponds to the event (Ci > T ), and n = 90, we obtain

P fCmax > Tg � min (1;90�R(T; 74)) : (9)

This prediction is shown as a dotted line in Figure 1(b).

3.2. E�ectiveness

The e�ectiveness of a watermarking scheme is measured as the probability that the output of the watermark embedder

will contain the watermark, subject to constraints on the �delity of the marked image and the detection threshold or

probability of false positive. The e�ectiveness of the current scheme is measured and reported in Table 1 (row labeled

\E�"). Improvements are possible in the approximate inversion of the log-polar resampling and in the distribution

of the di�erence signal to the log-polar coe�cients. Also, the current technique of uniform distribution does not fully

exploit the visual properties of the host image.

3.3. Robustness

In a practical setting, RST distortions are usually accompanied by cropping. Figure 2 (f), (g), and (i) show respec-

tively rotation, scaling, and translation with the associated cropping. With the current algorithm, cropping can be

viewed as distortion of the extracted signal by additive noise. As such, we expect cropping to degrade the detection

value.

In this section seven geometric distortion attacks are examined; rotation with and without cropping, scaling up

with and without cropping, translation with and without cropping, and scaling down. Note that scaling down does

not imply cropping. In order to isolate the e�ects of rotation, scaling up, and translation from cropping, the images

have been padded with gray as shown in Figure 2 (a). The embedder has been applied to these expanded images

and then the gray padding replaced with unwatermarked gray padding prior to detection or attack.



Threshold

0.50 0.55 0.60 0.65 0.70

Pfp 10�4 10�5 10�7 10�8 10�10

E� 95.3 92.1 86.3 71.8 43.2

Rot 97.2 93.6 82.7 63.7 45.8

95.3 88.2 71.1 49.4 28.4

Scl Up 99.2 97.2 92.8 81.1 66.9

97.1 93.6 83.9 68.1 49.9

Trans 100 100 100 100 100

99.0 98.8 97.5 96.0 92.7

Threshold

0.50 0.55 0.60 0.65 0.70

Pfp 10�4 10�5 10�7 10�8 10�10

E� 97.4 95.7 93.0 88.2 75.6

Rot 94.9 88.6 74.7 51.6 22.7

85.7 71.1 49.7 26.0 8.7

Scl Up 98.8 97.9 93.9 82.6 58.9

95.4 88.5 73.6 51.4 26.7

Trans 95.2 89.5 77.3 55.4 29.7

91.9 83.8 66.3 40.3 18.5

Scl Dn 99.9 100 100 99.5 96.6

99.6 99.6 99.1 98.6 92.9

(a) (b)

Table 1. E�ectiveness and robustness from (a) padded and (b) unpadded tests. Listed are the maximum and

minimum robustness values for rotation angles of 4�, 8�, 30�, and 45�; scaling factors of 5%, 10%, 15%, and 20%;

and translations factors of 5%, 10%, and 15% of the image size.

a b c d

e f g h i

Figure 2. Examples of geometric attacks: (e) and (a) are the original and padded original respectively, (b)-(d)

attacks without cropping, and (f)-(i) attacks with cropping



The detection value prior to attack is used to measure the e�ectiveness of the watermarking scheme. This e�ec-

tiveness is likely to be reduced in the padded examples since a portion of the watermarked image (the watermarked

gray padding) has been replaced with non-watermarked data. However, the purpose of the experiments shown in

Figure 2 (b)-(d) and reported in Table 1 (a) is to isolate the e�ects of geometric distortions from cropping e�ects.

The results of experiments that were based on the original, unpadded images are reported in Table 1 (b). These

tests include rotation with cropping, scaling up with cropping, translation with cropping, and scaling down.

For a given threshold, the table lists the percentage of images that withstood each attack, i.e. robustness is the

ratio of the number of detections after attack to the number of detections prior to attack. Notice that only images for

which the embedding was e�ective (detection value immediately after embedding was above the detection threshold)

contribute to the determination of robustness. For each threshold, the false-positive probabilities are estimated using

the model described in Section 3.1.

The results shown in Table 1(a) are for RST distortions without cropping. We see that this algorithm is extremely

robust to translation and shows very good robustness to rotation and scale up at moderate false positive rates. The

algorithm is also extremely robust to scale down, the results of which are reported in Table 1(b) and are also free

from cropping. Table 1(b) also shows the results of RST distortions with cropping. The di�erence between the

translation results of the two tables reveals the sensitivity of this method to cropping. This sensitivity can also be

seen in the rotation and scale up experiments.

4. CONCLUSION

Geometric distortions continue to be a major weakness for many watermarking methods. We have described a

solution to the common problems of rotation, scale, and translation. This solution is related to earlier proposals

in the pattern recognition literature regarding invariants of the Fourier-Mellin transform. However, unlike those

proposals, we do not explicitly derive an invariance relationship.

Instead of creating a truly RST invariant signal, we create a signal that can be searched for the e�ects of RST

in a trivial manner. The calculation of this projection is performed by taking the Fourier transform of the image,

performing a log-polar resampling and then integrating along the radial dimension. We note that an alternative

implementation can be performed using the Radon transform.24 We have also investigated that implementation but

do not report it here.

The one-dimensional watermark has a many-to-one mapping to the two-dimensional image space. This is ad-

vantageous, especially when the embedder is based on the principle of communications with side information. Our

implementation is a very simple example of this principle and we believe that future work can lead to signi�cant

improvements.

Experimental results on a database of over 2,000 images clearly demonstrate that the method is robust to rotations,

scale changes, or translations and, without modi�cation, exhibits some resistance to cropping.
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