Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |


Winston Hsu, Shih-Fu Chang. Visual Cue Cluster Construction via Information Bottleneck Principle and Kernel Density Estimation. In International Conference on Content-Based Image and Video Retrieval (CIVR), Singapore, 2005.

Download [help]

Download paper: Adobe portable document (pdf)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


Recent research in video analysis has shown a promising direction, in which mid-level features (e.g., people, anchor, indoor) are abstracted from low-level features (e.g., color, texture, motion, etc.) and used for discriminative classification of semantic labels. However, in most systems, such mid-level features are selected manually. In this paper, we propose an information-theoretic framework, visual cue cluster construction (VC3), to automatically discover adequate mid-level features. The problem is posed as mutual information maximization, through which optimal cue clusters are discovered to preserve the highest information about the semantic labels. We extend the Information Bottleneck framework to high-dimensional continuous features and further propose a projection method to map each video into probabilistic memberships over all the cue clusters. The biggest advantage of the proposed approach is to remove the dependence on the manual process in choosing the mid-level features and the huge labor cost involved in annotating the training corpus for training the detector of each mid-level feature. The proposed VC3 framework is general and effective, leading to exciting potential in solving other problems of semantic video analysis. When tested in news video story segmentation, the proposed approach achieves promising performance gain over representations derived from conventional clustering techniques and even the mid-level features selected manually.


Winston Hsu
Shih-Fu Chang

BibTex Reference

   Author = {Hsu, Winston and Chang, Shih-Fu},
   Title = {Visual Cue Cluster Construction via Information Bottleneck          Principle and Kernel Density Estimation},
   BookTitle = {International Conference on Content-Based Image and Video Retrieval (CIVR)},
   Address = {Singapore},
   Year = {2005}

EndNote Reference [help]

Get EndNote Reference (.ref)


For problems or questions regarding this web site contact The Web Master.

This document was translated automatically from BibTEX by bib2html (Copyright 2003 © Eric Marchand, INRIA, Vista Project).