
 

Segmentation, Structure Detection  

and  

Summarization of Multimedia Sequences 

 

Hari Sundaram 

 

 

Submitted in partial fulfillment of  the 

requirements for the degree 

of Doctor of  Philosophy 

in the Graduate School of Arts and Sciences 

 

 

COLUMBIA UNIVERSITY  

2002 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2002 

Hari Sundaram 

All rights reserved 



   

 

ABSTRACT 

Segmentation, Structure Detection and Summarization of  

Multimedia Sequences 

Hari Sundaram 

This thesis investigates the problem of  efficiently summarizing audio-visual sequences. 

The problem is important since consumers now have access to vast amounts of  

multimedia content, that can be viewed over a range of  devices.  

The goal of  this thesis is to be able to provide an adaptive framework for automatically 

generating a short multimedia clip as a summary, when given longer multimedia segment 

as input to the system. In our framework, the solution to the summarization problem is 

predicated on the solution to three important sub-problems — segmentation, structure 

detection and audio-visual condensation of  the data.  

In the segmentation problem, we focus on the determination of  computable scenes. These 

are segments of  audio-visual data that are consistent with respect to certain low-level 

properties and which preserve the syntax of  the original video. This work does not 

address the problem of  semantics of  the segments, since this is not a well posed 

problem. There are three novel ideas in our approach: (a) analysis of  the effects of  rules 

of  production on the data (b) a finite, causal memory model for segmenting audio and 

video and (c) the use of  top-down structural grouping rules that enable us to be 



   

consistent with human perception. These scenes form the input to our condensation 

algorithm. 

In the problem of  detecting structure, we propose a novel framework that analyzes the 

topology of  the sequence. In our work, we will limit our scope to discrete, temporal 

structures that have a priori known deterministic generative mechanisms. We show two 

general approaches to solving the problem, and we shall present robust algorithms for 

detecting two specific visual structures — the dialog and the regular anchor.  

We propose a novel entity-utility framework for the problem of  condensing audio-visual 

segments. The idea is that the multimedia sequence can be thought of  as comprising 

entities, a subset of  which will satisfy the users information needs. We associate a utility 

to these entities, and formulate the problem of  preserving the entities required by the 

user as a convex utility maximization problem with constraints. The framework allows 

for adaptability to changing device and other resource conditions. Other original 

contributions include — (a) the idea that comprehension of  a shot is related to its visual 

complexity (b) the idea that the preservation of  visual syntax is necessary for the 

generation of  coherent multimedia summaries (c) auditory analysis that uses discourse 

structure and (d) novel multimedia synchronization requirements.  

We conducted user studies using the multimedia summary clips generated by the system. 

These user studies indicate that the summaries are perceived as coherent at condensation 

rates as high as 90%. The study also revealed that the measurable improvements over 

competing algorithms were statistically significant. 
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1 Introduction 

1.1 Segmentation, structure detection and summarization 

We encounter the world that we live in, as a multi-modal sensory experience. As you read 

these lines with your eyes, you are also paying attention to the environmental sounds — 

the quiet of  your home, the sounds of  the street, at the same time, you can sense the 

weight of  this thesis on your palms. If  we were to collect your sensory inputs, sampled 

say every 100 ms., for say a couple of  hours, we would be left with a tremendous amount 

of  raw data. However, if  someone were to ask you what you were doing at this moment, 

you would probably say “I am reading Hari Sundaram’s PhD thesis.” You would have 

effectively summarized your sensory experience over the past few hours into a single 

statement.   

To take those raw streams of  data from multiple sensors and produce a single sentence 

in English that communicates the essence of  the multi-modal experience, must 

necessarily be one of  the goals of multimedia summarization. This is however an 
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extremely difficult task, predicated as it is on many of  the open issues in computer 

vision, linguistics and auditory analysis.  

The goals of  this thesis are then necessarily much more modest and limited in scope — 

we shall create algorithms for automatically analyzing produced multi-modal data, such as 

films, and the result of  our work shall be a time-condensed multimedia clip, that shall 

provides a summary of  the original data. Our solution to the problem is predicated on 

the solution of  the following three sub-problems: 

• Audio-visual segmentation: In this problem, we are interested in breaking up 

the original audio-visual stream into manageable chunks of  data, where each 

chunk shares certain consistent properties.  

• Structure detection: This problem tackles the issue of  detecting a priori known 

structures in the data. We detect those structures specific to the film domain, that 

are important elements of  the film syntax.  

• Audio-visual condensation: The goal of  this problem is to take a segment that 

was the result of  the first algorithm, and time-condense the segment while taking 

into account the utility of  the different audio visual segments detected, and the 

elements of  syntax that were detected by our structure detection algorithm. The 

summary is generated using a constrained utility optimization.  

We shall present novel approaches of  each of  the sub-problems outlined above. The 

result of  this work is for example, to be able take a 50 min. multimedia clip and be able 
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to reduce it automatically to up 90% i.e. to a five minute video. These condensed videos 

are referred to as skims.  

It is an important aspect of  this work, that in our attempt to summarize the data, we 

make no attempt to understand the semantics of  the data. Instead, we focus on 

summarizing the original data stream by understanding the semantics of  the syntax of  the 

domain and preserving this syntax in the resulting summary. The summary multimedia 

clips resulting from our algorithm are deemed coherent and intelligible by viewers, in 

user studies.  

The rest of  this chapter is organized as follows. In the next section, we shall discuss the 

case for automatically summarizing multi-modal data. In section 1.3, we shall present the 

motivation and the solution outline to the three problems mentioned in this section. In 

section  1.3.3.6 we shall summarize the contributions of  this thesis and in section 1.5, we 

present the outline of  this thesis.  

1.2 Why is this problem interesting? 

The entertainment industry has always attempted to replicate the multi-modal sensory 

experience of  the everyday, into its products. Over the past few decades, with device 

costs falling due to more efficient means of  production, as well as more processing 

power available, this has resulted in several noticeable trends:  
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• The form of  entertainment has become much more sophisticated and 

incorporates more modes of  information — we now routinely have sophisticated 

graphic overlays that accompany the audio and the video.  

• There is much more information available to the average TV user than before. The 

advent of  digital cable has meant that the user now has immediate access to 

hundreds of  channels.  

• The content producer has now come home1 — the availability of  cheap camcorders 

has now meant that ordinary consumers are now routinely producing many hours 

home video.  

• The devices that enable access to multimedia content have increased; from initial 

access coming from movie theatres and television, people now access content 

from their PC / laptop and more recently on their cell phones (NTT DoComo’s 

3G wireless network in Japan and the more recent Sprint PCS’s 3G network in 

the United States. ). 

Hence, given the tremendous amount of  information that the user has access to, it would 

be extremely useful to be able to summarize the video data in such a manner that not 

                                                

1 Note that this is form of  content is not professionally edited or structured; however, as 

will be clear by the end of  the thesis, we shall be able to take the ideas generated in this 

thesis and find applications to non-produced data as well.  
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only efficiently summarizes the information that the user needs, but is also device and 

network adaptable.  

This thesis focuses on skim generation, as it is most closely approximates the original 

multimedia experience. While the thesis does not look at device and network adaptability, 

we solve the skim generation problem using a constrained utility maximization 

framework. This framework is general and is easily modified to incorporate the device 

and network characteristics.  

1.2.1 The use of  films as our dataset 

This work focuses on using produced data, specifically films as a dataset. Films may seem 

like unlikely candidates for automatic summarization, as they are highly expensive to 

produce and it seems likely that the film makers would spend some more money to 

create movie previews.  

A summary and a movie preview are not the same thing. The movie preview has a 

specific goal — to entertain and to entice the viewer into spending money into buying 

the product. The intent of  what is shown and the emotional responses that it generates 

may be very different from the actual film itself. The goal of  a summary is to preserve 

those multimedia segments from the original video data that satisfy the user needs. For 

example, a example of  a valid summary is one which contains only those scenes of  a 

particular actor making a cameo appearance in the film. Films make useful datasets for 

analysis for other reasons as well:  
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• They are produced content — there is an underlying grammar to the film form 

that influences the meaning. 

• The syntactical elements of  the film have specific meaning attached to them (e.g. 

dialogs) 

The rich nature of  the film content allows us to use the result of  this work in other 

domains that have domain specific grammar and have specific structural elements (e.g. 

baseball videos etc.) present. 

1.3 Problems addressed 

In the following sections, we shall present the intuition behind our solutions to the 

problems of  segmentation, structure detection and audio-visual summary generation by 

utility-based condensation of multimedia segments. 

1.3.1 Audio-visual segmentation 

The problem of  segmenting audio-visual data into smaller manageable chunks is a basic 

problem in multimedia analysis, and its solution helps in problems such as video 

summarization. Traditional work on video segmentation [35] [43]  [44]  [49] [95] [100] 

[101] [103]  has focused on partitioning the data into semantically consistent scenes. But, 

what exactly is a scene? The Oxford English Dictionary  has many senses in which the word 

“scene” appears, and we reproduce below two of  them that closely match what we are 

looking for.  
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The place where an action is carried on and people play their parts as in a drama; the scene 

of  action, the place where events are actually happening or business being done. 

A view or picture presented to the eye (or to the mind) of  a place, concourse, 

incident, series of  actions or events, assemblage of  objects, etc. 

Bordwell and Thompson, in their book Film Art  [8] , define a scene as follows:  

A segment in a narrative film that takes place in one time and space or that 

uses crosscutting to show two or more simultaneous actions. 

Examples of  such scenes include — a scene showing people on the beach, a 

marketplace, a segment showing a newscaster, a football game etc. Note that scenes are 

higher level abstractions than shots.  

The problem of  understanding the semantics of  scene, without context is extremely 

difficult. The semantics in the data exist at multiple levels, and depend upon amongst 

others, the world knowledge of  the viewer, the task of  the viewer, the intentions of  the 

creator. This is actually the familiar difficult computer vision problem of  scene 

understanding, that can only be satisfactorily solved in a restricted domain.  

The focus of  this research is the detection of  computable scenes. They are formed by 

looking at the relationships between elementary computable audio and video scenes and 

structure. The elementary audio and video scenes represent contiguous chunks of  audio 

and video respectively. These scenes are termed computable, since they can be 
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automatically computed using low-level features in the data. But, if  we are not 

interested in semantics of  a scene, why bother with computability? 

The focus on computability is really the idea of  task based segmentation — the goal of  

the segmentation algorithm being to assist in the solution of  another problem. In this 

work, the task of  the segmentation algorithm is to generate segments that preserve the 

syntactical structure of  the original video data. These syntactically correct segments form 

the input to our video summarization algorithm. 

There are three key issues investigated in this current work: 

• Memory: can we think of  the problem of  segmentation as the problem of  trying 

to remember data?  

• Production: how does the method of  production constrain the audio-visual data 

that we are trying to analyze?  (ref. Figure 1.1) 

Figure 1.1: How do the methods of production 

affect the data that we are trying to analyze? 
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• Structure: when we watch video segments that contain structure, we seem to 

group that structure into a single entity (e.g. dialogs). Can we systematically 

discover other interesting temporal structures?  

Central to the audio-visual segmentation framework is a model of  a causal, finite human 

memory. Constraints on the model stem from film making production rules and from the 

psychology of  audition. The final segmentation algorithm, which additionally depends 

on automatic structure discovery and silence detection, detects four types of  computable 

scenes.  

1.3.2 Structure detection 

The solution to the problem of  detecting structure in the multi-media data, plays an 

important role in the other two sub-problems outlined in the beginning of  this chapter 

— segmentation, as well as audio-visual condensation. But before we discuss the 

problem in detail, we need to answer a basic question — when does a sequence said to 

contain structure? To answer this question, we must resort to an intuition. 

1.3.2.1 An intuition 

Let us assume that we have sequence generator that outputs two symbols — A and B 

with equal probability. Now, let us examine the following two sequences generated by the 

system:  

A B A B A B A B A B A B 
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B B A B B A B A A A B A 

Both have 12 symbols with an equal number of  each symbol. Both sequences have the 

same probability of  occurrence, and will both require 12 bits to encode using entropy 

coding. Why then, does the first sequence appear instinctively to be structured, while the 

second sequence appears to be more random? The answer lies in looking at Kolmogorov 

complexity [21]  [51] .  

