Predicting Viewer Affective Comments Based on Image Content in Social Media

Yan-Ying Chen*^{†§}, Tao Chen[§], Winston H. Hsu*, Hong-Yuan Mark Liao[†], Shih-Fu Chang[§]

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

*National Taiwan University, Taipei, Taiwan

+Academia Sinica, Taipei,

[§]Columbia University, New York, USA

Viewer Affect Concepts in Social Multimedia

This paper focuses on predicting what viewer affect concepts will be evoked after affect content in image is perceived. For example, given an image tagged with the concept "yummy food" by the publisher (PAC), the viewers are likely to comment "delicious" and "hungry," referred to as viewer affect concepts (VAC). To the best of our knowledge, this is the first work explicitly distinguishing intended publisher affect concepts and induced viewer affect concepts associated with social visual content, and aiming at understanding their correlations.

Experiments

PAC	#1 VAC	#2 VAC	#3 VAC	
$\operatorname{tiny}\operatorname{dog}$	cute	adorable	little	PAC and and the evoked
weird dog	weird	funny	cute	VAC are correlated
crazy cat	hysterical	crazy	hilarious	
cloudy morning	ominous	serene	dramatic	
dark woods	mysterious	spooky	moody	
powerful waves	dynamic	powerful	sensational	
wild water	dangerous	dynamic	wild	
terrible accident	terrible	tragic	awful	
broken wings	fragile	poignant	poor	
bright autumn	bright	delightful	lovely	
creepy shadow	creepy	spooky	dark	
happy halloween	spooky	festive	scary	PAC and the evoked VACs
pretty flowers	delicate	joyful	lush	may present
fresh leaves	fresh	green	vibrant	opposite sentiment
wild horse	wild	majestic	healthy	
silly girls	sick	funny	cute	

Probabilistic PAC-VAC Correlation Model

- Measuring PAC-VAC Co-occurrences:

 $\sum B_{ik} P(v_j \mid d_i)$ $P(p_{k} | v_{j}; \theta) = \frac{\sum_{i=1}^{|D|} p_{ik}}{\sum_{i=1}^{|D|} P(v_{j} | d_{i})}, B_{ik}: \text{ presence of } p_{k} \text{ in the metadata of } d_{i}$

- Recommending images by Multivariate Bernoulli formulation:

 $P(d_i | v_j; \theta) = \prod_{k=1}^{|Y|} (P(p_k | d_i) P(p_k | v_j; \theta) + (1 - P(p_k | d_i))(1 - P(p_k | v_j; \theta)))$ Visual-based detection score of pk in di

- Predicting VACs for the given image by Bayes probabilistic model:

 $P(v_j \mid d_i; \theta) = \frac{P(v_j \mid \theta) P(d_i \mid v_j; \theta)}{P(d_i \mid \theta)}$

Image Recommendation for Targeted VACs

Splendid (0.7288) More consistent in visual semantics

> Dramatic (0.6369)

Α

Viewer Affect Concept and Comment Prediction

★ 6 🗩 10 🖆 Nice pictures, interesting writing. A beautiful little girl.

Nice treatment of a fantastic capture. A wonderful picture. Have a good day and keep smiling. Excellent portrait. Beautiful look. Fantastic light. Make a Comment! More Specific More Generic Cancel

Viewer Affective Comment Prediction

Conclusion and Future Work

Propose to model the probabilistic correlations between affect content in an image and the evoked viewer affect concepts.

Propose three novel applications including image recommendation for targeted viewer affect concepts, viewer affect concept detection and automatic commenting.

D Potentially benefit advertising, user profiling, propaganda and human-machine interaction.