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Abstract

Compositing and Manipulation of Video Signals for Multimedia

Network Video Services

by

Shih-Fu Chang

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor David G. Messerschmitt, Chair

Multimedia network video services, like multi-point video conferencing and

multimedia desktop editing/publishing, require real-time high-performance video signal

compositing and manipulation. This dissertation investigates three different degrees of

freedom for designing video compositing/manipulation systems:feature, location, and

data format. Our goal is to provide asystematic approach to network video compositing/

manipulation by integrating the explorations in all degrees of freedom, and by accounting

for the interactions among themselves and with other multimedia technologies, in

particular video compression.

Representative compositing features include geometrical transformations, linear

filtering, opaque/semi-transparent overlapping, pixel multiplication, and arbitrarily-shaped

(AS) video objects. We propose astructured video model, based on which we present

several hierarchical structures for representing compositing functions, and study their

restructuring properties.

We characterize various performance factors for different compositing locations

throughout the network. We also propose ashared distributed compositing principle to

match various user/service requirements and optimize the overall system performance in

multimedia networks.
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By processing less data and avoiding the data format conversion, the compressed-

domain compositing approach has the potential to reduce the computational complexity

for video compositing/manipulation, and thus the hardware cost. We derive equivalent

compositing algorithms in the Discrete Cosine Transform (DCT) domain. We also propose

a new decoding algorithm to partially decode Motion Compensated DCT-based

compressed video signals to the DCT domain and apply our proposed DCT-domain

compositing algorithms in the DCT domain. We compare the computational complexity of

this proposed approach to the traditional uncompressed-domain approach both

analytically and numerically. Its computational speedup depends on the specific

compositing functions and the compression characteristics of video sequences.

We extend our compositing/manipulation techniques to arbitrarily-shaped (AS)

image segments. In particular, we study efficient coding schemes for the internal image

pixels and the boundary shape. We also propose a new joint approach for shape

representation and anti-aliasing along the object boundary.

(Professor David G. Messerschmitt)
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Chapter 1

Introduction

1.1  Technology Framework for Multimedia Systems and
Communications

Thanks to the evolving technologies for manipulating, storing, retrieving, and

transmitting digital information, multimedia applications integrating video, images,

graphics, text, and data have become more and more popular. There could be various

interpretations of “multimedia”. It can be educational or entertainment applications on

computers, such as encyclopedia, almanac, etc. Each can contain articles, graphic

drawings enhanced with animations, sounds and video clips for live effects. It can be the

computer-based shared workplace among geographically remote locations. Participants

exchange documents, drawings, voice, images and perhaps live video signals interactively

in real time. In a rough sense, “multimedia” can be defined as the exchange of information

through multiple different types of medias, as mentioned above. Examples of multimedia

applications also include multi-point tele-conferencing, multimedia electronic mails,

multimedia editing and publishing [Adam93, Rosenberg92]. Key technologies supporting

high-speed real-time multimedia applications are being investigated as multimedia

applications drive for higher performance. Specifically, a complete technology framework

supporting high-end multimedia applications needs the following components:

compression, storage, transmission, compositing/manipulation, and authoring [Cole93,

Kretz92]. I will briefly discuss each of these technologies, and particularly the focus topic

of this thesis —video compositingand manipulation.

Due to the huge amount of data required by continuous-time information, such as

video and audio,compression is necessary. The information production rate of real-time
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video, for example, can range from a million bytes per second to hundreds of million bytes

per second. Powerful compression techniques are mandatory especially when resources

(such as transmission bandwidth and storage capacity) are limited. Although compression

degrades quality to some extent, today’s compression techniques can reduce the data by a

factor of 25:1 to 50:1 without significant quality degradation. Current research emphasizes

multi-resolution video compression, very-low bit-rate video coding, 3-D model-based

video coding, and real-time low-cost hardware implementation [Jayant92, Cole93].

When information production becomes easy and pervasive,storage of multimedia

information becomes more pervasive. The main issues in storage are how to retrieve

multimedia information from storage in the real time and how to design internal file

structures for different media. The problem becomes more complicated when the storage

supports multiple access from two or more users. Many current multimedia applications

use CD ROM as the storage device. Its capacity and I/O bandwidth are still very limited

(typically 600MB capacity and 300 KB/s), far below the requirement of real-time full-

motion video services. The file formats used in different applications are not interoperable

among different computing platforms.

Transmission over networks is still a big hurdle for tele-conferencing and

computer assisted interactive cooperative applications. Using dedicated real-time channels

like circuit-switched networks is too expensive and inefficient. Using multi-access packet

switched networks, such as the ATM/BISDN, introduces problems like packet loss and

delay jitter in exchange for a more efficient network utilization. Important issues to be

considered are real-time performance-guaranteed protocols, packet loss protection/

recovery, congestion control, and joint source/channel coding of video signal [Jayant92,

Karlsson89, Ferrari92].

Video compositingand manipulation is an important technology required in many

multimedia applications. By video compositing and manipulation we mean the
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manipulation of individual video signals, such as filtering, scaling, geometrical

transformation, etc., and the spatial or temporal combination of multiple video streams

into a single video stream. These functions are typically used in multi-point video

conferencing and multimedia editing. Today, high-speed real-time hardware for video

compositing and manipulation are only available in professional studios. Designing

reasonable-cost real-time compositing hardware for multimedia network video services

remains a big challenge [Lukacs92].

The future success of multimedia applications depends heavily on the customers’

perceptions. One key element is the performance ofauthoring tools, which help users to

produce multimedia presentations without formal professional training. Currently,

primitive tools are available. But significant improvements are needed to allow them to be

widely accepted.

There are other technical issues relating to multimedia systems and

communications such as interoperability among different platforms, multimedia

scheduling in a distributed information environment, and real-time hardware/software

support. For a pervasive ubiquitous networked multimedia systems, all the above

technologies must be provided. One example utilizing these technology is the multi-point

cooperative workplace, as shown in Figure 1-1. Live video signals need to be compressed,

transmitted, and composited with locally generated graphics images and remote video

signals, which may be stored in distributed information servers.

In this thesis, I focus on the technology of video compositing and manipulation. A

systems approach is used to explore every degree of freedom of implementing video

compositing. Along with the study of individual aspects of this technology, strong

interactions between video compositing and other technologies mentioned are observed. I

will review existing compositing techniques and describe degrees of freedom in the design
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value-added

distributed multimedia
database

Figure  1-1 (a)A typical multi-point multi-media service on broadband networks. (b)Possible
presentation scenarios on user screens. (c)Advanced technologies needed for implementing these
cutting-edge applications.
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of video compositing in this chapter. Research objectives and strategies are described later

in this chapter.

1.2  Network Video Compositing

As mentioned above, video compositing, a process to combine spatially or

temporally several video streams into a single displayable video stream, is required in

many multimedia services. There might be also some manipulation operations applied on

each individual video source before they are combined. However, throughout this thesis

we use the term video compositing to mean both the combination of multiple video signals

and the manipulation of an individual video source, if there is no contrary indication. In

this section, we first review existing compositing techniques. Then, we describe more

advanced compositing features which require more innovations.

1.2.1  Existing Compositing/Manipulation Features

A typical application using video compositing is video conferencing, as shown in

Figure 1-2. Video windows showing head-and-shoulder images of participants are

composited together and displayed on the screen. [Ahuja92, Rosenberg92]. The

compositing units can be dedicated to each individual user or shared by the whole group

of users. The so-callednetwork video bridge uses a single compositing unit in the network

to composite all video signals and then send common composited video to every

participant [Lukacs92]. In desktop video conferencing systems, each user has local

dedicated compositing hardware or software and thus has more controls of the positions

and sizes of the video windows. Figure 1-2 shows the resource architecture for a video

bridge and desktop video conferencing.

Most existing video compositing systems only support primitive features such as

rectangular video windows, opaque overlapping, scaling, and translation. Some systems
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still composite video in the analog domain, ignoring the tremendous potentials of digital

technology. Video signals are typically composited in the uncompressed domain. Input

video signals are concentrated in the specific location where the compositing unit is

located, no matter whether the architecture is concentrated or distributed. These designs

are straightforward and perhaps efficient for simple applications. But for future advanced

multi-point multimedia network video services, such as that shown in Figure 1-1,

significant innovations are needed to achieve reasonable-cost high-speed real-time

implementations.

Figure  1-2 (a)Today’s typical video conferencing pictures. (b)Concentrated video compositing
architecture. (c)distributed video compositing architectures.

(a)

(b) (c)

CU

CU CU CU CU
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1.2.2  Envisioned Advanced Compositing Features

In future advanced video compositing systems, more flexible features should be

provided. First, most manipulation operations we now apply on graphics should also be

applicable to video. Video objects shown on displays can be arbitrarily shaped for a better

model of natural physical objects. Composited video should allow any arbitrary

combination of input video signals. Multiple video signals can be semi-transparently

mixed. These features are available today only in professional studios [Bennet84,

Wolberg90]. But, in the future, users should be able to create special effects easily in

multimedia authoring tools. Figure 1-3 shows an example of an envisioned composited

picture, which includes arbitrarily-shaped video objects, graphics, texts, and semi-

transparent overlapping.

Second, input video signals can come from arbitrary locations, ranging from

broadcast stations, professional studios, remote databases, local video jukeboxes, and live

Figure  1-3 Envisioned advanced compositing features in future video services
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video cameras. An immediate impact on arranging compositing units is that they should

be allocated distributively everywhere throughout the network. Intelligent network

management should be able to locate or synthesize the necessary resources when the

required hardware resources are not locally available. Figure 1-4 shows a composited

image which includes video signals produced at different locations and could be

composited in a distributed way.

1.2.3  Challenges

All these envisioned features of video compositing call for innovative algorithm

designs and network management schemes. Specifically, how do we perform video

compositing operations with different levels of difficulty at a reasonable cost in real time?

How do we allocate network resources (bandwidth and hardware) efficiently to implement

various advanced video services on broadband networks? Also, for general arbitrarily-

shaped video objects, how do we design efficient models of video signals and compositing

functions? It is the goal of this work to answer these questions as thoroughly as possible,

at least to gain more comprehensive understanding.

Figure  1-4 A composited video can contain video signals originated from different locations. For
example, the image of the weather reporter may come from broadcast video, but the map and logo
can be produced locally.

remotely

network

locally generated objects

generated video

compositor

CBS News

CBS News
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1.3  Degrees of Freedom for Network Video Compositing

In designing network video compositing, we can find several degrees of freedom,

which arefeature, location,and data format. We consider them to be design freedoms

because in each we have flexibility in using different approaches and parameters to satisfy

resource constraints and performance requirements. Different approaches in each degree

of freedom may have direct or indirect impact on system performance. For example,

providing different compositing features affects the final presentation and flexibility of

users’ control over video objects. Compositing at different locations also indirectly affects

users’ control and video quality. For specific applications, we want to find optimal

solutions in each degree of freedom in order to provide an optimal overall solution for the

whole compositing system. Given resource and performance constraints, our goal is to

achieve the highest performance/cost ratio. In this section, I will briefly describe the

characteristics of each degree of freedom. Detailed investigation in each degree of

freedom will be presented in later chapters.

1.3.1  Different Compositing Features

As described in the previous section, the simplest compositing system tiles several

rectangular images together to produce a larger image. The input images are not processed

further. Despite its simplicity, or perhaps because of it, it is the most popular feature

provided in today’s video compositing applications (such as video conferencing and some

window graphic interface). Emerging desktop computer video conferencing offers users

more complicated capabilities for video manipulation, such as changing video window

position and size, and overlapping several video windows. In future advanced

applications, we can envision additional features like semi-transparent video overlap,

arbitrarily-shaped video objects, three-dimensional model-based image synthesis, and so

on.
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As compositing features become fancier, the required hardware processing power

increases. Their impact on hardware complexity varies even for the same compositing

feature. For example, the same compositing function may require different computational

complexity if implemented in different data formats.

The significance of this degree of freedom is that we may be able to improve the

overall system performance by compromising some compositing features. For example, in

video conferencing applications, the translation distance and the scaling factors of video

windows can be restricted to a fixed size. Users may not feel strongly objective to these

restrictions, but the implementation cost would be greatly reduced.

1.3.2  Different Compositing Locations

As distributed video sources spread geographically, the compositing units can also

be distributed. Video compositing can be done at the source, the destination, and at

intermediate locations in or outside the transport network. For example, television

broadcasting companies can composite several video sources before they are transmitted.

Cable TV companies composite broadcast programs with their own signals and transmit

them to users. Office desktop workstations may composite video signals from remote

databases with locally generated graphic images. Different network multimedia services

have different characteristics and may prefer different compositing locations. As described

in the previous section, a video conferencing system can use centralized or distributed

compositing architectures, which affects the final performance. One challenging question

is: given an abstract representation of compositing tasks, how do we map it onto the

available network resources, which include communication channels and processing

hardware. I will discuss the advantages and disadvantages for each compositing location

in Chapter 3 and describe some possible approaches for optimizations.



11

1.3.3  Different Data Formats

By data format we mean the compression format of the video signals. The format

is important because video signals represent a huge amount of data, which usually

requires compression to substantially reduce the required storage and bandwidth. If video

signals are in compressed formats, it is potentially beneficial to composite them directly in

the compressed domain. For example, if video is composited within the network (such as a

video bridge), input video and output composited video are usually compressed.

Compositing in the compressed domain can avoid conversion back and forth between the

compressed and uncompressed domains. Even at the destination, where output video

needs to be in a displayable format, its input video signals may still be compressed. This

makes compressed-domain compositing preferable.

However, as mentioned above, the implementation cost for the same compositing

function in the compressed domain may be significantly different from that in the

uncompressed domain. We need to carefully analyze its impact on the final

implementation cost. In addition, there are many different compression algorithms used in

today’s multimedia applications. Popular algorithms include MPEG for motion pictures,

JPEG for still pictures, H.261 for video conferencing, CDI, DVI, Video for Windows and

QuickTime for computer-based multimedia applications [Cole93, Le Gall91, Liou91,

Wallace91]. However, these standards share some underlying algorithms, such as the

Discrete Cosine Transform and Motion Compensation [Netravali88]. Therefore, in our

study of compressed-domain compositing, we will focus on the DCT and MC domain

(Chapter 4).
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1.4  Previous Work

As multimedia applications rapidly emerge, issues related to video compositing

have gained more attention from researchers. We briefly describe some of the related work

here, but leave more detailed reviews to later context.

In relation to various compositing features, there are mature techniques for still

image transformations in the area of computer graphics [Foley90]. These image

processing techniques can be considered as unary compositing functions. Multi-object

compositing functions such as overlapping have been widely used in window graphic

interface and desktop video conferencing applications. Porter and Duff proposed theα

channel to perform compositing of digital images [Porter84]. Their approach can be

extended to arbitrarily-shaped video objects. We will study the characteristics of these

different classes of compositing functions (including spatial and temporal operations). We

will also propose efficient representation formats for compositing functions based on our

proposed structured video model.

In relation to the choice of compositing locations and issues of distributed

compositing, there have been many works associated with different aspects of multi-point

multi-media services. Little and Ghafoor studied general compositing processes of stored

multimedia objects, assuming a platform of networked distributed databases [Little91].

They also discussed the trade-off among different performance metrics when mapping the

compositing process to network resources. However, they did not consider the

compression process, which may have significant impacts on the choice of compositing

locations. While they focused on stored multimedia database objects, we will consider

real-time multi-source multi-user video services as well. In addition, we will analyze the

distributed video compositing approach and different compositing locations based on our

proposed structured video model, which will be defined in Chapter 3.
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Ranganet al. described synchronization algorithms and hierarchical compositing

architectures for multi-point conferencing [Rangan93]. They found that the hierarchical

architecture has higher scalability with regards to the number of conference participants,

when compared to the centralized architecture. However, their study focused on a

broadcast case where all participants receive the same composited scene. They also failed

to consider the compression process.

Schooler and Casner [Schooler92] designed network protocols to support multi-

media multi-party connections on heterogeneous wide area networks. They focused on

connection control and resource configuration control. Mechanisms such as the resource

description language, the distributed locator service, and the resource synthesizer are used

to manage heterogeneous resource configurations and achieve compatible services at

different end systems. Their work can be considered as study of a lower-level cooperative

entities to support our higher-level representation and optimization of compositing

processes, which will be discussed in Chapter 3.

In addition, Pasqualeet al. [Pasquale93] studied the optimization of multi-cast

connections based on their proposed loose-coupling principle. In Chapter 3, we will

observe some similarity between their multi-cast connection problem and our distributed

compositing problem, which is a multi-source, multi-user problem in general. For

example, the idea of finding sharable tasks among different users to reduce the

implementation cost is similar in both problems.

In relation to the data formats for video compositing, Smith and Rowe [Smith92]

investigated the approach to compositing images in the DCT domain, independently of our

work. They also found significant computational speedup by using the DCT-domain

compositing approach. But they only provided brute-force numerical solutions to a subset

of operations. We will deriveanalytical formulae for a larger set of typical compositing

operations and will study their computational complexity analytically. Furthermore, we
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have extended these algorithms to handle MC-DCT compressed video. Lee and Woods

[Lee92] developed some simple compositing operations (such as pictures overlay and text

overlay) for subband-compressed images. However, their method needs an additional

bounding box to hide the artifact around the overlap boundary.

In summary, there have been many previous works related to both still image

compositing and multi-point connections on communication networks, but there have

been few attempts to systematically study video compositing on multimedia networks.

Although Little and Ghafoor’s work is closely related, it did not consider many important

aspects of network video compositing.

1.5  Goals and Strategy of Approach

We take asystematic approach in exploring different degrees of freedom for

implementing network video compositing and interactions among these degrees of

freedom. First, we characterize typical and envisioned future compositing operations used

in multimedia video services. Second, we study the question of where to perform these

compositing operations in the network. Lastly, we study the effects of performing

compositing in different data formats, in particular the compressed vs. the uncompressed

format. The overall objective is to provide a thorough understanding of different aspects of

the video compositing technology. Through performance tradeoff analysis in each degree

of freedom, we hope to provide a systematic approach to achieving optimal performance/

cost for future multimedia network video services.

In addition, we also study the distinguished features of representation and

compositing of arbitrarily-shaped video objects (ASVO). We will describe efficient coding

and compositing algorithms for ASVO in Chapter 5.
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Most analytical tools in this work are through mathematical derivations of new

algorithms and numerical simulations. When subjective video quality is concerned, non-

real-time software implementations are employed and video quality is evaluated

subjectively.
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Chapter 2

Compositing Features

As described in Chapter 1, emerging multimedia applications like multi-point

teleconferencing require real-time video compositing and manipulation (video

compositing for short). We recognize three different degrees of freedom for implementing

video compositing — feature, location, and data format. This chapter covers the first

degree of freedom,compositing features. We will characterize different types of

compositing functions, such as unary and binary operations, and study their efficient

representations.

We assume a general definition of video compositing. It can be image

transformation techniques widely used in computer graphics. It can also be advanced

features used in professional studios. In this chapter, we will propose astructured video

model which defines video objects and compositing functions used to combine individual

video objects. Based on this model, we will discuss the characteristics of different classes

of compositing features. We will also survey existing video compositing techniques

scattered in different fields and present several hierarchical ways to represent universal

compositing functions. These hierarchical structures are useful platforms for later

investigation of other degrees of freedom in implementing video compositing. We

consider compositing features as one degree of implementation freedom since we can

often trade compositing features to obtain implementation flexibility.

2.1  The Structured Video Model

McLean first used the term structured video to represent the concept of separating

foreground and background video objects in a video signal and transmitting them
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separately [McLean92]. He advocated that substantial compression can be achieved by

separately encoding the foreground objects and tracking the motion of the background

object. The concept is similar to that of model-based analysis-synthesis video coding

[Mussman89, Kunt87, Hotter90].

Although high-compression video coding is one of our objectives, our structured

video model should be considered an extension of previously proposed structured graphics

models to video [Lantz84]. The main objective of structured video is to present to the user,

on a single raster-scanned display, a variety of logically separatevideo objects that could

be arbitrarily-shaped and could becomposited in various ways. The video objects are kept

logically separate so as to provide easier manipulation and easier adaptations to

heterogeneous hardware platforms and services. For example, in Figure 1-1 of Chapter 1,

the composited scene consists of different types of video objects such as rectangular-

shaped bitmaps (a football background), irregular-shaped bitmaps (a news reporter),

graphics, and text. The news reporter is opaquely overlapped with the background object,

while the graphic object is overlapped with the background in a semi-transparent way. By

keeping these video objects separate, we can explore tremendous potentials for easy

manipulation, efficient compression, flexible user control, and flexible interface to

different services. Given a set of video objects, there are many different ways to composite

them into a displayed scene. It is also one of our goals for the structured video model to

define efficient representations for video objects and their compositing rules.

2.1.1  Video Objects

A video object is the representation of the visual appearance, shape, and position

of some visible part of an image sequence. Usually, it corresponds to an actual physical

object or a logical object contained in a video sequence. For example, the news reporter,

the text, and the graphics shown in Figure 1-1 are sampled data of different time-varying

video objects in a particular frame. As time (or the frame sequence) proceeds, the video
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object can vary its visual appearance (e.g. the head motion of the reporter, changing

contents of the text object) and other parameters, such as position and size.

A video object can conceptually be smaller than a single pixel or larger than an

entire display. The principle we use to segment a scene into video objects is that all parts

of an object use the same rule when composited with other objects. Thus, it is impossible

for one object to be displayed as if it were in front of and behind another object at the same

time. In Figure 2-1, for example, object B is both in front of and behind another object,

and therefore it cannot be treated as a single object. It would be divided into two video

objects, possibly at the dotted line. If A and B’s two components later moved apart, the

two objects into which B was separated could be recombined. Similar ideas for

subdividing or merging video objects are discussed in [Lin91].

The definition of a video object is intended to keep the number of compositing

rules required in a video system small. Since a video object represents thelargest object

that can use one set of rules, the definition automatically yields a system with no

superfluous rules. Further, this definition is simple in that it does not require creating

subdivisions within video objects and storing special rules for each of the object’s sub-

parts. Video objects are the smallest divisions into which components of a scene need to

be divided, and they are the largest divisions that act as homogeneous units. In contrast, in

z-buffering systems [Duff85], each pixel has its own associated depth value. Therefore,

each pixel can be composited differently from every other, and is a separate video object.

A B

Figure 2-1 Example of illegal pair of video objects, because object B cannot be treated as a unit
when composited with another object. (from [Chen93a])
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A video object can also correspond to one of many different facets of a video

signal. For example, subband coding is often used in separating a video signal into many

different frequency bands, each of which has different human perceptual significance.

Treating each subband as different video objects, we can process the video signal more

efficiently (e.g. compression and transmission) and support users with different display

capability. However, this kind of video object separation imposes some constraints on the

compositing algorithm and complicates the compositing process. This will be discussed

further in the section 2.6.4.

The definition of a video object can be extended hierarchically. Acomposited

scene which includes several video objects can in turn be viewed as a video object. To

distinguish modified video objects from original video objects produced at the source (e.g.

a camera), we call the formercomposited video objects, and the latterprimitive video

objects. These two types of video objects are equivalent during the process of compositing

with other video objects. Once several video objects are composited together to form a

composited video object, any logical distinctions among the comprising components are

removed. Future compositing can no longer separate the component video objects inside

the composited video object.

On the user display, the image displayed may consist of several composited scenes

just as a computer workstation display consists of several overlapping windows. Here, a

displayed scene is composed of a set of several video objects that are related to each

other—for example, a video conferencing scene consisting of the video objects

representing all of the people in the conference plus the background. As we have

mentioned above, each scene and the overall displayed image can be viewed as

composited video objects.



20

2.2  Advantages and Disadvantages of Structured Video

Structured video offers considerable advantages as a model for provisioning

advanced video services. We divide the service provision into three distinct aspects: the

vendor or vendors who provide the video object (they may also be locally stored), the

transport or network connection from the vendor, and theuser who interactively

manipulates the video. The essence of structured video is to keep the video objects

logically separate, even if they share a common storage or transport, and to support the

flexibility of compositing them at later stages within the network, such as an intermediate

network node or the user display. The efficient hierarchical structure of the proposed

structured video model and the generic representation of the compositing functions enable

efficient adaptation of hardware resources to dynamically changing user and application

requirements.

Structured video can represent video images over a wide range of applications, for

example a) full-motion high-definition television, b) conference video, c) videotex, d)

interactive video, e) windowing and graphics computer display interfaces, and f)

combinations of these types of representations. A standardized representation enables

implementation of display signal processing using a set of common modular hardware and

software components across a variety of applications. This achieves economies of scale

and lower costs. Further, depending on the hardware and software modules installed, a

video display can support a variety of services,

Similar to the OSI model of data communications, structured video can provide a

common model of video shared among vendors, transport networks, and users. Specific

services and applications are readily provisioned by parameterizing this model, thus

simplifying the administration of telecommunications networks. A vendor can request the

network resources necessary to provision the service. The vendors similarly can query the
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user’s display platform to determine the standardized resources it has and request the

resources it needs.

From the perspective of a vendor, keeping video objects separate enables much

greater flexibility and reusability, for example in composing different scenes that reuse

common video objects. From the perspective of a user, keeping video objects logically

separate all the way to the display enables instantaneous interactive configuration, for

example in moving or resizing the participants in a multi-way video conference. The use

of standard formats for many image types can support interactive services. Users can

combine and customize images from different people and vendors without requiring the

sources to interact. A single video stream can be used differently by everyone who

receives it without end-users interfering with each other. The transport control traffic

necessary to implement the same interactive functionality at the vendor is eliminated.

Structured video has the potential to allow more efficient compression of complex

video representations for storage or transport. Data compression is more effective if

performed on the separate types of video signals. This is due to the fact that compression

algorithms can be tailored to match the statistics of each data type. It is becoming common

to separate video into different regions according to classification algorithms for more

efficient compression, but this is avoided if the video objects are kept logically separate

[McLean92, Kunt85, Mussman89]. It is also possible to add to the structured video

representation additional semantic information available at the source, such as panning

and zooming information, to simplify and improve the compression. Further, if natural

scenes are not overlaid with the high-frequency signals caused by text and graphics, then

standard video compression techniques are more effective. Of course, text and simple

graphics can be described more efficiently by semantic descriptions (fonts, lines,

rectangles, arcs) rather than by bitmaps. Graphics and animation sequences can be

transmitted more efficiently by sending the procedure required to generate them rather
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than the generated images, if there is sufficient processing at the user display to execute

those procedures.

Structured video can also serve as the basis for adapting services to variation in

available network and user resources, which is an important practical issue. One video

display may have limited resources and be targeted at a limited set of services because of

the hardware and software modules it contains. For example, while an interactive full-

motion videotex system would require text, graphics, windows, pull-down menus, and

full-motion video mixed together, a computer workstation attached to a low-bandwidth

network might require only text, graphics, and windows. The vendor and transport will be

able to adjust to varying hardware resources at the display. For example, at the expense of

interactive flexibility, object compositing can be done at the vendor or within the transport

if the display does not possess sufficient processing capability. This can be performed

through re-structuring of the compositing functions for optimal mapping, as will be

described in section 3.3. In the limit, the minimal display can at least accommodate a

single rectangular raster-scanned video, which is also supported by structured video.

The computational resources for the final video presentation can be partitioned

arbitrarily on the path from production to final presentation, thereby adjusting to economic

constraints for a particular service as well as to the available transmission and storage

bandwidth. Distribution or broadcast services will place more processing nearer the

source, whereas point-to-point or specialized services will generally place more

processing near the display. The representation will adapt easily to a) different

transmission media (satellite, fiber, cable), b) display devices with varying processing

resources, ranging from simple television displays that present only the pixel map

representation to complex workstations that can process all the representations, and c)

vendors with widely varying processing resources ranging from reading pixel maps from

storage devices through display and graphics engines.
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The subjective quality of the presentation can also be adjusted to the transport

bandwidth resources. A lower quality can be provided by using only “higher” semantic

and graphics representations, with quality up to and including full-resolution HDTV

available with the expenditure of additional processing and bandwidth. We also postulate

that where limited bandwidth is available, higher subjective quality can be achieved by

compressing some video objects more heavily than others, for example in retaining full

resolution on a head and shoulders while limiting the resolution of the background.

Structured video has disadvantages. One disadvantage is the higher cost of display

platforms, although as mentioned previously even minimal existing platforms can support

a degenerate form of structured video. Another is the expansion of data required to

transport the hidden portion of video objects, although this can be reduced with more

sophisticated flow-control protocols [Gaglianello91]. Lastly, there are limitations in the

structured video model relating to its inherently two-dimensional representation (like

video itself), as described in more detail in [Lin91].

In summary, the structured video concept of keeping the components used to

generate video logically separate past the production process and all the way to the final

video presentation if that makes economic sense, is simple yet powerful. In particular, it

offers flexibility of reusing and modifying video material at the user display or at any

earlier point. Where pictures are actually assembled from different components

(foreground, background, text, graphics, etc.), as will be increasingly the case in the

future, it is potentially much more efficient to compress the components before

combination than after. Further, structured video gives flexibility to adjust subjective

quality to bandwidth and processing resources (for example substituting a graphically-

generated background when bandwidth is not available for a camera-generated

background), and the flexibility to adjust processing resources between the provider and

the user (for example in adjusting to bandwidth resources). Finally, structured video is
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consistent with many interactive forms of video, where components generated remotely

can be combined easily with locally generated elements to form the final video

presentation. Centralized interactive services can segment complex tasks into a) time-

critical tasks done locally (graphics and animation), b) reading of high-bandwidth

background video too expensive to store locally from a central database, and c) non-data-

intensive tasks like billing performed remotely.