A.N. Kolmogorov was the great Russian mathematician who established the foundations 

of  the axiomatic approach to modern probability [51] . Later on in life, Kolmogorov was 

troubled by the idea of  an axiomatic approach to the idea of  randomness. For example, 

there seemed to be many instances of  random sequences that appear just once in nature, 

that do not fit well with the idea of  having been produced by a stochastic source. 

Conversely, there seemed examples of  “random” sequences that are actually 

deterministic. For example, it is well known that the digits in the sequence of  the 

expansion of  π pass all known tests of  randomness. However, a very simple program 

can generate the sequence. 

Kolmogorov defined the idea of  randomness using the model of  the universal Turing 

machine. The Kolmogorov complexity2 of  a sequence is the length of  the smallest 

program when input into a universal machine that outputs the string [21] [51] , (also see 

                                                

2 Also referred to as Algorithmic Information Complexity 
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appendix 13.1, for more details). Then, a sequence is defined to be random if  the 

following condition holds:  

 ( )lim 1,
n

K x
n→∞

=  (1.1) 

where K(x) is the Kolmogorov complexity of  the symbol sequence, n is the length of  the 

symbol sequence. In other words, the length of  the shortest program to print a random 

string is the print instruction followed by the string itself. Clearly, random strings are 

incompressible. 

1.3.2.2 Defining deterministic structure 

Structure (or structured-ness) in a deterministic sequence of  symbols is then defined as 

the converse of  randomness, as follows:  

 ( ) 1,K x
n

<  (1.2) 

 for all sequences of  arbitrary length. In other words, a structured sequence is 

compressible. 

How does this definition help us in disambiguating between the two sequences presented 

at the beginning of  this section? Clearly, the Kolmogorov complexity of  the first 

sequence is much smaller than the second one, since there exists a simple program to 

generate the first string: PRINT “AB” 6 times. 
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Defining structure using Kolmogorov complexity is problematic since it is well known 

that the Kolmogorov complexity of  an arbitrary number is non-computable, because this 

is the same as solving the halting problem [21] [51] . However, in the absence of  any 

formal notions of  structure, the definition using Kolmogorov complexity serves as a 

useful starting point to think about structured-ness of  a sequence. Rather than focusing 

on computability, we use this definition of  structure to guide us to think along the 

following two dimensions: 

• Generative mechanisms for structure: The idea that sequence could be generated 

using a simple set of  rules, or more generally as the output of  a program. 

• Structure detection as a compression problem. 

Deterministic structures present in video sequences, or in discrete real sequences are 

characterized by their topological properties i.e. the metric relationship between the 

elements of  the structure. In this thesis, we shall focus on detecting visual structure (ref. 

Figure 1.2) in discrete sequences that have associated metric space, via robust statistical 

tests.  

We shall make a distinction between macro-level structures (structures that exist as a 

consequence of  the relationships between scenes) and micro-level structures (structures 

Figure 1.2: The familiar dialog sequence, is an example of visual structure. 
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such as the dialog, that exist within a scene). In this work, we shall only look at 

detecting micro-level structure in the visual domain. 

We shall limit the scope of  the problem to the set of  deterministic structures that have 

been generated via a priori known generative mechanisms. 

1.3.3 Audio visual summarization 

The Oxford English Dictionary defines the adjective form of  the word summary3 as: 

Of  a statement or account: Containing or comprising the chief  points or the sum 

and substance of  a matter; compendious (now usually with implication of  

brevity). 

The definition implies an understanding the semantics of  the document (or video), and 

constructing a summary document (or video) based on this knowledge. Such a level of  

understanding for automatic analysis of  the audio-visual data, requires access to a body 

of  knowledge that is external to the data in the video. Since such access is difficult, 

summarization schemes that rely on the semantics of  the data work well only on highly 

constrained data. In this work, we shall focus on using the semantics of  the syntax and we 

shall revisit this dichotomy later on in this section. 

                                                

3 i.e. the word is to be used as in a “summary video” or a “summary text,” which in 

colloquial English is used as “video summary” and as “text summary” respectively. 
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We summarize the original video by creating a short multimedia clip that attempts to 

satisfy the user’s information needs. We determine the entities that need to be present 

that satisfy the user’s information needs, and preserve those entities by using an 

optimization framework. In the next few sections, we shall present the intuition behind 

our approach to summarization, a section on the idea of  using the semantics of  the 

syntax. This is then followed by sections that discuss the idea of  entities and the utility 

maximization. Finally, we shall discuss the scope of  our work on summarization. 

1.3.3.1 Conceptual difficulties in prior work 

In our work on summarizing video data, we do not focus on determining the semantics 

of  the data. Before we explain the intuition behind this approach, we briefly review the 

conceptual problems associated with prior work. 

In prior work on generating audio visual skims [18] [52] , the focus was on using a small 

set of  pattern recognition systems (e.g. faces, mountains, the sound of  gunfire etc. ) for 

semantically meaningful skim generation. There, segments that contained these privileged 

set of  patterns4, were tagged as important, and were made part of  the resulting skim. 

There are two conceptual difficulties that arise with such an approach: 

• The data in the videos (e.g. films, news etc.) is often unconstrained — hence by 

using a small set of  pattern recognition algorithms we will find it difficult to 

                                                

4 The Informedia project [18]  used transcript information as well. 
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satisfy many user queries. The summaries will always contain a subset of  the 

same set of  patterns that can be detected by the pattern detection algorithms, thus 

introducing a bias.  

• The produced data contains a grammar that provides context to the shots present 

in the data. By detecting only a fixed set of  patterns, and ignoring the 

grammatical context in which they occur, this will make the resulting skim 

incoherent.  

The realization that one cannot possibly summarize unconstrained videos by only using a 

fixed set of  pattern recognition sub-systems that attempt to understand the underlying 

semantics of  the data, guides us to think in terms of  the semantics of  the syntax.     

1.3.3.2 A Chinese puzzle 

Is it possible to summarize a document without understanding it? This may seem like a 

strange idea, but let us consider the problem of  summarizing a document written in a 

language that one does not understand. For example let us take case of  a document 

written in Chinese, a language that I do not understand. I only have an orthographic 

relationship to the document i.e. I see the document as a sequence of  visual patterns.  

On closer scrutiny, we observe that the document is structured — into headings, 

paragraphs and sentences that are distinguishable using a stop symbol. Now, if  we make 

the additional assumption that this is a well written technical document, then the 
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following principle applies — each paragraph begins with a topic sentence i.e. a 

sentence that summarizes the rest of  the paragraph.  

Now, if  we make these assumptions about the semantics of  the syntax i.e. about the 

meanings of  the different elements of  the document (i.e. headings, topic sentences etc.), 

and their relative importance, then it is possible to summarize the document as follows.  
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• Start at the lowest section level. Collect all topic sentences within a section, and 

Figure 1.3: The figure shows the original Chinese document to summarized at the top and the 

resulting summary comprising topic sentences, at the bottom. The topic sentences have been 

highlighted in red. Note that the summary only contains the topic sentences. 
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concatenate them into a paragraph. This paragraph is meaningful as each 

sentence is a well formed topic sentence, and the paragraph will summarize the 

section as each topic sentence summarizes each paragraph in the section. Now 

attach the section heading to this summary paragraph. Repeat this procedure for 

all sections at this level. 

• Now that we have summarized all the sections at the lowest level, repeatedly 

group the sections using the document structure. 

1. Attach the original document heading to this new document.   

We have thus summarized the original document without understanding the meanings of  

any of  the symbols. Crucially, we have determined the document structure and the 

meanings of  the different elements of  syntax of  the document in order to summarize 

the document. See Figure 1.3 for an example of  this approach. This idea of  using the 

syntax for summarization leads us to a class of  skims, known as syntax-preserving skims. 

We shall make use of  this principle of  syntax preservation in our work. However, it 

should be noted that they are not a panacea to the general problem of  summarization and 

work well only in specific contexts.  

1.3.3.3 Semantics of  the syntax vs. the semantics of  the data 

The approach used in this work — that the preservation of  semantics can be achieved 

via the preservation of  syntax, is contrary to traditional AI approaches to the problem. 

This is because traditional approaches focus on understanding the semantics of  the data, 
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with bottom-up analysis with object detectors, often in conjunction with top-down 

rules. This work focuses on analyzing the semantics of  the syntax. The difference is 

important and changes the way we look at the summarization problem. 

By determining the elements of  syntax, and preserving them in the final skim, we are 

making the following assumption — the presence of  structure in the film (e.g. dialogs), 

indicates that the human director who has created the film, is using these elements to 

engender certain (but unknown to the algorithm) emotional responses in the viewer. 

Hence, a syntax preservation approach, will preserve those semantic concepts, even 

though the concepts remain unknown. Note the similarities of  such an approach with 

the idea of  a zero knowledge proof.   

The focus on the semantics of  the syntax, implies that for every domain, we have to use 

expert knowledge to identify the syntactical elements and their meanings in that domain. 

This often simplifies the problem since the rules for constructing syntactically correct 

expressions in a certain domain, are much fewer than the number of  interesting 

patterns / objects in that domain.  

However, object detection and syntax analysis can complement each other. In specific 

constrained domains, where the videos have considerable structure, and where one can 

successfully create specific object detectors, we must use both syntactical rules as well as 

the results from object detection when creating video summaries. Examples include 

sports videos such as baseball and news programs. We now introduce the idea of  entities, 

and the discuss the relationship of  the user task to the summaries generated. 
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1.3.3.4 Tasks, entities and utilities 

The users task affects the form of  the summary. We distinguish between two types  — 

active and passive tasks. In an active task (e.g. search) the user is looking for a specific piece 

of  information (e.g. “how did Tiger Woods perform at the tournament?” ), whereas in a 

passive task, the user has no specific queries in mind, but is more interested in 

consuming the information (e.g. a movie preview). This thesis focuses on the creation of  

passive skims. 

The idea of  an entity, is central to our summarization algorithm. An entity is a “real-

world” thing, that has independent existence. An entity is associated with a set of  

attributes, a subset of which are selected to form the entity (e.g. a video shot, a segment 

of  audio etc.). We attach a utility function to each entity that we are interested in 

preserving in the final skim. The problem of  skim generation is now formulated as an 

utility maximization problem, where we maximize the utilities associated those entities 

that satisfy the user’s information needs. We shall elaborate on this idea in chapter 7. 

1.3.3.5 An adaptive summarization framework 

The conceptual framework  of  utility maximization is a powerful one. Current work in 

summarization (e.g. [18] [32] [37] [52] [95]  etc.) focuses on creating static summaries — 

summaries that have been created with certain user, device and network characteristics in 

mind (the user task, the nature of  the user interface, bandwidth, screen resolution, the 

media that are supported by the device etc.). When one (or more ) of  these parameters 
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change, it has often resulted in researchers proposing a new summarization algorithm, 

to satisfy the new constraints. 

The utility maximization framework offers adaptability to changes in parameters for which 

the summary was originally generated. These could be for example, the available 

bandwidth, the change in the task, the knowledge that the user has turned off  the audio 

etc. These changes in the operating point of  the summary can be readily incorporated 

into the utility maximization framework, by modulating the utilities of  the entities 

affected by the change. For example, if  it is known that the audio has been switched off, 

the summary generation algorithm has to simply set the utility of  the audio segments to 

zero in the resulting framework. In recent work [17] ,we have introduced a formal 

framework modeling the relationships amongst entity, adaptation, resources, and utilities.  

1.3.3.6 The scope of  this work on summarization 

We now indicate some of  the issues related to summarization, that we did not consider in 

this thesis:  

• We summarize the entire video, by individually summarizing each computable 

scene — i.e. we assume that each scene is independent of  the other scenes. We 

do not exploit the inter-scene relationships that exist amongst scenes, at level of  

the whole video.  

• We do not consider the use of  text for the purpose of  summarization. We 

decided against using text, since it is frequently unavailable in legacy video as well 
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as in many foreign language productions. However, when available, text is an 

important attribute and ought to be part of  the summarization scheme. 

• We do not consider scene-level syntax for summarization. An example of  such 

syntax is parallel story development — where the director develops the plot over 

two locations in a rhythmic fashion, alternating between the two locations.  

1.4 Summary of  contributions 

We now summarize the original contributions of  this thesis when solving the three sub-

problems of  audio-visual segmentation, structure detection and audio visual skim 

generation.  

