Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |


Yu-Gang Jiang, Jun Wang, Shih-Fu Chang, Chong-Wah Ngo. Domain Adaptive Semantic Diffusion for Large Scale Context-Based Video Annotation. In International Conference on Computer Vision (ICCV), Kyoto, Janpan, September 2009.

Download [help]

Download paper: Adobe portable document (pdf)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


Learning to cope with domain change has been known as a challenging problem in many real-world applications. This paper proposes a novel and efficient approach, named domain adaptive semantic diffusion (DASD), to exploit semantic context while considering the domain-shift-ofcontext for large scale video concept annotation. Starting with a large set of concept detectors, the proposed DASD refines the initial annotation results using graph diffusion technique, which preserves the consistency and smoothness of the annotation over a semantic graph. Different from the existing graph learning methods which capture relations among data samples, the semantic graph treats concepts as nodes and the concept affinities as the weights of edges. Particularly, the DASD approach is capable of simultaneously improving the annotation results and adapting the concept affinities to new test data. The adaptation provides a means to handle domain change between training and test data, which occurs very often in video annotation task. We conduct extensive experiments to improve annotation results of 374 concepts over 340 hours of videos from TRECVID 2005-2007 data sets. Results show consistent and significant performance gain over various baselines. In addition, the proposed approach is very efficient, completing DASD over 374 concepts within just 2 milliseconds for each video shot on a regular PC


Yu-Gang Jiang
Jun Wang
Shih-Fu Chang

BibTex Reference

   Author = {Jiang, Yu-Gang and Wang, Jun and Chang, Shih-Fu and Ngo, Chong-Wah},
   Title = {Domain Adaptive Semantic Diffusion for Large Scale Context-Based Video Annotation},
   BookTitle = {International Conference on Computer Vision (ICCV)},
   Address = {Kyoto, Janpan},
   Month = {September},
   Year = {2009}

EndNote Reference [help]

Get EndNote Reference (.ref)


For problems or questions regarding this web site contact The Web Master.

This document was translated automatically from BibTEX by bib2html (Copyright 2003 © Eric Marchand, INRIA, Vista Project).