Physics-Motivated Features for Distinguishing Photographic Images and Computer Graphics

Tian-Tsong Ng, Shih-Fu Chang

Jessie Hsu, Lexing Xie Department of Electrical Engineering Columbia University, New York, USA

Mao-Pei Tsui

Department of Mathematics University of Toledo, Ohio, USA

Background

Passive-blind Image Forensics

- Finding out the condition of an image without any prior information.
- Two main functions:
 - Image Forgery Detection
 - [Ng et al. 04] Photomontage Detection.
 - Image Source Identification
 - Photo vs. CG

CG Or Photo?

Image Forgery Hall of Fame

LA Times '03

Internet '04

Nat. Geo.

'92

Times '96

Prior Work Photo vs. CG

- [Ianeva et al. 03] Classifying photo and general CG (including drawing and cartoon).
 - For the purpose of improving video key-frame retrieval.
- [Lyu & Farid 05] Classifying photo and photorealistic CG.
 - Using wavelet statistics.
 - 67% detection rate (1% false alarm).
 - provides little insight into the physical differences between photo and CG.

Our Contributions

- A geometry-based image description framework
 - Motivated by the physical differences between Photo and CG.
- A two-level definition of image authenticity
 - Provides a systematic formulation and evaluation of an image forensics method.
- An effective classification model
 - Outperforms the methods in prior work.
- An open dataset
 - Avoids repeated data collection effort.
 - As a benchmark dataset.
- An online evaluation system.
 - Allows users to test the system.

Main Idea I

Definition of Image Authenticity

Camera authenticity

- Based on the characteristics of the camera.
- Local effect: optical low-pass, color filter array interpolation, CCD sensor noise, white-balancing and non-linear gamma correction.
- Global effect: lens distortion
- Scene authenticity
 - Based on the physics of light transport in the natural scenes.
 - Global effect: the orientation of a shadow is related to the lighting direction.
 - Local effect: real-world objects have complex reflectance model.

Computer Graphics

May be sceneauthentic but not camera-authentic

Photomontage May be cameraauthentic but not scene-authentic

Main Idea II

Image Generative Process

Photographic Images

Light source

(1) Complex surface model

- Subsurface scattering of human skin.
- Color dependency.

(3) Non-linear camera Transfer function

- Not an arbitrary transform.

(2) Complex object geometry

- Human skin texture follows biological system.
- Building surface formed by air erosion.

Main Idea II

Image Generative Process

Computer Graphics

(1) Simplified surface model

Assume color independence.

Light source

3 Differences for Photo and CG
(1) Surface Model Difference.
(2) Object Model Difference.
(3) Acquisition Difference.

(3) Non-standard Post-processing

- Subject to the artist's taste.
- May different from camera transform.

(2) Polygonal object geometry

- Reduced mesh resolution for computational efficiency.
- Without care, it introduces sharp structures in rendered images.

Local Patch Statistics

- [Lee et al. 2003] 3x3 local patch forms a 2D sub-manifold in the normalized 8D Euclidean space.
- [Rosales et al. 2003] Use local patches to characterize image styles (e.g., Van Gogh Style).

Patch dictionary from a Van Gogh Image.

Van Gogh style Image

Photo and CG are just images of different styles!

Local Patch Statistics

• We sample 4 types of patches.

Extract the rotational moment features from the distribution, as if the data points are the point masses of a rigid body.

Differential Geometry I Image Gradient

Non-linear camera transform has effects on image Gradient!

Differential Geometry II Quadratic Form

- Polygonal Model leads to sharp structures
 - At the junctures, the polygon is always sharper than the smooth curve.

A smooth is approximated by a polygon

Unusually sharp transition

Differential Geometry II Quadratic Form

- A graph submanifold can be locally approximated by a quadratic form.
 - Quadratic form can be characterized by 2 eigenvalues
 - The large eigenvalue implies sharp structures

Differential Geometry III

Surface Laplacian

- Rendering of CG often assumes color independence in the object surface model (generally, not true for realworld object):
 - We capture the difference in the RGB correlation for Photo and CG using the surface Laplacian.
- Laplacian operator (Δ_g) on a graph surface
 - A vector pointing to the decreasing surface area direction.
 - For a submanifold in the 5D space, it measures the correlation between R, G and B.

20% of CG has this misalignment, compared to only 5% of Photo.

Dataset

Columbia Open Dataset

First publicly available Photo/CG dataset.

Consists of 4 subsets, 800 images for each subset.

Experimental Results I SVM Classification

- SVM classification with radial basis function (RBF) kernel.
- Cartoon feature is the conventional feature for modeling the general computer graphics (includes cartoon or drawing)

Features	Geometry	Wavelets	Cartoon
Accuracy	83.5%	80.3%	71.0%

Experimental Results II

- Recapturing Attack
 - Testing with the recaptured CG (recapturing of a real scene)

Features	Geometry	Wavelets
Classified as Photo	97.2%	96.6%

 Counter-attack measure: Let the classifier learns the characteristics of the recaptured CG.

The First Online CG-Photo Classification System

URL: http://www.ee.columbia.edu/trustfoto/demo-photovscg.htm

The Results Page

This page is based on a perl-script from PerlScriptsJavaScripts.com

Online Demo III Consistency with Human Judgments Human Judgments CG Photo

As one of the application scenarios, the cases with disagreement may be handed to experts for further analysis.

Conclusions and Future Work

Conclusions

- We propose a novel physics-based features.
- We provide the first publicly available Photo/CG dataset.
- We deploy the first online Photo Vs. CG classifier.
- Future and Ongoing Work
 - Camera transfer function estimation from a single image.
 - Detecting Photo Vs. CG at the local regions.
 - Designing counter-measure for the Oracle attack.
 - Capturing global scene authenticity (e.g., consistency between lightings and shadows).

Thank you!

Dataset and Project Website: http://www.ee.columbia.edu/trustfoto Online Demo: http://www.ee.columbia.edu/trustfoto/demo-photovscg.htm