1.4.1 Audio-visual scene segmentation 

The goal of  our work in segmentation was to segment of  audio-visual data, such that 

each segment was consistent with respect to certain properties and preserved the 

syntactical elements in the data. We now briefly summarize the original contributions in 

our attempt to solve the segmentation problem:  

1. A computational scene model that incorporates the synergy between audio, video, 

and structure in the data. 

2. A finite, causal, memory model framework for segmenting both audio and visual 

data. 
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a. Three new conceptual memory models, two of  which incorporate 

Kolmogorov complexity and perceptual distortion. 

3. The idea that features and the models used in segmentation should incorporate 

constraints that stem from film-making production rules as well as constraints 

due to the psychology of  audition. 

4. The idea that we need top-down structural grouping rules to improve 

segmentation results. This enables us to be consistent with human perception. 

5. Constraints for merging information from different modalities (audio, video and 

within scene structure) to ensure that the resulting segmentation is consistent 

with human perception. 

1.4.2 Structure detection 

The goal of  our work in structure detection was to detect a set of  domain dependent 

structures that had generative mechanisms. We now summarize the original contributions 

in our attempt to solve the structure detection problem: 

1. Defining structure in terms of  Kolmogorov complexity. 

2. A topological framework for the analysis of  arbitrary discrete, deterministic 

sequences that have a metric associated with them. 

3. Robust algorithms that incorporate statistical tests for detecting two specific 

structural elements — the dialog and the regular anchor.  
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1.4.3 Audio-visual condensation 

The goal of  our work in audio-visual condensation was to take a computable scene and 

given the target skim duration, reduce the duration of  the scene till the time duration 

achieved. We now summarize the original contributions in our attempt to solve the 

condensation problem: 

1. An entity-utility framework for skim generation: 

a. The idea that a multimedia sequence can be thought of  as comprising 

entities, a subset of which shall be needed to satisfy the users 

information needs. 

b. A utility maximization framework that maximizes the utility of  the 

entities required by the user. This framework is easily extensible 

beyond the specific skim problem addressed in this work [17] .  

2. The idea that shot comprehensibility is related to its visual complexity.  

a. We show that the duration of  a shot can be reduced as a function of  

its visual complexity. 

b. There exists a minimum duration below which a shot is 

incomprehensible. 

3. The idea that skims need to preserve the visual syntax of  the original 

sequence for them to be comprehensible. 

a. We show specific syntax reduction mechanisms that preserve the 

essential semantics of  these syntactical elements. 
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4. The use of  prosody analysis to determine the discourse boundaries of  

speech, for determining the important speech segments.  

5. The idea that summarization needs to be understood in terms of  a holistic 

framework comprising the following:  

a. The task that engages the user. 

b. The user interface. 

c. The user information needs 

d. Network characteristics 

Now, we provide an overview of  the organization of  the thesis.  

1.5 Organization of  the thesis 

The rest of  the thesis is organized as follows. In the next chapter, we introduce the 

segmentation problem. There, we shall discuss in detail the prior work on visual 

segmentation, audio segmentation and also review the important area of  auditory scene 

analysis. In that chapter, we shall present our framework of  the computable scene. We shall 

also introduce the idea of  using memory as a central framework for audio-visual 

segmentation.  

In chapter 3, we shall present our research on detecting computable video scenes. We 

shall introduce two key concepts of  recall and coherence that are used in conjunction with 

the memory model to segment video data into scenes. In addition to presenting the 
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experimental results, we shall also discuss three new conceptual memory models that 

improve upon the basic model used in this thesis. 

In chapter 4, we shall present our approach towards detecting the computable audio 

scene. There, we shall focus on three things: (a) metrics for the three types of  features 

used (b) a new signal model for one of  the classes of  features and (c) using the 

correlations amongst the feature values to detect audio scene change locations. 

In chapter 5, we shall present a multi-modal fusion framework for detecting computable 

scenes. The emphasis there is on developing a rule-based framework for fusing 

information from the computable audio and video computable scenes, silence and 

structure information, for detecting computable scenes. 

In chapter 6, we present our approach towards detecting structure. We present a 

definition of  structure and present the topological analysis framework for detecting 

structures with generative mechanisms. We also present specific algorithms for detecting 

the dialog and the regular anchor.  

In chapter 7, we shall introduce the summarization problem. We shall also present 

extensive reviews of  related work in video and audio summarization schemes. We shall 

also review the important area of  discourse based segmentation. In this chapter, we shall 

also introduce the entity-utility framework that forms the basis for our skim generation.  

In chapter 8, we shall present our work on visual analysis for skim generation. Here we 

shall introduce two concepts: the relationship between visual complexity and 
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comprehension time, and use of  film grammar for ensuring that skims thus generated 

are comprehensible.  

In chapter 9, we shall present our approach towards audio summarization. This involves 

two steps: classification of  the audio segments using a robust SVM classifier, and the 

detection of  significant phrases using prosody analysis. 

In chapter 10, we shall show how to model the video skim generation problem as an 

utility optimization problem. We shall discuss the entities that we shall attempt to 

preserve, and the utilities associated with each entity. Then, we shall discuss the idea of  

tied multimedia constraints and shall present a detailed search strategy to arrive at the 

optimal solution. 

In chapter 11, we shall present our conclusions as well discuss some future research 

directions.  

The references are to be found in chapter 12, while we have the appendix in chapter 13. 

There, we shall present algorithms to estimate some specific forms of  Kolmogorov 

complexity. We shall also present two early user studies done to evaluate visual skims (i.e. 

skims that contain no audio). 
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2 The segmentation problem 

2.1 Introduction 

This chapter introduces the segmentation problem and the framework that we propose 

to segment audio-visual data into scenes. We repeat the definitions from the The Oxford 

English Dictionary, and from Bordwell and Thompson’s Film Art that we presented in the 

introduction, here:  

The place where an action is carried on and people play their parts as in a 

drama; the scene of  action, the place where events are actually happening or 

business being done. [OED] 

A view or picture presented to the eye (or to the mind) of  a place, concourse, 

incident, series of  actions or events, assemblage of  objects, etc. [OED] 

A segment in a narrative film that takes place in one time and space or that 

uses crosscutting to show two or more simultaneous actions. [B & T, Film Art] 
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Examples of  such scenes include — a scene showing people on the beach, a 

marketplace, a segment showing a newscaster, a football game etc.  

The problem traditionally tackled in the multimedia community was one of  segmenting 

audio-visual data into chunks that were consistent in the senses outlined above. However, 

this is a very challenging problem since this involves detecting segments that are 

consistent with respect to a high level semantic. The problem is normally tackled by 

constructing sophisticated models / object detectors using low-level feature information 

from the data. 

In this work, we are interested in determining computable scenes and do not focus on 

determining the high-level meaning of  the scene. We define a computable scene to be a 

segment of  audio-visual data that possesses long-term consistency with respect to audio, 

video and structure. The term structure refers to the micro-level, within scene structure 

such as dialogs. 

The computable scene comprises elementary computable video and audio scenes, as well 

as elements of  structure, that are related to each other in specific ways. These scenes are 

deemed computable since they are consistent with respect to a certain property and can 

be reliably and automatically computed using low-level features alone. The computable 

scene problem  is important for several reasons:  
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• Automatic scene segmentation is the first step towards greater semantic 

understanding of  the structure of  the film5, since we can then impose higher 

forms of  knowledge on these elementary computable scenes.  

• Breaking up the film into scenes will help in creating summaries, thus enabling a 

non-linear navigation of  the film.  

The absence of  semantic consistency as an immediate goal in our approach to 

segmentation has a subtle but important effect. It forces us to think of  the problem as 

task-based segmentation i.e. the generation of  segments to assist the solution of  other 

problems. In this work, the task of  the segmentation algorithm is to generate segments 

that preserve the syntactical structure of  the original video data. These syntactically 

correct segments form the input to our video summarization algorithm. There are four 

key components to our computable scene framework:  

• A finite and causal memory model, to model short term memory.  

• Algorithms for detecting computable audio and video scenes, that use the 

memory framework for segmentation. 

                                                

5 We shall use the word “film” in this thesis to refer to movies i.e. commercially produced 

videos. 



   

 

31 

• The imposition of  higher forms of  knowledge in the form of  structural 

constraints and silence.  

• A multi-modal fusion framework for integrating the elementary computable 

scenes, structure and silence. 

The rest of  this chapter is organized as follows. In the next section, we present a 

discussion of  the problem of  shot detection and scene detection. In sections 2.3 and 2.4, 

we review prior work in visual and audio scene segmentation respectively. We present our 

framework for computable scene segmentation in section 2.5 and conclude by 

summarizing the chapter in section 2.6. 

2.2 Thinking about shots and scenes 

A video shot is a segment of  video data, from a single camera take6. The scene in video 

data is normally defined (e.g. [100] [101] [106] ) in terms of  its semantics i.e. a group of   

shots that are characterized by a single semantic idea — for example, a group of  shots 

from a trip to the beach. While these definitions may seem intuitive and seem to lend 

themselves towards analyzing data in a hierarchical fashion (i.e. the shot is an elementary 

unit of  video, and the scene is a group of  shots that share a single idea, and the whole 

film is a collection of  scenes), the problem of  analyzing visual data is complex.  

                                                

6 i.e. it is a segment of  video from the camera is switched on, till when it is switched off. 
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Current shot detection algorithms work very well, with accuracies up to 95% (e.g. [109] ).  

This is because changes in shots are often accompanied by changes in color, spatial 

composition7 or motion. Shot detectors are usually based on these low-level features and 

are often tested on produced videos that show these visual changes. However, when 

confronted with a simple home video, many of  these algorithms generate plenty of  false 

alarms. For example, a one hour home video that is shot continuously, is really a single 

shot, but this gets fragmented by the shot detector. But, when we examine the resulting 

shot fragments, they look reasonable. The reason for this discrepancy is the fact that a 

shot actually encodes a semantic concept — the mechanical operation of  the camera, in 

                                                

7 According to the rules of  film-making [8] , the viewing angle should change across 

shots by at least 30o, otherwise the shots are too similar, and this leads to a jerky visual 

effect. This is known as the 30o rule. 

Figure 2.1: A shot detector based on color and motion, segments the video 

into piece-wise constant approximations with respect to the two features.  
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addition to the latent semantics in the visuals. In many produced videos, the changes 

in the visual properties coincides with the changes in the mechanical operation of  the 

cameras. 

Detecting segments that are consistent in the senses presented in the beginning of  this 

chapter, is a challenging problem. The semantics of  a scene is difficult to quantify in 

terms of  the low-level features in a video. This is because the semantics of  the scene 

depends upon many external, non-computable factors — (a) the particular method of  

visualization (i.e. the directorial style) of  the semantic idea behind the shot (b) the 

relationship with preceding and following scenes and (c) the world knowledge of  the 

viewer.  

Clearly, the ability to segment data into semantically consistent scenes requires access to a 

body of  knowledge that is external to the data in the video. Since such access is difficult, 

we need a scene definition that is (a) consistent (b) computable and (c) dependent only 

on the data within the video. 

We define a shot to be a segment of  video that is consistent with respect to a set of  

attributes. In this world-view, a shot-detector decomposes the video stream into 

segments that provide a first order approximation of  the video with respect to a set of  

features (ref. Figure 2.1). 
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There are constraints on what we see and hear in films, due to rules governing camera 

placement, continuity in lighting as well as due to the psychology of  audition. In this 

work, we develop notions of  video and audio computable scenes by making use of  these 

constraints. A video computable scene (v-scene) exhibits long-term consistency with 

respect to two  properties: (a) chromatic composition of  the scene (b) lighting 

conditions. The audio computable scene (a-scene) exhibits long-terms consistency with 

respect to the ambient audio.  

We define a computable scene to be a segment of  audio-visual data that possesses long-term 

consistency with respect to audio, video and structure. The computable scene comprises 

elementary computable video and audio scenes, as well as elements of  structure, that are 

Figure 2.2: The computable scene overview. 
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related to each other in specific ways. We derive four types of  computable scenes (c-

scene) that arise from different forms of  synchronizations between a-scene and v-scene 

boundaries. We term these scenes as computable, since they can be reliably computed using 

low-level features alone. Figure 2.2, presents a system overview; we shall discuss this 

idea in more detail in section 2.5.4. 

