Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |


Philipp Blandfort, Desmond U. Patton, William R. Frey, Svebor Karaman, Surabhi Bhargava, Fei-Tzin Lee, Siddharth Varia, Chris Kedzie, Michael B. Gaskell, Rossano Schifanella, Kathleen McKeown, Shih-Fu Chang. Multimodal Social Media Analysis for Gang Violence Prevention. In The 13th International AAAI Conference on Web and Social Media. International AAAI Conference on Web and Social Media (ICWSM-2019), 13th, June 11-14, Munich, Germany, 2019.

Download [help]

Download paper: Adobe portable document (pdf)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


Gang violence is a severe issue in major cities across the U.S. and recent studies [Patton et al. 2017] have found evidence of social media communications that can be linked to such violence in communities with high rates of exposure to gang activity. In this paper we partnered computer scientists with social work researchers, who have domain expertise in gang violence, to analyze how public tweets with images posted by youth who mention gang associations on Twitter can be leveraged to automatically detect psychosocial factors and conditions that could potentially assist social workers and violence outreach workers in prevention and early intervention programs. To this end, we developed a rigorous methodology for collecting and annotating tweets. We gathered 1,851 tweets and accompanying annotations related to visual concepts and the psychosocial codes: aggression, loss, and substance use. These codes are relevant to social work interventions, as they represent possible pathways to violence on social media. We compare various methods for classifying tweets into these three classes, using only the text of the tweet, only the image of the tweet, or both modalities as input to the classifier. In particular, we analyze the usefulness of mid-level visual concepts and the role of different modalities for this tweet classification task. Our experiments show that individually, text information dominates classification performance of the loss class, while image information dominates the aggression and substance use classes. Our multimodal approach provides a very promising improvement (18% relative in mean average precision) over the best single modality approach. Finally, we also illustrate the complexity of understanding social media data and elaborate on open challenges


Shih-Fu Chang

BibTex Reference

   Author = {Blandfort, Philipp and Patton, Desmond U. and Frey, William R. and Karaman, Svebor and Bhargava, Surabhi and Lee, Fei-Tzin and Varia, Siddharth and Kedzie, Chris and Gaskell, Michael B. and Schifanella, Rossano and McKeown, Kathleen and Chang, Shih-Fu},
   Title = {Multimodal Social Media Analysis for Gang Violence Prevention},
   BookTitle = {The 13th International AAAI Conference on Web and Social Media. International AAAI Conference on Web and Social Media (ICWSM-2019), 13th, June 11-14, Munich, Germany},
   Publisher = {Association for the Advancement of Artificial Intelligence},
   Month = {},
   Year = {2019}

EndNote Reference [help]

Get EndNote Reference (.ref)


For problems or questions regarding this web site contact The Web Master.

This document was translated automatically from BibTEX by bib2html (Copyright 2003 © Eric Marchand, INRIA, Vista Project).