Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |

Sajda2010C3Vision

P. Sajda, E. Pohlmeyer, J. Wang, L. C. Parra, C. Christoforou, J. Dmochowski, B. Hanna, C. Bahlmann, M. K. Singh, S.-F. Chang. In a Blink of an Eye and a Switch of a transistor: Cortically Coupled Computer Vision. Proceedings of the IEEE, 98(3):462-478, 2010.

Download [help]

Download paper: Adobe portable document (pdf)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Abstract

Our society's information technology advancements have resulted in the increasingly problematic issue of information overloadVi.e., we havemore access to information than we can possibly process. This is nowhere more apparent than in the volume of imagery and video that we can access on a daily basisVfor the general public, availability of YouTube video and Google Images, or for the image analysis professional tasked with searching security video or satellite reconnaissance. Which images to look at and how to ensure we see the images that are of most interest to us, begs the question of whether there are smart ways to triage this volume of imagery. Over the past decade, computer vision research has focused on the issue of ranking and indexing imagery. However, computer vision is limited in its ability to identify interesting imagery, particularly as Binteresting[ might be defined by an individual. In this paper we describe our efforts in developing brain– computer interfaces (BCIs) which synergistically integrate computer vision and human vision so as to construct a system for image triage. Our approach exploits machine learning for real-time decoding of brain signals which are recorded noninvasively via electroencephalography (EEG). The signals we decode are specific for events related to imagery attracting a user's attention. We describe two architectures we have developed for this type of cortically coupled computer vision and discuss potential applications and challenges for the future

Contact

Jun Wang

BibTex Reference

@article{Sajda2010C3Vision,
   Author = {Sajda, P. and Pohlmeyer, E. and Wang, J. and Parra, L. C. and Christoforou, C. and Dmochowski, J. and Hanna, B. and Bahlmann, C. and Singh, M. K. and S.-F. Chang, },
   Title = {{In a Blink of an Eye and a Switch of a transistor: Cortically Coupled Computer Vision}},
   Journal = {Proceedings of the IEEE},
   Volume = {98},
   Number = {3},
   Pages = {462--478},
   Year = {2010}
}

EndNote Reference [help]

Get EndNote Reference (.ref)

 
bar

For problems or questions regarding this web site contact The Web Master.

This document was translated automatically from BibTEX by bib2html (Copyright 2003 © Eric Marchand, INRIA, Vista Project).