Computability is a useful paradigm because it is a shift towards task based segmentation, 

where the primary task is not the semantics of  the scene, but the preservation of  the 

syntax of  the video data. This preservation of  syntax is central to our summarization 

project discussed in chapter 7. 

Before we discuss the computational scene framework in detail in section 2.5, we shall 

now review prior work in visual and audio scene segmentation over the next two 

sections. 

2.3 Related work: visual analysis 

In this section we review three different approaches to visual scene segmentation: (a) 

Scene transition graphs, (b) Information theoretic clustering and (c) a model based on 

video coherence. The methods have been chosen since they represent three differing 

strategies for video scene segmentation.  

2.3.1 Scene transition graphs 
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Scene transition graphs (STG) were first introduced by B.L. Yeo and M. Yeung [100] 

[101] [102] [103] [104] , as an attempt to segment video data into scenes, as well as a 

technique to compactly visualize the video data. We shall critique scene transition graphs 

in terms of  their ability to summarize video data in section 7.2.1. 

A scene transition graph [103]  is a compact representation of  a video that is a directed 

graph. Each node of  the graph represents a cluster of  similar shots (under a suitable 

similarity metric). Two nodes i, j are connected via an edge if  there exists a shot in cluster 

i that precedes a shot in cluster j. In [103] , the authors perform time-constrained 

clustering on the shots using a time-window T to create the scene transition graph. 

Given two parameters δ and T, the maximum cluster diameter and the duration of  the 

time window respectively, two shots belong to a cluster if  they are within T sec. of  each 

other and are within δ of  each other with respect to the similarity metric [103] . 

In Figure 2.3, we show three nodes and each node represents a time-constrained cluster. 

The presence of  the cycle between the first two clusters indicates that these two nodes 

belong to the same scene. A scene transition occurs at a cut-edge i.e. edges when cut,  

Figure 2.3: A scene transition graphs is segmented into scenes by detecting 

cut-edges. These edges divide the graphs into disconnected sub-graphs. 

scene transition 
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disconnect the graph into sub-graphs. This happens when there is a forward transition 

from an sub-graph to another sub-graph with no backwards transition.  

An important concern in this work is the setting of  the cluster threshold parameter δ 

and the time-window size T, both of  which critically affect the segmentation result. 

Unfortunately, neither of  these parameters can be set without taking into account the 

specific character of  the data being analyzed. 

Table 2.1: Variation of precision and recall, for constant T (2000), with variations in δ. 

Cluster threshold: δ Precision Recall 

0.3 0.33 1.00 

0.5 0.75 0.88 

The authors present their results on videos that are taken popular TV shows. The results 

from [103] seem to indicate the results vary, depending upon the specific parameter 

values for T and δ. While the authors do not provide precision-recall values, we can 

compute the precision and recall figures using the tables in [103] . The authors 

recommended values of  T = 2000, δ ≤ 0.5 indicates sensitivity to the cluster threshold δ 

(ref. Table 2.1). The authors preferred the case of  over-segmentation of  the data as 

opposed to misses, since the segmented scenes could be post-processed to eliminate the 

false alarms.  
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2.3.2 Adaptive clustering 

In this section we shall discuss the Video Manga project’s approach to video 

segmentation [95] . While clustering is a popular technique for segmentation and 

summarization [32] [96]  {more refs. needed!}, the Manga project incorporates a few 

novel techniques — (a) no shot segmentation (b) a measure of  segment importance (c) 

key-frame size selection based on an importance measure.   

In [95] , the authors do not segment the video into shots. Instead, they begin with 

assigning each frame to a distinct cluster and then begin to hierarchically to merge these 

clusters. Then they determine the cluster threshold as follows —  

• keep merging the closest two clusters, till there is a single cluster.  

• At every stage measure the average cluster diameter. A plot of  average cluster 

diameter (d) versus the number of  clusters (n) indicates the presence of  a 

characteristic “knee” i.e. the value for n when the average cluster diameter starts 

to increase rapidly. Then set the cluster diameter threshold to be the average 

cluster diameter at the knee of  the curve.   

Once the cluster threshold is set, we have fixed the number of  clusters in the approach. 

Now since in order to obtain the diameter vs. the number of  cluster plot, we have 

already created a hierarchy of  clusters, and where the details of  the contents of  each 

node have been stored. Now, given the cluster number, the segmentation result is 

immediately available, with the contents of  each node representing the video segments.  
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The authors do not use time-constrained clustering and in its absence, the algorithm is 

likely to merge two similar sequences that are far apart in time, in the video. Also, the 

paper mentions no explicit results for segmentation.  

The two other aspects of  the Manga project — segment importance and size-based 

keyframe selection are not used in segmentation, but are important in the context of  

summarization. They shall be discussed in section 7.2.1. 

2.3.3 Video coherence 

John Kender and B.L. Yeo’s work on video coherence [44] , has influenced our own work 

on segmentation. In the video coherence formulation, the authors use a model of  

memory, to perform scene level segmentation. The idea being that segmenting video data 

can be viewed as the ability to recall the past, given the present data. 

Briefly, in their model, a video frame entering a finite buffer of  size B, has infinite 

persistence, i.e. for all time, the frame has a non-zero but exponentially decaying 

likelihood of  survival. We shall discuss their memory model in more detail in section 

2.5.2.1.  

They define two parameters — recall and coherence, that are central to their 

segmentation framework. The recall between two shots P and Q, is defined as follows: 
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where, shot P starts at a and ends at b, and shot Q starts at g and ends at h. d is the 

distance measure between the two shots and where B is the buffer duration in seconds. 

Coherence is defined at every shot boundary t as the pair-wise recall between all future 

shots with all shots from the past. Formally: 
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where p and q are shots that precede and follow the shot boundary at t and where tp and 

tq refer to the timestamps associated with the shots. Note that all the shots in the video 

are used in this computation. Cmax is a normalizing constant obtained by evaluating the 

numerator of  equation (2.2), with d the shot metric value set to zero. Note that the 

following:  

• The system entailed by this formulation is non-causal (equation (2.2)). 

• The coherence values are only computed at shot boundaries. When the shot 

lengths increase, we shall be sampling the true coherence function very coarsely.  

In [44] , the authors first detect shot boundaries, via a shot detection algorithm. Then, 

they perform scene segmentation in the following way: they evaluate the coherence 
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across the all shot boundaries and declare scene boundaries at local minima locations. 

The paper shows a relative comparison of  the coherence based segmentation against 

scene transition graphs. In that comparison, the coherence method outperforms scene 

transition graphs. 

2.3.4 Discussion 

The three methods discussed in the preceding sections share the following issues:  

• Semantic scenes: The scene definition in prior work was that of  a semantic scene 

i.e. a collection of  shots that share a common semantic property. It is important 

to keep this in mind while evaluating the performance of  the algorithms 

discussed in the previous section, since the ground truth will be labeled with this 

criteria in mind. 

• No audio: None of  the three methods discussed below uses audio data to 

segment video data. While there has been some recent work [43] [44] that 

discusses audio-visual integration (more in section 5.4.3, when we discuss the 

performance of  our joint model) most of  the prior work focuses on visual data 

alone. Given the importance of  audio in cognition, this anomaly is difficult to 

explain. Extenuating factors may include the relative ease of  understanding and 

visualizing image data over auditory analysis. 

• Low-level: The methods discussed in the previous sections do not make use 

higher forms of  knowledge such as structural information, to aid segmentation. 
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Semantic level segmentation algorithm may be difficult with simple low-level 

feature based algorithms. 

2.4 Related work: auditory analysis 

In this section, we now discuss some related work on audio segmentation, as well as 

briefly review the important area of  Computational Auditory Scene Analysis (CASA). 

2.4.1 Segment classification 

We begin this section by reviewing [74] , one of  the earliest papers and also one of most 

widely referenced papers in speech / music discrimination. There, the idea is to construct 

an algorithm to switch between radio channels so that user keeps hearing a particular 

genre of music or speech, perhaps according to a predefined user profile. 

Noting that speech is a succession of  syllables composed of  short periods of  frication 

followed by longer periods of  vowels or highly voiced speech, the author proposes the 

use of  the Zero Crossing Rate in order to make the distinction. The ZCR is a measure 

of  the spectral center of mass. The dominant frequency principle shows that when a 

certain frequency band carries more power than other bands, it attracts the normalized 

expected zero crossings per unit time. 

In the experiments, the incoming data is first split into non-overlapping frames that are 

2.4 sec. long. Then, the author computes several statistical measures on the ZCR, per 

frame, such as the standard deviation of  the first order difference of  the ZCR etc. in 
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order to build a multi-dimensional feature detector. The test results are excellent, 

showing a 98% class separation. 

In [75] , the authors perform an excellent, detailed analysis of  a speech / music 

discriminator following up the work presented in [74] . They use three classification 

frameworks: A Gaussian MAP classifier, a Gaussian mixture of models (GMM) and a 

approximate k-d tree variant. The k-d tree is approximate in the sense that the authors 

only descend to the leaf  node and avoid all backtracking (since the backtracking has an 

exponential cost associated with it).  

The authors test their algorithms on a diverse collection of music and speech. All their 

data was recorded off  local FM stations in the Bay area. They use a frame rate of  50Hz 

(i.e. the analysis frame was 20 ms. long). The results show that the Gaussian MAP 

classifier is better at speech than music (i.e. it is easier to misclassify music as speech than 

vice versa). The GMM also exhibits a similar behavior but the difference is performance 

is less marked. k-d trees show pretty much identical behavior with both classes. Of  

course, these results are strongly governed by the underlying data (i.e speech and music). 

This may also be an indicator that the underlying data is simple — i.e. the classes may be 

linearly separable. 

In [50] , the authors the adopt a two stage strategy to segment and classify the data. First 

they detect changes in energy to determine segmentation boundaries. Then, they classify 

20ms frames using a trained Gaussian MAP classifier. They show a frame classification 

result of  85.1% on the test data (using MFCC). Then, they pool the classification results 
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of  all the frames in the segment to classify the segment. The result of  the pooling 

procedure boosts the classification accuracy to 90%. 

In [107]  the authors propose a heuristic approach to audio segmentation and indexing. 

They construct a system for real-time audio segmentation and classification. They 

attempt to classify the resulting segments into seven classes, including several mixture 

classes i.e. classes that contain more than one base class (e.g. environmental sounds plus 

speech). 

For their on-line segmentation of  data, the authors use three features — short time zero 

crossing rate, short time fundamental frequency and short time energy. They declare a 

segment boundary whenever an abrupt change is detected in any of  these three features. 

A change is detected using two abutting sliding windows and features are computed in 

each window. A significant difference in any of  the feature values in each window, 

signifies a scene boundary. They do not report segmentation results, but instead report 

classification accuracy. The average class classification accuracy is 90%. A similar 

technique is used in [84] , to classify audio data into speech, music and silence. There, 

they report classification accuracies of  75% averaged across classes. 

2.4.2 Discussion 

There are several patterns that emerge by analyzing prior work in auditory analysis. 

• The focus is on classification of  segments rather than segmentation. This difference 

is similar to the difference between an approach that first uses a technique for 
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general image segmentation, followed by grouping of  labeled regions into 

objects, against an approach that detects objects directly in the image. While a 

classification approach to segmentation will not work well across data sets, in a 

data stream where the classes are a priori known and fairly well defined, a 

classification approach makes sense. 

• The classification strategy uses short time-scales, typically 100ms to classify data. 

However, while human beings do perform short-term grouping of  features, there 

is evidence that we also perform long term grouping before coming to a decision 

[9] [10] [26] .  

• Finally, none of  these algorithms take into account the generic generative 

properties of  sound sources [9] , such as harmonicity, gradual changes in the 

sound characteristic etc. into the segmentation / classification algorithms.  

We now review the important area of  Computational Auditory Scene Analysis. 

2.4.3 Computational Auditory Scene Analysis 

The area of  computational auditory scene analysis was pioneered by Albert S. Bregman 

[9] [10]  whose work in this area is often compared to Marr’s conceptual work in 

computer vision [55] .  Bregman makes the case for using perceptual groupings in order 

to analyze sound in a manner akin to the analysis by computer vision researchers. 

Auditory scene analysis is a process whereby all the auditory evidence that comes over 

time from a single environmental source is put together as a perceptual unit. Bregman’s 

observations on the process of  audition stem from a series of  psychological experiments 
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that he conducted on human beings. Bregman made many fascinating observations 

about the process of  audition and we reproduce a few of  them here. 