2.3  Unary Spatial and Temporal Compositing Functions

As mentioned above, compositing functions play an important role in the

structured video model to combine several video objects together into a singlecomposited

video object. We discuss the characteristics of unary compositing functions in this section

and leave multi-object compositing to the next section.

Typical unary image manipulation operations used in computer graphics include

geometrical transformation (such as translation, scaling, rotation) and some image

processing operations (such as linear filtering, median filtering, clipping & concatenation,

and thresholding). Geometrical transformations usually involve transforming source

pixels into the so-calledtarget space and use a weighted filter support to calculate the new

target pixel value. Ideal filter designs require an infinite number of filter coefficients with a

sinc impulse response. But in practice, the filter maybe simple box filters (uniform tap

coefficients) or some circularly symmetrical filters such as Gaussian filters. Usually, the

wider the filter support is, the smoother the transformed image will be, but the image will

also become more blurred. In addition, many geometrical transformations can be

implemented by multi-pass approaches. For example, a rotation can be decomposed into

column-reserving shearing and row-reserving shearing, plus appropriate scaling, as shown

in Figure 2-2. The advantages of multi-pass implementations are incremental processing

in each pass and thus much faster processing.
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As we mentioned in the last section, each video object may include a sequence of

image frames (possibly arbitrarily shaped). If we apply unary operations similar to those

described above to the temporal dimension of a video object, we can find many interesting

effects. As listed in table 2-1, scaling corresponds to rate conversion, clipping and

concatenation correspond to temporal annotation of video sequences, and low-pass

filtering corresponds to frame interpolation.

Figure 2-2 Multi-pass implementation of image rotation. (a)original (b)after y-direction
shearing (b)after x-direction shearing.

column-reserving shearing

row-reserving
shearing
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Table 2-1Typical unary and binary compositing functions (in both the spatial and temporal
dimension)

Function Spatial Temporal

unary translate(A,d) change the spatial loca-
tion byd

delay the video object by
d time units

scale (A, s) scale object A by a factor
of s

inter-frame interpolation
or extrapolation

linear_filter(A, h) filter object A with
impulse response h

inter-frame filtering with
impulse response h

flip_x (A), flip_y(A) flip object A in x or y
direction.

time reversal

Clip(A, M) extract part of object A,
designated by mask M

annotate one subsequence
from object A

rotate(A, r) Rotate object A by an
angler.

NA

binary over (A,B) overlap object A on top
of B

display frames of object
A on top of frames of
object B

abut(A,B) put object A and B side
by side

concatenate object A and
B temporally

in (A,B) display part of object A
inside object B.

display frames of object
A during the duration of
object B.

out (A,B) display part of object A
outside object B.

display frames of object
A outside the duration of
object B.

transparent (A, B,τ1, τ2) composite object A and B
transparently according
to transparency factors
τ1, τ2.

same as the spatial
domain

pixel_multiplication(A,B) multiply pixel values of
A with pixel values of B
(useful in anti-aliasing
and special effects)

multiply pixel values of
A with those of B in the
temporal dimension
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2.4  Compositing of Multiple Video Objects

In this section, we will discussbinary compositing functions and in general multi-

component compositing functions. Table 2-1 also shows some typical binary compositing

functions such as overlap(A,B), abut(A,B), in(A,B), out(A,B), and so on. Figure 2-3

illustrates some examples.

Again, these operations can be applied to the temporal dimension as well as the

spatial dimension. Some operations may look like unary operations, but they actually

belong to binary operations. For example, spatially translating a video object actually

corresponds to changing the position parameter in an overlap operation with a display

reference image frame, which can be viewed as an empty root image. Similarly, temporal

shifting of a video sequence corresponds to a temporal mixing operation with a null

reference sequence.

For each binary compositing of two video objects, both the spatial and the

temporal compositing rules must be specified. The temporal rules specify how to align

frames of one video signal to frames of another. The spatial rules specify the spatial

relations between corresponding frames. As described in section 2.1.1, the principle we

use to segment video objects is that the same compositing rules should be applicable to the

Triangle

V1

V2

V3

Triangle

(a) in (V3, scale (V2, 1.3))

Triangle

(b) out (over (scale (V1, 1.5), scale (V2, 1.5)), V3)

Figure 2-3 Examples of composited video objects using basic compositing functions in table 1.
(from [Chen93a]).
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whole video object, in both the spatial dimension and the temporal dimension.

Unfortunately, this principle also implies that the same spatial compositing rules should be

applied in each image frame of the same video object. This imposes some limitations on

the permitted compositing operations. Some popular compositing functions such as the

picture in picture anddissolve features available on today’s TV sets are still permissible.

The former is a time-static operation and the latter can be achieved by simply changing the

transparency parameters of input video objects. However, time-dependent operations such

as the one shown in Figure 2-4 cannot be supported. In the most general case, a spatial

binary compositing operation could vary from frame to frame. Under those situations, we

can either divide each video object into smaller ones (in the temporal dimension) and then

use the same compositing rule for each segmented video object, or extend the compositing

functions to time-dependent representations. For example, in Figure 2-4, we show a

compositing script comprising of several compositing functions to complete the desired

operations.

Theoretically, there are compositing functions that combine more than two video

objects into a single one. Some of them can be obtained by simply concatenating binary

compositing functions (like overlapping), but some can not1. However, most practical

compositing functions seem to fall into the former category.

Figure 2-4 Using compositing scripts to specify time-dependent compositing rules among two video
objects. An alternative approach is to divide objects into smaller ones (in the temporal sense). The
compositing rules for each video object will then become static for the whole duration of the video
object.

t1 t2 t3

A over B B over A A over B

Object A

Object B

t4
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2.5  Compositing of Arbitrarily-Shaped Video Objects

Compositing of arbitrarily-shaped video objects (ASVO) is used in segmentation

coding of video signals [Mussman89] and multimedia editing. Logically, they can be

classified into unary and multi-object compositing operations. These objects suffer from

complications due to the irregular, jagged boundary of the video objects. We need to

perform anti-aliasing along the object boundary in order to smooth it. Porter and Duff

proposed anα channel to take account of the partial coverage within a pixel area for the

boundary pixels [Porter84]. The internal pixels have theα value equal one, external pixels

0, and boundary pixels fractional numbers between one and zero. Figure 2-5 shows an

ARVO and its anti-aliased version to illustrate the effect of theα channel. Theα values are

generated by uniform linear filtering.

Besides anti-aliasing, theα channel can also be used to represent the shape of an

irregular-shaped video object. It is 1 for internal pixels, 0 for external, and fractional

values for boundaries. It is like an additional channel of the image pixel information,

besides the regular color channels. However, since mostα values are either 0 or 1 and

there is significant redundancy, we should be able to find efficient coding algorithms for

theα values (like the run length code), and thus the shape of the object. We will cover the

representations and coding of the object shape in Chapter 5.

The additional channel ofα values can be treated as a regular color or luminance

channel. Figure 2-6 shows the input/output relations for compositing/manipulating the

ASVO’s. In practice, operations applied to both theα channel and the regular color

channel can be the same operations or quite different operations, depending on the

compositing functions. For example, in linear geometrical transformations, the same

1. For example, the compositing function could be defined by a non-linear function, Vout =

F(V1, V2, V3), which cannot be decomposed into binary functions. In turn, the mapping

function can be defined by a lookup table.
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filtering operations can be applied to theα channel as well as the color channels. For the

binary operations described below, however, the calculations for theα channel and the

color channels are quite different.

According to Porter and Duff’s compositing algorithm, two ASVO’s can be

composited as follows:

Pnew = α⋅Pf + (1-α)⋅Pb (2-1)

where Pnew, Pf, and Pb are new composited pixel, foreground pixel and background pixel,

respectively. Theα value of a pixel indicates the coverage percentage of that pixel within

one pixel area. This compositing function can be extended to multiple layers incremen-

tally:

Pnew = α1⋅P1 + (1-α1)(α2⋅P2 + (1-α2)⋅( ... ) ) (2-2)

Figure 2-5 The original jagged rabbit and its anti-aliased version. (a) original raw image (b)
enlarged area of original image (c) anti-aliased image (d) enlarged area of anti-aliased image.

(a) (b)

(c)

(d)
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where the depths of the video objects are assumed in the ascending order. Porter and Duff

also use this technique to perform different compositing operations on a pixel scale, such

as over(A,B), in(A,B), out(A,B), atop(A,B) (defined in Table 2-1).

We can combine theα channel with transparent overlapping. Suppose video

objects with the same display depth are overlapped semi-transparently; then they can first

be combined as in the following:

αnew = 1- (1-α1)(1-α2) (2-3)

Pnew = Pc/αnew (2-4)

Pc= α1(1-α1)P1 + α1α2(τ1P1 + τ2P2) + (1-α1)α2P2 (2-5)

to form a single object and later composited with other objects with different depth.τ1 and

τ2 are the transparency parameters in the semi-transparent compositing function. These

formulae can be derived based on the set operations. In [Chen93b], approximations of

Figure 2-6 Input/output relations for unary and binary compositing functions of ASVO’s. (a) many
unary compositing function such as a geometrical transformation treat theα channel just like color
channels. (b)But most binary compositing functions have special compositing rules for theα
channel.

pixel values
Geometrical
Transformation

pixel A

pixel B
new pixel

α channel of A

α channel of B

new pixel +

newα channel

pixel
compositing rule

α compositing rule

(a)

(b)

+ α channel newα channel
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equation (2-5) are taken to achieve incremental implementations. In practice, the depth

order of each video object can be represented by a singlepriority. Priority and transpar-

ency factors are object-based parameters. By using this object-based priority, we can sim-

plify the compositing process. We will describe the details in section 2.6.3.

There are alternatives for compositing two or more ASVO’s. Bitwise operations in

hardware can be used to combine simple compositing operations (such as A over B, A and

B) [Foley90]. Another technique uses the frame-buffer hardware to implement

compositing by table look-up. For example, each image constitutes several bit planes of

the table address, and the table contents contain the composited pixel values.

2.6  Representations of Compositing Functions

There have been numerous efforts to standardize the representation formats of

multimedia documents and their presentations [Markey92, Kretz92, Ripley89]. In this

section, we address the representation problem of the compositing functions. Our goal is

not to propose alternatives competing with the fully-defined standardized representation

formats. Instead, our goal is to provide an abstract-level framework base on which we can

flexibly study other important issues such as mapping compositing functions to distributed

processing resources. In addition, the representation methods should conform to the

structured video model proposed in Section 2.1.

Particularly, we describe the following representation structures:expression, tree,

andordered list. The first two types of representations have been discussed in the literature

[Porter84, Kauffman88, Little91]. But here we define them in the context of the structured

video model defined in Section 2.1. The newly proposed ordered list structure has a

reduced complexity by assuming an object-based priority parameter and by limiting the

compositing functions to opaque and semi-transparent overlapping only. Later, in Chapter

3, we will further investigate restructuring properties based on these representations. Our
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goals are to provide efficient representations with enough generality for modeling

compositing functions and enough flexibility for adjusting mapping from symbolic

representations to hardware resources.

Figure 2-7 shows the relationship between different types of representations for

compositing functions. The time-dependent compositing script, as defined in Section 2.4,

has the highest generality. It can represent general time-varying temporal or spatial

compositing functions applied to individual or multiple video objects. Theexpression

structure can be used to represent general time-static compositing functions, including

multi-object non-linear compositing operations. Most practical compositing functions can

be modeled by the expression representations1. The tree structure is more efficient if the

hierarchical property of the compositing functions is emphasized. It has the same level of

generality as the expression structure.2 The tree representation is particularly useful for

distributed or parallel implementations. If we further restrict the allowed compositing

functions to overlapping only and assume that each video object is associated with a depth

order (denoted as priorityτ), the tree structure can be reduced to a one-dimensional

ordered list structure. As illustrated in Figure 2-7, the inner representations have lower

generality for representing compositing functions than the outer ones.

1. Some popular temporal effects (e.g.dissolve) look like time-varying compositing functions,

but actually can be achieved by time-static compositing functions with time-varying

compositing parameters.

2. The tree structure is not constrained to binary trees only. Each internal node can contain two

or more child nodes. One extreme case is using a single-level tree to represent the

indecomposable compositing functions.
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2.6.1  Expressions

Expressions can represent any general time-static compositing functions, namely,

identical compositing rules for every frame of the video object. A general symbolic

expression for representing compositing functions is as follows:

Vcomposited = F (V1, V2,..., var1, var2,...) (2-6)

whereV1, V2,... are video objects,var1, var2,. are variables used by the compositing func-

tion to decide how the video objects are composited, andVcomposited is the composited

video object. The number of video objects can be variable, and so is the number of the

compositing parameters. Some compositing parameters, such as location and starting

time, can be considered asattribute parameters of video objects. Every compositing func-

tion must define these attribute parameters of the video objects or use their default values.

For a stand-alone video object, these parameters should be viewed as values relative to

some reference display device and timing scheme.

In addition to the attribute parameters, different compositing functions have their

own compositing parameters. For example, the transparent overlapping function needs the

time-dependent
compositing script

expression

tree

ordered list

Figure 2-7 Relationship between different types of representations for compositing functions.

time-static
compositing
functions
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transparency factor for each involved video object, which is unnecessary in other

compositing functions.

As mentioned earlier, the composited results are also video objects. We call them

composited video objects, in contrast to theprimitive video objects which are directly

produced by a video input device. The interpretation of composited video objects is

interesting. It is the goal of the structured video model to keep the logical separation of

video objects as far as possible to the destinations to achieve many advantages discussed

earlier in section 2.2. But once after the compositing functions are executed, the resulting

composited video object cannot be distinguished from a primitive video object. There is

no way to extract the ingredient video objects from composited video objects. Therefore,

the representation of equation (2-6) is useful only before compositing.

In practice, many useful compositing functions are constructed incrementally and

hierarchically. The following is a typical example,

Vcomposited = F( UgG( U1V1, U2V2), U3V3 ) (2-7)

whereF1 andG are binary compositing functions,Ui are unary compositing functions as

those listed in table 2-1, and Vi are video objects. This representation can also recursive

since each component video object can be in turn composited video objects and produced

by a compositing function like that shown above. However, there are some compositing

functions which cannot be decomposed into the above hierarchical format. One example is

multi-object non-linear mappings, which are usually defined by look-up tables.

1. Note that we use italic letters to represent compositing functions, among which bold italic

letters indicate binary compositing functions and normal italic letters indicate unary

functions.
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This representation can easily be extended to incorporate more component video

objects. The following example shows a practical composited video object with four

component objects:

Vcomposited = over( scale(over(V1, V2)) , over(scale(V3), scale(V4) ) ) (2-8)

The parentheses indicate the processing order for completing the compositing function.

We want to relax this ordering in order to flexibly and efficiently adjust the mapping of the

abstract-level representations to actual compositing processors. The motives are signifi-

cant since on multi-user multi-service networks, application requirements and network

configurations are very dynamic. It is important to provide flexible adaptations of compos-

iting systems to dynamic needs. We achieve this flexibility by exploring the characteristic

properties of the above generic representations, such asassociative, commutative, anddis-

tributive properties. Based on these properties, we can restructure the compositing process

so that the final structure implies a better mapping to hardware resources. For example, the

composited object shown in equation 2-8 can be restructured to a simpler one as follows:

Vcomposited = scale( over( over( over(V1, V2), V3), V4)) (2-9)

if we assume all scaling factors are the same. This provides potentials for reducing the

computational cost since a single scaling operation is used.1 We will describe the restruc-

turing process in more detail in Chapter 3.

2.6.2  Trees

As described in Equation (2-7), many compositing functions can be described in a

hierarchical structure, which can be best described by thetree structure. For example,

Figure 2-8 shows the tree representation for the compositing function defined in Equation

2-8. Each terminal node represents a component video object; each internal node

1. The actual computational gain depends on the rate reduction ratio of the overlap function.
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represents a compositing function used to composite the component video objects defined

by the child nodes of this internal node. Note that the tree structure doesn’t need to be

binary. For example, an indecomposable multi-object compositing function can be

represented by an internal node with three or more child nodes. As far as the generality is

concerned, the tree structure and the expression structure defined in the last section are

equivalent. Figure 2-9 shows an example which includes both binary and ternary

operations.

The tree structure is also a natural representation for different implementation

procedures. It can clearly specify the order of objects being composited and the way in

which unary functions are completed. For example, Figure 2-10 shows two different tree

V1 V2 V3

over

over

V4

scale scale

scale over

Figure 2-8 A tree representation for the compositing function defined in Equation (2-8).

Vcomposited=G(F(V1,V2,V3),V4)

V1 V2 V3

V3F(..)

G(..)

Figure 2-9 (a)A compositing function including an indecomposable ternary operation and a binary
operations. (b)The corresponding tree architecture.

(a) (b)
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representations of opaque overlapping of three objects in different orders. This clear

indication of processing orders and possible task clustering is useful in adjusting the

mapping from compositing functions to actual processing resources, particularly when

compositing functions are implemented distributively or in parallel. For example, Figure

2-11 shows two different tree representations of the same compositing function. One is

more suitable for modeling sequential implementation on a single processor while the

other one is more suitable for modeling parallel implementation on two processors. In

Chapter 3, we will describe the distributed compositing approach for network video

services. We will also discuss possible transformations on the tree structure for efficient

adjustment of the mapping to practical resources.

2.6.3  Object-Based Priority and Ordered Lists

The expression representation described in Section 2.6.1 can be simplified if we

make some assumptions about the compositing rules. For example, as in thevideo station

project [Chen93b], we can assign each video object an absolute depth order, called

priority (τ). Video objects with higher priority cover those with lower priority. Video

objects with the same priority are semi-transparently mixed together to produce

composited video objects. This absolute depth order is not imposed by the structured

video model defined in Section 2.1. Actually, as described in [Lin91], the depth

relationship among different video objects can be defined in a relative way (e.g. A on top

V1 V2

V3 V1

V2 V3

(a) (b) (c)

V1

V2

V3

over

over over

over

Figure 2-10 There could be different implementations for the same compositing function. (a) the
desired effect (b)overlap the first two objects first (c) overlap the last two objects first.
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of B, B on top of C, etc.), in an absolute way (using the above absolute order), or based on

all possible combinations of video objects. What the structured video model constrains is

that all pixels in the same frame of a video object must be displayed in the same depth. But

the mechanism of describing the depth information is not specified. Here we choose the

above absolute depth parameter in order to simplify the representation complexity.

The above compositing scheme also implicitly constrain the possible multi-object

compositing functions to opaque overlapping and semi-transparent overlapping only. We

repeat the above descriptions in a symbolic way:

Whenτ1 < τ2 , Vnew = V1 + V2, i.e.Opaque Overlapping (2-10)

Whenτ1 = τ2 , Vnew = V1 ⊕ V2, i.e.Semi-transparent Overlapping (2-11)

where “+” stands for opaque overlap, and “⊕“ stands for semi-transparent overlap. In

other words, the object-based priority (t) completely defines the inter-object relationship

V1

V2 V3

V4 V5
U3U2

U4 U5

V1

V2 V3 V4 V5

U3 - U2

U2

U5 - U4

U4

U1

U1

Vcomposited Vcomposited

(a) (b)

Figure 2-11 Two different tree representations for the same compositing function. Each internal
node is associated with an overlap operation (without explicit notations). +: opaque overlapping,
⊕ : semi-transparent overlapping,Ui: unary transformation, V i: video objects.

Vcomposited= U1V1 + (U2V2⊕ U3V3) + U4V4 + U5V5
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(with the supplements of the transparency parameters required in semi-transparent over-

lapping). Other multi-object compositing functions, such as abut, in, out (defined in Table

2-1), are eliminated.

It is worthwhile to notice some interesting properties of these two compositing

functions. The opaque overlap operation is an associative operation, namely,

(V1+V2) + V3 = V1 + (V2+V3) , (2-12)

but not communicative, namely,

V1+V2 ≠ V2+V1 . (2-13)

However, opaque overlap and semi-transparent overlap are not associative:

(V1 ⊕ V2) + V3 ≠ V1 ⊕ (V2+V3) (2-14)

This implies that video sources with equal priorities must be composited before they are

composited with other video sources. This kind of restrictions actually constitute an

important aspect in compositing systems, denoted as theconstraint set. There are other

constraints such as temporal and spatial binding relations between video objects. Con-

straints can originate from the video model1, the compositing functions (like the above

processing order), the users’ controls, or the video source. The choice of representation

methods of compositing functions does not affect the constraint set. The constraint about

compositing order described in Equation (2-14) is an inherent property of the overlapping

compositing function, not the representation method used. We will discuss more details

about the constraint set later.

1. For example, the structured video model imposes a constraint that all pixels in a video

object must be composited in the same way.
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Another interesting property of the overlapping functions is thedistributive

property. Many useful unary compositing operations (such as geometrical

transformations) are distributive with respect to the overlapping function1, namely,

U(Va) + U(Vb) = U( Va + Vb ) (2-15)

That is, the compositing functionU(Va) + U(Vb) can be completed by applying one or

more unary transformations on the output of another compositing function,

Va + Vb. We call these two compositing functionsproportional. Proportional compositing

functions are important in distributed implementations of compositing in the sense that

they can be implemented on a single processing unit and shared among different users and

services. We will elaborate on this issue in Chapter 3.

If we consider only unary operations which are distributive with respect to the

overlapping function, every composited scene can be represented by acanonical form as

follows2,

F(V1,V2,V3,V4,V5) = (U11U12...)V1 + (U21U22...)V2 ⊕ (U31U32...)V3 +
 (U41U42...)V4 + (U51U52...)V5 ... (2-16)

where video objects are composited incrementally with ascending object priority.Uij are a

sequence of unary operations applied on object i. The essential concept is that each com-

posited scene has a unique corresponding compositing function, like the one shown above.

The inter-object compositing functions can be opaque overlap (“+”) or semi-transparent

overlap (“⊕”). Although the compositing functions can be changed to some extent by

using restructuring properties such as the associative and distributive properties. The

canonical forms are all similar. Users control the layout and appearance of the displayed

1. It’s possible to artificially design special unary operations which are not distributive with

respect to the overlapping function, although they may not be practical.

2. As mentioned at the beginning of this section, here we allow opaque and semi-transparent

overlapping functions only.
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scene by changing the object priority, unary transformation of each object, and the posi-

tion of video objects.

As video objects are defined hierarchically, the compositing function can be

defined recursively. For example, the above function can be described as,

F(V1,V2,V3,V4,V5) = (U11U12...)V1 + F1(V2,V3) + F2(V4,V5) (2-17)

whereF1(V2, V3) composites V2 and V3 semi-transparently, andF2(V4,V5) composites

objects V4 and V5 opaquely.

The above simplified compositing functions can be efficiently characterized by the

ordered list model, as shown in Figure 2-12. Each video object is represented as a list

element. Starting from the first element, which has priority zero and represents the virtual

background, the priority increases as we proceed along the list. Video objects with the

same priority are stored in a branch list, which in turn is an ordered list. The significance

of the ordered list representation is in implementation. As shown in equation (2-17), we

can complete the whole function by completing any sub-sequence first, followed by

compositing the interim results with remaining parts incrementally. Thus, we can grab any

portion of the ordered list, complete their compositing operations, put the resulting video

object back to the list, and repeat this process until the whole function is completed.

However, as shown in equation (2-14), video objects with the same priority must be semi-

transparently composited together before they can be composited with objects of different

priorities. Thus, branch lists of the ordered list must be grabbed and composited as a unit

(however, compositing in the branch list can be incremental).

There is only one unique ordered list representation for each composited scene if

we make the assumption about the absolute depth order as described earlier. However, as

mentioned above, the compositing functions can be mapped to the physical processing
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resources in different ways. The tree structure (described in the last section) is more

efficient in representing specific mappings.

2.6.4  Constraints

Constraints are sometimes imposed on video objects’ compositing to ensure

correct relations between various video objects. For example, the text object and its

circumscribing graphic object in Figure 1-4 cannot be displaced independently. The

relative position between the weather reporter and the background map cannot be freely

adjusted by destination viewers, otherwise the carried information would be incorrect.

These special relationships between different video objects may be defined by inputs of

video sources, user controls, or hardware limitations. Video sources generate constraints

on compositing when video objects are segmented. End users may want to create spatial or

logical binding relations between video objects (e.g. multimedia database query). A

compositing hardware may have a processing power limit so that it cannot process and

composite multiple high-resolution video objects simultaneously in the real time. All

U11U12U13... τ1 V1

U21U22U23... τ2 V2

None 0 V0

U31U32U33... τ3 V3

...

End

UN1UN2UN3... τN VN

0 < τ1 < τ2 = τ3 < ... <τN

E0:

E1:

E2:

Ei:

End

Figure 2-12 The ordered list model representing a hierarchical compositing function. Here we
assume only two typical multi-object compositing functions, opaque and semi-transparent overlap.
Dotted boundary encircles video objects with the same priority. The first element, V0, represents the
virtual background.
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these constraints should be stored in aconstraint set for each compositing function. All

possible implementations of a compositing function must satisfy the associated constraint

set, which is a pre-determined domain within which we can seek the optimal

implementation of a compositing function. Also, all future modifications of the

compositing function (e.g. manipulations of each video object) must conform to the given

constraint set. However, users may be allowed to change the constraint set.

The constraint that objects with the same priority need to be composited together

before they are composited with other objects can be considered as adefault constraint for

every compositing function when we use the absolute depth order, as described in Section

2.6.3.
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Chapter 3

Distributed Network Compositing

As described in Figure 1-1, future multimedia video services include information

sources distributed geographically and temporally. The emerging Asynchronous Transfer

Mode (ATM) network provides a suitable environment to support these diversified multi-

point, multi-media services. In this chapter, we studydistributed network compositing. In

particular, we study the second degree of freedom for implementing the compositing

functions —location, as described in Chapter 1. The structured video model proposed in

Chapter 2 allows us to flexibly and arbitrarily partition the video compositing process

along the path from production to the final video display. Compared to the centralized

compositing, the distributed compositing approach can provide the flexibility for adjusting

different performance tradeoffs (e.g. bandwidth/processing), and the flexibility for

adapting video compositing systems to dynamic requirements of different services and

users. The distributed compositing approach offers great potential for achieving a higher

overall cost-performance ratio.

We will first briefly review the characteristics of the ATM network and discuss its

potential for supporting dynamic distributed network compositing. We will describe the

general advantages and disadvantages of different compositing locations throughout the

network. To satisfy various needs of users and services on multimedia networks, we will

propose ashared distributed compositing principle for resource allocation. In order to

efficiently adjust mapping of compositing functions to network processing resources, we

will discuss possible transformations on compositing functions based on the

representation formats of compositing functions proposed in Chapter 2. We will leave the

optimization of mapping compositing functions to network resources as a challenging

open topic, due to the absence of extensive quantitative analyses of various cost functions.
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However, we will present some primitive studies of performance factors such as quality,

bandwidth, computation, and synchronization. This should be a first step to a concrete

complete solution.

3.1  Background

3.1.1  Characteristics of ATM Broadband Networks

As discussed in the literature, the ATM Broadband ISDN (ATM/BISDN) provides

an efficient integrated environment for multimedia services including video, audio, and

data [Minzer89, Prycker91]. The ATM network uses a unified fixed-sized cell format to

transport different kinds of media through networks. Due to progress in high-speed

processing and reliable high-speed optical transmission, ATM networks can combine the

high transmission speed of circuit-switched networks with the advantages of packet-

switched networks, such as dynamic bandwidth utilization, dynamic switching utilization,

and integrated service transport1. Statistical multiplexing of varieties of media sources

(such as variable-rate data, voice, video) can greatly increase ATM’s utilization efficiency.

Also, ATM networks can efficiently support multi-point multi-media connections, which

are difficult to achieve in traditional circuit-switched networks.

However, there are still some challenging issues for ATM networks. In particular,

for real-time media transmission, issues such as variable delay jitter due to transmission

and queueing delays, network congestion due to statistical multiplexing and variable rate

traffic, packet loss due to buffer overflow, and service quality guarantees need study. These

issues become even more complicated when extended to multi-point real-time interactive

services.

1. Although traditional packet-switched networks do not provide integrated service transport.
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With respect to network video compositing, the ATM network can support

dynamic distributed video compositing, especially, the real-time multi-point multi-

connection calls essential for compositing of multi-point distributed multimedia sources.

Also, because of the variation in bandwidth between composited image and its

constituent, and dynamically changing object areas, the highly flexible bandwidth

allocation in the ATM network is essential for flexible partitioning of compositing

processes throughout networks. We consider the ATM network as the basic platform for

studying distributed compositing in this chapter, though the principle of shared distributed

compositing is still applicable to other networks.

