Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |


Brendan Jou, Shih-Fu Chang. Going Deeper for Multilingual Visual Sentiment Detection. Research Report arXiv preprint arXiv:1605.09211, 2016.

Download [help]

Download paper: (link)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


This technical report details several improvements to the visual concept detector banks built on images from the Multilingual Visual Sentiment Ontology (MVSO). The detector banks are trained to detect a total of 9,918 sentiment-biased visual concepts from six major languages: English, Spanish, Italian, French, German and Chinese. In the original MVSO release, adjective-noun pair (ANP) detectors were trained for the six languages using an AlexNet-styled architecture by fine-tuning from DeepSentiBank. Here, through a more extensive set of experiments, parameter tuning, and training runs, we detail and release higher accuracy models for detecting ANPs across six languages from the same image pool and setting as in the original release using a more modern architecture, GoogLeNet, providing comparable or better performance with reduced network parameter cost. In addition, since the image pool in MVSO can be corrupted by user noise from social interactions, we partitioned out a sub-corpus of MVSO images based on tag-restricted queries for higher fidelity labels. We show that as a result of these higher fidelity labels, higher performing AlexNet-styled ANP detectors can be trained using the tag-restricted image subset as compared to the models in full corpus. We release all these newly trained models for public research use along with the list of tag-restricted images from the MVSO dataset


Brendan Jou
Shih-Fu Chang

BibTex Reference

   Author = {Jou, Brendan and Chang, Shih-Fu},
   Title = {Going Deeper for Multilingual Visual Sentiment Detection},
   Institution = {arXiv preprint arXiv:1605.09211},
   Year = {2016}

EndNote Reference [help]

Get EndNote Reference (.ref)


For problems or questions regarding this web site contact The Web Master.

This document was translated automatically from BibTEX by bib2html (Copyright 2003 © Eric Marchand, INRIA, Vista Project).