• Filtering in noisy environments: We seem to able to pick out particular sounds 

in a environment that is noisy in general. For example, we are able to readily 

recognize our name in a noisy environment. The reason for this could be that the 

schema to retrieve the particular thing (i.e. our name, in this case) that we filter 

out is in a very sophisticated state8. This filtering could also be voluntary, for 

example we are waiting in the doctor’s office waiting for our name to be called 

out.  

• A spectrogram of  a sound mixture reveals that it is hard to “segment out” a 

particular sound from the composite mixture, even we have spectrograms of  the 

individual sounds in isolation. Clearly, we seem to be doing more than simple 

spectral analysis. The absence of  any “clean” environment for learning these 

sounds indicates that we must have low-level grouping scheme that helps us in 

our decision. 

• Old+New strategy: The simple observation that unrelated sounds seldom begin 

and end at the same time, leads us to a old+new strategy. When a signal is suddenly  

(and briefly) replaced by another sound that shares some of  the spectral 

characteristics of  the “old” sound then the auditory system interprets it  as the 

                                                

8 Bergman also notes that we also seem to mistake a sequence of  sounds for our name. 
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sum of  two sounds. The old+new interpretation requires that the “new” sound 

be sudden. Determining what onset of  sound counts as sudden is hard and 

intermediate onsets seem to give intermediate perceptual results. 

• Gradualness of  change: A single source tends to change its properties slowly 

and smoothly. A sequence of  sounds from the same source tends to change its 

properties smoothly. e.g. if  we are standing by the road and a car passes by, then 

the sound of  the car engine will diminish gradually with distance. Hence, since 

the changes are gradual, samples from the same source taken in quick succession 

are likely to resemble each other.  

• Changes affect all components of  the resulting sound: For example, if  we 

are walking away from the sound of  a bell being struck repeatedly, the amplitude 

of  all the harmonics will diminish gradually. Note that this change is brought 

about by a physical event. At the same time, the harmonic relationships and 

common onset9 are unchanged. 

• Multiple bases for segregation: Bregman says that multiple grouping cues 

cooperate and compete for the users attention when the user is deciding whether 

a particular sequence (in time) is to be grouped in a particular way. However, it is 

not clear what role higher forms of  knowledge (for example a person may want 

                                                

9 Different sounds emerging from a single source begin at the same time. 
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to concentrate on the human voice in a sound clip) may have on the final 

grouping.  

• Regularity: When a body vibrates with a repetitive period, its vibrations give rise 

to an acoustic pattern in which the frequency components are multiple of  a 

common fundamental.  

Different computational models have emerged in response to Bregman’s observations 

[12] [20] [26] . While these models differ in their implementations and differ considerably 

in the physiological cues used, they focus on short-term grouping strategies of  sound. 

Notably, Bregman’s observations indicate that long-term grouping strategies are also used 

by human beings (e.g. it is easy for us to identify a series of  footsteps as coming from 

one source) to group sound. 

In [26] , the author makes a case for prediction driven computational auditory scene 

analysis as opposed to a data-driven analysis that attempts to “build-up” i.e. a bottom up 

approach to modeling data. A convincing argument against pure data-driven systems is 

the presence of  auditory illusions such as the well documented continuity illusion as well 

as the phenomena of  phoneme restoration.  

In [26] , the goal is to use the mid-level representations and use them to build higher 

world models. These models are used to predict the subsequent input and the prediction 

is then reconciled with the actual input. This allows the parameters of  the model as well 

the number of  elements of  the model to change. The change is achieved by having 

competing hypothesis exist for the current scenario and then one hypothesis is chosen by 
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computing the MDL [21] [36] [71] . The core of  the reconciliation engine is a 

blackboard system (based on the IPUS system [15] ). 

2.5 The computable scene framework 

We now present our framework for audio-visual scene detection, which we call the 

computable scene framework. There are four key aspects to our framework:  

• A model for short-term memory that serves as a basis for audio and video scene 

detection. 

• A computable scene definition in terms of  relationships between elementary 

audio scenes and video scenes.  

• An approach for detecting elementary audio-scenes, video scenes, structure and 

silence.  

• A rule based framework for multi-modal fusion. 

We begin with a discussion on computability vs. semantics and then in section 2.5.2 

present a few insights obtained from understanding the process of  film-making. We shall 

use them as well the insights gained from the psychology of  audition (section 2.4.3), in 

creating our computational model of  the scene. 

2.5.1 Why the emphasis on computability? 

The semantics of  a normal scene within a film, are often difficult to ascertain and make 

sense only with regard to the context. The context is established due to two factors: the 
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film-maker and the viewer. The film-maker infuses meaning to a collection of  shots in 

three ways: (a) by deciding the action in the shots (b) the selection of  shots that precede 

(and follow) this scene (c) and finally by the manner in which he visualizes the scene. For 

example, in order to show a tense scene, one film-maker may have fast succession of  

close-ups of  the characters in a scene. Others may indicate tension by showing both 

characters but changing the music. 

All three methods affect the viewer, whose interpretation of  the scene depends on his 

world-knowledge. Hence, if  the meaning in a scene is based on factors that cannot be 

measured directly, it is imperative that we begin with a scene definition in terms of  those 

attributes that are measurable and which lead to a consistent interpretation.  

2.5.2 The idea of memory 

We use the idea of memory in our approach towards video and audio scene 

segmentation. The idea is intuitive: human beings compare the present with the past, to 

decide if  there is a scene change.  

Formally, there are two forms of memory used in practice: when discussing memory — 

(a) declarative and (b) procedural memory. Both forms are true for arbitrary stimuli but 

we shall focus on visual examples in the discussion below.  

• Declarative: In declarative forms of memory, we use an exact representation of  

the past to decide if  we have seen the present data. For example, when we are 
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given a photograph of  a face, we use a declarative form of memory to decide 

if  we have seen that person earlier.   

• Procedural: In procedural forms of memory we do not retain an exact 

representation of  what has been seen earlier, but retain the process of  seeing or 

sensing that stimulus. For example, let us assume that a student is learning to 

drive a car. Then, over an extended period, after driving for many miles, the 

student would have learnt how to drive. This form of memory, is procedural 

since it entails remembering the process of  driving given any road, and is 

independent of  any specific road that the student may have driven on to learn. 

In this work, we shall focus on procedural forms of memory.   

2.5.2.1 A model with infinite persistence 

The work in [44]  formulates the memory model as a “leaky buffer.” In that scenario, we 

first assume that we have a finite buffer B that can hold a limited number of  images. 

Then, whenever a new frame enters the buffer, one of  the frames in the buffer is 

removed. This is modeled as a random process, with a uniform distribution on all the 

frames in the buffer. i.e. all frames are equally likely candidates for removal. Then, it is 

easy to show  [44] that the likelihood for a frame to survive after t  sec. is given by:  

 ( ) exp ,tL t
B

 = − 
 

 (2.3) 
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where L is the likelihood of  survival at time t and B is the buffer length in sec. The 

likelihood function is used to compute recall between two shots in the following manner. 

The recall is determined by computing an integral over the frames of  the two shots in 

the memory and the likelihood function (2.3) serves as the prior for each shot frame [44] 

. 

An important consequence of  equation (2.3) is the following — once a frame enters the 

buffer, it has infinite persistence, since every frame has a non-zero likelihood of  survival. 

Hence when one computes coherence according to equation (2.2), one must necessarily 

compute coherence with all of  the past. The buffer size plays the role of  a persistence 

modifier — with large values of  the buffer implying that the likelihood remains large for 

long periods of  time and vice-versa. 

2.5.2.2 A FIFO memory model  

In order to segment data into scenes, we propose a causal, finite, first-in-first-out (FIFO) 

model of memory (Figure 2.4). In this scenario, whenever a new frame enters the 

buffer, the oldest frame in the buffer is removed. This model removes the issue of  

Figure 2.4: The attention span Tas is the most recent data in the 

memory. The memory (Tm) is the size of the entire buffer. 

time 
to attention 

span 

memory Tm 

Tas 
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infinite persistence in [44] (which makes the computation difficult), and makes the 

model causal. Intuitively, causality and a finite memory will more faithfully mimic the 

human memory-model than an infinite model. This will also make the model more 

readily amenable to real-time implementation. We shall use this model for both audio and 

video scene change detection. 

In our model of  a viewer (or listener in the case of  audio memory model) two 

parameters are of   interest: (a) memory: this is the net amount of  information (Tm) with 

the viewer and (b) attention span: it is the most recent data (Tas) in the memory of  the 

listener (typical values for the parameters are Tm=32 sec. and Tas=16 sec.). This data is 

used by the viewer to compare against the contents of  the rest of  the memory in order 

to decide if  a scene change has occurred. 

2.5.3 Insights from film-making 

Figure 2.5: The director will place cameras on the same side of an 

imaginary line, called the line of interest. This ensures consistent 

left-right orientation across shots. 
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The line of  interest is an imaginary line drawn by the director in the physical setting of  

a scene [8]  [29]  [77] . During the filming of  the scene, all the cameras are placed on one 

side of  this line (also referred to as the 180 degree rule). This has the following effect: 

the relative left-right orientations of  the objects / actors in successive shots do not 

change. Transgression of  this rule was so infrequent that directors who did were noted in 

the film theory community. e.g. Alfred Hitchcock’s willful violation in a scene in his film 

North by Northwest [29] . Note that the critically acclaimed film Memento, that dealt with 

memory loss, does not violate the standard camera placement rules in film-making. 

Though the film is narrated backwards in time, each scene actually goes forward in time and 

also obeys the standard principles of  film-making. 

The 180 degree rule has interesting implications on the computational model of  the 

scene. Since all the cameras in the scene  remain on the same side of  the line in all the 

shots, there is an overlap in the field of  view of  the cameras (see Figure 2.5).  

This implies that there will be a consistency to the chromatic composition and the 

lighting in all the shots. Film-makers also seek to maintain continuity in lighting amongst 

shots within the same physical location. This is done even when the shots are filmed over 

several days. This is because viewers perceive the change in lighting to be indicative of  

the passage of  time. For example, if  two characters are shown talking in one shot, in 

daylight, the next shot cannot show them talking at the same location, at night. 
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2.5.4 The computable scene 

The constraints imposed by production rules in film and the psychological process of  

hearing lead us to the following definition of  audio and video scenes. A video scene is a 

continuous segment of  visual data that shows long-term consistency with respect to two 

properties: (a) chromaticity and (b) lighting conditions, while an audio scene exhibits a 

long terms consistency with respect to ambient sound. We denote them to be computable 

since these properties can be reliably and automatically determined using features present 

in the audio-visual data. The a-scene and the v-scenes represent elementary, 

homogeneous chunks of  information. Analysis of  experimental data (one hour each, 

from five different films) indicates that for both the audio and the video scene, a 

minimum of  8 seconds is required to establish the scene. 

We define a computable scene (abbreviated as c-scene) in terms of  the relationships 

between a-scene and v-scene boundaries. It is defined to be a segment between two 

consecutive, synchronized audio visual scenes. Note that in films, audio and visual scene 

changes will not exactly occur at the same time, since this is disconcerting to the audience. 

They make the audio flow “over the cut” by a few seconds [70] , [39] , thus making the 

transition between shots smooth. 
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2.5.4.1 Validation of  C-scene definitions 

The analysis of  the kinds of  synchronizations between audio and video scene boundaries 

leads us to hypothesize the existence of  four types of  computable scenes (see Table 

2.2).  

Table 2.2: The four types of c-scenes that exist between consecutive, synchronized audio-visual 

changes. solid circles: indicate audio scene boundaries, triangles indicate video scene boundaries 

Type Abbr. Figure 

 
Pure, no audio or visual change present. P 

 

 
Audio changes but consistent visual. Ac-V 

 

 
Video changes but consistent audio. A-Vc 

 

 
Mixed mode: contains unsynchronized 

audio and visual scene boundaries. MM 
 

We validated the computable scene definition, which appeared out of  intuitive 

considerations, with actual  film data. The data were from three one hour segments from 

three English language films (the films: Sense and Sensibility, Pulp Fiction, Four Weddings and 

a Funeral.) The definition for a scene works very well in many film segments. In most 

cases, the c-scenes are usually a collection of  shots that are filmed in the same location 

and time and under similar lighting conditions (these are the P and the Ac-V scenes). 
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Note that the figures for Ac-v, A-Vc and MM type scenes, in Table 2.2 show only one 

audio / visual change. Clearly, multiple changes are possible. We show only one change 

for the sake of   figure clarity. 