3.1.2  Related Work on Multi-Source Multi-User Connections

The problem of distributed multimedia compositing can be categorized in a more

general problem domain — multi-source multi-user connections. In Figure 3-1, we show

the models for multi-source single-user distributed compositing systems and also multi-

casting connections. Combining these two cases, the general case is multi-source multi-

user connections. There are multiple users on the network and each user can subscribe to

multiple multimedia services, each of which may require a multi-to-one compositing

process. On the other hand, the same media sources can be accessed by multiple users at

the same time. This general multi-source multi-user connection has been studied in the

literature at different levels. We will review some related work in this section, focusing on

their relations to our network video compositing issues.

Little and Ghafoor have studied compositing of multimedia objects stored in

networked distributed databases [Little91]. For each multimedia object, there is a model

describing the temporal (e.g. synchronization between constituent signals) and spatial

(e.g. overlapping) compositing processes required to produce this multimedia object. They

studied the hierarchical representation of the compositing process and discussed the trade-

off among different performance metrics when mapping the compositing process to
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network resources. This study is very similar to our distributed compositing task, which

will be discussed later in this chapter. But it still differs in many aspects. First, they

focused on multimedia objects stored in a database, while we consider general real-time

video services. Second, we consider compression and its impact on various performance

metrics, such as video quality and communication bandwidth, while their analysis did not

take compression into account. Third, after representing compositing in a hierarchical

way, we study possible ways for restructuring the compositing functions, such as

permuting the order of different compositing operations, in order to provide the flexibility

for adjusting resource mapping and reduce implementation cost. Lastly, we utilize the

structured video model of Chapter 2 to separate a video signal into different video objects,

such as foreground moving objects and background stationary objects. This logical

separation is maintained all the way along the transmission path from the source to the

Figure 3-1 (a) multicasting connections (b) multi-source single user distributed compositing.
Combination of these two situations produces the general multi-source multi-user connections.
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destination so that more efficient compression, transport and display schemes can be

utilized.

In addition, Little and Ghafoor concluded that for stored database video, temporal

compositing processes1 are most suitably performed at the destination while the spatial

compositing processes can be distributed in the network. This might not be valid for real-

time multi-point video services because there are other potential advantages to perform

temporal compositing hierarchically throughout the network, such as synchronization.

Ranganet al. designed mixing algorithms and hierarchical architectures2 for

multi-point connections with the absence of globally synchronized clocks [Rangan93].

They found the hierarchical architecture has higher scalability with the number of

conference participants, compared to the centralized architecture. This is because each

video signal needs to transmit to only one intermediate compositor, and thus the

communication and computation load can be more evenly distributed than in the

centralized compositing situation. However, they assume that every participant receives

the same composited signal broadcast back from the root compositing unit. In advanced

multi-point services, each participant can request different compositing operations (such

as different screen layout). Therefore, our study has an additional task: to find sharable

compositing operations among different users’ compositing requests. Also, their

performance metrics focus on the synchronization issue only and do not consider the

compression process.

1. As defined in Chapter 2, temporal compositing deals with the temporal alignment between

different media streams.

2. Note that the hierarchical mixing architecture is comparable to our distributed compositing

principle. In their paper, distributed mixing refers to the architecture in which each

participant mixes local signal and broadcast signals from all other participants.
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Schooler and Casner [Schooler92] designed protocol architectures to support

multi-point multimedia connections. Connection managers are located at machines

scattered throughout networks and act together to orchestrate multi-point conference

connections. Inside connection managers, there is one configuration control unit to

communicate configuration information and implement selected services between

heterogeneous end systems. They also proposed mechanisms for configuration description

language, distributed resource locator, and resource synthesizer, the last of which was

originally described in [Nicolaou90]. These concepts are important to our study of

distributed compositing. In the process of mapping requested compositing functions to

network resources, these configuration management entities such as distributed resource

locators are essential in effective resource mapping. Therefore, their work can be

considered as complementary to our study in distributed compositing. We propose an

abstract model for representation of the compositing process and try to find flexible ways

for efficient mapping of compositing functions to network resources. This is at a higher

level than actual protocol designs.

Pasquale et al. [Pasquale93] proposed a Continuous-Media Dissemination model

for multicasting in packet-switched networks. They advocated the principle of loose

coupling between the media source and multiple receivers. Applying the loose coupling

principle, they suggest that the source should use embedded coding to send all necessary

information to the network and let each user extract the required information by individual

filtering. Intelligent network routers should be able to merge paths to different receivers

with the same interest (namely media filters) into a single path to reduce communication

and computation cost. Similar issues occur in our distributed compositing situation where

multiple sources are sent to networks, composited into a single information stream, and

then sent to the receiver. But the source-destination relation is reversed. As we described

earlier, the most general case will have multi-sources and multi-receivers.
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3.2  Video Compositing throughout the Network

As we mentioned before, using the structured video model facilitates the flexibility

to arbitrarily partition the video compositing process along the path from production to the

final video display. In this section, we discuss where compositing could be done and how

to improve the cost-performance ratio by sharing compositing tasks in a multi-user multi-

point networked multimedia service.

3.2.1  An ATM-Based Multimedia Network Model

In Figure 3-2, we show a multimedia network model based on the ATM network

technology to support dynamic distributed video compositing hardware allocation. The

ATM network is composed of a collection of switching nodes which may or may not have

the processing capabilities for multimedia compositing. Remote distributed multimedia

sources are connected to the network through a network-premise interface (NPI). Within

each source node, multiple sources can coexist in parallel, such as parallel disk arrays

[Katz90]. Different databases can store different specific types of media such as video,

graphics, and text. On the opposite side of the network, individual users are located within

perimeters of different Customer Premise Networks (CPN). Each CPN is connected to the

backbone network through the network-premise interface, which mainly performs data

packet formation, address filtering, and other high-level network functions. In general,

users and data sources should be allowed to coexist in the same CPN. For analytic

simplicity, we exclude coexistence here without losing generality.

Besides the source (location A) and user (location E) locations, there could be

third-party vendors who can access multimedia sources through networks, produce

innovative services and then provide them to the users. These third-party vendors can

provide compositing equipments remotely outside the broadband network (location C) or
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within the local customer networks (location D). In addition, the transport providers may

also provide compositing hardware for end users (location B).

3.2.2  General Benefits and Drawbacks of Each Possible Compositing
Site

Compositing hardware can be located at any of the locations (A to E) in Figure 3-

2. Generally, as the locations of the compositing units (CU) move from sources (location

A), through intermediate nodes (location B or C), to the destination sites (location D or E),

the number of required CU’s increases, the communication bandwidth increases, but the

customer control flexibility also increases. In addition, the response to interactive

customer control directives becomes more immediate. Therefore, trade-offs exist between
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Figure 3-2 A generic ATM-based model for the multimedia compositing systems. CPN represents
Customer Premise Network, NPI represents Network-Premise Interface, and S1-S4 are different
multimedia data sources. Locations A — E stand for source, network node, intermediate node
outside networks, local network node, and destination respectively. Third-party vendors can
provide compositing hardware in locations C or D. Some customer premise equipments (labelled as
D) can be shared by customers in the same CPN.
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different performance metrics, such as hardware cost, communication cost, customer

control flexibility, and service quality.

Below we discuss general advantages and disadvantages of placing compositing

hardware at each possible location from site A to E. Then, we propose the shared

distributed compositing principle in order to match various user and service requirements

and improve the overall performance of the video compositing systems.

3.2.2.1  Video Source (location A)

Hardware and transmission costs are kept low if multiple sources are composited

together before they are transmitted to users. For example, almost all viewers would want

to keep together the graph of a curve and the text labels of its axes.

The shortcoming of this hardware allocation approach is its lack of user

controllability. The presentation scenario is determined by the service providers rather

than individual customers. To increase the choice of presentations, the source could use

multiple processing units to produce a number of different composited video streams. In

the extreme case, the source contains one compositing processor per customer. More

reasonably, the source could make available two video streams—one with all video

objects composited together and another will all video objects separate. If the users are

allowed to control the compositing functions by sending commands remotely, a potential

long interactive delay is expected.

3.2.2.2  Network (location B)

The so-calledvalue-added networks may provide processing capability within

them. This approach is similar to the third-party vendor solution but does not require

transmission back and forth to the vendor.1
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The compositing hardware can be located in any node within the network. It can be

also located in a central node or distributed among several nodes. In Figure 3-3, we show a

typical applicationmulti-point video conferencing. The compositing processors receive

different video sources from different locations and perform the compositing operations.

Then, the composited video is broadcast to every participant. There are trade-offs between

the hardware cost and flexibility. In Figure 3-3(a), a single compositing unit (CU) is used

to produce a unique presentation, in which all conference participants are of the same size.

In Figure 3-3(b), two CU’s are employed to produce different presentation formats, one of

which has a bigger window for the speaker and smaller windows for the rest. Note these

two CU’s can share transmission of video sources and some common compositing

computations. For example, the computations for compositing the silent participants can

be shared.

In addition to the sharing of the hardware cost, the transmission cost can also be

shared among customers. For example, the number of communication links required here

1. Currently, U. S. telecommunications network providers are forbidden by law from offering

data-enhancement services such as video compositing.

Network

PU × 1

Figure 3-3 A simple example of multi-point video conferencing. Different computational resource
allocation schemes result in different levels of flexibility of user controls. In (a), a central
compositing unit (CU) produces a unique presentation. In (b), multiple CU’s produce more
presentation choices and thus users can have higher control flexibility.

(a) (b)

Network

PU × 2
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is of the order of N, where N is the number of conference participants. This is much lower

than the N(N-1) links required by the allocation scheme that uses dedicated hardware at

each participant’s site. The number of compositing processors located within a value-

added network should be determined by the customers’ demand for compositing. Third-

Party Vendors (location C or D)

Compositing hardware could be provided by third-party vendors that have access

to broadband networks. The hardware could be located in remote areas or within local

customer networks. This solution is similar to the location of compositing hardware within

the network.

If third-party vendors compete to offer compositing services, a great deal of

service innovation should result. For example, some vendors might offer several sports

programs in a single presentation. Others could superimpose financial teletext over news

or weather programs.

3.2.2.3  Customer Private Networks (location D)

If a number of customers at a site need to see the same display, video compositing

should be performed only once. Placing compositing hardware within the local network

where the customers are located would be most efficient. These processing units can be

provided by third-party vendors (as mentioned in last section) or can be installed as shared

customer premise equipments (like shared computer printers and storage devices on local

area networks).

3.2.2.4  Final Video Display (location E)

This solution provides maximum flexibility. Every user has dedicated compositing

hardware and thus has full control over the presentation on the display with minimum

interactive delay. For the previous video conferencing example, this hardware allocation
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scheme lets every participant arrange his or her own presentation scenario. The hardware

cost is highest with this scheme, simply because so many CU’s are required. However, the

cost still may not be too expensive if only one (or two) video sources are transmitted every

displayed frame and the rest are updated infrequently. For example, today’s workstations

display many video objects such as text windows and graphics, all of which are updated

only infrequently. The communication cost depends on the extent that the requested data

sources are shared. For example, if there are only few available data sources but many

customers requesting different presentations, then the communication cost per user is low

since data transmission is heavily shared. On the other hand, if most customers request the

same presentation, then this hardware allocation approach is not as efficient as those

which composite video objects in the earlier stages.

3.2.3  Principle of Shared Distributed Compositing

An efficient compositing hardware allocation scheme should take into account

both the dynamic requirements of services and users on multimedia networks. First, the

characteristics of different multimedia services vary widely. Usually, broadcasting

programs (e.g. weather reports) and public shared services (e.g. electronic yellow pages)

have fixed compositing scenarios that are determined by service providers. User

interactivity is not required in these cases. But for other services such as interactive

database query and access, user interactivity is definitely necessary.

From the viewpoint of user diversity, different levels of user controllability are

required. Some users may not want to pay for dedicated compositing hardware. Instead,

they use the compositing equipment provided by private vendors. For example, vendors

may composite two sports programs together, news and stock prices, or multiple movie

channels into single streams for the end-users. However, other users may prefer full

flexibility of control and enjoy more advanced services such as desktop video editing and

publishing.
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Therefore, the efficient compositing hardware allocation schemes must reflect

different service characteristics and dynamically changing user demands. The allocation

must bedistributed since hardware should be allocated over a widely dispersed area, as

opposed to a centralized allocation scheme. The resource allocation must bedynamic

since different users or services can dynamically reclaim the hardware resources in a time

sharing mode. For example, a group of users in the same local area network can

dynamically share some compositing units in the same local area network. There could be

some public compositing units available in the central broadband network and some

private compositing units provided by outside vendors. At the end sites, video source sites

can have some compositing units to combine logically bonded video objects before

transmission. End users who are multimedia hackers can invest in dedicated compositing

resources. By distributing the compositing hardware, a minimal number of compositing

resources are required to meet the widely diversified user interactivity requirements; by

allocating the hardware dynamically, the hardware cost is further reduced.

The connection complexity, and possibly the computational complexity, can be

reduced if a group of users can share some common compositing tasks. These shared

compositing tasks can be extracted by some intelligent algorithms in the control entity and

completed on a separate compositing unit (within or outside the network), which is shared

among the whole group of users. The composited results are then combined with

individual remaining parts to produce different scenes for each user. We call itdistributed

because compositing functions are completed distributively by many processors and

shared because each composited processor may be shared by many users.

There are two ways to interpret this concept of hardware sharing. First, from the

viewpoint of network service providers, given arbitrary compositing scenarios of multiple

users and services, how do we allocate the compositing processors throughout the network

to satisfy these compositing tasks at a minimal cost? Using the compositing model
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described in section 2.6, each compositing task is associated with some abstract

representation, such as the expression representation or ordered-list representation. Based

on these representations of compositing functions, the service agent should try to find the

most profitably shared compositing tasks (e.g. long identical segments or segments shared

by many users in the ordered-list representation), and then allocate appropriate hardware

to implement these common compositing tasks. In the example shown in Figure 3-4,n

users share a common compositing task which containsm input video sources. The

connection complexity is reduced fromn⋅m to n+m. However, the service provider needs

to assume abundant hardware resources and should be able to perform sufficiently fast

hardware reallocation.

Another perspective of this concept of shared distributed compositing is that given

limited amount of hardware resources at the disposal of network service providers, how do

we maximize their capability in terms of the variety of supported compositing programs?

Network providers can collect the past usage statistics of user compositing programs and

implement the most popular programs on the available hardware. In this way, users’

requests can be satisfied to the maximal extent by using limited hardware resources.
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Figure 3-4 An example of shared distributed video compositing. Several end users share a common
compositing task and complete their displayed scenes in a distributed way.
P: compositing processors.
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An important issue emerging immediately is how to find beneficial sharable

compositing tasks among many users or services. Abstract-level hierarchical

representations of compositing functions proposed earlier in Chapter 2 will prove to be

useful here. In the next section, we will explore some abstract-level methods for

restructuring and partitioning the compositing functions in order to flexibly adjust their

mapping to network resources (e.g., bandwidth and processing).

3.3  Mapping of Compositing Functions to Network Resources

3.3.1  Optimal Resource Allocation — An Open Problem

As described in section 2.6, each compositing function can have many different

implementations, each with its own performance and cost. Figure 2-10 and 2-11 (in

Chapter 2) illustrate two typical implementation examples. In this section, we try to

address a challenging problem — given limited network resources (including bandwidth

and compositing hardware), and diversified requirements of multiple users and services,

how do we organize and partition the compositing functions appropriately, and then map

them onto suitable network resources? In optimization of mapping compositing functions

to network resources, different performance weighting from different users and services

also need to be considered. Figure 3-5 shows a block diagram describing this challenging

open problem.

Our goal is not to design any optimization algorithm for any specific network

environment or application. Instead, based on the abstract-level representation we

proposed in Chapter 2 and the shared distributed compositing principle described above,

we focus on general approaches for effectively adjusting mapping of compositing

functions to network resources and flexibly tuning various performance tradeoffs.
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3.3.2  Transformations of Compositing Function Representations

As defined in section 2.6, a general compositing function can be represented by an

expression as follows,

Vcomposited = F (V1, V2, ... , var1, var2, ...) (3-1)

where Vi are video objects andF is the compositing function. Most of useful compositing

functions (as those defined in Table 2-1) can be defined hierarchically.1 In particular, they

usually can be decomposed into binary operations. The following is an typical example,

Vcomposited = F( UgG( U1V1, U2V2 ), U3V3 ) (3-2)

whereUi are unary compositing functions applied on individual video objects. We focus

on these decomposable compositing functions only in this section.

We have shown that there are many different implementations of each compositing

function. For example, overlapping of three objects can be completed with either the first

1. Generality of different representations of compositing functions are discussed in Section

2.6.

Compositing
Functions

Network Resource
Configurations

Performance
Weighting

Optimal
Mapping

Tradeoff
Optimization

Figure 3-5 A challenging open problem — optimization of mapping compositing functions to
actual network resources.
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two or the last two objects overlapped first. It is this implementation flexibility that

enables transformation of structured video representation and searching for its efficient

mapping to network hardware in order to match the dynamic needs of applications and

resources. In this section, we discuss several properties of the expressions for video

compositing.

A binary compositing function,F, is associative if

F(F(V1, V2), V3) = F(V1, F(V2, V3) ) (3-3)

Examples of associative compositing functions are overlap1, transparent, andin(V1,V2).

The binary compositing functionout(V1,V2) is not associative. Definitions of these binary

functions can be found in Table 2-1. The significance of the associative property is that it

provides the freedom of an arbitrary compositing order. For example, if video components

are generated incrementally along a bus network, it is natural to composite these compo-

nent objects one by one sequentially. On the other hand, if sources of component objects

are grouped into several locations, parallel compositing maybe more efficient. In terms of

hardware complexity, sequential compositing may facilitate efficient implementations like

pipelined compositing architectures. But if sequential compositing is distributed among

many different locations, the end-to-end latency will be long.

A binary compositing function,F, is commutative if

F(V1, V2) = F(V2, V1) (3-4)

Examples of commutative compositing functions are transparent2 and pixel multiplica-

tions. Overlap,in(V1,V2), andout(V1,V2) are not commutative. When combined with the

associative property, the commutative property can determine whether multiple video

1. Note that here we assume an absolute order for overlap. If relative-order overlap is used, the

final composited result may depend on the order we apply the overlap rules [Lin91].

2. If we also change the associated transparency factors.
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objects can be composited in any arbitrary order or not. The associative property enables

compositing of any subset of video objects before they are composited with others. The

commutative property enables changing the compositing order of any specific video

object. This is important since video objects may come from many different remote loca-

tions and their geographic locations does not necessarily match the specified compositing

order. If the specified compositing order is unchangeable, video objects may need to be

send to a central node for compositing, or some distant video objects may need to be sent

to the same node and composited together before they are transmitted to another distant

location.

Note that for unary operations, the commutative property can be defined as

U1(U2(V)) = U2(U1(V)), where U1 and U2 can be the same operation. For example,

scaling and translation are commutative.

The distributive property is defined for a unary or binary function with respect to a

binary function. Unary operationU is distributive with respect to a binary function,G, if

U(G(V1, V2))= G(U(V1), U(V2)) (3-5)

A binary function,F, is distributive with respect to a binary function,G, if

F(G(V1,V2), V3)= G(F(V1,V3), F(V2,V3)) (3-6)

and

F(V1, G(V2, V3) )= G(F(V1,V2), F(V1,V3)) (3-7)

Several distributive relations are listed in table 2.

The first advantage of using the distributive property is the reduction of redundant

operations by extracting the common operations shared by two video objects, resulting in

the reduction of computation in most cases. But the actual amount of computation
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reduction depends on the specific operations applied. For example, simple non-overlap

compositing of two objects does not reduce the total amount of data and thus does not

reduce computation when a common operation is extracted. On the other hand, using the

distributive property to apply the same operation on both component objects before they

are composited together may be advantageous in some cases. For example, scaling down

the component video objects before they are transmitted to a network node for

compositing can save some transmission bandwidth compared to transmitting the full-

sized video components and doing down-scaling at the network node.

These basic properties for restructuring the compositing functions facilitate an

efficient and systematic approach to matching the structured video implementations to

dynamic application requirements. For example, if transmission bandwidth is the most

important resource, we should perform compositing at nodes closer to the sources and

a. Opaque overlapping is associated if we assume an absolute depth order. If we use the
relative depth order, then it’s not associative.

b. (S1 out S2) out S3 = S1 out (S2 over S3) or S1 out (S3 over S2).

Table 3-1 Basic restructuring properties of some typical compositing functions. A:
associative, C: commutative (Cb for binary, Cu for unary), D: distributive ( binary

with respect to binary,or unary with respect tobinary)

Binary (G) Unary

Over
Transpar

ent
In Out Scale

Translat
e

Rotate Flip

Binary
(F)

Over Aa,D D D D (not applicable)

Transparent D A, D, Cb D D

In D D A D

Out D D D b

Unary
(U)

Scale D D D D Cu Cu Cu

Translate D D D D Cu Cu Cu

Rotate D D D D Cu Cu

Flip D D D D Cu Cu Cu Cu
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complete rate-reducing operations (e.g. down scaling) at the source sites or close to the

source sites. If the computational complexity is of most concern, then finding the simplest

computation form should be pursued. On the other hand, if users want the most responsive

control, then keeping video objects separate all the way down to the user sites should be

most beneficial. Besides these considerations, there is a challenging issue of optimizing

the mapping of several structured video representations for many different services at the

same time. A suboptimal mapping for single-user services may become the optimal

mapping when multiple services are considered together. In a multi-user heterogeneous-

service situation, the above restructuring techniques are useful for finding the sharable

compositing processes among different users and different services to reduce the overall

implementation cost.

3.3.3  Possible Transformations on Trees

As mentioned earlier, there could be many different ways for completing the same

compositing function. The tree structure is suitable for representing each practical

partition and mapping of hierarchical compositing functions to network resources. It can

also clearly indicate the order in which the constituent objects are composited. In this

section, we describe the possible tree-based transformations corresponding to the

associative, commutative, and distributive properties mentioned above. Given a

compositing function represented in the tree format, these transformations are useful for

adjusting the mapping and partition of the compositing function to processing resources.

Note that we focus on the compositing functions which can be decomposed into binary

operations only.

Another implication of the tree-based transformations is related to adding new

services (and thus their associated compositing functions). New compositing functions

may affect the efficiency of the mapping of the existing compositing functions and

mandate restructuring of their mappings to network resources. For example, new sharable
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compositing tasks may be created when new compositing functions are added.

Restructuring the existing mappings is needed to take advantage of these new sharable

compositing tasks. Knowing possible transformations on the tree structure is important for

restructuring the mapping of compositing functions.

Figure 3-6 shows all possible transformations on the tree representation.

Definitions and examples of these transformations can be found in the last section. The

associative property of binary compositing functions allows pair-wise grouping of three

objects in different ways. One binary function is moved from one branch to the other

branch of another binary function of the same kind. Thedistributive property has two

different types —binary with respect to binary andunary with respect to binary. Both

these two transformations propagate the common compositing operation from the top of

an internal node (i.e. a binary function) down to both of its child nodes. Actually, the

former can further be separated into two different types based on the order of the binary

functions, as shown in Figure 3-6(b1) and (b2). Lastly, the commutative property allows

swapping the order of two objects of a binary function, or swapping the order of two unary

functions of the same video object.

Figure 3-7 shows an example illustrating the distributive property and its

corresponding tree transformations. The distributive property is equivalent tomerging two

identical blocks from under into a single block on the top of another binary compositing

block, as shown in Figure 3-7, or the other way around (splitting). As we described at the

begging of this section, these transformation are useful for adjusting the mapping of

compositing functions to processing resources. However, finding the optimal mapping of

each compositing function requires extensive studies of various cost factors, some

primitive analysis of which will be described in Section 3.5.
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Figure 3-6 Possible transformations on the tree structure. (a)associative binary functions (b1-
b2)distributive binary functions (b 3)distributive unary functions with respect to binary functions
(c1)commutative binary functions (c2)commutative unary functions.
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3.3.4  Possible Transformations on Ordered Lists

The ordered list model is proposed in section 2.6.3 to represent the compositing

tasks when we use the object-based depth order (priorityτ) and restrict the compositing

functions to opaque and semi-transparent overlapping of arbitrarily-shaped video objects

only. One ordered list could be like the one shown in Figure 2-12. Video objects are linked

together according to their depth order parameter, the priority. By comparing the ordered

lists of different compositing functions, we can find identical or proportional compositing

segments. Proportional compositing segments are those which can be derived from one

base segment by some simple unary compositing operation, as defined in equation (2-15).

Identical segments need to be executed once only. Proportional compositing segments can

share hardware by implementing the base segment first, followed by unary operations to

generate each individual compositing segment. Complexity reduction increases as the

shared segment is longer or more compositing functions share the same segment. In order

to find the most profitable shared compositing segments, we need to consider various

weighting factors such as computational complexity of each unary operation, bandwidth

requirement, number of users sharing the same compositing segment, etc. Some primitive

analysis results will be described in Section 3.5.
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scale scale
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Figure 3-7 The corresponding action of applying the distributive property on the implementation
tree, from (a) to (b) — merging, from (b) to (a) — splitting.

splitting

merging



68

Since we assume an absolute depth order, the opaque overlapping used here is

associative. Therefore, given an ordered list, we can process different segments of the

ordered list in an arbitrary order. That means we can grab any sub-lists arbitrarily and

implement them first. This flexibility is important for finding the sharable compositing

tasks between multiple compositing functions, as described above. Note that the priority

item in each list element is used to determine the order of video objects only, it does not

involved in the process of finding the sharable compositing segments. Lastly, because the

opaque overlapping is not commutative, we can not switch the positions of the list

elements.

3.4  Impact on ATM Broadband Network Design

Distributed and dynamic hardware allocation schemes impose many challenges on

ATM networks. We now discuss some important features that ATM networks must

provide to support advanced multimedia services.

 • Support All Locations for Video Compositing Hardware

As mentioned above, there are many different types of applications that are best

supported with different locations for compositing hardware. The ATM network must

provide an open access environment that allows compositing hardware in all locations to

function identically. The network must be able to transmit signals in multiple formats,

including compressed video and video that contains embedded compositing information.

 • Multi-Connection, Multi-Point Calls

Networks must allow one user to establish multi-connection calls to other sites (to

get multiple video sources or different media streams). This allows third-party vendors or

customer network equipment to composite video for end-users. Also, networks must

support multi-point calls such as for multi-point video conferencing. Furthermore, some

users may want to set up these two types of multimedia calls at the same time.



69

 • Dynamic Connection Establishment and Bandwidth Allocation

Dynamic connection establishment and bandwidth allocation allow services that

composite a varying number of sources. For example, in interactive services like

interactive database access or desktop video editing, some video streams may be requested

or removed conditionally based on user inputs. This requires a dynamic scheme to

establish or tear down connections and allocate transmission bandwidth.

 • Heterogeneous Information Access

For example, instead of receiving compressed video sources and decompressing

them locally, a user might want to have a video signal decompressed somewhere within

the network but not care where. That is, a user might request a connection to the lowest-

cost or least heavily loaded video compositing vendor. The network has to keep track of

these resources, calculate the user’s cost for these resources, and be able to allocate and

reclaim the resources.

The resource allocation problem is very similar to that encountered in designs for

multi-input, multi-output parallel processors. All issues such as scheduling, inter-

processor communications, and synchronization need to be solved in order to obtain an

efficient implementation. For example, in a multi-point video conference, implementation

cost can be reduced if video compositing can be completed hierarchically.

 • Identify and Eliminate Redundant Traffic Flows

In a wide-area network, many databases and compositing processors can be shared

among different users and services. Usually, much video transmission can also be shared.

For example, if seven million people all watch the Super Bowl football game, there is no

need to establish a connection between each user and the game’s originating studio. Single

connections can be made to local distribution centers, and users can receive their signal

from them. Another example is that when compositing hardware is allocated distributively
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within a network, common subcomponents or group of subcomponents of different final

presentations can be shared among different processing units. If the network can identify

and eliminate parallel connections that carry identical data, then more network resources

are available for other services.

The identification of parallel traffic flows can be handled during routing. When

deciding whether or not to accept a requested call, the network can check if the new call

carries identical data to an existing call. Every time a request arrives to modify an existing

connection, the network again must check if any links become or cease to be redundant.

3.5  Primitive Performance Analyses

The above approach of distributed compositing and hardware sharing needs to be

justified in terms of performance figures such asimplementation complexity, user

controllability, andquality of service. Some general high-level discussions of different

performance metrics have been described in several sections. To reiterate briefly, the

communication cost and computational cost can be reduced if compositing is done near

the source location and shared among multiple users or services. But the penalty is that

user controllability is also reduced. Distributed hierarchical compositing can alleviate the

problem of overwhelming traffic and computational load at a single node, and thus boost

scalability of the multi-point connections.

In practice, there are always some exceptions to the above trend. For example, if

the compositing operation increases the data rate of the video signal (such as spatial or

temporal resolution up-scaling), then processing at the final destination can avoid greater

demand of the communication bandwidth. But in general, most compositing operations

produce a reduced data rate (such as overlap, down-scaling), or at most maintain the

output rate more or less equivalent to the net input rate (such as strictly temporal

compositing).
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In this section, we further the study of performance comparison at different

compositing locations and of the distributed compositing approach. We are particularly

interested in two important issues related to real-time video services — received video

quality and synchronization of isochronous traffic.

