Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |


Ying Cui, Dong Liu, Jiawei, Chen, Shih-Fu Chang. Building A Large Concept Bank for Representing Events in Video. In arXiv preprint, April 2014.

Download [help]

Download paper: Adobe portable document (pdf)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


Concept-based video representation has proven to be effective in complex event detection. However, existing methods either manually design concepts or directly adopt concept libraries not specifically designed for events. In this paper, we propose to build Concept Bank, the largest concept library consisting of 4876 concepts specifically designed to cover 631 real-world events. To construct the Concept Bank, we first gather a comprehensive event collection from WikiHow, a collaborative writing project that aims to build the world's largest manual for any possible How-To event. For each event, we then search Flickr and discover relevant concepts from the tags of the returned images. We train a Multiple Kernel Linear SVM for each discovered concept as a concept detector in Concept Bank. We organize the concepts into a five-layer tree structure, in which the higher-level nodes correspond to the event categories while the leaf nodes are the event-specific concepts discovered for each event. Based on such tree ontology, we develop a semantic matching method to select relevant concepts for each textual event query, and then apply the corresponding concept detectors to generate concept-based video representations. We use TRECVID Multimedia Event Detection 2013 and Columbia Consumer Video open source event definitions and videos as our test sets and show very promising results on two video event detection tasks: event modeling over concept space and zero-shot event retrieval. To the best of our knowledge, this is the largest concept library covering the largest number of real-world events


Dong Liu
Shih-Fu Chang

BibTex Reference

   Author = {Cui, Ying and Liu, Dong and Chen, Jiawei, and Chang, Shih-Fu},
   Title = {Building A Large Concept Bank for Representing Events in Video},
   BookTitle = {arXiv preprint},
   Month = {April},
   Year = {2014}

EndNote Reference [help]

Get EndNote Reference (.ref)


For problems or questions regarding this web site contact The Web Master.

This document was translated automatically from BibTEX by bib2html (Copyright 2003 © Eric Marchand, INRIA, Vista Project).