The A-Vc (consistent audio, visuals change) scenes seem to occur under two 

circumstances. In the first case, the camera placement rules discussed in section 2.5.1 are 

violated. These are montage sequences and are characterized by widely different visuals 

(differences in location, time of  creation as well as lighting conditions) which create a 

unity of  theme by manner in which they have been juxtaposed. Mtv videos are good 

examples of  such scenes. In classic Russian montage, the sequence of  shots were 

constructed from placing shots together that have no immediate similarity in meaning. 

For example, a shot of  a couple may be followed by shots of  two parrots kissing each 

other etc. The meaning was derived from the way the sequence was arranged. 

Table 2.3: c-scene breakup from the film sense and sensibility. 

C-scene breakup Count Fraction 

Pure 33 65% 

Ac-V 11 21% 

A-Vc 5 10% 

MM 2 4% 

Total 51 100% 

The second case of  A-Vc scenes consists of  a sequence of  v-scenes that individually 

obey the camera placement rules (and hence each have consistent chromaticity and 

lighting). We refer to the second class as transient scenes. Typically, transient scenes can 
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occur when the director wants to show the passage of  time e.g. a scene showing a 

journey, characterized by consistent audio track.  

Mixed mode (MM) scenes are far less frequent, and can occur for example, when the 

director continues an audio theme well into the next v-scene, in order to establish a 

particular semantic feeling (joy/sadness etc.). 

Table 2.3 shows the c-scene type break-up from the first hour of  the film Sense and 

Sensibility. There were 642 shots detected in the video segment. The statistics from the 

other films are similar. Clearly, c-scenes provide a high degree of  abstraction, that will be 

extremely useful in generating video summaries. Note that while this work focuses on 

computability, there are some implicit semantics in our model: the P and the Ac-V 

scenes, that represent c-scenes with consistent chromaticity and lighting are almost 

certainly scenes shot in the same location. 

2.5.4.2 Detecting the video and audio scenes 

We now present a brief  overview of  our approach to detecting computable video and 

audio scenes;  details on our approach can be found in chapters 3 and 4 respectively. The 

algorithms for detecting the computable video and audio scenes both make use of  the 

FIFO memory model (section 2.5.2.2).  

In order to segment video data onto scenes, we proceed as follows. The video data 

comprises shot key-frames. The key-frames in the attention span are compared to the 

rest of  the data in the memory to determine a measure of  coherence between the 
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attention span and the rest of  the memory. In order to compute coherence we need to 

include three factors: (a) the pair-wise dissimilarity between shots in the attention span 

and the rest of  the memory, (b) the duration of  all the shots and (c) the time separation 

between a shot in the attention span with a shot in the rest of  the memory. Scene change 

locations occurs at local coherence minima.  

In order to segment the data into audio scenes, we proceed as follows. We first compute 

a set of  features from the audio data. These features differ in terms of  type (scalar, 

vector and point) and the temporal resolution at which they are extracted. In this work, 

we also present a new signal model of  the scalar sequence. As in the case of  v-scene 

segmentation, we need to measure the degree of  correlation amongst adjacent audio 

segments to determine scene boundaries. In order to do this, we compute a parameter 

that measures the rate of  increase of  the distance amongst adjacent segments. Local 

maxima of  this distance increase rate, yield a-scene boundary locations. 

2.5.4.3 Detecting structure and silence 

Why is detecting structure and silence important? Let us first examine the case for 

structure. Assume that we have a dialog scene showing two people engaged in a 

conversation. Let us further assume that each shot in the dialog lasts 30sec. each. Then, 

the computational model for detecting video scenes cannot disambiguate between the 

case of  two long and widely differing shots in a dialog sequence and the case of  two 

adjacent v-scenes. It will thus detect a v-scene boundary between adjacent shots. 
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However, human beings recognize the structure in the overall sequence and thus 

group the shots together as a dialog.  

Silence detection is useful in two contexts: (a) detecting the start of  conversation by 

determining significant pauses [16]  and (b) in English films, the transitions between 

computable scenes may involve silence. 

We introduce a novel framework for detecting visual structure that assumes that the data 

containing the structure is discrete and can be associated with a metric. The framework 

seeks to exploit the topological properties of  the structure (i.e. the metric relationships 

between the elements of  the structural element). In this thesis we shall detect two 

structural elements that have simple generative rules. 

We shall detect silence using an adaptive threshold on the energy histogram of  the audio 

data. Details on structure detection can be found in chapter 6, while details on silence 

detection can be found in section 4.6. 

2.5.4.4 Multi-modal fusion 

In this work, we develop a rule based approach for determining computable scenes. This 

involves fusion of  information (see Figure 2.2) from four sources: (a) v-scenes, (b) a-

scenes, (c) structure and (d) silence. The use of  silence and structure is just the idea of  

imposing higher levels of  knowledge on the basic computable scene model. Another 

example of  a higher-form of  knowledge is the specific visualization (e.g. of  emotions 
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such as happiness, anger etc.) style of  the director; for example the director may 

present  The details on the fusion algorithm can be found in chapter 5. 

2.6 Summary 

In this chapter we have introduced the segmentation problem and presented a 

computational scene framework for films. The framework was derived from camera 

placement rules in film-making and from experimental observations on the  psychology 

of  audition. We do not focus on deciphering the semantics of  the scene.  

The computational framework provides a consistent way to automatically generate 

scenes from low-level feature analysis. While the resulting scenes can form the basis for 

semantic analysis at a later stage, the specific task behind our computational approach 

was to preserve the syntactical properties of  the original video data. These syntactically 

correct segments are important for our approach to video summarization.  

We discussed in depth, prior work in visual scene analysis that dealt with three 

approaches to the problem of  visual scene segmentation — (a) scene transition graphs, 

(b) adaptive clustering and (c) video coherence. We also reviewed prior work in audio 

scene segmentation, that primarily dealt with the classification of  audio into predefined 

classes. We also discussed the area of  computational auditory scene analysis and 

discussed some of  Albert Bregman’s observations on the process of  audition. 

Finally, we presented our computable scene framework. The framework had four key 

components: (a) a memory model, (b) algorithms for v-scene and a-scene detection (c) 
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the use of  structure and silence, as higher knowledge constraints and (d) a multi-modal 

fusion framework for the c-scene detection.  
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3 The computable video scene 

3.1 Introduction 

In this chapter, we shall describe our approach towards detecting computable video 

scenes (v-scenes). V-scene detection is the first step towards computable scene 

segmentation. A v-scene has certain consistent temporal properties that stem from 

camera arrangement constrains from film-making. We deem these scenes as computable 

since they can be automatically and consistently computed from the raw data. We shall 

not focus on deciphering the semantics of  the scenes.  

These video scenes are computed within a memory model framework and makes use of  

two computations on the data in the memory — recall and coherence. Recall models the 

relationships between two shots, while coherence measures the inter-segment similarity 

We use this coherence measure to determine the relationship between the present data 

and the data stored in the rest of  the memory. We declare v-scene boundaries to exist at 

locations of  local coherence minima. These minima are obtained using a two-window 

strategy, that measures the strength of  the minimum. Our experimental results indicate 

that our algorithm works well, with best case precision of  70% and recall of  91%. 

In this chapter, we shall also introduce three new theoretical models to compute the 

coherence function. These models improve upon the basic model used in our 
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experiments. While the first model improves upon the basic model by introducing new 

functions, the other two models use an entirely new approach. They make use of  the idea 

of  Kolmogorov complexity [21] [51] (ref. appendix 13.1), a fundamental measure of  

information, to determine scene boundaries.  

The rest the chapter is organized as follows. We begin by defining a v-scene and then 

follow that section with definitions of  two functions central to v-scene segmentation — 

recall and coherence, in sections 3.3 and 3.4 respectively. Then in section 3.5, we discuss 

the procedure for detecting v-scenes and we follow that up with experimental results in 

section 3.6. In section 3.7, we present three new theoretical models that improve upon 

the model that we have used in our experiments, and we finally conclude the chapter by 

summarizing our contributions in section 3.8. 

3.2 The v-scene definition 

We define the v-scene as a contiguous segment of  visual data that is chromatically 

coherent and also possesses similar lighting conditions. A v-scene boundary is said to 

occur when there is a change in the long-term chromaticity and lighting properties in the 

video. This definition stems from the film-making constraints discussed in section 2.5.1.  

Note that we have avoided bringing in the semantics of  the segment into the definition, 

thereby allowing us to label the ground-truth, in a consistent manner.   

The framework for v-scene detection that we propose, involves using the memory model 

framework discussed earlier (ref. section 2.5.2) and the shot key-frames. The framework 
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can conceptually work without having to detect shots, i.e. with raw frames alone. 

However, this would lead to an enormous increase in the computational complexity of  

the algorithm. Hence, the video stream is first converted into a sequence of  shots using a 

sophisticated color and motion based shot boundary detection algorithm [109] , that 

produces segments that have predictable motion and consistent chromaticity. A frame at 

a fixed time after the shot boundary is extracted and denoted to be the key-frame. 

3.3 Visual recall: measuring inter-shot similarity 

In this section we define recall, a measure of  how one shot viewed in the past is similar to 

a shot that we are viewing at the present moment. In our visual memory model, the data 

is present in the buffer in the form of  key-frames of  shots and each shot occupies a 

definite span of  time. The model also allows for the most recent and the oldest shots to 

be partially present in the buffer (see section 2.5.2.2, for details on the FIFO memory 

model). The idea of  recall between two shots a and b is formalized as follows: 

 ( , ) (1 ( , )) (1 / ),a b mR a b d a b f f t T= − • • • − ∆  (3.1) 

where, R(a,b) is the recall between the two shots a, b. d(a,b) is a L1 color-histogram based 

distance measure between the key-frames corresponding to the two shots, fi is the ratio 

of  the length of  shot i to the memory size (Tm > 0). ∆t is the time difference between the 

two shots.  

The formula for recall indicates that it is proportional to the length of  each of  the shots 

in the memory. This is intuitive since if  a shot is in memory for a long period of  time it 
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should be recalled more easily.  Also, the formula quantifies the intuitive observation 

that the ability of  one shot to recall another should decrease, if  they are further apart in 

time. Finally, as the formula notes, with an increase in distance between the two shots, 

the recall should decrease.  

The product form of  equation (3.1) is justified as follows.  

• Intuitively, the recall between two shots should be zero if  either of  shots is of  

zero duration (i.e. it doesn’t exist in memory!). 

• If  the distance between the two shots is infinite, the recall must drop to zero. In 

our case, the distances are normalized to lie between 0 and 1. 

• If  one of  the shots lies out of  the memory buffer (i.e. ∆t=Tm), then the recall 

again must drop to zero, since we cannot compare shots that don’t exist in the 

memory buffer. 

The reason why the time durations present in the formula for recall (i.e. the shot lengths 

fa and fb, and the relative time separation ∆t) are normalized with respect to the buffer 

length is as follows. If  we think of  the amount of  information in each shot to be 

proportional to its shot length, then our decision on computing recall must be based on 

the relationship between the amount of  information in a shot with respect to the net 

information in the rest of  the memory.  
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A similar argument can be made for normalizing ∆t. Let us assume that the time 

separation between two shots is 20 sec. Now, consider two cases when the buffer are 

sized 25sec. and 250 sec. respectively. In the first case, the viewer has very short term 

memory and is likely to forget the old shot (i.e. the shot that the viewer is trying to 

recall), while in the second case the viewer has very long term memory, and is likely to 

retain the old shot for much longer, hence increasing the recall. 

The distance function d(a,b) in equation (3.1) is computed as follows. First we use 232 

bin histogram in the HSV (Hue, Saturation, Value) space. The use of  the HSV space 

accomplishes two things: (a) perceptually similar colors are close in the metric used in 

this space, and (b) the lighting changes are now easily detected (via changes in value). We 

quantize the color space as follows: 18 hues, 4 saturation and 3 value points. We 

additionally use 16 shades of  gray. The metric d used in the formula for recall is the L1 

color histogram difference, that is normalized to lie between 0 and 1.0.  

Note that the definition of  the term recall used in this section is different from the one 

used in information retrieval (precision / recall). 