3.5.1  Received Video Quality

The received video quality is heavily affected by the compression process, which

is mandatory in most network transmission of video signals. The approach of distributed

compositing will require more than one iteration of the compression—decompression

process. If the compression process is lossy (such as quantization), then there is a potential

that the quality degradation due to tandem lossy compression will be increased. Figure 3-8

shows a block diagram to illustrate the error accumulation problem. This issue is also very

important in the field of stored compressed video retrieval and playback. The actual

significance of the accumulated error depends on the compression algorithm in use. For

example, the widely used Discrete Cosine Transform (DCT) is error-accumulation free if

we ignore the accumulation of round-off computational errors. It is because that the

transform coding algorithm maps the recovered data to the same quantized values in the

second round of compression. Therefore is no additional quality degradation in the second

round of compression process.

T Q

T Q user

Figure 3-8 If the compositing unit is located in an intermediate node (either within or outside the
network), the compression(T)—decompression(T-1) process needs to be duplicated, including the
lossy part.

T-1 compositing
unit

T-1

video
source



72

However, for another popular compression algorithm, motion compensation (MC),

image distortion could get worse and worse after iterative compression, if quantizers are

not designed appropriately. To elaborate, if the quantizer uses the center point of each

decision interval as the reconstruction value, as shown in Figure 3-9, then it is possible

that the reconstruction value of the quantizer is bigger than the input sample value, i.e. the

error term of the MC algorithm. When we re-apply the MC process to the reconstructed

video, a different motion vector might be favored and thus additional noise is introduced

in quantizing the new error term. For example, in Figure 3-9, O1 stands for the current

image pixel and P1 — P4 stand for possible reference pixels in the previous image frame.

Suppose in the first MC process, P1 is chosen as the optimal reference value and the error

between P1 and O1 is calculated and quantized. The recovered value from the inverse MC,

denoted as O2 in Figure 3-9, can be calculated as follows

O2 = P1 + Q(O1-P1) (3-8)

where Q stands for the quantizer. Since the quantizer uses the center value of the decision

interval as the reconstruction value, the reconstructed pixel value, O2, could be more dis-

tant from P1 than O1 and moved into the decision cell of another reference pixel, say P2.

Therefore, P2 will be chosen as the new reference pixel and new quantization noise will be

introduced when the second MC compression process takes place. The actual amount of

error accumulation depends on the video sequence and the quantizer. However, using on

one non-uniform quantizer from [Netravali88] and some real video sequences, we did not

find serious image degradation due to the above error accumulation problem associated

with the MC compression algorithm.

The above error enhancement problem can be avoided if the quantizer always pulls

the input values inward, namely, using the lower decision level to be the reconstruction

level. Thus, the reconstructed value from the inverse MC process will never exceed the

original cell chosen in the first MC compression process. The same motion vector and
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error term can be used in the second and later compression processes and no additional

distortion is added.

The significance of above image quality degradation issue will become more

complicated if we further perform some compositing functions before the second

compression process, i.e. in the block of compositing unit in Figure 3-8. Unlike the above

observations, the net accumulated distortion may become quite significant. This is mainly

because that composited image may have different pixel values with the original image

and thus has to suffer distortion from another round of lossy compression. For example, in

Figure 3-10, we show the block diagrams illustrating three different approaches of doing

down scaling at different locations — source, user, and intermediate node. We use the

DCT algorithm plus uniform quantization as the compression algorithm.

Figure 3-11 shows the reconstructed pictures by using different compositing

locations. If we use a coarse quantization table (36 for each AC DCT coefficient), we can

clearly see that the intermediate node approach suffers the most serious degradation, with

the source site approach better, the user site approach best. The objective PSNR figure is

33.2 dB, 33.7 dB, and 38.0 dB respectively. However, if we use the example quantization

di+1

ri
di

di-1

ri-1

P1

O1

P3P4

P2

O2

Figure 3-9 (a)The quantizer which uses the center point of the decision interval as the
reconstruction value. di: decision levels, ri: reconstruction levels. (b) A possible situation in which
more distortion is added in the second round of the MC compression process. Pi: reference pixels,
O1: current pixel, O2: recovered pixel after inverse MC process.

(a) (b)

0

. .
 .
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table listed in the JPEG standard [JPEG91], the subjective quality seems to be more

comparable among these three different approaches, although the objective PSNR figures

are still quite different — 34.7 dB, 34.9 dB, and 42.3 dB respectively. This maybe because

the SNR is high enough to conceal the effect of significant SNR difference.

The above comparisons imply that the image quality degradation caused by

repeated compression heavily depends on the compositing operations performed between

consecutive compression processes, the quantizer designs, and of course the compression

algorithm. We need to take this issue into account when we use the approach of distributed

compositing and avoid serious image quality impairment caused by this error

accumulation problem.

Down
Scaling DCT Q DCT-1

DCT Q DCT-1
Down
Scaling

DCT Q DCT-1 Down
Scaling

DCT

scaling at the user site

scaling at the source site

scaling at the intermediate site

Q DCT-1

Figure 3-10 Perform down scaling operation at different locations — source, user, and
intermediate site
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Another interesting phenomenon worthy of discussion is that the user-site

compositing produces much higher quality (at least in terms of the PSNR figures) than the

alternative of compositing at the source site. This is mainly because of the reason that the

down scaling operation used in this example basically includes a low-pass filtering

process, which filters out lots of high-passband quantization noise at the receiver if down

Figure 3-11 Reconstructed
images by down scaling at
different locations. The
compression scheme includes
DCT and quantization. (a) uses
a uniform quantization step, 36,
for all AC DCT coefficients (b)
uses the quantization table
listed in the JPEG standard.

(a)

original user

source intermediate
site

site

site
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scaling is done after quantization. Therefore, from the perspective of received video

quality, it seems doing down scaling at the user site is more preferable. However, one

strong counter argument to this statement is that using user-site down scaling actually

needs to send twice as many samples as that of the source-site compositing approach. If

the image has been scaled down at the source site, we can change to use a finer quantizer

(i.e. more bits per sample) to raise the received image quality. This will make a fairer

comparison since the distortion level will be compared at the same transmission rate.

However, in many cases, fixed quantizers are used in compression hardware. Under that

circumstance, the advantage of higher video quality by performing compositing

operations at suitable locations is still worthy of pursuit

3.5.2  Synchronization and Latency

Each intermediate compositing unit may introduce additional latency, such as extra

buffer delay. On the other hand, the distributed compositing approach may alleviate some

practical difficulty in multi-source synchronization, which is mandatory on networks with

delay jitters such as the ATM cell-based networks. The delay variation will be less severe

if the compositing hardware is located closer to the sources. Also, synchronization among

multiple sources should be easier when there are fewer input sources. We will discuss the

impact of distributed compositing on synchronization and latency in this section.

Figure 3-12 shows the general architecture for an intermediate-site compositing

unit, It basically includes buffers for input source data, the actual compositing processor,

and the transmitter which perform data packetization and transmission. The overall

additional delay,D, can be broken down as follows:

D = tfill  + tcomp + ttx + tjitter , (3-9)

wheretfill is the delay time for filling a video frame memory,tcomp is the computation time

for completing the compositing function,ttx is the delay time for packetization and trans-
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mission, andtjitter is delay variance between multiple input video sources. We includetfill

because many compositing functions (such as image flipping) need to be implemented by

a frame-by-frame method. In other words, each image frame needs to be stored before

being processed. But for some compositing functions (such as linear filtering) which do

not need to operate on the whole image frame, this term can be removed. The last term,tjit-

ter, takes account of delay variance of packets from different video sources. Early packets

need to wait for late packets of other video sources in order to be composited into a single

video signal. On ATM cell-based networks, delay jitter always exists and efficient syn-

chronization schemes among multiple streams are required.

Typically, video signal has a refresh rate of 30 frames per second. Therefore, the

first term (tfill) is about 33ms. To achieve real-time compositing, the computation time

(tcomp) and the transmission time (ttx) both need to be within one frame duration. As for

the delay jitter term (tjitter), it greatly depends on the actual network designs, traffic

conditions, and of course the location of the compositing unit. Usually, this delay jitter is

compensated by some buffer scheme and control time, which controls the starting time of

processing the input data. Figure 3-13 shows a graph of accumulated input and output rate

and corresponding buffer status. We assume a fixed output rate in this example. When the

accumulated input rate drops below the output rate, underflow will occur. When the

accumulated input rate exceed the output rate plus the buffer capacity, overflow will

Buffer

source 1

source N

compositing

processor

. .
 . Tx

Figure 3-12 A general architecture for intermediate-site compositing unit, which basically
includes buffers for input signals, the compositing processor, and the transmitter
performing packetizer and transmission.
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happen. Minimization of underflow probability favors longer control time, but at the cost

of larger buffer size in order to minimize the overflow probability. One alternative of

synchronization is to process the packet and send it out whenever it is available. This

approach will remove the underflow problem, but still need the buffer to accommodate

bursty input rate.

In general, the required buffer size and the control time are directly proportional to

the delay variance of the input traffic. If the compositing unit has multiple input video

sources, then the synchronization scheme need to allocate buffers for each input video

source. In practice, buffers for different input source can be put on different small modules

or combined onto a bigger module, as long as their logical separation is kept. The required

buffer size depends on not only the delay variance of each individual input stream, but also

the delay variance between different input streams. In Figure 3-14, we show the

accumulated input and output rate of a fixed-output-rate synchronization scheme.

The approach of distributed compositing combines video sources in a hierarchical

way. Thus, at each intermediate compositing node, there are less input video sources than

that in the centralized approach. Figure 3-15 illustrates approaches of compositing four

B

overflow

underflow

time

accumulated
rate

T0

output traffic

input traffic

Figure 3-13 A fixed output rate synchronization scheme to compensate the bursty input traffic at the
compositing unit. B: Buffer size, T0: control time.
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video objects at different locations — user, intermediate node, and source. The user-site

approach sends all video sources to the destination and does compositing there once. Each

video source requires a buffer size B1. The intermediate-site approach composites video

hierarchically and requires two stages of synchronization. The requires buffer size is 2

⋅B2+2 ⋅B3+B4. The source-site approach composites video before they are sent out. This

will be feasible only when the video sources are located close to each other. Each input

video source still needs a buffer, B5. At the receiver, a single buffer, B6, is needed to

compensate the delay variance introduced in the network. Actually, if we allow the

compositing unit to move away from the source site, this architecture can be extended to

model the centralized compositing approach widely used in today’s centralized multi-

point conferencing. The centralized compositing unit broadcasts the composited result

back to each participant.

If we assume the delay variance is approximately proportional to the transmission

distance and the number of sources being composited together, then the following

relations should hold: {B2, B3, B4} < B1, B5 < B1, B6 < B1. Therefore, the user-site

time

accumulated
rate

T0D2

B

D1 D3 D4

Figure 3-14 A fixed-output-rate synchronization scheme for multiple variable-rate input streams.
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approach will require the most buffer resources and the source-site approach the least. The

intermediate-site distributed approach will require a moderate amount of buffer resources,

depending on the actual network routing scheme. But if in fact each link in the

intermediate-site approach is equivalent to the links in the user-site approach, then the

intermediate-site approach may turn out to perform worse in terms of the total buffer

requirement and the latency. Therefore, in order to take utilize the maximal benefits of

distributed compositing approach, efficient routing schemes need to be employed. It is

worthy of reminding that the distributed compositing approach provides the possibility of

sharing common compositing tasks among different users and services.

In practice, the maximal tolerable latency is usually application dependent. For

example, typical interactive conferencing applications can tolerate a maximal latency in

the order of 100-150 ms [Rangan93, Karlsson89], which is only about 3-5 frame durations

4⋅B1

2⋅B2

2⋅B3

2⋅B4

4⋅B5
B6

user

network

source

B5 < B6 < {B2, B3, B4} < B1

Figure 3-15 Compositing at different locations and their buffer requirement.

Latency ~ B1

Buffer — 4⋅B1

Buffer — 2⋅B2 + 2⋅B3 + 2⋅B4

Latency ~ B2 + B4

Buffer — 4⋅B5 + B6

Latency ~ B5 + B6
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for a typical display refreshing rate. Given this tight delay budget, we need to consider the

above impacts on latency carefully when designing the distributed approach.

3.5.3  An Example

Let us take the following compositing function as an example to discuss the most

suitable compositing location in different situations.

scale(A, 1/2) +scale(B, 1/2) +scale(C, 1/4) +scale(D, 1/4) +scale(E, 1/4) (3-10)

If communication bandwidth is the resource of most concern, then each video object

should be scaled down before transmission; namely, the scaling operation should be done

at the source site. If the computational complexity is most critical, then we can apply the

distributive property described in section 3.3.2 to restructure the compositing function as

follows,

scale(A + B, 1/2) +scale(C + D + E, 1/4) (3-11)

The computation cost can be reduced if the total data rate is reduced after overlapping.1

The actual implementations can be centralized or distributed. For example, operation A+B

and C+D+E can be implemented in some intermediate nodes so that they can be shared by

other users, and the down scaling operations can be left at the user destination site. Doing

down scaling at the user site is also beneficial to the received video quality, as described in

the last section.

If users need to have strong control over the compositing process, then

compositing at the location closest to the user is more preferable. For example, users may

request special compositing constraints such as video frame rate and resolution. The

control function will be most responsive and flexible if the compositing unit is at the user

1. This is not necessarily true if the input video objects are combined without any overlapping,

such as Aabut B.
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site. However, a remote compositing unit at some intermediate node can still satisfy the

same control request at the cost of some latency.

3.6  Summary

This chapter investigates the approach ofshared distributed network compositing.

By distributively allocating the compositing hardware throughout the network, we can

flexibly meet various demands of different users and services. Different network

multimedia applications have different characteristics and thus may prefer different

compositing locations. By sharing the identical hardwares for implementing the common

compositing functions among different users and services, we can reduce the overall

implementation cost.

In order to flexibly adapt video compositing to various user and service needs, and

find beneficial sharable compositing tasks among different users and services, we study

efficient restructuring of compositing functions. In particular, we consider associative,

commutative, and distributive properties of expressions, and their corresponding

operations on trees. We also consider extraction of common sub-lists from different

ordered lists.

We consider the ATM network as the basic platform for distributed compositing

because of ATM’s efficiency of flexible resource allocation, service integration, and multi-

point connections. We study advantages and disadvantages of different compositing

locations within the network. Concerned performance factors include quality, complexity

(computation and bandwidth), synchronization, and latency. As shown in the example of

the previous subsection, the most suitable compositing location for each specific

application strongly depends on its most concerned performance metrics.
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Chapter 4

Video Compositing in the Compressed Domain

In the previous chapter, we discussed the issue of where compositing should be

done. In this chapter, we turn to another important issue — thedata format of the video

signal. Due to its information-intensive nature, video is usually transmitted in compressed

form over networks, and stored in compressed form in video databases. Given compressed

video signals, we have two possible approaches to compositing video. First, we can

decompress the video signal and perform compositing in the uncompressed domain, i.e.

with the original raw video data format. Second, we can derive equivalent compositing

algorithms in the compressed domain and directly composite compressed video in the

compressed domain [Chang 92a, Chang92b, Chang93]. In this chapter, we will show that

many typical compositing functions can be performed in the compressed domain more

efficiently (with less computation) than in the uncompressed domain. The specific

compression format we study is the widely used Motion Compensated Discrete Cosine

Transform (MC-DCT) format. The above statement is particularly true if video is

composited in the network, where both input and output video signals are compressed.

Performing video compositing in the compressed domain is new. There is some

independent related work. Smith and Rowe studied some compositing algorithms in the

DCT domain only [Smith93]. They only covered some subset of operations like linear

combination and pixel multiplications. Also, they used a brute-force approach without

deriving underlying mathematical formulae. But their numerical simulation results

showed advantages for compressed-domain compositing similar to those revealed by our

work. Lee and Lee derived the transform-domain one dimensional filtering algorithms and

proposed a suitable pipelined hardware architecture for implementation [LeeJ92]. Their

derivation is a little different from ours, but the result for linear filtering is the same. The

compressed-domain compositing approach can also be extended to other compression

algorithms, such as subband coding. Lee and Woods proposed some subband-domain

algorithms for simple operations such as picture in picture and text overlay [LeeY92],
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although their algorithms introduce some artifacts such as border boxes along the overlap

boundary to alleviate a ringing effect.

We will derive transform-domain algorithms for representative compositing

functions described in chapter 2. Our derivations are based on the linearity of these

compositing functions and the orthogonality of the transform coding algorithms. To

extend the proposed techniques to hybrid non-linear compression algorithms such as

Motion Compensation plus Transform coding, we propose a new approach to partially

decoding the compressed video to the transform domain and, then apply our compositing

techniques in the transform domain. The performance is studied both analytically and

numerically.

4.1  Background

4.1.1  Review of Motion-Compensated DCT-Based Compression
Algorithms

Many compression standards use Motion Compensation [Netravali79] and

Discrete Cosine Transform [Ahmed74]. These standards include JPEG for still images

[Wallace91], MPEG for multimedia video [Le Gal91], H.261 for video conferencing

[Liu91], and some HDTV proposals [Jurgen91]. In this section we briefly review the

operations of the DCT algorithm and the MC algorithm. Because of their popularity, we

will limit our study of compressed-domain approaches in these compression algorithms,

although most of our proposed techniques can be extended to other orthogonal transform

coding algorithms.

Figure 4-1 shows a block diagram for intraframe DCT in combination with

variable length coding (VLC).

DCT Q VLC VLC-1 Q-1 DCT-1

ENCODER DECODER

FIGURE 4-1 Video compression methods using the Discrete Cosine Transform algorithm and the
variable length code. IDCT: inverse DCT, Q: quantization, VLC: variable length code.

the DCT
compressed
domain
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Images are segmented into small blocks of N pixels by N pixels, which can be represented

by an N× N matrix. The DCT Ac of the image block A can be computed as follows

(4-1)

where the rows of C form a set of orthonormal basis functions. Its elements, Ac(i,j), repre-

sent the spectrum of the original image block, A, at different spatial frequencies. Elements

with larger index values represent the higher-frequency components.

Usually, the DCT coefficients, Ac(i,j), are quantized and then run-length coded

(RLC) to take advantage of long sequences of zero’s. The high-frequency coefficients are

considered less important and thus the coefficients are quantized more coarsely. This

results in correspondingly longer zero sequences at the high-frequency region. Lastly, the

statistically-based variable-length code (VLC), such as the Huffman code or arithmetic

code, is applied to exploit any remaining data redundancy.

In Figure 4-2, we show the block diagram for the MC algorithm. The MC

algorithm basically includes two steps— displacement measurement (DM) and error

calculation. The displacement measurement procedure searches for theoptimal reference

block in the previous frame and is much more computationally intensive than the error

calculation. On the feedback path, the previous frame image is reconstructed as the

reference frame in the displacement measurement process.

Ac CACT= ,where C(i , j) =

1
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FIGURE 4-2 The Motion Compensation algorithm and its inverse algorithm. DM: the
displacement measurement procedure. FM: frame buffer. Q: quantizer. Q-1: inverse quantizer.
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In hybrid interframe coding algorithms, the MC algorithm is usually integrated

into the DCT-based compression system as shown in Figure 4-3. The MC algorithm is

performed first to remove the temporal dependence between frames. The prediction errors

are transformed to the DCT coefficients, quantized, and then variable-length encoded.

4.1.2  Domain Notations
For clarity, we define the following terms explicitly here. Theuncompressed

domain contains uncompressed images or reconstructed images. If not otherwise

specified, we usually assume a simple pixel map data format. The input and reconstructed

video in the above compression algorithms are assumed to be in this format. Sometimes,

we also refer to this domain as thespatial domain, because pixel values are usually

defined on spatial coordinates, except for some confusing situations such as subband

coding, where spatial-to-spatial compression algorithms are used.

The DCT-compressed or DCT domain contains the data format after the DCT

compression process. The image data is represented by its corresponding DCT

coefficients. In addition, as mentioned above, DCT coefficients are usually quantized in

-

Q-1FMDM

input
video

prediction
error

motion
vector

DCT Q

DCT-1

reconstructed
video

FM

+
Q-1

motion
vector

DCT-1prediction
error

Encoder:

Decoder:

FIGURE 4-3 Block diagram for hybrid compression methods including the MC algorithm and the
DCT algorithm. DM: displacement measurement, FM: Frame Memory.
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the encoder. The quantizer converts continuous input values into discrete output symbols;

the inverse quantizer reconstructs continuous values (usually with a finite resolution) from

received symbols. When we talk about the DCT compressed domain in the following, we

refer to the reconstructed DCT coefficients calculated from the inverse quantizer, such as

the data format at point A in Figure 4-1.

Note that a video signal can be transformed into the DCT domain either by

applying the DCT or by partially decoding the interframe MC-DCT compressed video, as

described later. In the following, we will also use the term“transform domain” to describe

the frequency domain for the general orthogonal transform, such as the Discrete Sine

Transform, the Discrete Fourier Transform, and the DCT.

TheMC-compressed or MC domain contains the compressed data format after the

MC algorithm. Basic components include the motion vectors ( ) and the prediction errors

( ), as shown in Figure 4-2. TheMC-DCT-compressedor MC-DCT domain contains the

video signals after the interframe coding algorithms shown in Figure 4-3. It can be

considered as the MC-compressed data of the DCT coefficients.

4.2  The Conventional Uncompressed-Domain Approach

In networked or stored video applications, input video is usually compressed. The

output video can be compressed or uncompressed, depending on the functionality of the

output device. For example, video compositing devices within the network have both input

and output video compressed, while a user-site workstation needs to produce

uncompressed displayable video. In either case, input compressed video is always

converted back to the uncompressed domain before being composited together in today’s

applications [Lukacs92, Rangan93]. A decoding process is required for each input video

signal before they are composited together, as shown in Figure 4-4(a). The advantage of

this approach is that uncompressed-domain compositing algorithms are available and well

known. However, the overhead of decompression of each video input may become quite

d

ê
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high for advanced high-resolution video services. Also, after decompression, the

compositing unit needs to run at the pixel rate, which may be too high to afford.

4.3  A New Approach — Compressed-Domain Compositing

As shown in Figure 4-4(b), for compressed-input compressed-output video

compositing, a very natural alternative is to directly composite video in the compressed

domain and produce compressed composited output video. The conversion back and forth

between the compressed format and the uncompressed format is avoided. Further, the

amount of data in the compressed video is usually much less than that of the

uncompressed video. Thus, the associated computations can be greatly reduced.

Another advantage for compositing in the compressed domain isscalability. For

example, a single compressed video stream may be used by many users with different

(b)

Video
compositing

in the compressed
domain

Compressed

FIGURE 4-4 Two different approaches to compressed-input compressed-output video
compositing. (a) uncompressed-domain approach (b) compressed-domain approach.
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levels of compositing processing power. Users with lower compositing power can process

signal components with the highest significance in the compressed domain only (e.g.

lower-order DCT coefficients, or lower bands in subband coding) and get as high a video

quality as possible within the limit of the hardware capability. This prioritized rank of

signal significance is not available in the uncompressed domain.1 Further, in real-time

constrained implementations, this selective processing principle can be applied to throw

away insignificant signal components in the worst-case source behavior (such as the peak-

rate period of variable-bit-rate video sources) or network behavior.

For compressed-input uncompressed-output situations such as the user-site

workstations, the compressed-domain compositing approach is still potentially preferable

because of the much lower data amount and the scalability in the compressed domain. By

using the latter advantage, lower-end hardwares can still get satisfactory real-time video

by processing the most important signal component only.

Based on the above discussions, the compressed-domain compositing approach is

most appealing to situations like compositing video in networks (e.g. video bridges),

compositing compressed video from video databases (e.g. image/video editing), and

filtering of networked video by third-party service providers (e.g. cable companies). One

common point for all these situations is that the input video is already compressed, which

justifies the need for using the compressed-domain approach.

The feasibility of compositing in the compressed domain heavily depends on the

compression algorithms in use. We will derive compositing algorithms for typical

compositing functions in the DCT domain. These techniques can be applied to general

orthogonal transform coding algorithms, such as DFT or DST (Discrete Sine Transform).

We will also describe a method to extend these techniques to the MC-DCT domain, which

is the base system for many compression standards, such as MPEG, H.261, and several

HDTV proposals.

1. Once video is decoded back to the uncompressed domain, it will have a full resolution and
will require a full-resolution compositing cost. Of course, subsampling in the uncompressed
domain can be used to reduce computations when hardware power is limited. But good
subsampling would require extra computations (such as anti-aliasing) compared to
importance screening directly in the compressed domain.
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4.4  Video Compositing in the DCT Domain

Given the DCT coefficients of two input images, Figure 4-5 shows how to

composite them in the DCT domain. The block alignment procedure may sometimes be

necessary because the block structures1 for different images may not generally match

unless some restrictions on translations are enforced. Even if all video source encoders use

the same block structures, receivers can move images around arbitrarily and thus change

their relative positions. Alignment in the spatial domain is trivial since all relative spatial

positions are known. In the next subsection, we will propose a method to align blocks in

the DCT domain.2

We describe one set of basic image manipulation primitives — overlap, scaling,

translation, linear filtering, and pixel-multiplication, and their DCT-domain equivalents in

this section. Most video services require only a subset of these. Note, these algorithms can

be applied to other transform domains, like DFT and DST.

1. By block structure,we mean the grid lines used to segment the images into small
rectangular blocks. For example, in Figure 4-6, the block structures of images A and B are
not matched.

2. Note that in Figure 4-5, we assume that composited output is in the compressed format. If
uncompressed images are needed, an inverse DCT block is required at the end.

FIGURE 4-5 Compositing two video sequences in the DCT domain. (*: this procedure is not
necessary if the block structures of two input images are matched.)

block *
alignment

Video
compositing
in the DCT
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DCT of
object A

DCT of
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4.4.1  Overlap

Opaque overlapping of two video objects requires substituting pixels of the

foreground video object for those of the background object.Semi-transparent

overlapping requires a linear combination of the foreground and background pixels, i.e.,

Pnew(i,j) = α⋅Pa(i,j) + (1-α)⋅Pb(i,j) (4-2)

where Pnew, Pa, and Pb are new pixels, foreground pixels and background pixels

[Porter84]. Since it’s a linear operation, we can apply the same technique in the DCT

domain, i.e.,

(4-3)

where  is used to represent the block-wise operation of the DCT.

4.4.2  Pixel Multiplication

If the α coefficients vary from pixel to pixel, semi-transparent overlapping

becomes a pixel-wise operation, i.e.,

Pnew(i,j) = α(i,j) ⋅ Pa(i,j) + (1-α(i,j))  ⋅ Pb(i,j) (4-4)

This operation is similar to another useful compositing operation calledpixel-multiplica-

tion, i.e.,

Pnew(i,j) = Pa(i,j)  ⋅ Pb(i,j) (4-5)

Pixel-multiplication is required in situations likesubtitling (adding text on top of an

image),anti-aliasing (for removing the jagged artifacts along the boundaries of irregu-

larly-shaped video objects), and special-effectmasking (with special graphic patterns). To

compute the pixel-wise multiplication in the DCT domain, we derive a multiplication-con-

volution relationship for the DCT similar to that for the Discrete Fourier Transform

(DFT), except that the order for the convolution is increased to 2⋅N points. We leave the

proof in the appendix and present the final result here. Suppose Xc is the DCT of image

block X. First, we form an extended symmetrical version of the DCT coefficients as the

following

DCT Pnew( ) α DCT Pa( ) 1 α–( ) DCT Pb( )⋅+⋅=

P
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(4-6)

Then, themultiplication-convolution theorem can be described as below.

(4-7)

For convenience we use the notation “((n))2N” to denote (n modulo2N). If we ignore theα

variables, the above equation is equivalent to a 2D 2N-point circular convolution. In other

words, we expand the N×N DCT coefficients of an image block to a symmetric 2N×2N

extended block. The pixel-wise multiplication of two image blocks in the spatial domain

X̂c k1 k2,( )

Xc k1 k2,( ) C k1 k2,( )⁄

Xc k– 1 k2,( ) C k– 1 k2,( )⁄
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0
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corresponds to the 2-dimensional 2N-point circular convolution-like operation of the

extended blocks in the DCT domain.

4.4.3  Translation

As mentioned earlier, each input video object is associated with a particular block

structure for the block-wise transform coding like DCT. All the above compositing

operations assume that the block structures of the input video objects are aligned.

Therefore, the indices of the DCT coefficients are matched. However, this assumption is

not valid when input video objects are allowed to move to arbitrary positions. In

applications like video conferencing, users may wish to control the position of each video

window on the screen. We describe the generaltranslation operation in this section.

Two types of translation should be discussed separately—block-wise andpixel-

wise (i.e. arbitrary-position) translation. If we restrict both the horizontal and vertical

translation distance to be an integral multiple of the block width, the DCT coefficients are

always aligned with the same block structure. Moving a video object just updates the

position of the origin point of the video object. Compositing operations like overlapping

and pixel multiplication can be performed in the DCT domain as described earlier with a

fixed block structure.

