
Detecting Image Splicing Using
Geometry Invariants And
Camera Characteristics Consistency

Yu-Feng Jessie Hsu, Shih-Fu Chang
Digital Video Multimedia Lab

Department of Electrical Engineering, Columbia University



1ICME 2006, Toronto, Canada

Motivation:
Image Forensics Research
Too many tampered images circulate in our everyday life

Internet ’04
John Kerry spliced with Jane Fonda in an anti-Vietnam war rally

Front page of LA Times ’03
Spliced soldier pointing his gun at Iraqi people

TIME magazine cover ’94
O. J. Simpson’s skin color deliberately darkened

Inpainting [Beltamio, Sapiro, Caselles, Ballester ‘00]
Bungee jumping rope removed

Tampered image collection: http://www.worth1000.com



2ICME 2006, Toronto, Canada

Active Image Forensics
Active approaches: Watermarking

Disadvantage
Need knowledge about Watermark Embedding and Watermark Extraction

DVMM

Watermark
Embedding

DVMM

Watermark
Extraction
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Passive Blind Image Forensics
Passive blind approaches

Passive: no watermark is added into original image
Blind: no prior knowledge of watermarking scheme is needed

Advantage
Applies to a wider range of images

DVMM

Watermark
Extraction

DVMM

Watermark
Embedding
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Spliced Image Detection by
Consistency Checking

cue

Consistent? Yes / No

cue
Splicing = copy-and-paste (most common image tampering)
Possible image cues

Natural scene quality
Lighting
Shadows
Reflections

Natural imaging quality
Imaging device (camera, scanner)
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Spliced Image Detection
Examples of spliced images with inconsistency

different lighting directions unrealistic reflections

different perspectives
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Spliced Image Detection by
Consistency Checking

CRF

CRF

Consistent?
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Camera Imaging Pipeline
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Scene Image
Lens CCD 

Sensor
Demosaicking Camera 

Response 
Function

Additive 
Noise

DSP
(White 

Balance, 
Contrast 

Enhancement
… etc)

Irradiance r Brightness R
Demosaicking patterns

EM based demosacking pattern estimation [Popescu, Farid ‘05]
CCD sensor noise

Camera source identification using sensor noise [Lukas, Fridrich, Goljan ‘05]
Spliced image detection using sensor noise [Lukas, Fridrich, Goljan ‘06]

Camera response function
CRF estimation from a single color image [Lin, Gu, Yamazaki, Shum ‘04]
Spliced image detection using CRF abnormality [Lin, Wang, Tang, Shum ‘05]
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CRF Estimation
Camera response function

Common forms of CRF
Gamma

Linear exponent [Ng, Chang, Tsui ‘06]

)(rfR =
Brightness R

Irradiance r

αrrfR == )(

rrrfR βα+== )(
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CRF Estimation
Multiple exposure images [Debevec, Malik ‘97] [Mann ‘00] [Grossberg, Nayar ‘04]

Single image [Lin, Gu, Yamazaki, Shum ‘04] [Ng, Chang, Tsui ‘06]

Spaces for CRF
Polynomials [Mitsunaga, Nayar ‘99]
PCA [Grossberg, Nayar ‘04]

)(rfR =

)(rfR =

Red
Green

Blue

Red
Green

Blue
)(rfR =

brightness irradiance
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CRF Estimation Using
Geometry Invariants

CRF

Geometry invariants [Ng, Chang, Tsui ‘06]
First partial derivatives

Second partial derivatives

If the irradiance r is locally planar
Ratios of 2nd partial derivatives cancel out irradiance geometries

Geometry invariant
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CRF Estimation Using
Geometry Invariants

Physical meaning of Q(R)
Gamma form

Exactly equal to the gamma exponent α

Linear exponent
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CRF Estimation Using
Geometry Invariants

Geometry invariants [Ng, Chang, Tsui ‘06]
Locally planar pixels

Yield same Q(R) curve, regardless of plane slope

Q(R) = 1
1− A(R)R

Q(R)

R
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CRF Estimation Using
Geometry Invariants

For a given image
Extract locally planar pixels

Check ratios of partial derivatives

Compute Q(R)
Fit Q(R) using linear exponent model
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Spliced Image Detection by
Consistency Checking

Segmentation
and

Labeling

CRF
Estimation Consistent? Yes

No
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CRF Estimation – Labeled Regions

Q(R)
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CRF Estimation And Cross-fitting
Q(R)
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Dataset
A total of 363 color images from 4 cameras

Canon G3, Nikon D70, Canon Rebel XT, Kodak DCS330
183 authentic, 180 spliced
Uncompressed images TIFF or BMP
Dimensions 757x568~1152x768
No post-processing
Mostly indoor scenes
27 images, or 15% taken outdoors on a cloudy day

Will be available for download soon
http://www.ee.columbia.edu/dvmm/newDownloads.htm

authentic splicedauthentic spliced
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Effectiveness of (Q,R) Curve
(Q,R) curve is much more distinguishing than CRF

authentic
image

spliced
image
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SVM Classification

SVM with cross validation in search of best parameters
Linear
RBF Kernel

Confusion matrix of RBF kernel SVM is shown below

RBF Kernel SVM

Overall Accuracy 85.90%

Detected As

Au Sp

Au 85.93% 14.07%

Sp 14.13% 85.87%
Actual
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Discussion
Images that performed well

Generally those with very different Q(R) curves

Canon G3
Canon Rebel XT

Canon G3
Nikon D70
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Discussion
Images that failed

Similar Q(R)’s
Similar CRF estimations from different cameras

Narrow range of brightness R
Affects accuracy of estimated Q(R)

Canon G3
Canon Rebel XT

Canon G3
Nikon D70
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Issues

Operations that might affect our technique
Smoothing of splicing boundaries
Other post processing

Contrast adjustment
Tone adjustment

Compression
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Conclusion
A spliced image detection method using CRF inconsistency

Single-channel CRF estimation using geometry invariants
Image region CRF cross-fitting, constructing the feature vector for the 
image
SVM classification with cross validation

New authentic/spliced image dataset
Uncompressed color images with full EXIF information

Good results
Nearly 86% detection rate using RBF kernel SVM

Semi-automatic region labeling
Generally applicable when

Image content is simple
Suspicious splicing boundary is clearly targeted
eg. celebrity photographs

Image segmentation can be incorporated for other occasions
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