Detecting Image Splicing Using
 Geometry Invariants And
 Camera Characteristics Consistency

Yu-Feng Jessie Hsu, Shih-Fu Chang

Digital Video Multimedia Lab Department of Electrical Engineering, Columbia University

Motivation:

Image Forensics Research

- Too many tampered images circulate in our everyday life
 - Internet '04
 - John Kerry spliced with Jane Fonda in an anti-Vietnam war rally
 - Front page of LA Times '03
 - Spliced soldier pointing his gun at Iraqi people
 - TIME magazine cover '94
 - O. J. Simpson's skin color deliberately darkened
 - Inpainting [Beltamio, Sapiro, Caselles, Ballester '00]
 - Bungee jumping rope removed
- Tampered image collection: http://www.worth1000.com

Active Image Forensics

Active approaches: Watermarking

Disadvantage

Need knowledge about Watermark Embedding and Watermark Extraction

Passive Blind Image Forensics

- Passive blind approaches
 - Passive: no watermark is added into original image
 - Blind: no prior knowledge of watermarking scheme is needed

Applies to a wider range of images

ICME 2006, Toronto, Canada

- Splicing = copy-and-paste (most common image tampering)
- Possible image cues
 - Natural scene quality
 - Lighting
 - Shadows
 - Reflections
 - Natural imaging quality
 - Imaging device (camera, scanner)

Spliced Image Detection

Examples of spliced images with inconsistency

different lighting directions

unrealistic reflections

different perspectives

Spliced Image Detection by Consistency Checking

- Demosaicking patterns
 - EM based demosacking pattern estimation [Popescu, Farid '05]
- CCD sensor noise
 - Camera source identification using sensor noise [Lukas, Fridrich, Goljan '05]
 - Spliced image detection using sensor noise [Lukas, Fridrich, Goljan '06]
- Camera response function
 - CRF estimation from a single color image [Lin, Gu, Yamazaki, Shum '04]
 - Spliced image detection using CRF abnormality [Lin, Wang, Tang, Shum '05]

Gamma

$$R = f(r) = r^{\alpha}$$

Linear exponent [Ng, Chang, Tsui '06]

$$R = f(r) = r^{\alpha + \beta r}$$

CRF Estimation

Multiple exposure images [Debevec, Malik '97] [Mann '00] [Grossberg, Nayar '04]

Single image [Lin, Gu, Yamazaki, Shum '04] [Ng, Chang, Tsui '06]

- Spaces for CRF
 - Polynomials [Mitsunaga, Nayar '99]
 - PCA [Grossberg, Nayar '04]

ICME 2006, Toronto, Canada

CRF

$$R = f(r)$$

- Geometry invariants [Ng, Chang, Tsui '06]
 - First partial derivatives

$$R_x = f'(r)r_x \qquad R_y = f'(r)r_y$$

Second partial derivatives

$$R_{xx} = f''(r)r_{x}^{2} + f'(r)r_{xx}$$
 irradiance geometry

$$R_{xy} = f''(r)r_{x}r_{y} + f'(r)r_{xy}$$

$$R_{yy} = f''(r)r_{y}^{2} + f'(r)r_{y}$$

- If the irradiance r is locally planar
 - Ratios of 2nd partial derivatives cancel out irradiance geometries

 $\frac{R_{xx}}{R_x^2} = \frac{R_{xy}}{R_x R_y} = \frac{R_{yy}}{R_y^2} = \frac{f''(r)}{(f'(r))^2} = \frac{f''(f^{-1}(R))}{(f'(f^{-1}(R)))^2} = A(R)$

• Geometry invariant $Q(R) = \frac{1}{1 - A(R)R}$

ICME 2006, Toronto, Canada

- Physical meaning of Q(R)
 - Gamma form
 - Exactly equal to the gamma exponent *a*

$$Q(R) = \frac{1}{1 - A(R)R} = \alpha$$

Linear exponent

$$Q(R) = \frac{1}{1 - A(R)R} = \frac{\left(\beta r \ln(r) + \beta r + \alpha\right)^2}{\alpha - \beta r}$$

- Geometry invariants [Ng, Chang, Tsui '06]
 - Locally planar pixels

$$Q(R) = \frac{1}{1 - A(R)R}$$

• Yield same *Q(R)* curve, regardless of plane slope

- For a given image
 - Extract locally planar pixels
 - Check ratios of partial derivatives
 - Compute *Q(R)*
 - Fit *Q(R)* using linear exponent model

$$Q(R) = \frac{1}{1 - A(R)R} = \frac{\left(\beta r \ln(r) + \beta r + \alpha\right)^2}{\alpha - \beta r}$$

Columbia University

Spliced Image Detection by

CRF Estimation – Labeled Regions Q(R)Yes Planar? No No Discard Ŕ Q(R)Yes Planar? L No Discard Ŕ Q(R)Yes Planar? 0 splicing 00 boundary °°° No Discard R Q(R)whole Yes image Planar? Expect abnormality I No Discard Ŕ

ICME 2006, Toronto, Canada

Columbia University

CRF Estimation And Cross-fitting

- A total of 363 color images from 4 cameras
 - Canon G3, Nikon D70, Canon Rebel XT, Kodak DCS330
 - 183 authentic, 180 spliced
 - Uncompressed images TIFF or BMP
 - Dimensions 757x568~1152x768
 - No post-processing
 - Mostly indoor scenes
 - 27 images, or 15% taken outdoors on a cloudy day

authentic

authentic

spliced

spliced

- Will be available for download soon
 - http://www.ee.columbia.edu/dvmm/newDownloads.htm

ICME 2006, Toronto, Canada

Effectiveness of (Q,R) Curve

• (*Q*,*R*) curve is much more distinguishing than CRF

ICME 2006, Toronto, Canada

SVM Classification

- SVM with cross validation in search of best parameters
 - Linear
 - RBF Kernel
- Confusion matrix of RBF kernel SVM is shown below

RBF Kernel SVM

Overall Accuracy 85.90%

		Detected As	
		Au	Sp
Actual	Au	85.93%	14.07%
	Sp	14.13%	85.87%

Discussion

- Images that performed well
 - Generally those with very different Q(R) curves

Canon G3 Canon Rebel XT

Canon G3 Nikon D70

- Images that failed
 - Similar Q(R)'s
 - Similar CRF estimations from different cameras

Canon G3 Canon Rebel XT

- Narrow range of brightness R
 - Affects accuracy of estimated Q(R)

Canon G3 Nikon D70

Q(R)

Issues

- Operations that might affect our technique
 - Smoothing of splicing boundaries
 - Other post processing
 - Contrast adjustment
 - Tone adjustment
 - Compression

Conclusion

- A spliced image detection method using CRF inconsistency
 - Single-channel CRF estimation using geometry invariants
 - Image region CRF cross-fitting, constructing the feature vector for the image
 - SVM classification with cross validation
- New authentic/spliced image dataset
 - Uncompressed color images with full EXIF information
- Good results
 - Nearly 86% detection rate using RBF kernel SVM
- Semi-automatic region labeling
 - Generally applicable when
 - Image content is simple
 - Suspicious splicing boundary is clearly targeted
 - eg. celebrity photographs
 - Image segmentation can be incorporated for other occasions

ICME 2006, Toronto, Canada

Thank You!