However, if we allow translation by an arbitrary number of pixels, the block

structure of the input video objects could be mismatched. Figure 4-6 illustrates the

mismatch of block structures of objects A and B, which could be caused by moving one of

these two objects arbitrarily. In the spatial domain, this mismatch problem is trivial. We

decompress two video objects by using the inverse DCT (with respect to their individual

block structures), calculate the composited image in the spatial domain, and then re-

compress the composited by using the DCT if the DCT-compressed-format output is

required. The final block structure can be chosen from the block structure of any input

video object or the block structure for the background image of the final composited

scene. As shown in Figure 4-6, suppose we want to composite object A and object B, and

we choose the block structure of object A as the final block structure. If we re-align object

B with respect to the block structure of object A, a new image block (say B’) of object B

contains contributions from four original neighboring blocks (B1-B4), namely the lower-
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left corner (B13) of block B1, the lower-right corner (B24) of block B2, the upper-right

corner (B31) of block B3, and the upper-left corner (B42) of block B4. If we supplement

these four contributions with zero’s in a way illustrated in Figure 4-6 to form N pixels by

N pixels image blocks, the new block can be calculated by the following summation,

B’ = B13 + B24 + B31 + B42 (4-8)

block structure
for object A

block structure
for object B

B’

align object B
to block structure A

FIGURE 4-6 Re-assembling the image blocks of video object B with respect to a new block
structure, which mismatches object B’s original block structure. The highlighted block, B’, is a new
block of object B after block re-assembly. It consists of the contributions (B13, B24, B31, and B42)
from four original neighboring blocks (B1-B4).

B1

B2

B3

B4

B1B2

B3 B4
B’

B13

B24

B31

B42

0

0

0

0block structure
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This method cannot be directly applied in the DCT domain. We cannot simply

assembly four subblocks from the DCT coefficients of the original neighboring blocks to

form the DCT coefficients of the new block (B’). Instead, the correct DCT coefficients of

the new block should be calculated as follows,

(4-9)

Therefore, if we can find the relationship between the DCT coefficients of

subblocks (B13 - B42) and the DCT coefficients of the original blocks (B1 - B4), then we

can calculate the DCT coefficients of the new block directly from the DCT coefficients of

the original blocks. In other words, the conversion processes back and forth between the

DCT-compressed domain and the spatial domain can be eliminated.

Figure 4-7 shows a mathematical model for calculating the contribution from an

original block (e.g. B42 from B4) in the spatial domain. Note that the upper-left corner of

B4 is extracted, supplemented by zeros, and moved to the lower-right corner. This process

is necessary since the upper-left subblock of the original block B4 will appear as the

lower-right subblock of the new block B’. As shown in Figure 4-7, we can use the

following operation to calculate the contribution from the original block B4:

(4-10)

Ih and Iw are identity matrices with size h×h and w×w respectively, where h and w are the

number of rows and columns extracted from block B1. As shown in Figure 4-7, multiply-

ing B1 with a pre-matrix H1 extracts the first h rows and translates them to the bottom;

DCT B‘( ) DCT B13( ) DCT B24( ) DCT B31( ) DCT B42( )+ + +=

, where H1
0 0

Ih 0
= H2

0 Iw

0 0
=B42 H1B4H2=
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multiplying B1 with a post-matrix H2 extracts the first w columns and translates them to

the right.

It can be shown that all unitary orthogonal transforms such as the DCT are

distributive to matrix multiplication, i.e.,

DCT(AB) = DCT(A)DCT(B) (4-11)

Thus, we can compute the DCT of B42 directly from the DCT of B4, i.e.,

DCT(B42) = DCT(H1)DCT(B4)DCT(H2) (4-12)

Summing all contributions from four corners, we can obtain the DCT coefficients of the

new block B’ directly from the DCT of old blocks B1 - B4. In other words,

(4-13)

The DCT of Hi1 and Hi2 can be pre-computed and stored in memory, since there are a

finite number of them. The required computation is reduced since many elements of

DCT(Bi) are typically zeros. We will discuss the computational complexity in section

4.6.3.1.

B4 (H1)( ) ( )(H2)

h

w

w

h

B42

FIGURE 4-7 Using matrix multiplication to extract a subblock and translate it to the opposite
corner.

0 0

DCT B‘( ) DCT Hi1( )DCT Bi( )DCT Hi2( )
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4.4.4  Linear Filtering

Two-dimensional separablelinear filtering  can also be done in the DCT domain

[Chang92a, Lee92, Chiptrasert90, Ngan80]. Linear filtering of images in the horizontal

direction can be achieved by multiplications with post-matrices:

(4-14)

where Xi is the input image block, Hi is the filter coefficients represented in the block

form, and Y is the output image block. Each output image block have contributions from

several input blocks. The number of contributing input blocks depends on the length of the

filter kernel. Since the DCT algorithm is distributive to matrix multiplication, we can cal-

culate DCT(Y) in the following way

(4-15)

Similarly, image filtering in the vertical direction can be achieved by multiplication with

pre-matrices. Detailed derivation of the transform-domain filtering algorithm can be found

in the Appendix.

4.4.5  Scaling

Another important image manipulation technique isscaling. Each pixel in the final

scaled image is a linear combination of several neighboring pixels in the original image

[Foley90]. Thus, it can be treated in a way similar to linear filtering. For example, if we

use the simple box area averaging method to implement the 1/2×1/2 down scaling

operation [Weiman80], a new block can be computed as H1B11W1 + H2B21W1 +

H1B12W2 + H2B22W2, where Bi are the original neighboring blocks, Hi are the vertical

scaling matrices, and Wi are the horizontal scaling matrices. For example,

(4-16)

Y X iHi
i

∑=

DCT Y( ) DCT Xi( )DCT Hi( )
i

∑=

H1 W1( )T

0.5 0.5 0 0

0 0 0.5 0.5

0 0 0 0

0 0 0 0

= =
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(4-17)

for a block width of 4 pixels. The same linear operations can be performed in the DCT

domain as described above.

4.5  Compositing MC-Compressed Video

As shown in Figure 4-2, the video signal in the MC-compressed domain basically

is composed of two components: motion vector (d), and prediction error (e), denoted as

the MC data. Given the MC data of two input video streams, it would be desirable to

compute the new MC data of the composited video directly without converting the video

back to the uncompressed format. Unfortunately, the MC compression does not have the

same linear and orthogonal property as that of the above transform coding algorithms. In

most compositing situations such as overlapping and scaling, compositing in the MC-

compressed domain is not feasible. In this section, we illustrate this difficulty by using two

examples: overlapping and scaling. Given the MC data of the input video streams, we

need to convert them back to the uncompressed domain and re-compress the composited

video into the MC domain (i.e.,MC data recalculation) if the compressed-format

composited output is required. In order to prevent that theMC data recalculation process

becomes the most computationally-dominant process, we propose theinference principle

to calculate the new motion vector of the composited video stream.

4.5.1  Difficulties for MC-Compressed-Domain Compositing

In this section, we explain the reason why the MC-compressed video needs to be

composited in the uncompressed domain. Figure 4-8 shows anoverlapping example. We

assume both the foreground and background objects are compressed in the MC format and

their block structures are aligned. The MC data of the foreground object can be used for

the composited video since it is not affected by the background object. However, part of

H2 W2( )T

0 0 0 0

0 0 0 0

0.5 0.5 0 0

0 0 0.5 0.5

= =
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the background object is obscured by the foreground object. We need to separate the

background object into two different areas: thedirectly affected area and theindirectly

affected area. The difference comes from the prediction image block from the previous

frame used in the MC algorithm. In the directly affected area, part of themotion area1 of

each background image block is replaced by the foreground object. If the motion vector is

from the foreground area, the prediction image block is destroyed. Thus, the MC data

becomes invalid and needs to be recalculated. In the indirectly-affected area, the motion

area of each image block is not overlapped by the foreground object. However, since the

image pixels in the motion area in the previous frame could be modified througherror

propagation (we will elaborate on this in Section 4.5.2.3), the MC data may also become

invalid. In other words, the MC data of the composited video cannot be directly obtained

from the original MC data of two input video streams. Both the foreground and

background video needs to be reconstructed in the uncompressed domain so that the

uncompressed-domain MC algorithm can be reapplied to calculate the new MC data for

the composited video.

Another example is shown in Figure 4-9. Suppose we want to scale down an image

by a ratio of 2 to 1 on each side. Each new image block is transformed from four original

image blocks. The motion vectors of these four original blocks could be different from one

1. The motion area is the area in the previous frame where we search for the optimal reference
block. For most blocks, it forms a square region of width (2⋅d_max + 1) pixels, centered at
the current block location.

directly affected area

Background
object

Foreground
object

FIGURE 4-8 An example showing the problem for compositing directly in the MC domain. Part of
the motion area of the background image in the directly-affected area is replaced by the foreground
image. Pixels in the indirectly affected area are changed because their reference pixels may be
modified through error propagation. d_max is the number of search positions in each direction in
the MC algorithm.

indirectly affected area

(d_max pixels)
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another and their reference blocks generally will not be transformed into the same image

block. Although the new motion vector can be inferred from the original four motion

vectors, uncompressed images still need to be reconstructed so that the prediction errors

can be recalculated.

4.5.2  Simplification of MC Data Recalculation

As discussed in the last section, all MC-compressed video needs to be decoded

first so that the new MC data of the composited video output can be recalculated by using

the MC algorithm. But the computation cost for a full-search MC algorithm could become

the dominant part in the compositing process, compared to other operations such as MC

decoding and compositing operations. The displacement measurement procedure in the

MC algorithm searches for the optimal reference block in the previous frame and is quite

computation-intensive. Assuming we use the block-based MC algorithm and the full

block-matching displacement measurement procedure, each image block of the current

frame requires (2⋅d_max + 1)2 evaluations of the block distortion function, whered_max is

the maximum displacement allowed in each direction. Using the simplified displacement

measurement method proposed by Jain and Jain [Jain81], the computational complexity

can be reduced to the logarithmic order. In table 4-1, we list the numbers indicating how

many times we need to evaluate the block distortion function for different MC parameters.

However, if we need to recalculate the MC data for every block in the background object

?
2:1

FIGURE 4-9 An example showing the problem for compositing in the MC domain. New
prediction errors cannot be calculated in the MC domain since four original reference
blocks could be transformed to different blocks in the new image, which is scaled down (1/
2× 1/2) from the original image.

original motion vectors
Scaling
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as described above, the incurred computational overhead for the whole frame is still very

significant.

Thus, it is our goal to simplify the MC recalculation process in order to keep low-

cost compositing feasible. The general principles are first to reduce the frequency of MC

recalculation, and second, if MC recalculation is needed, to simplify the complicated

displacement measurement process by inferring the motion vectors from the original input

motion vectors. In the following subsections, we will use the overlapping situation shown

in Figure 4-8 as an example to verify the effectiveness of these two principles. This

inference principle can be applied to other compositing situations. For example, applying

the same approach to the down-scaling case shown in Figure 4-9, new motion vectors can

be inferred from old motion vectors by interpolation.

4.5.2.1  Reducing the Frequency of Recalculation

The first principle for simplifying the MC recalculation process is to reduce the

number of image blocks which require the recalculation of the MC data. For example, in

the opaque overlapping situation shown in Figure 4-8, the foreground object is totally

unaffected and its MC data does not need to be modified. For background image blocks in

the indirectly-affected area, we can assume the old motion vectors are still valid and only

the prediction errors need to be updated. For image blocks in the directly-affected area, we

need to check their motion vectors. If the motion vector comes from the foreground area,

that means the original optimal reference block is destroyed and thus a new motion vector

needs to be calculated.

We use a video test sequence (the ping-pong sequence) to simulate the MC

recalculation. We assume that a 360 pixel x 288 pixel area out of the whole 720 pixel x

a. Jain and Jain’s algorithm needs to search at least (log2d_max)⋅4+5 locations.

Table 4-1 Complexity comparison for different displacement measurement methods. Numbers shown
are the total times for evaluating the block distortion function.

d_max 4 5 6 7 8 9 10 11 12 13 14 15 16

full search 81 121 169 225 289 361 441 529 625 729 841 961 1089

Jain & Jaina 13 13 13 13 17 17 17 17 17 17 17 17 21
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480 pixel area is covered by a foreground object (the Miss America image). An example

composited picture is shown in Figure 4-10. Block size is 8 pixels by 8 pixels and the

maximum displacement (d_max) is 8 pixels. The block distortion function is the mean

square error. For each new frame, we check the image blocks in the directly-affected area

of the background object that if their MC data needs to be recalculated. If so, we use the

full block-matching method to find a new optimal reference block. To further reduce the

computational complexity, we can assume that there is no strong interrelation between the

foreground and background image contents and thus the search area can be reduced to the

uncovered background motion area only.

Figure 4-11 shows the number of blocks which require the MC data recalculations.

There are 82 blocks contained in the affected area. About 5-15% of these blocks require

recalculation of their MC data. Therefore, compared to using the straightforward MC

recalculation for every block in the background object, the frequency of MC recalculation

is greatly reduced. Of course, this number changes from frame to frame and depends on

FIGURE 4-10 The test video sequence for the MC recalculation algorithms. The background and
foreground images are originally MC-compressed. The composited image is also MC-compressed
by using the proposed 2-point simplified searching algorithm. The displayed image is
reconstructed from the MC-compressed composited output. This is frame 3 in Figure 4-14 shown
later, which suffers the most severe SNR loss due to this simplified search algorithm.
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the composition scenario and the specific video sequence we use. If most motion occurs in

the overlapped area, then the frequency of recalculation increases.

In order to re-apply the MC algorithm, we need to convert the MC compressed

video object back to the spatial domain. Note that, although we need to recalculate the

motion vectors for blocks in the directly-affected area only, we still need to convert the

whole uncovered background region to the spatial domain because every pixel in the

background object area may be referenced by future pixels in the directly-affected area.

We need their spatial uncompressed values because the MC recalculation is performed in

the spatial domain.

4.5.2.2  Calculating New Motion Vectors by Inference

To further reduce the computation cost associated with the MC recalculation in the

affected area, we will apply the second principle mentioned above — inferring new

motion vectors from the old ones. This method will greatly simplify the displacement

measurement procedure, which is the most complicated process in the MC algorithm.

To reduce the computational complexity, Jain and Jain’s algorithm uses a two-

dimensional binary search approach by assuming that the block distortion function is

blkno

# of blocks

frame #
4

6

8

10

12

0 10 20 30

FIGURE 4-11 Number of image blocks in the directly-affected area which requires recalculation
of the motion vector. The total number of blocks in the directly-affected area is 82.
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monotonically increasing along the horizontal or vertical direction when we move away

from the position of the optimal reference block. As shown in Figure 4-12, for block B in

the current frame, the block distortion value measured at the optimal reference location D

is less than those measured at location D1 and D2. Based on Jain and Jain’s assumption,

the distortion function will increase if we move from D1 to any location on the right side

of D1, or if we move from D2 to any location below D2. Suppose now the optimal

reference location D is covered by a foreground object, which in general is not related to

the background object. Thus, it is reasonable to assume the new optimal reference location

will come from the uncovered background region (i.e. the shaded area in Figure 4-12).

Based on Jain and Jain’s assumption about the distortion function, either D1 or D2 will be

the new optimal reference location in the uncovered background region. We need to check

these two locations only to find the lowest distortion in the uncovered motion area. This is

144.5 times less complicated than the full block-matching procedure when d_max=8,

which requires searching (2x8 + 1)2= 289 possible locations.

4.5.2.3  Error Propagation

The above two methods only handle the pixels inside the directly-affected area of

the background image. For background pixels outside, we can reasonably assume their

motion vectors are unchanged but the prediction errors may need to be updated because

their prediction pixels may come from inside the directly-affected area and need to be

FIGURE 4-12 Reducing the number of searched locations to two by using Jain and Jain’s
assumption. B is the location of the current image block, D is the optimal reference location, and
D1 (D2) is the crossing point when we move away from D horizontally (vertically). Based on Jain
and Jain’s assumption, D1 and D2 are the optimal reference locations within the uncovered motion
area of B.

B

D1

D2

D

Foreground object

Background
object
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recalculated. This change of prediction values will be propagated to more outside area

when the video sequence proceeds.

Suppose block B in frame n is the optimal reference block of block C in frame

n+1. If the MC data for block B is recalculated due to overlapping, then quite possibly the

reconstructed value for block B will be changed (say from  to ). If we do not

recalculate the MC data for blocks outside the affected area, the difference between  and

 will be propagated to those outside blocks which use block B as the reference block.

Error propagationwill continue until re-synchronization. In Figure 4-13, we show the

number of pixels affected by this error propagation effect. We can see that the number of

affected pixels has an increasing trend as the video sequence proceeds. This is due to the

motion towards the lower-right direction in our test sequence. Later we can find the

average SNR loss among the affected pixels ranges from 2.38 to 6.19 dB.

We should be able to partially rectify the error propagation problem by at least

updating the prediction errors, though the motion vectors are not recalculated. Suppose

b(t) is the current picture pixel at time t, (t-1) is the optimal reference pixel at time t-1,

ê(t-1) is the quantized prediction error. The reconstructed pixel value, (t) can be

calculated as

B̂ B̃

B̂

B̃

# of pixels x 10 3

frame #
0.00

1.00

2.00

3.00

4.00

5.00

0 10 20 30
FIGURE 4-13 Number of background pixels outside the directly-affected area affected by error
propagation (for the test video sequence shown in Figure 4-10). The number increases because of
the motion from the overlap area towards the background object in our test sequence.

b̂

b̂
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(t) = (t-1) + ê(t) . (4-18)

Suppose (t-1) in the above equation is changed to a different value, say (t-1). To

update the prediction errors, we compute the difference between (t-1) and (t-1)

(denoted as∆) and compensate it from the prediction error. The new prediction error

becomes ê(t)+∆, which can be then quantized to ê2(t). The new reconstructed pixel value

is

(t)= (t-1) + ê2(t)= (t-1) + Q(ê1(t) + ∆) , (4-19)

where Q(.) stands for the quantization process.

Actually, the new reconstructed pixel value, (t), is not necessarily a better

approximation to the true pixel value, b(t). It depends on the quantizer and the specific

content of the video sequence. But conceptually, it should more or less improve the

average quality. For the ping-pong game test sequence, the above error-correction method

works fairly well. Especially, abruptly severe loss caused by error propagation can be

removed with this method.

4.5.2.4  Simulations and Performance Comparisons

As described above, we use three methods to reduce the computation cost for

compositing MC-compressed video — (1) reducing the number of blocks in the directly-

affected area which need recalculation of their entire MC data, (2) simplifying the

displacement measurement process, and (3) using the original motion vector for blocks in

the indirectly-affected area. In this section, we examine their effect on recovered video

quality by simulations.

 We use a non-uniform quantizer in our simulations. The larger the prediction error

is, the more noise is inserted (since the probability for small errors is higher than that for

large errors). In other words, the quantization noise increases with the difference between

the reference image and the current image.

Whenever MC recalculation takes place, more noise is introduced even the full-

search displacement measurement is used. This issue is very similar to the error

b̂ b̂

b̂ b̃

b̂ b̃

b̃ b̃ b̃

b̃
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accumulation issue we discussed earlier in Section 3.5.1, with the difference here that the

prediction values could well be modified, while in Section 3.5.1 the same reference image

frame is used.

In Figure 4-14, we show the average SNR among the directly affected blocks

which require recalculation of their entire MC data. The average SNR is decreased by 2.88

~ 5.45 dB if full-search displacement measurement is used. The additional SNR loss due

to the proposed two-point displacement measurement procedure (in addition to the loss

caused by the full-search MC recalculation) is small (within 1 dB) for most frames.

Significant loss (about 5 dB) occurs in very few frames, such as frame 3. The

reconstructed picture of frame 3 is shown in Figure 4-10, which at least subjectively does

not illustrate server quality degradation.

FIGURE 4-14 The average SNR among recalculated blocks within the directly-affected area. The
top curve is the original input MC-compressed video, the middle curve uses the full search
algorithm in MC recalculation, and the bottom curve uses our proposed simplified 2-point
displacement measurement method. Correction of error propagation is used in both the middle
and bottom curves.
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For the indirectly-affected area, the average SNR loss among pixels affected by the

error propagation effect ranges from 2.38 to 6.19 dB. Using our proposed error correction

method, we can remove abruptly severe loss in several frames, such as frame 24 and 26.

4.6  Compositing MC-DCT Compressed Video

4.6.1  Partial Decoding of MC-DCT Video

From the discussions above, we know that video compositing can be done in the

DCT compressed domain, but not in the MC-compressed domain. In order to keep the

benefits of compressed-domain compositing, our philosophy is to perform as little

decoding as possible in order to keep video at least in some “compressed” format, rather

than in a fully-decoded uncompressed format.

However, the traditional MC-DCT decoder first decodes the DCT part and then the

MC part. The non-linear MC algorithm is in the bottom of the compression stack. Our

proposed approach is to swap the order of the decoding stack, namely inverse MC first,

followed by inverse DCT. Then, we can apply video compositing in the DCT compressed

FIGURE 4-15 The average SNR among pixels affected by error propagation. We use the full
search approach to do the motion measurement here.
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domain by using techniques derived in section 4.4. Note that the encoding stack doesn’t

have to change. We will describe the new decoding approach in the following.

As shown in Figure 4-3, the decoding process for MC-DCT video can be described

as follows:

Prec(t, x, y) = DCT-1(DCT(e(t, x, y))) + Prec(t-1, x-dx, y-dy) , (4-20)

where Prec is the reconstructed image,e is the prediction error, andd is the motion vector.

We skip quantization of DCT(e) for simplicity here. With a simple reordering, we can

change this to

DCT(Prec(t, x, y)) = DCT(e(t, x, y)) + DCT(Prec(t-1, x-dx, y-dy)) . (4-21)

That is, the inverse MC procedure is performed before the inverse DCT, as shown in

Figure 4-16. The inverse MC procedure is simply an addition operation, which adds the

DCT coefficients of the prediction errors back to the DCT coefficients of the reference

image. The DCT coefficients of the first image frame can be obtained from the intraframe

coding of the initial frame in every video segment.

In other words, the inverse MC procedure is performed in the DCT domain, which

is denoted as “(MCD)-1” in Figure 4-16. The (MCD)-1 procedure first locates the optimal

reference block (by using the received motion vector) and then adds the DCT coefficients

of the optimal reference block to the DCT coefficients of the prediction errors. The

received MC-DCT compressed video signal is converted back to the DCT domain.

However, the calculation of the DCT coefficients of the optimal reference block is

not trivial. The motion vector of each block could be an arbitrary number of pixels, and

reconstructed
video

(MCD)-1

+Q-1

motion
vector

DCT-1
prediction
error

FIGURE 4-16 A new decoding algorithm for the MC-DCT compressed video. The inverse
MC algorithm is performed before the inverse DCT, which is opposite to that used in
traditional decoders. MCD: MC in the DCT domain.
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not the fixed block boundary used in the DCT algorithm. The optimal reference block

generally overlaps with four blocks whose DCT coefficients are available from the

previous frame, as shown in Figure 4-17. Calculating the DCT of the optimal reference

block is equivalent to that for the pixel-wise translation discussed in Section 4.4.3, in

which we need to calculate the DCT coefficients of an new arbitrary-position block from

the given DCT coefficients of overlapping blocks. We can use the linear operation shown

in equation (4-13) to obtain the DCT of the reference block, i.e., DCT(Prec(t-1, x-dx, y-

dy)). Then, using equation (4-21), we can perform the inverse MC algorithm in the DCT

domain and partially decode the MC-DCT compressed images to the DCT domain.

The same approach can be used in the forward motion compensation process when

the composited image needs to be compressed again. The prediction error can be

calculated as follows

DCT(e(t, x, y)) = DCT(Prec(t, x, y)) - DCT(Prec(t-1, x-d’ x, y-d’ y)) (4-22)

whered’ is the new motion vector for the composited video sequence. New motion vectors

of the composited images can be obtained with inferences from the original motion vec-

tors, as described in section 4.5.2.2. Using this simplified method to re-calculate new

motion vectors can reduce the computations of the MC algorithm dramatically.

If the motion vectors are zero (as for DPCM interframe coding) or integral

multiples of the block width, the block structure alignment procedure is not necessary.

Motion compensation in the DCT domain requires simple additions only, as in the spatial

domain. If one motion vector component (dx or dy) is zero or integral multiples of the

block width, the DCT coefficients of the new block can be computed from the DCT

coefficients of only two original overlapping blocks, rather than four blocks, i.e.,

FIGURE 4-17 The MC optimal reference block generally overlaps with four blocks in the
DCT block structure.

reference block

current block
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DCT(new block) = DCT(H1)DCT(B1) + DCT(H2)DCT(B2) (4-23)

The computational complexity will be discussed later.

It is worth mentioning that our proposed decoding method for MC-DCT video can

be directly used to perform format conversion, such as from the MPEG format to the

JPEG format. Figure 4-16 shows how the MC part in the MPEG format can be stripped

without affecting the DCT part.

4.6.2  Compositing MC-DCT video in the DCT Domain

Once MC-1 is performed and all input images are converted to the DCT domain,

we can apply the techniques described in section 4.4 to composite them directly in the

DCT domain. For comparison, Figure 4-18 shows the block diagram for compositing two

MC-DCT video sequences in the uncompressed spatial domain. Both input videos are

decompressed fully first, composited in the uncompressed domain, and then the final

composited video is compressed again for further transmission. Figure 4-19 shows the

proposed approach for partially decoding both input video streams into the DCT

compressed domain, compositing them in the DCT domain, and then re-encoding the final

DCT-domain composited video using the MCD encoder. All conversions back and forth

between the DCT and spatial domains are eliminated. The MC and inverse MC algorithms

are performed in the DCT domain, rather than in the spatial domain. Using the heuristics
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mentioned above (section 4.5.2) for obtaining new motion vectors prevents the final MC

step from becoming dominant in terms of the computational complexity.

-

Q-1FMMC

DCT Q

DCT-1

MC-1

+Q-1 DCT-1

MC-1

+Q-1 DCT-1

Compositing
Unit

(spatial)

FIGURE 4-18 Compositing two MC-DCT compressed video sequences in the
uncompressed domain. We decode both input videos fully back to the uncompressed
domain, composite them pixel by pixel, and then encode the composited video to the
compressed format. (d1,e1) and (d2,e2) are (motion vector, prediction error) for input video
streams. (d’,e’) is for the composited output video.
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FIGURE 4-19 Compositing two MC-DCT compressed video in the DCT domain. We
convert input video to the DCT compressed domain, composite them in the DCT domain,
and then convert the composited video to the MC-DCT format.
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4.6.3  Performance Analyses

We will analyze some performance metrics of the DCT-compressed-domain

compositing approach both analytically and numerically in this section. Considered

performance factors include computational complexity, recovered video quality and

latency. Possible hardware architectures will be briefly discussed. We simulate some

envisioned compositing scenarios, such as video conferencing scenes, by non-real-time

software prototyping of proposed compositing algorithms.

4.6.3.1  Computational Complexity

The computational speedup of using the DCT-domain compositing algorithms in

comparison to the spatial-domain approach depends on the compositing features

supported in the applications, such as overlapping, block-wise or pixel-wise translation,

scaling, and arbitrary-shaped video objects. It also strongly depends on the number of zero

DCT coefficients, which in turn depends on the compression ratios of the input images.

Generally, pixel-wise operations are more efficient in the spatial domain than in the DCT

domain. But since the DCT-domain approach can avoid the conversion back and forth

between the spatial and DCT domains, and it processes much less data if the compression

ratio is high, the DCT-domain approach could provide a net efficiency gain for many cases

involving pixel-wise operations.

For compression systems including the MC algorithm, we can use the approach

described in Figure 4-19 to perform MC, inverse MC, and compositing operations all in

the DCT domain. The overhead of converting all images to the DCT domain is the block

boundary adjustment process required in the MC and inverse MC operations in the DCT

domain (which will be called MCD and MCD-1 in the following context). We analyze the

computational complexity of these operations in this section. Later, we compare these

analyses to the simulation results.

In table 4-2, we list the number of multiplications and additions required in each

major operation, such as the DCT, DCT-1, MCD, MCD-1, pixel-wise translation,

quantization, and inverse quantization. We leave the detailed derivations to the Appendix.

An important property we use for the DCT-domain operation is that the run-length-code

(RLC) of the quantized DCT coefficients can indicate the position of the non-zero values
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so that we can skip the redundant operations for zero values. Note that the compression

ratio parameter (β) shown in the table simply means the ratio of the number of original

DCT coefficients to the number of non-zero DCT coefficients after quantization. It’s

different from the overall compression ratio, which also takes VLC and MC into account.