3.4 Coherence: measuring inter-segment relationships 

In this section we define coherence, a measure of  how two segments are similar to each 

other. V-scene boundaries occur when there is low coherence between two consecutive 

segments. Coherence is defined by making use of  the definition of  recall: 
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where, C(to) is the coherence across the boundary at to and is just the sum of  recall values 

between all pairs of  shot-lets (defined in the next section) across the boundary at to. 

Cmax(to) is obtained by setting d(a,b)=0 in the formula for recall (equation (3.1)) and re-

evaluating the numerator of  equation (3.2). This normalization compensates for the 

different number of  shots in the buffer at different instants of  time.  

A scene transition boundary occurs at to if  the shots that come after that point in time, 

do not recall [44]  the shots prior to that point. This will then cause a coherence 

minimum to occur at the shot boundary.  

While the current implementation of  the coherence algorithm does use shot key-frames, 

conceptually, it will work without any changes on the continuous video stream. We have 

traded a slight decrease in performance for large decrease in computational complexity. 

The coherence function is also useful after segmentation. Let us assume a skimming 

application where one wants to reduce (i.e. eliminate frames) from the shots after a scene 

segmentation boundary. Then, the coherence function can be modified to indicate the 

rate of  change of  information as we move away from the boundary. This can allow us to 

determine the amount of  the scene to retain. 
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3.4.1 What are shot-lets? 

We need to introduce the notion of  a “shot-let.” A shot-let is a fraction of  a shot, 

obtained by breaking individual shots into δ sec. long chunks. However, they could be 

smaller due to shot boundary conditions. Each shot-let is associated with a single shot 

and its representative frame is the key-frame corresponding to the shot. As will be clear 

shortly, this is done to reduce the computational complexity of  the algorithm.   

Why are shot-lets necessary? This becomes important when we have long shots. Since 

the coherence function is only evaluated at shot boundaries, the presence of  long shots 

can cause the coherence function to be sparsely sampled, thus causing potential minima 

to be missed. For example, in a short video clip of  90 sec. with three shots of  30 sec. 

Figure 3.1: (a) Each solid colored block represents a single shot. (b) each shot 

is broken up into “shot-lets” each at most δ sec. long.  (c) the bracketed shots 

are present in the memory and the attention span. Note that sometimes, only 

fractions of shots are present in the memory. 

time 

time 

each shot is broken up into δ sec. long “shot-lets.”  

to attention span 

memory Tm 

Tas 

time 

(a) 

(b) 

(c) 
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each, the coherence function would only be evaluated at the two interior points. The 

shot-let formulation allows the coherence function to be smoothly sampled while 

preserving the original shot boundaries. 

Another way to evaluate the coherence function is to sample the video at additional 

points (for example, by using additional key-frames per each shot) to increase the 

coherence density. However, since coherence evaluation is O(N2) in the number of  shots, 

this technique will increase the evaluation time of  the coherence function.  

Shot-lets decrease the computational complexity of  the algorithm by associating with the 

same key-frame as the original shot. Consider the case when we have computed the 

dissimilarity between two shots A and B. Then, once this is done, we do not have 

reevaluate the dissimilarity between shot-lets from shot A, with shot-lets from shot B10. 

Note that we will use shot-let duration information, and time-separation between shot-

lets, in addition to the dissimilarity, when computing recall (ref. equation (3.1)). In our 

experiments, we find that δ = 1 sec. works well. Figure 3.1 shows how shot-lets are 

constructed.  

In the sections that follow, it is to be understood that we are dealing with shot-lets, rather 

than shots. Note that the formulas for recall and coherence do not change with the 

                                                

10 Implicit in this discussion is the assumption that the visual characteristics of  the shot 

do not change appreciably over the duration of  the shot.   
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introduction of  shot-lets, since the key-frame associated with the shot-let is the same 

as that of  the shot.  

3.5 Detecting v-scenes 

In this section we discuss the procedure for detecting v-scenes. We detect the local 

coherence minima for v-scene detection since v-scene boundaries only occur at 

coherence minima.  

We use a two-window approach to detect coherence minima. We define two windows W0 

and W1, where W0 is a window of  size 2k+1 points and W1 is a smaller window centered 

in W0 of  size k+1 (see Figure 3.2 (a) ). For example, a typical value of  k is 4. To 

determine if  a minima exists, we first check if  a minima exists within W1. If  it does, we 

then need to impose conditions on this minima with respect to the coherence values in 

the larger window W0 before we deem it to be a v-scene boundary.  

Figure 3.2: Each figure shows a plot of coherence against time. The three 

figures show the (a) normal (b) strong and (c) weak coherence minima cases. 

Figure (a) shows the two coincident windows Wo (outer window) and W1 (inner 

window) that are used for coherence minima detection. 
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First, we need to define three parameters (α, β, γ) relating to coherence values in W0. 

α, β: they are respectively, the difference between the maximum on the left and the right 

half  coherence windows and the minima value. γ : this is the difference between the 

minima and the global minima in W0. Then, on the basis of  these three values, we 

classify the minima into three categories (see Figure 3.2):  

• Strong : min( , ) 0.3 ( min( , ) 0.1 max( , ) 0.4 )S α β α β α β≡ > ∨ > ∧ >  

• Normal: (max( ) 0.1) (min( ) 0.05) ( 0.1) ( )N Sα β α β γ≡ , > ∧ , > ∧ < ∧ ¬  

• Weak : max( , ) 0.1 ( ) ( )W S Nα β≡ > ∧ ¬ ∧ ¬  

The values above were determined using a 500 sec. training set obtained from the film 

Sense and Sensibility. The strong case is good indicator a v-scene boundary between two 

highly chromatically dissimilar scenes. The weak case (the two window technique is 

particularly useful in detecting the weak minima cases.) becomes important when we 

have a transition from a chromatically consistent scene to a scene which is not as 

consistent. These are the P → A-Vc, or Ac-V → A-Vc (and vice-versa) type scene 

transitions (see Table 2.2 for a definition of  each type of  scene). The categorization of  

v-scenes into strong, normal and weak becomes very useful when we are fusing 

information from a-scene boundary detection, v-scene boundary detection, silence 

detection and structure analysis. This is discussed in greater detail in chapter 5, where we 

discuss integration of  different modalities. 
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How does the use of  shot-lets affect the v-scene boundaries? Can it occur in the 

middle of  the original shot? V-scene boundary locations obtained from shot-lets, can 

actually differ from the original shot boundaries. However in practice, these deviations 

are small compared to the original shot durations. Then, since the true v-scene can only 

occur at one of  the original shot boundary locations, we simply time-stamp the detected 

v-scene boundary with the time of  the nearest shot boundary.  

3.5.1 Comparisons with shot detection 

Now, we briefly comment on the differences between the shot detection algorithm used 

in this work and the new v-scene detection algorithm. The shot detection algorithm [109]  

operates on the MPEG-1 compressed stream. It uses the following features — average 

color and variance, motion statistics (ratio of  intra coded blocks to motion predicted 

blocks, ratio of  number of  forward to backward motion vectors). The detection is done 

over two short windows (0.2 sec. and 2 sec.) with a decision tree to come up with a 

robust algorithm. The performance is excellent over  a wide range of  datasets (precision 

91 % and recall 95%). We now highlight the key differences. 

The shot detection algorithm compares two frames and picks the local minima of  this 

measure over a small window (typically 0.2 ~2 sec.) to detect shots. However, the 

consistency of  scene is a long-term (empirical analysis of  video data indicates that in 

order for a shots to be grouped together as a scene, the duration of  this group must at 

least be 8 sec.) group property, and is better determined by using the mutual information 

between two video segments (approximated by two groups of  key-frames of  shots). 
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The distance function for the v-scene detection takes into account the distance 

between the color-histogram two shots, the duration of  each shot, and their temporal 

separation. There is no temporal weighting in the shot detection algorithm.  

An important aspect of  our v-scene algorithm is the imposition of  top-down structural 

constraints. Human beings tend to group data that is highly structured into one semantic 

unit (e.g. dialogs, point-of-view shots11). Such groupings will be missed by simple scene 

detection algorithms since the structural constraints are not considered. Chapter 6 

discusses a framework to detect structure in sequences and the fusion of  different 

modalities is discussed in greater detail in chapter 5. 

3.6 Experiments 

In this section we shall describe our experiments on v-scene detection. We first begin by 

discussing in detail our labeling procedure. Then, we present the results of  our algorithm 

and this followed up by a comparison with related work. 

                                                

11 A point-of-view shot is a shot that shows the audience what the character sees. For 

example, the director may show a shot of  the character, then show us what the character 

sees, and then will cut back to the character to show the reaction of  the character to 

what he / she sees. For an example see Figure 6.3.  
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3.6.1 Labeling the data 

The video data was labeled independently from the audio so as to prevent any influence 

of  the audio track on the labeling. Only one person (the author) labeled the data. We 

attempt to label the video data into coherent segments (segments that possess long term 

consistency in chromaticity and lighting.). From empirical observations of  film data, it 

became apparent that for a group of  shots to establish an independent context, it must 

last at least 8 sec. Hence all the v-scenes that we label must last more than 8 sec. Then, 

the labeling criteria were as follows:  

• Do not mark v-scene boundaries in the middle of  dialogs or regular anchors 

(these are elements of  structure that we detect in our framework; structure 

detection is discussed in detail in chapter 6), instead mark structure end points at 

the beginning and end of  the dialogs/regular anchors.  

• When encountering montage sequences (see section 2.5.4.1), only label the 

beginning and end of  the montage sequence. The result of  using this labeling 

criteria is shown in the table below.  

Table 3.1: Ground truth v-scene data obtained from labeling the video data separately from the 

audio data.  

Film V-Scenes 

Sense and Sensibility 57 

Four weddings and a funeral 61 

Pulp Fiction 40 
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3.6.2 Results 

In this section, we discuss the v-scene change detector results. First, we discuss the 

parameters that we need to set. For detecting video coherence, we set the attention span 

to be 8 sec. (in accordance with our labeling rule) and the size of  the memory is set to 24 

sec. Note that the attention span is the most recent data in memory; hence in this case 

this case, the rest of memory is 16 sec. long. In general, increasing the memory size 

reduces false alarms, but increases misses. 

In evaluating our results, we shall compare the detected v-scenes against the total number 

of  shots in the film, since they are all candidate v-scene change points. Secondly, it is 

important to note that we are dealing with an asymmetric two-class problem (scene 

change vs. non-scene change) where the number of  ground truth scene change locations 

is typically less than 10% of  the total number of  shots. Hence it is important to correctly 

reject non-scene change points in addition to correctly detecting the scene change points.  

We now need to define precision and  recall, two standard measures of  performance, 

that are primarily used in information retrieval. Precision: hits /( hits + false alarms ), 

Recall: hits / ( hits + misses ), where hits, misses and false alarms refer to the detector 

performance.  

The precision and recall metrics, focus on the performance of  the algorithm with respect 

to the scene change locations only. They does not illustrate well, the performance of  an 

algorithm when dealing with an asymmetric class distribution. Hence we present the 
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entire confusion matrix (i.e. hits, misses, false alarms and correct rejection), in addition 

to presenting the precision and recall. Correct rejection in this case refers to those shot 

boundary locations that were not v-scene change locations and were correctly labeled as 

such.  

We now present results for v-scene detection in Table 3.2. These results are for the 

entire duration of  the film (each film is one hour long) and for transitions between all 

types of  scenes (see Table 2.2 for definition of  each type of  scene). We use the 

following notation: H: hits, M: misses, FA: false alarms, CR: correct rejection. Shots is 

just the number of  shots detected by the shot detection algorithm. NCL: non-scene 

change locations; this is just the number of  shots less the number of  ground truth scene 

change locations. 

Table 3.2: Video scene detection results. In order: hits, misses, false alarms, correct rejection, 

number of shots, number of non-scene change locations, precision and recall. 

Film H M FA CR Shots NCL Precision Recall 

Sense and 
Sensibility 52 5 22 563 642 585 0.70 0.91 

Pulp Fiction 38 6 20 414 478 434 0.64 0.86 

Four Weddings and 
a Funeral 49 12 41 634 736 675 0.55 0.80 

The result shows that the v-scene detector works well. The recall for the v-scene detector 

varies between 80~91% while the precision varies between 55 ~ 70%. Note that the 

correct rejection is excellent — around 95% across all cases. One important source of  

error is due shot detector misses that causes the v-scenes to be missed since the wrong 
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key-frame is present in the buffer. Other sources of  error for computable scene 

segmentation are discussed later, in section 5.4.1.1. 