Table 4-2 Computational complexity for major compositing functionsa

operation # of multi. / pixelb # of add. / pixel

DCT
Domain:

MCD, MCD-1 (4/β + 2/ ) ⋅N⋅α2 +
(2/β)⋅N⋅α1

[(4/β + 2/ )⋅N +3] ⋅α2

+ [(2/β)⋅N + 1]⋅α1 +1

scale 1/2×1/2 (1/β+1/(2 ))⋅N (1/β+1/(2 ))⋅N +3/4

scale 1/3×1/3 (1/β+1/(3 ))⋅N (1/β+1/(3 ))⋅N +8/9

pixel-wise translation (2/β+2/ )⋅N (2/β+2/ )⋅N +3

pixel multiplication N2/(β1⋅β2) N2/(β1⋅β2)

semi-transparent block-
wise overlapping

< (1/β1 + 1/β2) < 2⋅(1/β1 + 1/β2)

Spatial
Domain:

FDCT, FDCT-1 c 2⋅log2N-3+8/N 3⋅(log2N-1) + 4/Ν

MC, MC-1 0 1

scale 1/2×1/2 1/4 3/4

scale 1/3×1/3 1/9 8/9

pixel multiplication 1 0

semi-transparent block-
wise overlapping

1 2

Common: opaque block-wise
overlapping

0 0

Inverse Quantization 1/β 0

Quantization 1 0

β β

β β

β β

β β



115

The complexity of the MCD (or inverse MCD) algorithms depends on both the

compression ratio (β) and the percentage of image blocks that need block boundary

adjustment (α2 andα1), as defined in Table 4-2. When both the motion vector components

dx and dy are not integer multiples of the block width, we need to calculate the DCT

coefficients of the reference block from the DCT coefficients of four original blocks. The

computational complexity is (4/β + 2/ )⋅N multiplications per pixel, whose derivation

will be described in the Appendix. If one of the motion vector components is zero or an

integer multiple of the block width, then the DCT coefficients of the reference block can

be constructed from two original blocks only. The complexity is (2/β)⋅N multiplications

per pixel. Pixel-wise translations in the DCT domain also require the block structure

adjustment in both directions. But since some matrix multiplications can be shared, its

complexity is reduced to (2/β + 2/ )⋅N multiplications per pixel. As discussed in section

4.4.5, the scaling operation, like linear filtering, can be implemented by multiplications

with a pre-matrix and a post-matrix in the DCT domain. The computational complexity

for the 1/2 × 1/2 down scaling operation in the DCT domain is (1/β+1/(2 ))⋅N

multiplications per pixel. Similarly, the complexity for the 1/3× 1/3 down scaling

operation in the DCT domain is (1/β+1/(3 ))⋅N multiplications per pixel. The reduction

is due to the fact that more image blocks share a single matrix multiplication. The detailed

derivation is described in the Appendix.

For the spatial-domain operations, the major computations are from the conversion

process, i.e., the DCT algorithm and its inverse process. Chen’s fast algorithm [Chen77]

a. Notations:
β: Total # of the DCT coefficients / # of the non-zero DCT coefficients, e.g. (percentage of non-

zero DCT coefficients)-1. This is different fromcompression ratio, which is generally defined
as (# 0f bits for the original image / # of bits for the compressed image). But these two terms
usually grows proportionally. We will use them interchangeably in the context, except in the
calculation of computational complexity.

α2: the percentage of image blocks which need block boundary adjustment in both directions, i.e.,
both dx and dy are not integer multiples of the block size.

α1: the percentage of image blocks which need block boundary adjustment in only one direction,
i.e., one of dx and dy is integer multiples of the block size, and the other one is not.

N: the block width (height), e.g. N=8 in our experiments.

b. the normalized complexity is calculated by dividing the overall computations with the number of
pixels in the original image.

c. Using the fast DCT algorithm of Chen & Smith[Chen77]. If we use the 2N-point FFT approach,
the computational complexity will be doubled.

β

β

β

β
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has a complexity of 2⋅log2N-3+8/N multiplications per pixel, which is about one half of

that using the 2N-point FFT [Clarke85]. There have been many new fast DCT

computation methods reported in literatures [Narasimha78, Lee84, Chan91], but all share

a similar complexity order. For the 1/2× 1/2 down-scaling operation, the required

computational complexity is 1/4 multiplication per pixel. (Pnew = (P11+P12+P21+P22)/4 by

using the simple box area averaging algorithm described in [Weiman80]). It becomes 1/9

multiplication per pixel for the 1/3× 1/3 down scaling operation.

For the quantization process, each coefficient needs one multiplication (multiplied

by 1/quantization step). In the inverse quantization process, each non-zero coefficient

needs one multiplication. In other words, the computational complexity is 1/β

multiplications per pixel.

One interesting note is that the major component for the compressed-domain

operations increases linearly with the block width, N, while it increases with the order of

log2N for the uncompressed-domain approach (although when the block size increases,

the image compression ratios may change as well.) Therefore, the compressed-domain

approach is more suitable for cases using a small block size, which is usually true in image

compression.

We use a typical block width of 8 pixels and some hypothetical values for the

compression ratio (β) and non-zero motion vector percentages (α2 andα1) to compute

some numerical figures for comparison, shown in table 4-3. We find that the MCD and

inverse MCD algorithms are quite complicated in the worst case, i.e.α2 = 100%. Even

with a compression ratio of 16, the required complexity is still higher than that for the

spatial-domain operations. However, for typical head-and-shoulder images, the non-zero

motion vector percentages will be much smaller, due to the still background and the slow

motion of the foreground person. With a moderate percentage (α2 = 25%,α1= 50%), the

MCD (MCD-1) operations are less complicated than the fast DCT when the compression

ratio is equal to or higher than 8. For video conferencing images which include a flat

background, this compression rate is feasible. If the non-zero motion vector percentages

are zero, the MCD and MCD-1 are equivalent to the original MC and MC-1 in the spatial

domain. No extra computations are needed.
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a. The numbers shown are # of real multiplications per pixel and # of real additions per pixel.

Table 4-3 Computational complexity for major compositing operation
(with a 8 pixels by 8 pixels block size)

operation β=4 β=8 β=10 β=16

DCT
domain:

MCD, MCD-1

(α2=100%,α1=0)
16 ×
19 +a

9.66×
12.66 +

8.26×
11.26 +

6 ×
9 +

MCD, MCD-1

(α2=25%,α1=50%)
6 ×
8.2 +

3.41×
5.61 +

2.87×
4.07 +

2.0×
4.2 +

MCD, MCD-1

(α2=0, α1=0)
0 ×
1 +

0 ×
1 +

0 ×
1 +

0 ×
1 +

scale 1/2×1/2 4×
4.75 +

2.41×
3.16 +

2.06×
2.81 +

1.5×
2.25 +

scale 1/3×1/3 3.33×
4.22 +

1.94×
2.83 +

1.64×
2.53 +

1.17×
2.06 +

pixel-wise
translation

12 ×
15 +b

7.66×
10.66 +

6.66×
9.66 +

5 ×
8 +

semi-transparent
block-wise
overlapping

< 0.5×
< 1 +

< 0.25×
< 0.5 +

< 0.2×
< 0.4 +

< 0.125×
< 0.25 +

Spatial
domain:

DCT, DCT-1 4 × 6.5 +

MC, MC-1 0 × 1 +

scale 1/2×1/2 0.25× 0.75 +

scale 1/3×1/3 0.11× 0.89 +

semi-transparent
block-wise
overlapping

1 × 2 +

Common: opaque block-wise
overlapping

0 × 0 +

Inverse
Quantization

0.25 ×
0 +

0.125 ×
0 +

0.1 ×
0 +

0.06 ×
0 +

Quantization 1× 0 +
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 • Worst-Case Considerations

The DCT-domain operations produce variable throughput, as opposed to the

constant throughput for the uncompressed-domain approach. The higher the compression

ratios and the lower the non-zero motion vector percentages the input images have, the

faster the compositing unit can composite the input images in the compressed domain. For

real-time implementations which need to consider the worst-case situation, this variable

throughput may be a shortcoming. But in the DCT domain, we have the advantage that we

can skip the high-order DCT coefficients whenever the maximal processing delay bound is

exceeded. The image quality will be hurt as little as possible since the high-order

coefficients are usually less subjectively important. For example, in compositing H.261

compressed video sequences, given the non-zero motion vector percentages of the input

images, we can decide how many high-order DCT coefficients we need to drop in order to

meet the processing delay bound for the real-time compositing requirements. This

decision can be made based on the relationship between the computational complexity and

the compression ratios shown in table 4-2. High-order DCT coefficients need to be

dropped only when necessary. For input images with high compression ratios and low

non-zero motion vector percentages, all DCT coefficients can be processed in time and no

additional image impairment is introduced. In essence, this approach decides the amount

of non-trivial DCT coefficients based on the hardware processing capability, while in

constant-rate video encoders, rate-based criterions are employed.

 • Techniques to Reduce the Computational Complexity

As we can see in table 4-2, the most complex operations in the compressed domain

are the MCD (inverse MCD) algorithms, and the pixel-wise translation. This is mainly due

to the need for computing the block structure realignment. However, for the MCD and

inverse MCD operations, if the non-zero motion vector percentages, i.e.α2 andα1, are

decreased, computations can be greatly reduced. Whenα2 andα1 are both equal to zero,

b. The complexity for the pixel-wise translation seems to be very high here. But in many video con-
ferencing scenes, the input video will be first scaled down by some factor before being translated.
In this case, the significance of intensive computation associated with pixel-wise translation is
small compared to the complexity of other operations.
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the interframe coding is equivalent to the DPCM interframe coding algorithm, in which

the inverse MC algorithm can be easily computed in the DCT domain by using simple

additions. In the regular MC algorithm, these percentages vary with different video

sequences. For example, Figure 4-20 shows some experimental results of the non-zero

motion vector percentage. The “salesman” video sequence has more image blocks with

zero motion vectors than the “Miss USA” sequence. One way to reduce theα2 andα1

percentages is to modify the MC encoder to give some preference to the reference block

with zero motion vectors. For example, instead of searching for the optimal reference

block with the minimal block distortion, we can add a rule forcing the optimal reference

block to have a block distortion value smaller than 80% of that for the zero-motion block.

Otherwise, the zero-motion block is selected as the reference block. We refer to this

algorithm as themodified MC (80%) algorithm in the following and show that it has much

smaller non-zero mv percentages than the original MC algorithm, as shown in table 4-4.

For example, the non-zero motion vector percentages (α2, α1) for one test frame of the

“Miss USA” video sequence can be reduced from (52%, 38%) to (30%, 19%). However,

the effect of this suboptimal MC algorithm on other compression performance factors

(like compression ratio and image quality) may need to be further considered.
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FIGURE 4-20 Experimental results of non-zero motion vectors. (a) “Miss USA” sequence (b)
“Salesman” sequence.
α2: the percentage of the motion vectors whose components are non-zero in both the x and y
directions.
α1: the percentage of the motion vectors whose components are non-zero in only one direction (x or
y).
α0: 1 - α2 - α1

Salesman Sequence

Miss USA sequence
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Another possible technique to reduce the computational complexity in the DCT

domain is to combine a sequence of operations into a single operation. For example, for

MC-DCT compressed images, we may need to perform F(DCT(e) + G(DCT(Pref))),

where G represents the MCD-1 operation and F represents the scaling operation. Since

they are both linear operations, we can apply the distributive law to change the above

formula to F(DCT(e)) + H(DCT(Pref)), where H represent the composite function F⋅G.

The computations for function F can be reduced since the non-zero coefficient ratio for

DCT(e) is usually higher than that without motion compensation, e.g., DCT(Pref).

However, for generality, we do not use this method in the following simulations.

a. The regular MC algorithm uses the full-search block-based displacement measurement. The
block size is 8 pixels× 8 pixels and the maximum motion distance in each direction is 8 pixels
in our simulations.

b. The modified MC algorithm uses the rule that the selected reference block has a block distortion
less than 80% of that for the zero-motion block. Otherwise, it uses the zero-motion block as the
reference block.

c. The first figure is for the reference image frame (e.g. frame 120), and the second figure is for the
reconstructed frame after the MCD-1 algorithm (e.g. frame 121). The actual compression ratio is
different fromβ, because overhead such as the run length code and the end-of-block delimiters
are not included in calculatingβ.

d. The low percentages for the Miss USA sequence are mainly due to its flat dark background.

Table 4-4 The non-zero motion vector percentage and compression ratios for test
video sequences. The input video is MC-DCT compressed.

“Salesman”
 frame 121

“Miss
USA”

frame 31

composited
 scene 1

composited
 scene 2

composited
 scene 3

α2, α1
(regular MC)a

8%, 19% 52%, 38% 3%, 9% 5%, 12% 43%, 38%

α2, α1
(modified
MC (80%))b

6%, 7% 30%, 19% 2%, 5% 3%, 7% 24%, 18%

β 7.69c 20.0d 9.09 7.69 9.09
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 • Simulations

We have simulated different compositing scenarios, which are depicted as Scene 1,

2, 3 in Figure 4-21. In Scene 1, input images are of the size of 360 pixels× 288 pixels,

which is approximately the CIF format, and the composited output is of a larger size of

696 pixels× 480 pixels, which is envisioned to be the size of the final video display. In

Scenes 2 and 3, both the input sequences and the output sequence are of the same size

(360 pixels× 288 pixels). The input sequences are all head-and-shoulder images, which

are most common in a video conference. We assume each video source is compressed with

the MC-DCT algorithms, and the compositing unit needs to generate the composited

video in the same compressed format. We tested several different quantization tables,

including those listed in the JPEG and MPEG standards. The compression ratios and non-

zero mv percentages for these images are shown in table 4-4.

(a)

(~/PICTURE/vc_large_unc.xwd)
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FIGURE 4-21 original pictures for different compositing scenarios (a)Scene 1 (b) Scene 2 (c)
Scene 3.

(Photo here)

~sfchang/PICTURE/vc_small.unc.ras

~sfchang/PICTURE/vc_small3.unc.ras

(b)

(c)
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The computational complexities for each compositing scenario are shown in table

4-5. Compositing features demonstrated here include overlapping, scaling with different

ratios and block-wise translation. If the regular MC algorithm is employed, the DCT-

domain approach is faster than the spatial-domain approach by about 10% to 40%. If we

use the modified MC algorithm (80%), the speedup can be further increased.

We implemented the above three compositing scenarios in C programs on a SUN

SPARC I workstation. The CPU time needed is reported in table 4-6. Both regular MC

algorithm and the modified MC algorithm are tested. The resulting speedup figures are

approximately in line with the theoretical predictions shown in table 4-5. The modified

MC algorithm can reduce the complexity of the MCD and MCD-1 algorithms and extend

the speedup by 10% to 20%. If we adopt a stronger preference towards the zero-motion

blocks in the MC algorithm, e.g. using a stronger preference factor lower than 80%, the

speedup will be further increased. Another way to boost up the speedup is using larger

quantization steps at the cost of heavier quality loss. This step could be necessary when

the non-zero motion vector percentages are high, and the real-time implementations are

required.

Table 4-5 Computation speedup for compositing MC-DCT compressed video in the
DCT-compressed domain vs. the uncompressed spatial domain.

Spatial-domain
compositing

DCT-domain
compositing
(regular MC)

DCT-domain
compositing

(modified MC—80%)

# op./pixel # op./pixel speedup # op./pixel speedup

Scene 1 33.28 mul.
57.57 add

26.63 mul.
38.96 add

1.25
1.48

19.69 mul
29.02 add

1.69
1.98

Scene 2 17.99 mul.
32.53 add

16.10 mul.
23.89 add

1.12
1.41

12.80 mul.
19.29 add

1.41
1.69

Scene 3 13.41 mul.
23.39 add

13.76 mul.
20.39 add

0.97
1.15

9.23 mul.
14.06 add

1.45
1.66
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If the original images are compressed without the MC algorithm, namely DCT-

encoded only as in the JPEG standard, the computational speedup by using the DCT-

domain algorithms can be increased greatly, as shown in table 4-7, since the complicated

MCD operation is not required. The net computational complexity can be reduced by a

factor ranging from about 3 to 6.

a. The DCT-domain implementation is not fully optimized yet. Some sharable matrix multiplica-
tions are duplicated. The spatial-domain approach uses the fast DCT algorithm by Narasimha
and Peterson [Narasinmha78]. Its complexity is about the same as that of Chen’s fast algorithm.

b. CPU time on a SPARC I machine.

Table 4-6 Software prototype for compositing MC-DCT compressed video in the
DCT-compressed domain vs. the uncompressed spatial domain.a

Spatial-domain
compositing

DCT-domain
compositing
(regular MC)

DCT-domain
compositing

(modified MC—80%)

CPU timeb CPU time speedup # op./pixel speedup

Scene 1 40.72 sec. 31.46 sec. 1.29 25.68 sec. 1.59

Scene 2 22.53 sec. 20.29 sec. 1.11 18.02 sec. 1.25

Scene 3 16.57 sec. 14.69 sec. 1.13 11.53 sec. 1.44

Table 4-7 Computation speedup for compositing DCT-compressed video (without
MC) in the DCT-compressed domain vs. the uncompressed spatial domain.

Spatial-domain
compositing

DCT-domain
compositing

# op./pixel # op./pixel speedup

Scene 1 33.28 mul
50.35 add

9.66 mul
11.23 add

3.45
4.48

Scene 2 17.99 mul
28.53 add

7.36 mul
8.01 add

2.44
3.56

Scene 3 13.41 mul
20.39 add

3.3 mul
2.89 add

4.06
7.06
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4.6.3.2  Image Quality

As discussed earlier, compositing within the network requires a recompression

process at the output of the intermediate compositing unit. Since the composited output

video is different from the input video, this recompression process will introduce video

quality impairment, in additional to the initial quality loss caused by lossy compression at

each source (even if we use the error-accumulation-free compression algorithms such as

the DCT). This problem has been described as the error accumulation problem of the

iterated compression process in Section 3.5.1. Note that the quality loss due to the

recompression at the compositing unit is unavoidable regardless of whether we use the

spatial-domain or DCT-domain compositing approaches. Table 4-8 shows the SNR values

for reconstructed images at the compositing unit before and after the recompression

process. As described earlier, the SNR loss strongly depends on the compositing

operations performed in the compositing unit. For example, the extent of change in Scene

2 is larger than that in Scene 3. Therefore, the SNR loss caused by re-compression is also

much larger in Scene 2 (7.7 dB) than in Scene 3 (1.2 dB).

For DCT-compressed-domain compositing, there is a minor additional quality

impairment due to the need to apply thresholding in every intermediate operation. For

example, the reconstructed DCT coefficients of an input video from its MC-DCT

compressed format does have a run-length-code format, as that available in the input

compressed stream.1 Therefore, in order to remove insignificant DCT coefficients and

their associated computations, we apply a simple thresholding after the input video is

a. We use the regular MC algorithm here.

Table 4-8 SNR of reconstructed images at the compositing unit before and after
the re-compression process. The input video is assumed to be MC-DCT

compressed.a

Before
re-compression

After
re-compression

Spatial-domain
Compositing

DCT-Domain
Compositing

Scene 1 31.5 dB 28.8 dB 28.5 dB

Scene 2 34.7 dB 27.0 dB 26.3 dB

Scene 3 30.7 dB 29.5 dB 29.5 dB
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converted to the DCT domain.1 The thresholding levels can be the quantization table in

some intraframe transform coding algorithm, such as the JPEG table, or simply a constant

value for each coefficient. From table 4-8, we can see that the additional image quality

degradation caused by this thresholding is very minor, about 0 ~ 0.7 dB. There is no

noticeable difference in subjective quality comparison. The reconstructed composited

images for Scene 1 are shown in Figure 4-22. For the image shown in Figure 4-22(a),

compressed input images are converted back to the spatial domain and composited pixel

by pixel in the spatial domain. For the image shown in Figure 4-22(b), images are

composited in the DCT-compressed domain. The final composited images are both

transformed to the MC-DCT format, quantized, and run-length encoded. The images

shown here are reconstructed from the final compressed data. We can see that both images

composited in the uncompressed domain and the DCT domain suffer from some quality

degradation due to their incurring lossy quantization twice.

1. The run-length-code of an MC-DCT compressed stream is for the DCT coefficients of the
MC prediction errors, rather than the whole reconstructed image.

1. Note, unlike the original compression methods, DCT coefficients larger than the threshold
values are not quantized. Only small DCT coefficients are truncated to zero.
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FIGURE 4-22 Reconstructed images of Scene I composited in (a)the spatial domain (b)the DCT-
compressed domain. All input video and output composited video streams are MC-DCT
compressed.

(a)

(b)

~/PICTURE/vc_large.pix.xwd

~/PICTURE/vc_large.com.xwd
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As we mentioned earlier, the modified MC algorithm can effectively reduce the

non-zero mv percentage and thus reduce the computations for the DCT-domain

operations. We find that the SNR values of reconstructed images using the modified MC

algorithm are very close to those using the regular MC algorithm.

4.6.3.3  Other Performance Considerations

Besides computational complexity and video quality, the compressed domain

approach also has impacts onhardware implementations. The uncompressed-domain

approach fully decodes video signals to the uncompressed domain and composites video

pixel by pixel. Therefore, the compositing process is performed at the pixel rate. For the

DCT-domain compositing approach, the operation rate can be reduced to the block level.

For example, Lee and Lee propose a pipelined hardware architecture for transform domain

filtering [Lee92], as shown in Figure 4-23. The input/output rate is block by block, which

is much lower than the pixel rate.

Another aspect of the hardware cost is the buffer size required. The buffer size will

directly affect the output latency, which needs to be kept small so that interactive services

can be achieved. For MC-DCT compression algorithms, the most significant delay comes

from the frame buffer in the (inverse) motion compensation part and the buffer for the

variable coder/decoder, such as the run length code and the entropy code. The

compressed-domain compositing approach proposed in this chapter still needs these

buffers. For example, the DCT-domain motion compensation algorithm needs a frame

FIGURE 4-23 A pipelined hardware architecture for transform filtering (proposed by Lee
and Lee [Lee92]).
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buffer to store the DCT coefficients of the previous image frame. The proposed

compressed-domain compositing approach can only potentially reduce the overall latency

through the reduction of the processing delay, rather than the removal of the frame buffers.

4.7  Summary

We explored the freedom of performing video compositing with different data

formats. We have designed efficient algorithms in the DCT-compressed domain for many

compositing operations such as overlapping, translation, scaling, pixel multiplication, and

linear filtering. These compressed-domain algorithms can be applied to other orthogonal

transform algorithms, like the DFT transform and the DST transform. In applications that

require compressed input images, our proposed approach can reduce computations,

compared to the straightforward approach which convert compressed images back to the

spatial domain and composite them in the spatial domain. The computational speedup

depends on the compression ratios of the input images, which can be adjusted to achieve

the minimal overall system cost. To extend these DCT-domain algorithms to motion-

compensated DCT-based images, we propose a new decoding algorithm to convert the

MC-DCT compressed images to the DCT domain and composite them in the DCT

domain. This new decoding algorithm can also be applied to direct conversion between

image compression formats like between JPEG and MPEG.

The proposed DCT-domain compositing approach can reduce the required

computations by 60% ~ 75% for DCT-compressed images, 10% ~ 23% for MC-DCT-

compressed images in different simulated scenarios. The speedup factor depends on the

compression ratios and the non-zero motion vector percentages. Namely, the compositing

throughput is variable, varying from image to image. To meet the real-time requirement

for most video applications, we can use a processing delay constraint to decide what

percentage of high-order DCT coefficients should be skipped. For example, in the

compositing unit within the network, if the input image has a high non-zero motion vector

percentage, it can skip some high-order DCT coefficients in order to reduce computations

and satisfy the maximal delay bound. If the input non-zero motion vector percentage is

low, then all non-trivial DCT coefficients are processed and the processing delay bound is

satisfied automatically. This freedom of reducing processing time by sacrificing least
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important image components is not available in the spatial domain, as discussed in section

4.3.
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Chapter 5

Arbitrarily-Shaped Video Objects (ASVO)

In previous chapters, we assume that the video objects can be arbitrarily shaped

(AS). For example, in multimedia editing systems, users can create arbitrarily-shaped

video objects manually or by segmentation algorithms. Users can manipulate each

individual object or composite multiple video objects together. In the so-called analysis-

synthesis (or object-oriented) video coding algorithms, AS video objects are segmented

(by image analysis algorithms) and transmitted separately [Mussman89, Kunt87].

Separate objects are composited at the receiver to reconstruct the original scene. Figure 5-

1 is a block diagram illustrating production and processing of AS video objects. The anti-

aliasing process is necessary for smoothing the object boundaries to remove the jagged

artifact. As described in Chapter 2, we use an additionalα channel to perform anti-

aliasing.

In this chapter, we will investigate how to efficiently produce theα value and to

modify it after video objects are transformed or composited. This chapter also focuses on

the representation of the ASVO, where both thepixel values and theshape are encoded.

The former specifies the internal intensity variation while the latter specifies the boundary

information. Regarding pixel values, we consider only intraframe transform coding. We

propose a joint approach for representing the shape and calculating theα value.

5.1  Transform Coding of Image Pixels

In this section, we design efficient representations of the image pixel values to

achieve good compression and image quality. In particular, we consider block-wise

transform coding of the image content, such as the widely used Discrete Cosine Transform
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(DCT). One immediate advantage of using the transform code is that existing codecs can

be used to process AS video signals, as well as traditional rectangular video signals.

In block-wise transform coding algorithms, images are separated into small blocks

with fixed size, say N pixels by N pixels. Figure 5-2 shows an example of an AS video

object (Miss USA) and illustrates the concept of block structure. All pixel values in

internal blocks are fully defined. The traditional DCT algorithm can be used to encode

these blocks efficiently. For the boundary blocks, however, the pixel values are not

completely defined. One straightforward approach is to fill zero values outside the

boundary, and treat the resulting block as before. A drawback of this approach is the

significant increase of the high-order transform coefficients, which may seriously degrade

the compression performance. We will focus on transform coding techniques capable of

Object
Generator

contents

Anti-
Aliasing

& shape

Animation &

FIGURE 5-1 Production and processing (e.g., manipulating or compositing) of arbitrarily-shaped
video objects.

Compositing

A.S.

FIGURE 5-2 An example AS image segment and the grid lines which separate the image into small
blocks. Boundary blocks have part of pixel values defined only. The block structure is for
demonstrative purpose and is not of accurate scale.
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treating general arbitrarily-shaped image blocks, including both fully-filled and partially-

filled image blocks. Note that we will use the term “AS image segment” to denote both the

entire AS image frame, such as Miss America in Figure 5-2, and one AS image region

within each partially defined boundary block. The distinction should be clear in the

context.

We investigate two classes of transform coding techniques —brute-force full-

block transform andshape-adaptive transform. The first class explores innovative ways of

filling the redundant data outside the boundary in the boundary blocks and followed by the

full-block DCT. The zero-stuffing method and traditional band-limited extrapolation

techniques belong to this class [Jain89, Soltanian-Zadeh93]. The second class of

transform methods changes the transform basis functions adaptively based on the shape of

the input block. The iterative approximation method proposed by Kaup and Aach

[Kaup92] and the adaptive orthogonal transform proposed by Gilgeet al. [Gilge89]

belong to this class of techniques. We propose a shape-projected domain as an efficient

problem formulation, on which we can interpret existing adaptive transform bases and

derive new transform bases. We derive a new KLT-like transform basis as an example to

demonstrate the flexibility of the proposed formulation.

Afterwards, we compare the performance of different transform coding techniques

and illustrate the tradeoff among the compression performance, computational

complexity, and codec complexity.

5.1.1  Brute-Force Full-Block Transform

As mentioned earlier, image segments are separated into small blocks, e.g. N

pixels by N pixels each. For AS image segments, boundary blocks usually have pixel

values partially defined. Let P(x,y) represent the pixel values within this N pixel× N pixel

block area, calledR. Let B represent the occupied region within the block, as shown in
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Figure 5-3. A partially-filled image block has P(x,y) defined within regionB. The brute-

force full-block transform coding technique fills up the redundant area outside the

boundary and then utilize the traditional block-wise transform coding.

Once the image data, P(x,y), is extended to the full block, we can use traditional

block-wise transform coding to represent the block as follows,

; x,y ∈ R , (5-1)

wherefi’s arebasis functions defined on the full-block area,R. That is, P(x,y) is trans-

formed to a set of coefficientsai, which can be used to completely or partially reconstruct

the original image. For the purpose of compression, we would like to use as small number

of coefficients as possible to obtain an accurate reconstruction, . The resulting

error term is defined as

, x, y inB (5-2)

Note that the summation is executed over the occupied region only because error terms

outside the boundary are discarded when we apply the shape information at the receiver.

If we fix the choice of basis functions, e.g. use N×N DCT basis functions, the

objective can be interpreted as finding the optimal P(x,y) values outside regionB so that

the transform coefficients,ai, present the highest energy compaction. The concept is

illustrated in Figure 5-3. However, it is difficult to quantitatively formulate this abstract

B

? rectangular
transform
coding

R

FIGURE 5-3 Find the optimal pixel values outside the boundary of image segment P, so that the
transform spectrum has the most compact energy spectrum.

most compact
spectrum

P x y,( ) ai f i x y,( )⋅
i

∑=

P̂ x y,( )

e P x y,( ) P̂ x y,( )–( )2∑=
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property ofenergy compactness. An example discussed in [Kaup92] uses the entropy

definition

(5-3)

to emulate the energy compactness of the transform spectrum. The problem with this defi-

nition is that the final choice usually ends up with few large spectrum components, which

may cause overflow problems, though the spectrum “entropy” is low. Furthermore, opti-

mization for minimizing the entropy is difficult.

5.1.1.1  Mirror Image Extension

Despite the difficulty in quantifying the compactness of spectrum coefficients, the

approach of filling the region outside the boundary with optimal redundant data does

provide us the freedom to optimize the transform spectrum. The simplest method to

augment a partially defined image segment into a full block image is stuffing zero’s

outside the image boundary. However, this may introduce sharp edges on the boundary

and thus high-frequency components in the transform spectrum.

The traditional band-limited extrapolation approach assumes the input signal has a

limited bandwidth the same size as the defined signal samples [Soltanian-Zadeh93,

Jain89]. However, the goal of this approach is to find remaining undefined signal samples

rather than data compression. The resulting spectrum may not be compressible at all1.

That is, all spectrum coefficients turn out to be non-trivial. In addition, the spectrum

coefficients are usually obtained by solving a linear equation system. For a fixed spectrum

passband, the associated linear equation system may be singular and have no solutions.

1. Compression comes from the quantization process which truncates small transform

coefficients to zeros.

f i

f i∑
------------- 

  f i

f i∑
------------- 

 log⋅ 
 

i
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One promising alternative is to extend each image segment with its “mirror image”

outside the image boundary. This approach has been used to improve the compression

performance of subband coding [Karlsson89b]. Figure 5-4 shows a partially defined block

in one dimension. In general, the defined pixels may not occupy exactly one half of the

block. We may need to duplicate the given pixel values several times and truncate it at the

block boundary. For a 2D image segment, we can apply this 1D mirror image extension in

one direction first, and then in another direction. This mirror-image extension technique is

simple but efficient. Its compression performance will be described later.

5.1.2  Shape-Adaptive Approach

As described in equation 5-2, we are only concerned with reconstruction errors

within the image boundary, i.e. errors within the covered regionB. An equivalent but

perhaps more efficient approach to finding the optimal representation of AS image

segments is to perform optimization only in the subspace defined over regionB, denoted

by SB. Basically, we project the AS image segment and all basis functions into the

subspace SB and find the optimal representation there. The redundant pixel values and

.
.

.
. ?

(a)

.
.

.
. .

.
.

.

(b)

block length

.
.

.
. .

.
.

. .
.

.

(c)

block length

FIGURE 5-4 Fill the outside redundant region with the mirror image of the internal contents.
(a) original segment. (b)the segment size equals one half of the block size. (c)apply the mirror
image recursively when the segment size is not one half of the block size.
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their associated errors outside the boundary can thus be automatically ignored. However,

since the subspace varies with the image shape, the optimal transform bases for different

image shapes may also be different. This is the reason why this is called theshape-

adaptive approach.

5.1.2.1  A New Problem Formulation — Shape-Projected Subspace

Instead of filling data outside the image boundary and applying a full-block

rectangular transform, we can focus on the defined image pixels only, i.e. P(x,y) values

within regionB. Mathematically, let’s define SR as the linear space spanned over the entire

square blockR, and SB as the subspace spanned over the irregular regionB. For example,

in Figure 5-5, space SR has a dimension equal to 16, while the dimension of subspace SB

is equal to 4. One possible basis for subspace SB is shown in Figure 5-5(b). Each basis

matrix has a single non-zero element.

Every arbitrarily-shaped image segment, P(x,y), can be considered as a vector in

SB. To completely represent this vector, we need to find a set of linearly independent

vectors, say {bi}, in SB and describe P(x,y) as a linear combination ofbi’s. The distinction

between this approach and that in the previous section is that the entire problem domain

4 pixels× 4 pixels

image
segment

(a)

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

(b)

FIGURE 5-5 (a)A partially-filled image block in a 4×4 area. A canonical basis of the
subspace is shown in (b).
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now is confined only in the subspace SB. We don’t have to worry about the redundant data

outside the image boundary, i.e. vector component outside the subspace SB. If we want to

use traditional block-based transform bases, sayfi (e.g. the DCT basis), we can project

these basis functions into subspace SB,

 , (5-4)

and describe vector P(x,y) as a linear combination of ’s. However, usually we will have

too many basis functions and they will not be orthogonal. In actuality, for orthogonal sys-

tems, this projection simply removes the components offi orthogonal to subspace SB.1

Figure 5-6 illustrates an example when the dimension of SB equals two.

The important issue that remains is to find the optimal representation of the image

vector in subspace SB such that we can use a small number of coefficients to reconstruct

the image segment vector with a satisfactory quality. The above formulation does provide

a very flexible platform to derive new transform bases and evaluate their performance.

However, one disadvantage of this approach is that if we use shape-adaptive transform

bases, then there is an overhead for constructing the new transform basis for each different

shape at the receiver. Note that for AS video objects, the shape information is also

1. Another interpretation of projection is to force all those component values offi outside SB to

be zero.

f̂ i Project fi SB,( )=

f̂ i

fi

SB: shape-projected
subspace

f̂ i

FIGURE 5-6 Project the image segment and all representation basis vectors into the
subspace spanned over the image shape region only. The dimension of the full block space is
more two and the dimension of the subspace is two.
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transmitted to the receiver. Therefore, we can reconstruct the correct transform basis at the

receiver based on the received shape information. We do not have to transmit the

transform basis functions.

An alternative of using the shape information to improve the coding efficiency is to

adaptively change the mapping procedure for calculating the transform coefficients

according to the varying shape, but still use a fixed transform basis (such as DCT). In this

case, the overhead is only in the encoder. The decoders need not to be modified. There is

no overhead for modifying the transform basis at the decoder and existing decoders can be

used without any modification.

We will describe some known shape-adaptive approaches and our new proposal

utilizing the above concepts in the following subsections.

5.1.2.2  Successive Approximation Algorithms Revisited

Using the existing full-block 2D DCT basis to represent arbitrarily-shaped image

segments is attractive since existing decoders for rectangular images can be used without

modifications. However, as described earlier, the shape-projected DCT basis functions,

{ }, are generally not orthogonal and linearly dependent. There are multiple solutions for

equation 5-1 if { } are used as the basis functions. Instead of finding a fully accurate

representation, Kaup and Aach [Kaup92] proposed a successive approximation method to

calculate only the most significant coefficients. However, the computational overhead of

iterative approximations may be significant. Also, the number of unorthogonal transform

basis functions stays the same even when the image segment size is small.

In this section, we first briefly review Kaup and Aach’s approach based on our

shape-projected subdomain formulation. Then, we apply their technique to constant-rate

and constant-quality compression. Some subtle issues imposed by quantization of

transform coefficients are also addressed.

d̂i

d̂i
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• Perfect Reconstruction vs. Non-Perfect Reconstruction

If a linear representation can reconstruct the original function without any error, it

is a perfect-reconstruction (PR) representation. Otherwise, it is anon-perfect-

reconstruction (non-PR) representation. If the subspace spanned by the representation

basis functions can not contain the image segment vector, then the PR property cannot be

achieved. As mentioned earlier, the shape-projected DCT basis functions { } form a

linearly dependent but complete set1 of vectors in the shape-projected subspace. We

should be able to choosem linearly independent vectors from the projected DCT vectors

to form a basis in the subspace and achieve the PR property, wherem is the dimension of

the shape-projected subspace. The issue is to find the basis that can produce the best

energy compaction.

Kaup and Aach used a successive approximation algorithm to iteratively project

the image vector to each basis function and choose the basis function with the largest

projection in magnitude in each iteration, i.e.,

Project(r(n), ) = (5-5)

r(n+1) =r(n) - Project(r(n) , ) (5-6)

wherer(n) is the residual error in the nth iteration, { } are the shape-projected transform

basis functions (e.g., the shape-projected DCT basis functions), and  is the optimal

basis function with the largest projection in each iteration, as illustrated in Figure 5-7.

Note that the same basis function could be chosen repetitively since { } are not orthogo-

nal. However, one problem is that the number of transform coefficients may exceedm (the

image segment size) without achieving the PR property.

1. A set of vectors iscomplete in a linear space if they can span the entire space.

d̂i

d̂opt Max Project r n( ) d̂i,( )( )
i

d̂opt

d̂i

d̂opt

d̂i
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One way to achieve the PR property in this iterative algorithm is to accumulate the

chosen basis functions in each iteration and project the image segment to the entire set of

chosen basis function, rather than to a single basis function only. That is, the following

operations are performed during each iteration.

Di(n) = Union(Dopt(n-1) , ) (5-7)

Project(r0, Dopt(n)) = (5-8)

r(n) = r0 - Project(r0, Dopt(n)) (5-9)

whereUnion is simply adding a vector to a vector set, that is,Union({d1, d2, ... , di}, di+1)

= {d1, d2, ... , di+1}, Dopt(n) is the entire set of optimal basis functions accumulated from

iteration 1 to n,r(n) is the residual error after n iterations, andr0 is the initial residual error

(i.e., the original image segment). In each iteration, we keep the set of basis functions cho-

sen from last iteration and add an additional basis function to minimize the residual error

(i.e. maximizing the projection). The dimension of subspace spanned by the basis func-

tions is incremented by one in each iteration1. Note that in order to find the optimal basis

function during each iteration, we need to project the image segment vector to a large

number of possible set of basis functions (i.e.,Di(n) of Equation 5-7), each of which

1. This is true until the residual error becomes zero.

d̂opt

largest projection

FIGURE 5-7 Kaup and Aach’s successive approximation method find the transform basis function
with the largest projection in each iteration.

d̂i

d̂ j

r(n)

d̂i

Max Project r0 Di n( ),( )( )
i
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requires solving a complete system of linear equations. This computational overhead is

significant.

Another interpretation of the above PR iterative approximation algorithm is that

during each iteration we not only add a new basis function, but also make the remaining

unchosen basis functions and the residual error orthogonal to the chosen basis functions

by projection, i.e.,

, ∀ (5-10)

Dopt(n) = Union(Dopt(n-1) , ) (5-11)

, ∀ (5-12)

r(n+1) =r(n) - Project(r(n) , ) (5-13)

where  is the new basis function added to the chosen setDopt in iteration n.

Essentially, we reduce the dimension of the residual error and remaining basis functions

successively. During each iteration, all remaining unchosen vectors are made orthogonal

to the chosen set by Equation 5-12. Therefore, the optimal basis function in each iteration

is simply the one with the largest projection of the residual error, as shown in Equation 5-

10. The complex process of iteratively solving a complete linear equation system in Equa-

tion 5-8 is avoided.

This approximation algorithm can achieve the PR property afterm (the image

segment size) steps, since only linearly independent basis functions are chosen. Also, the

residual error decreases faster than the non-PR approximation method described above

with some extra computational overhead.

d̂opt n( ) Max Project r n( ) d̂i n( ),( )( )=
i

d̂i Dopt∉

d̂opt n( )

d̂i n 1+( ) d̂i n( ) Project d̂i n( ) d̂opt n( ),( )–= d̂i Dopt∉

d̂opt n( )

d̂opt n( )
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• Constant Rate vs. Constant Quality

The above successive approximation algorithm successively increases the number

of coefficients and reduces the residual error. As discussed, the residual error always

decreases to zero afterm steps for the PR approximation but not for the non-PR

approximation. In practice, the number of coefficients used is determined by the available

output transmission capacity of the encoder, the acceptable reconstructed image quality,

and the affordable processing power of the hardware resources. Rate control can be easily

achieved by limiting the number of generated coefficients. Quality control can be

performed by measuring the final residual energy. Lastly, the computational complexity

depends on the number of iterations performed. These controls are further complicated by

quantization of the transform coefficients, which will be discussed in the following.

• Quantization

Transform coefficients are usually further quantized to increase the compression

ratio. Small coefficients may be truncated to zero after quantization. Thus, after

quantization, the proportionality between the recovered image quality and the number of

iterations may become invalid. The reason is twofold. First, small coefficients obtained in

later iterations are truncated to zero. They will not increase the recovered image quality

level. Second, existing coefficients may be changed when new coefficients are added

(particularly in the PR approximation technique). These changes may cause the quantized

approximation more distant from the perfect representation and thus increase the

prediction error. Figure 5-8 shows the peak signal-to-noise ratio (PSNR) of a simple image

segment for each successive approximation. The PSNR after quantization begins to drop

after four iterations. One way to avoid this problem is to integrate the quantization into the

optimization process. Namely, change equation 5-8 to the following

Project(r0, Dopt(n)) = (5-14)Max Quantz Project r0 Di n( ),( )( )( )
i
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In other words, we choose the basis function with the largest projectionafter quantization.

This increases the computational complexity, but the recovered image quality, as shown in

Figure 5-8, becomes monotonically non-decreasing and generally higher than that

obtained from the original approach. Another way to avoid the quality decline due to over-

iteration is to end iteration when quality after quantization starts to drop or reach a preset

quality goal.

5.1.2.3  Adaptive Transform Bases

Intuitively, the spatial statistics of an AS image segment varies with its irregular

shape. Thus, it requires different optimal transform bases. For example, image pixels of a

single line may prefer a 1D DCT basis while a square image block may prefer a 2D DCT

basis. In this section, we describe an approach which uses adaptive transform bases based

on the shape information of the input image segment. As shown in Figure 5-9, the shape

information is also available at the receiver, where the correct transform basis can be used

to reconstruct the original image signal. It is again worth mentioning that we do not need

to transmit the transform basis functions to the decoder.

38.0

40.0

42.0

44.0

46.0

10

(dB)

(# iteration)

integrated approach

original

FIGURE 5-8 A simple image segment and its PSNR in each iteration of the PR successive
approximation coding algorithm. The original method finds the minimal residual errorbefore
quantization, while the integrated method finds the minimal residual errorsafter quantization.
We use uniform quantization here.
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• Existing Orthogonal Transform Bases

Finding the transform coefficients is simplified if the basis functions form an

orthogonal set, in which case the coefficients can be obtained by projection. (If the basis

functions are not orthogonal to each other, then we need to solve a complete linear

system.) Also, orthogonal basis functions usually perform better in separating the signal

energy in the transform spectrum and thus improve the compression performance.

One way to construct an orthogonal transform basis is to reshape the arbitrarily-

shaped image segment into a 1D array and apply the 1D DCT basis. The DCT is known to

be close to the optimal Karhunen-Loeve Transform (KLT) if the image has high spatial

correlation. However, except for single-line shapes, arbitrarily-shaped image segments

usually do not have exact 1D spatial correlations. Furthermore, the dimension of the 1D

DCT basis changes with the image segment size. This will also make the codec design

complex.

Another way to construct orthogonal basis functions in the subspace SB is to use

the Gram-Schmidt algorithm, as proposed in [Gilge89]. The Gram-Schmidt algorithm can

extract an orthogonal subset of functions out of a larger set of arbitrary functions. One

possible initial set of functions for the Gram-Schmidt algorithm is the traditional 2D DCT

FIGURE 5-9 Use the shape information to assist in choosing the optimal transform basis. The
shape information is also available at the receiver and thus the correct transform basis can be
used to reconstruct the original image.

Transform Transform

shape

Coder Decoder



147

basis. Suppose the dimension of the full block isn and the dimension of subspace SB is m

(m≤n). Let di’s represent the original DCT basis function and ’s represent their

projected version in the subspace SB. It can be shown that dim(span{di})=n1,

dim(span{ })=m, and { } are linearly dependent ifm<n.

Actually, in the Gram-Schmidt algorithm, we still have a great deal of flexibility in

choosing different orthogonal subsets from a larger set of functions. In later simulations,

we start from the DCT basis functions with the smallest zonal order2. The final choice of

orthogonal basis depends on the input image shape.

• New Orthogonal Transform — KLT-Like Transform

The KLT can be shown to be the best transform algorithm for the rectangular

image segments if the spatial statistics of the input images are known. The DCT can be

derived from the KLT if the image assumes a first-order Markovian model with high

spatial correlation [Jain89]. We propose a new transform basis using this implication.

Using the same assumption of a first-order Markovian model, we can find the variance-

covariance matrix for an arbitrarily-shaped image segment. For example, if the image

segment hasm pixels, then we can rearrange the image segment, P(x,y), to a 1D array ofm

elements, and define am×m variance-covariance matrix, C, with

Cij= (λ1)
|k-l| ⋅ (λ2)

|p-q| (5-15)

whereλ1 andλ2 are the correlation coefficients in x and y direction, P(k,p) is thei-th ele-

ment in the 1D array, and P(l,q) is thej-th element in the 1D array. Figure 5-10 shows an

1. dim(span{di}) stands for the dimension of the vector space spanned by the vector set {di}.

2. The zonal order is often used in coding the transform coefficients. The transform

coefficients are transmitted in order of increasing spatial frequency (starting from the upper-

left corner) [Netravali88].

d̂i

d̂i d̂i
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example of a 4-pixel segment in a 4×4 image block. For simplicity, we assume thatλ1

equalsλ2 in later simulations.

Using a technique similar to that for deriving DCT from KLT, we can set the

correlation coefficientsλ1 (λ2) to a value close to unity (e.g. 0.9) and find the eigenvectors

of the above variance-covariance matrix, C. Since the above variance-covariance matrix is

real and symmetric, it has an orthonormal basis of eigenvectors if it is non-singular (i.e.,

λ1 and λ2 are not both 1) according to the real Schur decomposition theorem [Golub89].

Hopefully, these KLT-like transform bases can encode AS image segments as well as the

DCT basis for the traditional rectangular image blocks. We will show the compression

performance of this technique in the next section.

5.1.3  Performance Comparison

In this section, we use the irregular shaped image segment shown in Figure 5-2

(Miss USA) as the test case to simulate the performance of various transform coding

schemes described in this paper. Only the partially defined boundary blocks (8 pixels× 8

pixels each) are used. As discussed earlier, it is difficult to have a quantitative measure of

energy compactness of a transform spectrum. Instead, here we try to evaluate the rate-

4 pixels× 4 pixels

image
segment

1D array:

(a)

{P(3,1), P(4,1), P(4,2), P(4,3)}

1 λ2 λ1λ2 λ1
2λ2

λ2 1 λ1 λ1
2

λ1λ2 λ1 1 λ1

λ1
2λ2 λ1

2 λ1 1

(b)

FIGURE 5-10 (a)Reshape the image segment into a 1D array and (b)construct its variance-
covariance matrix based on the 1st-order Markovian model.
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distortion performance of each transform scheme. The distortion is measured by the peak

signal-to-noise ratio (PSNR) of the recovered image. The rate is represented by the

compression ratio, i.e. the number of pixels inside the image segment divided by the

number of non-zero transform coefficients after quantization. The results are shown in

Figure 5-11. Note that uniform quantizers are used.

There are three different groups of coding schemes in Figure 5-11. The first group

uses adaptive transform bases (section 5.1.2.3), including the 1D DCT, the proposed KLT-

like transform basis, and DCT-based orthogonal transform bases proposed by Gilgeet al.

These algorithms change the transform basis when the image segment shape is changed.

The transform bases are orthogonal and complete in the shape-projected subspace SB.

Therefore, the perfect reconstruction property is assured if the transform coefficients are

not quantized. At the decoders, the adaptive transform basis can be recalculated in real

time or pre-calculated and stored in memory in advance. However, for the latter case, the

required memory storage could be quite large due to the wide variety of possible shapes.

Kaup_snr
KLT-like

1D DCT
mirror-image extension

Zero-stuffing

29.0

33.0

37.0

41.0

45.0

49.0

53.0

2.00 4.00 6.00 8.00 10.00

Ortho_DCT

(compression ratio)

(PSNR, dB)

FIGURE 5-11 Rate/Distortion curves for various transform coding schemes for the image
segment shown in Figure 5-2 by using uniform quantizers. (Kaup_snr represents Kaup &
Aach’s successive algorithm which iterates until the PSNR before quantization exceeds 50
dB.) The average PSNR is computed over the boundary image blocks only.
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The second group of algorithms include modified versions of the successive

approximation proposed by Kaup and Aach [Kaup92]. As discussed in section 5.1.2.2, the

iteration process can be based on the output quality or rate constraints. For example, a

quality-based scheme may iterate until the PSNR reaches 50 dB; a rate-based scheme may

iterate until the number of transform coefficients exceeds 25% of the number of the

original pixels. On average, for the same performance level, the quality-based schemes

need fewer iterations than the rate-based schemes. The reason is that the quality-based

schemes can adapt to the local activity of individual image blocks and spend more

computations on busy image blocks than on flat ones. The overhead of this successive

approximation algorithm is only in the encoders. Existing decoders can be used to

reconstruct the image segment without any modifications. Note that this group of

algorithms can achieve perfect reconstruction (PR) at some cost in extra computation, as

discussed in 5.1.2.2. The PR iterative scheme usually has a slightly higher quality than the

non-PR iterative schemes at the same compression rate.

The third group of coding algorithms directly extend the image segments into full

image blocks and apply the traditional 2D DCT algorithm. Two results are shown in

Figure 10 — zero-stuffing and mirror-image extension proposed in Section 5.1.1.1. After

augmentation, the image segments are treated as the regular rectangular image blocks. No

overhead is introduced while perfect reconstruction is assured.

From the R/D curves shown in Figure 10, we can see that the adaptive-basis

schemes (the 1st group) and the iterative schemes (the 2nd group) outperform the most

straightforward scheme (i.e., zero-stuffing) by a quality difference of 5-10 dB. The only

exception is the 1D DCT, which suffers a lower performance (about 3-4 dB difference) at

high compression ratios compared to other complicated schemes. This is a reasonable

result since an arbitrarily-shaped 2D image segment usually does not have the spatial

correlations similar to those found in a 1D image sequence.
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In order to avoid severe computational overhead, we use the non-PR iterative

scheme in our simulations. However, a large number of iteration (20 iterations in average)

is still required for the iterative method to achieve the performance shown in Figure 5-11.

During each iteration, the residual vector needs to be projected to 64 possible basis

vectors. The computational overhead is still quite significant.

A satisfactory performance is observed for the proposed mirror-image extension

method. It can achieve a 3-4 dB compression gain over the zero-stuffing method without

any significant overhead.

Table 5-1 lists some major characteristics and compression performance for these

coding algorithms. This comparison should be useful for system-level designs. If the

processing resources are abundant, fancy algorithms like adaptive or iterative methods can

be used to improve the reconstructed image quality. Otherwise, we can use simple mirror-

image extension technique to achieve a fairly good reconstructed image quality. In

addition, both adaptive and iterative algorithms require revision of the current codec

hardwares, but the mirror-image extension technique is compatible with existing

hardware.



152

5.2  Shape Representation

5.2.1  Review of Different Encoding Methods

For ASVO manipulation and compositing, the shape information is needed in

addition to the image pixel values. In Chapter 2, we mentioned using theα channel to

represent the irregular region of an ASVO. It is a pixel map data structure, with oneα

value for each pixel. Usually, theα value is equal to one for internal pixels, zero for

external pixels, and between 0 and 1 for boundary pixels.

There are other possible data structures for representing irregular shapes, such as

run length code, quadtree, and chain code (or so-called boundary code) [Foley90, Dyer90,

Freeman74]. Each has different advantages and disadvantages. Samet wrote a good survey

a. This is the gain of the average PSNR (in comparison to the zero-stuffing meth-
ods) at the fixed compression rate. Note that the average PSNR is computed
over the boundary image blocks only.

b. orthogonal with respect to the shape-projected subspace

c. 20 iterations for the R/D curve shown in Figure 5-11

Table 5-1 Characteristics of several transform coding algorithms for arbitrarily-
shaped image segments.

Transform
Bases

Iterative
Computations

Perfect
Reconstruction

(PR)

Compression
Gaina

Orthogonal_DCT adaptive,
orthogonalb

Yes 6-12 dB

KLT-like adaptive,
orthogonal

Yes 5-10 dB

1D DCT adaptive,
orthogonal

Yes 2.7-7 dB

Kaup & Aach’s iter-
ative method

static Yesc Possible 5-10 dB

Mirror-image
extension

static,
orthogonal

Yes 2.7-4 dB

Zero-stuffing static,
orthogonal

Yes —
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paper on the quadtree and related hierarchical data structures [Samet84]. The run length

code and the chain code both have the advantage of compact representations. The run

length code is particularly useful for raster displays. The chain code, however, can carry

local geometrical information along the boundary (such as turns, straight lines). Quadtree

has been used in the hierarchical representation of graphics and colored images

[Strobach91, Samet88]. It also provides an efficient structure for image processing such as

searching, superposition, intersect, and geometrical transformation [Hunter79, Samet88].

In terms of space efficiency, we list the space complexity of different data

structures in Table 5-2.1 We use the 8-connectivity chain code; thus, each chain code

requires 3 bits. The worst-case quadtree complexity is based on the bound theorem derived

by Hunter [Hunter79]. We also use the rabbit image segment shown in Figure 2-5 as a test

example to obtain some experimental figures, listed in the third column. The chain code

has the lowest complexity, while the pixel map has the highest. The quadtree has some

overhead due to internal nodes. But we can reduce the overhead to some extent by using

pointerless representations, such as the linear quadtree and the DF-expression [Samet84].

1. Here we compare the complexity of binary pictures only, although these data structures can

be extended to colored pictures or multi-valuedα values.
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It is interesting that the complexity of quadtree depends on the reference position

where image segment is embedded into a square area. Liet al. have studied this issue and

proposed a normalized quadtree with respect to translation [Li82]. For example, in Figure

5-12, we show the relationship between the space complexity of an example AS image

segment (the rabbit) and the choice of the reference point. We observe a variation of about

22% when the reference point shifts. The variation extent heavily depends on the AS

image segment. For example, for a simple rectangle, the variation can be as high as 400%.

Therefore, in order to optimize the quadtree complexity, it is worthwhile to try several

different reference locations. In addition, as illustrated in Figure 5-12, the complexity

shows an approximate periodicity (usually with period of approximate 2 or 4). Therefore,

we can search possible positions in one period only, and the computational overhead

should be insignificant.

Our objective is not to propose new data structures for AS image segments.

Instead, we use the chain code described here to help in another important process —anti-

aliasing.

a. Assume the AS image segment has an 2q pixel by 2q pixel size.

b. The complexity of quadtree depends on the shape of the object and the
choice of the reference point. q is defined as above; p is the perimeter
of the object.

c. Based on our simulations, the rabbit segment has about 3000 quadtree
nodes. We use the DF-expression representation, in which each
quadtree node requires two bits.

Table 5-2 Comparisons of space complexity of different shape representations.a

complexity example

Binary Map 1 bit per image pixel 1 bit/pixel

RLC q bits per boundary pixel 0.127 bits/pixel

Quadtree # of nodes≤ 16q-11+16pb 0.092 bits/pixelc

Chain Code 3 bits per boundary pixel 0.048 bits/pixel
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5.2.2  A Joint Approach to Shape Coding and Anti-Aliasing

In section 2.5, we described how to use theα channel to perform anti-aliasing

along the object boundary to remove the “jagged” effect, but we did not explain how to

produce theα values in the first place. For graphic objects like curves and polygons, their

α values can be generated mathematically. However, for general irregularly-shaped image

segments, the mathematical representation is not available. Given the binary pixel map

representation of an AS image segment (0 for external pixels and 1 for internal pixels),

how do we calculate theα values near the boundary in order to smooth the boundary

appearance?

One straightforward approach is to blindly apply low pass filtering on the original

binaryα values of the AS image segment to produce newα values. The resultingα values

are 1 inside the boundary, 0 outside the boundary, and between 0 and 1 near the boundary.
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FIGURE 5-12 Changing the reference position (in the diagonal direction) of the rabbit image
segment within the circumscribing square frame. The resulting quadtree complexity, i.e. the
number of nodes, is shown on the right.
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The boundary is blurred to some extent depending on the tap length of the filter. However,

this approach does not consider the local geometry variation along the object boundary.

Some types of object boundaries may not need anti-aliasing, such as straight horizontal or

vertical boundaries. By blindly applying low pass filtering, we introduce unnecessary

blurring effect along those boundaries.

One possible approach for rectifying this problem is to calculate theα values

based on the chain code representation of the object shape. Intuitively, the chain code

carries the local geometrical information about the object boundary. For example, the 8-

connectivity chain code uses 3 bits to indicate the relative direction between the current

boundary pixel and its next boundary pixel, as shown in Figure 5-13.

If we look at a fixed-sized window circumscribing each boundary pixel, there are a

finite number of possible patterns of chain codes, and the corresponding local geometry, in

the observed window. In Figure 5-14, a 3 pixel by 3 pixel window and all possible chain

code patterns are illustrated. The center pixel is the current pixel, while the additional

shaded pixel is the new pixel to be included as the new boundary pixel. We modify theα

values for both the current pixels and the newly included boundary pixels to fractional

0
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3

4

5

6

7

Chain Code: *, 0, 7, 6, 0, 7, ...

*

FIGURE 5-13 The 8-connectivity chain code uses 3 bits to represent the pointer from current
boundary pixel to the next boundary pixel. The example shown on the right follows a counter-
clockwise direction. * stands for the starting point.
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numbers in order to smooth the boundary. In essence, we approximate the local boundary

geometry based on the chain code sequences within the observed window associated with

the current pixel. The longer the chain code sequence we observe, the more accurate the

boundary information we obtain. Examples shown in Figure 5-14 use one incoming chain

code and one outgoing chain code respectively.

Figure 5-15 illustrates the procedure for generating the newα values based on the

chain code pattern in the observed window. The procedure is pixel-wise iterated along the

object boundary. In some cases, we need only modify theα value of the current boundary

pixel; in other cases, we may need to add a new boundary pixel.

Since there are only a finite number of possible geometrical patterns, the table

lookup method is suitable for generating the requiredα values. The table size depends on

FIGURE 5-14 All possible chain code patterns for a 3 pixels by 3 pixels observed window centered
at each boundary pixel. The center pixel represents the current boundary pixel. The chain code
runs in the counter-clockwise direction, thus the interior side (the black area) is on the left side.
The additional shaded pixel is included as new boundary pixels with fractionalα values (from
[Takahashi93]).
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the size of the observed window (and therefore the length of the associated chain code

sequence). For example, if the observed chain code length is two (as in Figure 5-15), then

the lookup table has only 16 entries. Theα value of the boundary pixel can be obtained in

advanced by uniformly averaging the originalα values of its neighboring pixels. The anti-

aliased image generated by this approach and that by the traditional LPF approach are

compared in Figure 5-16. The subjective quality seems to be comparable. However, the

anti-aliased image by the chain code approach seems to look sharper and suffers less

boundary blurring effect than that by the LPF. This is mainly because the chain code

approach always limits the boundary zone to 1 or 2 pixels, while a uniform 3× 3 LPF

produces a 3-pixel wide boundary zone.

Lookup

Table

{Ci, Ci+1}
{ αi}

{Ci, Ci’, Ci+1’}
{ αi, αi’}

Ci
Ci+1

FIGURE 5-15 Examples showing the proposed table lookup technique for generatingα values for
boundary pixels. Ci represents the chain code andαi represents theα value. The boundary shape
is modified in (a), but not in (b). Shaded pixels highlight changes (either in the chain code or theα
value).

Lookup

Table

{Ci, Ci+1}
{ αi}

{Ci, Ci+1}
{ αi’}

Ci Ci+1

(a)

(b)
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The computational complexity for the chain code anti-aliasing method includes

only one table lookup operation per boundary pixel. This has lower computational

complexity than the LPF (9 multiplications plus 8 additions per boundary pixel for a 3× 3

uniform LPF). For a test image with a size of 256 pixels by 256 pixels, the chain code

approach needs 0.62 seconds for anti-aliasing, compared to 8.87 seconds needed for the

LPF. Also, by only storing those fractionalα values associated with the boundary pixels,

the chain code plusα channel method can achieve a compression rate of about 21:1,

compared to the plain pixel map representation.

5.2.3  Iterative Transformations of Arbitrarily-Shaped Video Objects
In situations such as desktop multimedia editing and animation, ASVO’s are

“manipulated” before they are displayed. By “manipulation” we mean those image

FIGURE 5-16 Example pictures showing the anti-aliasing effect by using the traditional approach
(uniform low-pass filtering) vs. our proposed table lookup approach (combination of the use of the
chain code and theα value).

New LPF

Original
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transformations such as geometrical transformations, linear filtering, and so on. One

question arises when we jointly consider image transformation and anti-aliasing: how do

we treat theα values for anti-aliasing in image transformations? Note that here we focus

on processing theα channel of ASVO’s. We assume the image pixels are processed by

traditional image transformation techniques [Foley90].

Figure 5-17 shows two separate approaches to combining anti-aliasing and image

transformations. The first approach keeps the anti-aliased copy of the object for any future

image transformations and display. The anti-aliased copy of the video object may be from

the initial video capture (point A) or from the results of subsequent manipulations (point

B). All image transformations are assumed to have the anti-aliasing function embedded,

such as the box area averaging algorithm for scaling and translation [Weiman80]. The

advantage of this approach is that the stored copies of AS objects, whether they are

original or processed, have been anti-aliased and can be displayed directly without further

processing. However, one shortcoming of this approach is that the object boundary

becomes more blurred each time the object is processed. For example, Figure 5-18 shows

the blurring effect after 10 consecutive subpixel translation operations.



161

Anti-
Aliasing

1
0

1
0

0<α<1 Geo.
Trans.+

1
0

1
0

Geo.
Trans.

Display Anti-
Aliasing

Display Anti-
Aliasing

 Anti-
Aliasing

Approach I Approach II

FIGURE 5-17 Two different approaches to combining image transformation and anti-aliasing
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As shown in Figure 5-17, another approach to combining image transformation

and anti-aliasing is to use the original, “jagged”, copy of the image object as the source

image for all future image transformations. The resulting image would need to be anti-

aliased before being displayed. By avoiding accumulating the blurring effect in iterative

geometrical transformations and anti-aliasing, the final displayed image should be much

sharper but with jagged artifacts removed by the final-stage anti-aliasing. One immediate

shortcoming of this approach is that the intermediate processed images are not stored. Any

future operations need to use the original image object as the source image in order to

avoid accumulating the blurring effect. This method can be inefficient in some cases like

AS image animation (e.g. translate 1/2 pixel per iteration, or scale up by 1.1 times per

iteration) since incremental implementations are not feasible. However, sometimes it may

be possible to use a single composite operation to replace a sequence of image

transformations. For example, the n-th frame in a 1.1 times-per-iteration up-scaling

sequence can be achieved by a (1.1)n times up-scaling operation. In this case, there is no

computational overhead.

Compositing multiple ASVO’s based on theα values has been described in

Chapter 2. If we use the first approach to manipulate each individual video object, theα

FIGURE 5-18 The blurring effect of iterative image transformations. (a) the original object (b) the
result after 10 consecutive subpixel translations, by using Approach I in Figure 5-17. (from
[Takahashi93])

(a) (b)
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values are already available. In the second approach, because the stored video object is the

original “jagged” copy, we need to perform the anti-aliasing process to obtain theα values

before performing compositing. After compositing, the resulting composited video object

is anti-aliased (i.e., blurred); there is no way to recover the exact boundary information of

the original image object. In this case, we are forced to use the first approach, which

incorporates anti-aliasing and geometrical transformations into the same iteration loop.

5.3  Summary

We have studied efficient coding schemes for arbitrarily-shaped (AS) image

segments, which may appear in applications like multimedia workstations. We

investigated coding schemes for both the image pixels and the shape of the AS image

segments. For the image pixels, we considered only the intraframe transform coding,

which can further be categorized into two different types —brute-forth and shape-

adaptive transform coding. The latter uses the given shape information to improve the

coding efficiency by changing the mapping process for calculating transform coefficients

(e.g., Kaup and Aach’s successive approximation algorithm) or by changing the transform

basis adaptively (e.g., Gilge’s orthogonal transform and our proposed KLT-like

transform). Based on our simulations, these algorithms can improve the coding

performance by 5-12 dB at the cost of extra computations or memory resources at the

receiver.

In relation to the shape information, we propose a new joint approach to encode

the shape with the chain code and also use the chain code to generate theα values required

in anti-aliasing along the boundaries. This joint approach can improve space efficiency

compared to the straightforward bitmap representation of the arbitrary shapes. Because the

chain code can provide local geometrical information along the boundaries, it can generate

“better” α values (e.g., without unnecessary boundary layers ofα values) so that the

subjective quality is improved.

In addition to coding of the shape and image pixels, we also discuss two

approaches to handle iterative transformations and anti-aliasing of AS image segments.
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Keeping the original copy of image segments can avoid accumulation of the blurring

effect, but it may not be suitable for interactive applications. The alternative of using the

anti-aliased copy in each iteration has the advantage that all intermediate results are

displayable and reusable. However, the shortcoming is that the blurring effect could be

accumulated. The suitable choice depends on the requirements of specific applications.
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Chapter 6

Conclusions and Future Work

6.1  Conclusions

Video services on multimedia networks are emerging, as technology progresses in

related fields, such as video compression, video transmission, video storage, video

compositing/manipulation, and multimedia authoring. This dissertation focuses on video

signal compositing and manipulation. Our goals are to thoroughly investigate various

issues related to video compositing and manipulation and to provide efficient solutions for

low-cost high-performance video compositing systems.

We recognized three different degrees of freedom in implementing video

compositing:feature, location, and data format. We also observed strong interactions

among these degrees of freedom. In many cases, we can compromise performance in one

degree of freedom and gain great improvement in another. It is a non-trivial problem to

find the optimal solution for video compositing for different specific applications. We

need to explore the advantages of various approaches in each degree of freedom before

optimizing the overall system performance.

In Chapter 2, we explored the first degree of freedom—feature. We studied the

basic operations involved in various video compositing/manipulation functions. The

compositing functions can range from simple operations like opaque overlapping to

complicated ones like pixel-wise manipulations of arbitrarily-shaped video objects. In

order to provide a flexible and efficient platform for representing multi-point distributed

video compositing, we also proposed astructured video model, in which video objects are

defined to represent logical or physical components in a video scene. Compositing

functions are used to process each individual video object or to combine multiple video
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objects into a single composited scene. Although the definition of compositing functions

does not rely on the structured video model, we can represent video compositing functions

in an efficient and hierarchical way based on the structured video concept. In particular,

we described several possible data structures for representing video compositing

functions: time-varying scripts, expressions, ordered lists, and trees. The first three

structures are independent of final specific implementations and are on a higher abstract

level than the last one. The tree structure, however, has closer correspondence with

practical implementations.

The structured video model has both advantages and disadvantages. By keeping

the video objects in a video scene logically separate along the path from the source to the

final destination, various characteristics of user and service requirements can be satisfied

better. Also, the structured video model has the potential for more efficient transmission

and compression of video signals. However, by treating a video object as an inseparable

unit, we must apply the same compositing functions on all pixels in each video object. If

we want to apply different compositing functions to different parts of the same video

object, we must further divide the video object into separate smaller objects.

In Chapter 3, we proposed the principle ofshared distributed network

compositing. Basically, this concerned with the second degree of freedom for video

compositing:location. By distributively allocating the compositing hardware throughout

the network, we can satisfy various demands of different users and services. For example,

broadcasting programs can benefit from compositing at the source while interactive video

services can benefit from compositing at the user site. By sharing the same hardwares for

implementing the common compositing functions among different users and services, we

can reduce the overall cost. In order to find sharable compositing functions and optimal

mapping of compositing functions to network hardware resources, we also investigated

some restructuring properties of compositing functions based on the representations of



167

compositing functions proposed in Chapter 2 (such as distributive, commutative, and

associative properties of compositing functions). The approach of distributed network

compositing also imposed impacts on ATM/BISDN network designs. For example, multi-

point multi-connection calls need to be supported. Intelligent routing algorithms are

required to ensure the advantages of hierarchical compositing and to reduce redundant

traffics in multi-point connections.

The issue of choosing the optimal compositing location is further complicated by

the fact that most video signals are compressed when transmitted over networks. Image

quality loss could be accumulated in the repetition of compression processes when video

signals are composited at the intermediate locations in the network. We quantified this

quality loss by simulations in Chapter 3. Also, performing the same compositing function

at different locations may result in different recovered image quality. For example, user-

site compositing is of preference to other locations for compositing functions requiring

low-pass filtering (such as down-scaling).

In Chapter 4, we studied the third degree of freedom:data format. Since most

video signals are compressed when transmitted or stored, it motivate us to pursue efficient

compressed-domain compositing techniques. Compressed-domain compositing provides

the potential for a lower computational complexity and thus a lower hardware cost,

because the data rate is usually much lower in the compressed domain than in the

uncompressed domain and the conversion process between the uncompressed format and

the compressed format can be avoided. We derived mathematical formulae for typical

compositing functions in the transform domain (such as the DCT domain). We also

analytically and numerically compared the computational complexity of the DCT-domain

compositing approach and the uncompressed-domain compositing approach. The

computational speedup of the DCT-domain approach vs. the uncompressed approach

strongly depends on the compression ratio and specific compositing functions. In general,
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block-wise operations benefits more than pixel-wise operations. Based on our non-real-

time simulations, the computation reduction by using the DCT-domain approach ranges

from 60% to 75% for some typical video conferencing scenes.

The lack of linearity and orthogonality in the MC algorithm prevents compositing

in the MC-compressed domain. To overcome this obstacle in compositing widely-used

MC-DCT compressed video signals, we propose a new decoding algorithm to partially

decode the MC-DCT video to the DCT format. This allows us to apply the proposed DCT-

domain compositing techniques. Again, the computational speedup strongly depends on

the specific compositing functions and the compression characteristics, such as the

compression ratio and the non-zero motion vector percentage. For typical video

conferencing composited scenes, if block-wise operations are used, the proposed approach

can reduce the computation by 10% - 25%.

Besides the above three degrees of freedom for video compositing, we also studied

efficient coding schemes of arbitrarily-shaped (AS) image segments, which can be

considered as two-dimensional samples of general three-dimensional video objects. In

Chapter 5, we used two different problem formulations to derive the optimal transform

coding of image pixels of the AS image segments: thefull-block domain and theshape-

projected domain. We proposed a mirror-image extension coding method in the full-block

domain which could still apply the traditional DCT transform. In the shape-projected

domain, we can easily derive existing iterative approximation methods and shape-adaptive

transform coding methods in the literature. In addition, we derived a new KLT-like

transform bases in the shape-projected domain. Based on our experiments on some AS

image segments, the mirror-image extension technique can achieve fair compression

performance (in the sense of the rate-distortion relation) without any excess computational

overhead. Compared to the straightforward zero-stuffing technique, it can achieve a

quality gain of about 3-4 dB. The iterative approximation techniques and the shape-
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adaptive techniques can achieve higher performance gains (5-10 dB) at the cost of

complicated iterative computations or calculations of new transform bases.

In Chapter 5, we were also concerned with shape coding, anti-aliasing, and

iterative manipulations of AS image segments. Anti-aliasing is necessary for removing the

“jagged” artifact on the object boundary. Iterative manipulations of AS image segments

are encountered in applications such as image segment animation. We proposed a joint

approach to shape representation and anti-aliasing. By utilizing the local geometrical

information carried by the boundary code, we can efficiently generate theα values for the

boundary pixels, which are in turn used to perform the anti-aliasing process. Compared to

the traditional approach, which uses the low-pass filtering to produceα values, the

proposed approach has advantages of lower computational complexity and sharper object

boundaries. As for the iterative manipulations of AS image segments, we observed the

tradeoff relationship between the image quality and the computational complexity. The

blurring effect on image boundaries will become more and more serious after each

iterative transformation on the same image segment. This problem can be solved if we

always use the original copy of image segment as the source image in each iteration of

image transformation (thus avoiding any accumulation of blurring effect in each iteration).

However, in practical applications like animation, this approach could become quite

inefficient because the intermediate results are not stored and additional computations are

needed for obtaining the desired effect from the original image in each iteration.

In conclusion, we used asystematic approach in studying various aspects of

network video compositing. By exploring advantages and disadvantages in different

degrees of freedom for video compositing, we hope to provide a complete foundation

based on which optimal video compositing techniques for each specific network video

application can be achieved. Our work distinguishes itself from others in the literature by

integrating the explorations in all different degrees of freedom, i.e. feature, location, and
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data format, and also by looking at the interactions among these degrees of freedom and

the interactions between video compositing/manipulation and other multimedia

technologies, in particular video compression.

6.2  Future Work

Our study of network video compositing opens up a number of challenging topics.

Some topics are direct extensions of our previous work, while others are based on the

implications from our research results. We will discuss four issues in the following.

6.2.1  Optimal Resource Mappings for Distributed Compositing

We advocated the principle of shared distributed network compositing in Chapter 3

in the absence of a concrete algorithm for finding the optimal mapping from the abstract-

level representations of video compositing functions to actual network resources. Given

the dynamic requirements of users and services, how do we allocate the minimal amount

of network resources (e.g. transmission bandwidth, compositing hardware, and video

codecs) while completing as many compositing functions as possible? Given the network

resource configuration, how do we design the optimal mapping to achieve the highest

performance? Also, how do we implement new compositing requests to make the most out

of the existing compositing hardware allocations without affecting the quality of existing

services?

We have proposed abstract representations for video compositing functions and

studied their restructuring properties for finding the optimal mapping. Some researchers

have worked on the embodiments of concepts ofresource descriptors and resource

synthesizers, which are essential elements for the distributed implementation of

compositing functions in heterogeneous network environments. However, there is still an

important link missing: a concrete optimization algorithm which takes abstract-level
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descriptions of compositing functions and generates optimal mapping to network

resources.

Possible strategies are shown in Figure 3-5. We consider the user/service

compositing requests, the cost weighting factors of different performance metrics, and the

network resource configurations as given inputs. The objective is to find the optimal

mappings of all compositing functions to network resources so that the overall cost is

minimized. When compositing demands are low, all compositing requests can be

completed with the highest performance level. When compositing demands exceed the

capacity of the total network resources, compromises need to be made to minimize the

overall cost. Sometimes, it might also be necessary to adopt some admission control

mechanisms to guarantee a minimal quality level for each compositing request. However,

there are some difficult tasks, such as quantification of each specific performance factor

and finding the optimal mapping with the lowest cost function, involved in this approach.

Hopefully, by having more prototyping experiences and developing some subjective

principles, we can transform this problem into a solvable one. Also, the findings about the

resulting optimal mapping for each given resource configuration can be fed back to adjust

network resource deployment for further cost-performance optimization.

6.2.2  Video Compression and Compositing Co-Design

As we have found through this study, compression algorithms have significant

impact on the compositing process. In Chapter 4, we showed that the transform-domain

compositing approach is much more efficient than the uncompressed-domain compositing

approach for many compositing functions. However, due to the fixed block structure used

in the transform coding techniques (such as DCT), pixel-wise compositing functions may

not be so efficient as block-wise operations in the compressed domain. We have also

shown that, due to the lack of linearity and orthogonality in the MC algorithm,

compositing in the MC domain seems to be impossible.
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There are compression schemes which support convenient processing and

manipulation of images. In Chapter 5, we mentioned that using the hierarchical coding

methods (such as quadtree) for arbitrarily-shaped video objects allows us to use efficient

processing algorithms (such as scaling, intersection, superposition) directly on the

encoded data. In addition, it is known in the field of computer graphics that the Fourier

descriptor [Floey90] used for coding arbitrary shapes has an invariant property under

general geometrical transformations. However, these methods may not be effective for

high-quality colored image coding.

These findings strongly motivate the pursuit of a joint approach to efficient

compression and compositing. We may want to compromise some compression

performance in order to provide greater flexibility in video compositing and manipulation

in the compressed domain. For example, as shown in Chapter 5, if we modify the

traditional MC algorithm to limit the percentage of the non-zero motion vector for the

MC-DCT compressed video, the computational complexity of later DCT-domain

compositing operations can be greatly reduced. In practice, the joint optimization of the

compression algorithm and the compositing algorithm should be dependent on the

required compression performance, the required video quality, and the desired

compositing features.

6.2.3  Model-Based Video Coding

We have proposed a structured video model based on the assumption that all video

scenes are composed of video objects, each of which represents a logical or physical

object in the video signal. Our goal is to keep component video objects in a video scene

logically separate to obtain the flexibility of matching video compositing to the widely-

different characteristics of various users, services, and devices.
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In the literatures of video compression, a closely related research field is the

model-based video coding, also known as analysis-synthesis video coding. By assuming

all video sources are associated with some software models for signal generation and

display hardwares for image rendition, the analysis part extracts the parameters of the

models from the source signals and transmits the necessary model parameters to the

synthesis counterpart. The synthesis part uses the received parameters to reconstruct the

original video signals based on the same models. In many cases, transmitting the model

parameters is much more efficient than transmitting the encoded pixel data for the entire

image frame. Therefore, this has strong potentials for very-low-bit-rate video coding

applications such as the video telephony. However, obstacles exist in accurate real-time

video signal analysis, i.e. source feature extraction. Also, if the video objects become too

small, the overall compression advantage will be reduced because of the overheads

associated with processing tiny video objects.

After source signal analyses, efficient video object coding techniques are needed.

In Chapter 5, we have proposed several algorithms for coding two-dimensional arbitrarily-

shaped image segments. It should be a promising approach to extend our techniques to

three-dimensional video objects. This is a challenging topic which integrates interests in

video/image processing, computer vision, and computer graphics.

6.2.4  Video Format Conversion

There have been a great number of different compression standards proposed for

video, still image, and graphics. The choice of optimal compression technique strongly

depends on the specific application. For example, intra-frame coding techniques such as

JPEG (mainly DCT plus the variable length code) are used for still image compression.

Hybrid interframe coding such as H.261 and MPEG are used for visual communications

and multimedia applications. Lossless (or eventually lossless) coding techniques are used

for graphics data compression.
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In many cases, we need to convert video signals from one compressed format to

another. An interesting example is video coding in heterogeneous communication

networks. Different coding methods are preferred for different parts of the network.

Service providers and end users may use different video codecs. Here, the challenging

issues include: 1) efficient video format conversions, and 2) designing video compression

schemes for compatibility. Our proposed decoding algorithm for converting the MC-DCT

compressed video to the DCT format is an example of compression format conversion. It

can be extended and applied to conversion from the MPEG format to the JPEG format.

Since heterogeneous compression formats are unavoidable, it would be a

significant contribution to provide efficient conversion methods (or the so-called “video

transcoding”). One principle may be useful for designing video compression algorithms

for compatibility: there should bestrong coupling between the compression schemes

between which the conversions are made. For example, if we know we need to convert

from the MC-DCT compressed format to the DCT format, we may want to modify the

MC-DCT encoder so that the percentage of non-zero motion vector generated is moderate.

On the other hand, if we need to convert the DCT-compressed video signals into the

conditional replenishment format, we can use the energy difference of a few primary DCT

coefficients of the same image block as the activity measurement instead of using the

spatial distortion measurement. By using this strong coupling principle in designing

compression algorithms for different parts in a heterogeneous application environment, we

hope we can minimize the overheads of video transcoding and optimize the overall

performance.
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Appendix

A.1 Multiplication-Convolution Theorem for the DCT

We derive the multiplication-convolution relationship shown in equation (A-4-7)

in this section. First, we start from the one-dimensional case. Suppose a(n) is a signal

vector. We extend a(n) to form a new symmetric vector, s(n), and take its 2N-point DFT as

follows,

(A-1)

The DCT of vector a(n) is defined as,

(A-2)

It is known that the DCT of a vector is related to its DFT as follows,

(A-3)
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By using the multiplication-convolution relationship for the DFT, we can easily derive a

similar relationship for the DCT,

(A-4)

where “((n))2N” denotes “n modulo 2N”. If theα(k-m) variable in the above equation is

ignored, the operation is equivalent to a 2N-point circular convolution. The reverse rela-

tionship, the convolution-multiplication relationship, can be found in [Chiptrasert90]. We

can easily extend the above 1D results to the 2D case as shown in equation (A-4-7). Note

that the circular convolution is of the order of 2N points here.

A.2 Transform Domain Filtering

Linear filtering of images can be performed in both the spatial domain and the

transform domain [Chang92b, Lee92, Chiptrasert90, Ngan80]. For simplicity, we describe

the one dimensional (1D) case first. If x[n] represents the 1D input image sequence and

h[n] represents the finite-length filter coefficient vector, then the output filtered image

sequence, y[n], can be calculated as a linear convolution of h[n] and x[n]. That is,

y[n] = h[n] ⊗ x[n] (A-5)

Figure A-1 uses a matrix-vector multiplication to describe the convolution operation. Each

element of the output vector, y[n], is the inner product of the filter coefficient vector and a

corresponding segment of x[n]. If the image sequence is segmented into N-element seg-

ments, for example xk representing thekth N-element segment in the original image

sequence, then the above equation can be described as
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(A-6)

where s1= , s2= , and Hj are N×N matrices, as shown in Figure A-1.

If we concatenate all Hj matrices side by side to form a new matrix, H, then matrix H can

be defined as

H(i,j) = h(j-s1⋅N-i), if -l 1 ≤ j-s1⋅N-i ≤ l2 . (A-7)

Taking the transform operation on both sides of the above equation and inserting an

inverse transform/transform pair in front of the input segments, we can easily obtain,

 . (A-8)

If we use Pj to represent the matrix product T1H
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-1 (which can be calculated in
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Figure A-1 Using matrix-vector multiplications to describe the convolution operation.
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(A-9)

Note, T1 and T2 can be the same transforms such as the DCT.

To extend to two-dimensional (2D) separable filtering, we change the matrix-vector

multiplication to matrix multiplication with pre-matrices and post-matrices. Thus, equation (A-6)

becomes

(A-10)

where H represents vertical filtering (column-wise) and W represents horizontal filtering

(row-wise). The equivalent operation in the transform domain is as follows:

 , (A-11)

where Ti can be any transform matrices. For example, in the DCT algorithm, T2 is the

DCT transform matrix and T1=T2
t. Thus, the transform-domain 2D filtering can be calcu-

lated as a summation of several matrix products. Again, the pre-matrices T1H
iT3

-1 and

post-matrices T4
-1WjT2 can be calculated in advanced. The block structure alignment pro-

cedure mentioned in Section 4.4.3 uses similar operations in the transform domain, except

that the pre-matrices and post-matrices in block structure alignment are not for linear fil-

tering.

A.3 Computational Complexity of DCT-Domain Compositing
Operations

In this section, we discuss the computational complexity of the basic compositing

operations in Table 4-2. In these operations, the most important common one is sparse

matrix multiplications, such as A⋅P, or A⋅P⋅B, where P is the image block, A and B are

arbitrary matrices. Using regular matrix multiplication, it takes N3 multiplications and (N-

1)⋅N2 additions to compute A⋅P. But as we mentioned earlier, there are many zeros in the
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DCT coefficients of compressed images. We can use the RLC to easily find the locations

of these zero DCT coefficients and skip their associated redundant computations. The

resulting computational complexity is much less than that by using plain matrix

multiplications.

A.3.1 Matrix multiplication

Figure A-2 shows the operations for matrix multiplication of a sparse matrix with

regular pre-matrices and post-matrices, A⋅P⋅B, where P is a sparse matrix such as the DCT

coefficients of an image block. In computing A⋅P, each non-zero pij  element needs N

multiplications and N additions, which results in m⋅N multiplications and m⋅N additions if

there are m non-zero elements in P. In the product matrix AP, the number of non-zero

columns equals to the number of columns in P which contain non-zero elements. For

example, in Figure A-2, there are three non-zero columns in the sparse matrix P, and thus

three non-zero columns in the product matrix AP. Each non-zero column in AP needs N2

multiplications and N2 additions in computing (AP)⋅B. Therefore, the whole operation,

A⋅P⋅B, needs (m⋅N + n⋅N2) multiplications and (m⋅N + n⋅N2) additions, where n is the

number of non-zero columns n the first product matrix, AP.

In terms of compression parameters, the number of non-zero coefficients can be

expressed as N2/β, whereβ is the compression ratio. Further, the non-zero coefficients are

usually located in the low-order corner, i.e., the upper-left corner of P. Thus, an optimistic

estimate of the number of non-zero columns is , namely, N/ . The overall

complexity of A⋅P⋅B becomes (1/β + 1/ )⋅N3 multiplications and (1/β + 1/ )⋅N3

additions.

N
2 β⁄ β

β β
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A.3.2 Scaling

A video conferencing scene usually consists of several video windows of

conference participants, which are scaled down from their original size. As shown in

Figure 4-21(b) (Scene 2), the input video sequences are scaled down with ratios of 1/2×1/

2 and 1/3×1/3 respectively. In a 1/2×1/2 scaling operation, four blocks of original images

are reduced to a single block — new block = H1B11W1 + H2B21W1 + H1B12W2 +

H2B22W2, where Bi’s are the original neighboring blocks, Hi’s are the vertical scaling

matrices, and Wi’s are the horizontal scaling matrices, as discussed in section 4.4.5. We

can reorganize the operations to

(H1B11 + H2B21)W1 + (H1B12 + H2B22)W2 (A-12)

to remove some redundant multiplications. Since these operations are linear, they can be

performed in the DCT domain. By using the sparse matrix techniques, we find that its

complexity is equal to (4/β + 2/ )⋅N3 multiplications and (4/β + 2/ )⋅N3 + 3⋅N2 addi-

tions. After normalized to the original image size, the complexity becomes (1/β + 1/

(2⋅ ))⋅N multiplications and (1/β + 1/(2⋅ ))⋅N + 3/4 additions per pixel, as shown in

Table 4-2. Scaling operations with different ratios can be analyzed in a similar way.

p11 p23p34

=

×0× ×

A B

B

Figure A-2 Matrix multiplication of a sparse matrix with regular pre-matrices and post-
matrices.

p53

×
: non-zero column

β β

β β
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A.3.3 MC and Inverse MC in the DCT domain

To perform the (inverse) MC algorithm in the DCT domain (i.e. MCD and

MCD-1), we need to handle three different cases, depending on the motion vectors. If both

motion vector components,dx anddy, are zero or integral multiples of the block width, the

DCT coefficients of the prediction errors can be added to the DCT coefficients of the

reference block directly. If one of them is non-zero and not integral multiples of the block

width, we need to compute the DCT coefficients of the reference block from two

neighboring blocks — DCT(new block) = DCT(H1)DCT(B1) + DCT(H2)DCT(B2), which

requires 2⋅N3/β multiplications and 2⋅N3/β + N2 additions based on the sparse matrix

techniques.

If both the motion vector components are non-zero and not integral multiples of

the block width, we need to use equation (A-4-13) to perform block boundary adjustment

in both two directions. Its complexity is (4/β + 2/ )⋅N multiplications and (4/β + 2/

)⋅N + 3 additions per pixel, as discussed in the previous section. The overall complexity

for the MC algorithm in the DCT domain is the linear combination of the complexity for

these three different cases, weighted with the distribution percentage of the motion

vectors.

A.3.4 Pixel-Wise Translation

For pixel-wise translation, if the translation distance is not an integral multiple of

the block size in both directions, the required computations are exactly the same as those

for the MCD algorithm with non-zero motion vectors. But since every product matrix in

the parenthesis of equation (A-12) can be shared by two new blocks, the overall

computational complexity can be reduced to (2/β + 2/ )⋅N multiplications and (2/β + 2/

)⋅N + 3 additions per pixel, as shown in Table 4-2.

β

β

β

β
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