3.6.3 Comparison with related work 

While the thrust of  this work is to come up with a joint audio-visual model for 

computable scene segmentation, it is interesting to compare our v-scene segmentation 

algorithm with prior work on video scene segmentation.  

• Prior work on video scene segmentation was focused on detecting semantic 

scenes, and not computable scenes. Hence the ground truth labeling criteria and 

the resulting segment boundaries will differ from a c-scene labeling of  the data. 

• There has been prior work done in video scene segmentation using only visual 

features [102] , [44] . There, the authors focus on detecting scene boundaries for 

sitcoms (and other TV shows). However, since we expect the v-scenes in sitcoms 

to be mostly long, and coherent, we expect our visual detector to perform well. 

• We have introduced two novel ideas in our approach: 

o The use of  production models in creating the segmentation algorithm. 

o The use of  higher forms of  knowledge, in our case shot-level structure 

information, to improve the resulting segmentation.   

3.7 New conceptual memory models 

In the upcoming sections, we outline several new theoretical models for the memory-

centric v-scene segmentation. We begin by showing how we can improve the basic 
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coherence model by introducing the idea of  self-coherence. Then, we show two 

models based on the idea of  Kolmogorov complexity [21] [51] (ref. appendix 13.1).  

3.7.1 Improving the basic model 

We begin by pointing out a conceptual limitation of  the coherence-based model that we 

have used in our work (equation (3.2)).  

Let us assume that we have a situation where the attention span contains a single shot 

while the rest of  the memory contains six distinct shots. Then if  the recall between the 

shot and all the shots in the rest of  the memory is identical, then a random permutation 

of  the shots in the rest of  the memory will not change the coherence value (equation 

(3.2)). This absence of  a difference is surprising given that all the images are distinct. 

When does this occur? If  the images are represented by n bin histograms, then the space 

of  all histograms is simply represented by the following equations: 
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Figure 3.3: Let us assume that the attention span contains a single 

shot, while the rest of the memory contains six different shots.  
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where, hi is the value of  a particular histogram bin and n is the number of  bins. This is 

just a hyperplane in a finite n dimensional space. Let us now define a hypershpere s of  

radius r, centered at oh
r

. Then, when n=2 (i.e. the two bin histogram case), the 

hypershpere will intersect the line at two points, when n=3, the sphere will intersect the 

plane in a circle and so on. These points of  intersection are distinct histograms that 

represent distinct images.  

While the case of  the distance between the shots in the attention span with the shots in 

the rest of  the memory being exactly equal is unlikely, in practice, we do have the situation 

of  low dynamic range of  the L1 color histogram distance. This can happen when shots in 

the attention span and the rest of  the memory are from two different scenes, but both 

scenes have low-contrast (this can happen in dimly lit scenes). Thus, we have case where 

there will be no detectable coherence minima.  

The problem with the current coherence formulation then is that it does not take into 

account the self-coherence of  the shots in the attention span i.e. the relationship amongst 

the shot-lets within a scene. The self-coherence of  a buffer of  shot-lets is defined as 

follows:  
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where, i, j are any two shot-lets in the buffer, r is the recall between any two shot-lets, δ 

is the duration of  each shot-let, d is the metric defined over the images, µr is the mean of  

all the pair-wise recalls, N(N-1) is just the number of  distinct pairs, and where N is the 

number of  shot-lets in the buffer. Note that since we normally use δ=1sec. in our work, 

Cself then just becomes the variance of  the pair-wise distances.  

Note that in equation (3.4), the formula for recall does not include the temporal 

separation between the shot-lets as a weighting factor. The reason for this is that in 

computing Cself, we are really interested in computing the spread of  the pair-wise image 

distances in the buffer; hence the use of  the temporal weighting factor here seems 

artificial.  

Now, the modified coherence across two buffers A and B, is readily obtained as follows:   

 mutual

self self

( , )
( ) ,

( ) ( )
C A B

C t
C A C B° +

@  (3.5) 

where, the Cmutual is the coherence as defined in equation (3.2), and where the self  

coherence Cself is defined in equation (3.4) and where to is the time coordinate of  the 

boundary between the two buffers. Note the striking resemblance to the familiar Fischer 

discriminant [24]  The coherence is detected as before, using coherence minima 

detection, in section 3.5. We now present a comparison using synthetic data between the 

new formulation of  coherence and the older model, in the next section. 
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3.7.1.1 Experiments using the new model 

We conducted experiments on artificial data, using the new model presented here 

(equation (3.5)), and compared the performance against the model (equation (3.2)) used 

in our experiments on v-scene segmentation.  

We modeled a shot to be a sequence of  frames that lasted between 2sec. to 5sec. in 

duration. Each “frame” was represented using a real number between 0 and 255. Note 

that it is not important to represent a frame using a matrix, since we are only interested 

in the inter-frame dissimilarity — a real number. The dissimilarity between the frames 

was computed using the absolute difference metric. The frames within a shot have the 

same value. This stems from our notion that all the shot-lets of  the shot are associated 

with the same key-frame. 

We modeled a computable v-scene to a sequence of  shots that could last between 15sec. 

to 45 sec. in duration. The scene has a mean frame value µ and standard deviation of  the 

frames within a scene is σ (the same value of  σ is used for all scenes). Then, the shots 

within the scene are generated using a Gaussian distribution i.e. we generate a single 

number using the distribution and assign it to a shot. All the shot-lets of  this shot will 

have the same frame value. The durations of  the shots and the durations of  the scenes 

were distributed uniformly over their range. The final parameter of  interest is the inter 

scene dissimilarity — ∆.  
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Now, the synthetic dataset comprising 1000 scenes, with fixed σ and ∆, was generated 

in the following way.  

1. Pick a mean value (µ) at random, for the first scene. 

2. Determine the scene duration, using a uniform distribution over [15,45] sec. i.e. 

scenes can lie uniformly between 15 and 45 sec. 

3. Now, for the scene, generate shots: 

a. Determine the shot duration using a uniform distribution over [2,5] sec. 

i.e. shots can lie uniformly between two and five sec. 

b. For each shot, generate a frame value using a Gaussian distribution with 

parameters µ and σ. Assign all the shot-lets within the shot, the same 

frame value. 

c. Keep generating shots, till the sum of  the durations of  the shots equals 

the duration of  the scene.  

d. Now generate the mean value for the next scene using a random walk and 

the parameter ∆. i.e. the mean value of  the next scene is either µ+∆ or µ-

∆, with equal probability. At the boundaries of  the range for µ, (note that 

µ ∈ [0,255]), we just “reflect” the values over the boundaries. For 

example, if  µ+∆ = 260, with µ = 220 and ∆ = 40, then the reflected value 

around 255, would be 250.  
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e. Repeat steps 2-4 until we have generated 1000 scenes. 

Now, with the artificially generated scene, and using the L1 metric between shots we 

computed the coherence values using the old and the new models presented in the 

previous section. We computed the precision and recall for the scene detection in both 

cases, by varying the size of  the memory. The memory lies between 8 and 48 sec. and is 

incremented by 4 sec. The attention span is constrained to half  the size of  the memory.  

We plot the results in Figure 3.4. The figures indicate the new model is an improvement 

over the old model. The precision and recall values for the new model show an 

improvement of  about 15% on the average, over the old model.  

Figure 3.4: The figures shows the precision vs. memory size (a) and recall vs. memory size 

for the two models. The green curve represents the coherence values from the new model, 

while the red curve represents the coherence values from the old model. The memory size is 

varied from 8sec. to 48 sec. in increments of 4 sec. 

(a) (b) 
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Interestingly, precision and recall fall alarmingly when the size of  the memory buffer is 

set at 8sec. Why does this happen? The reason that this happens is because the self  

coherence calculation (ref. equation (3.4)) becomes unreliable as there are too few points 

in the attention span and the rest of  the memory (just four points each). Now since the 

shot sizes can lie between 2 and 5 seconds, if  the attention span (or the rest of  the 

memory) lies entirely in one shot, the self  coherence of  the memory segment will be 

zero, thus pushing the true coherence minima to a large value. Note that the self  

coherence is just the variance of  the distances in the memory. 

3.7.2 Complexity based models 

The basic coherence model (ref. Section 3.4) and the improved model (see section 3.7.1) 

are both predicated on a simple idea — is the data viewed in the past related to the 

present data? It computes the segment boundaries using coherence minima, where the 

measure of  “closeness” between two images is their metric distance.  

A more basic view of  the memory model is as follows: does the past data contain 

information that allows us to predict the present data more easily? If  it does not, then the 

two segments must not be related. Rather than using entropy and mutual information, 

quantities that are natural for stochastic processes, we shall use the idea of  Kolmogorov 

complexity [21] [51]  (see section 13.1, for a brief  review). We do this for two reasons:  

• Kolmogorov complexity is a measure of  complexity defined for deterministic 

sequences. 
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• Since the images in the buffer are natural images, it unintuitive to impose an 

artificial generative model on these images.  

It is also an elegant result of  Kolmogorov complexity theory, that the expectation of  the 

Kolmogorov complexity of  a stochastic process is just the entropy rate of  the process 

[21] [51] . Thus, Kolmogorov complexity theory agrees with the well known Shannon 

result on compressibility of  a stochastic source.  We now introduce  two different 

approaches to modeling coherence., based on the idea of  Kolmogorov complexity.  

3.7.2.1 Coherence formulated using Kolmogorov complexity 

We now need to define a few preliminaries. Let us consider a finite memory with the 

attention span defined as buffer B and with buffer A representing the rest of  the 

memory. Let the boundary between the two buffers be located at to. Analogous12 to 

mutual information we need the idea of  algorithmic mutual information [51] :  

 ( : ) ( ) ( | ),KI x y K x K x y−@  (3.6) 

where, x and y are two deterministic images, K(x) is the Kolmogorov complexity of  the 

image x (ref. section 8.2.2.2 on estimating visual complexity) and K(x|y) is the 

                                                

12 However, unlike the mutual information that is defined using entropy, algorithmic 

mutual information is asymmetric [51] . 
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conditional Kolmogorov complexity of  image x when given image y (ref. appendix 

13.1.1, on how to generate an estimate).  

Now, let there be NA shots in buffer A, where each shot is represented by a single key 

frame. We assume that each shot lasts a finite duration. We make similar assumptions 

about buffer B. We additionally assume that each frame is uncompressed. Now, the 

algorithmic mutual information of  a frame in buffer B, with respect to a the entire  buffer 

A is defined as follows:  

 ( : ) ( ) ( | ),B B B
K i i iI s A K s K s A= −  (3.7) 

where, K(siB|A) is just the conditional Kolmogorov complexity of  the ith frame in buffer 

B with respect to all the frames in buffer A (ref. appendix 13.1.2). Now the coherence C 

at to is easily determined as follows: 

Figure 3.5: Memory with two buffers: A and B. B is just the 

attention span, while A constitutes the rest of the memory. 

B A 
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 (3.8) 

where D(A) and D(B) are the amount in bits to represent each buffer A and B, siA, siB 

represent the shots in the two buffers and where tiA, tiB represent the durations of  those 

shots. K(siB) and K(siA)  are the Kolmogorov complexities of  the shots respectively. And 

α represents the bitrate (i.e. it is the product of  the frame-rate, the number of  pixels per 

frame and the number of  bits per pixel). It is easy to see that the scene boundaries are 

located at the coherence minima. 

3.7.2.2 Coherence formulation with perceptual distortion 

Figure 3.6: The variance of the blur function increases with 

distance ∆t from the boundary between the two buffers A and B. 
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The coherence formulation on the previous section deals with the idea of  information 

loss, when the present data is compared with the past data. However, while computing 

the estimates of  Kolmogorov complexity, we use “perfect” representations of  the 

images stored in the memory. However, this is non-intuitive — data in short-term 

memory fades with time.  

One way to achieve this fading effect is to blur the past data with a two-dimensional, 

symmetric Gaussian kernel, whose variance changes with time (see Figure 3.6). 

Formally: 

 2 2

22

( ) exp( ) 0,

1
( , , ) exp ,

2 ( )2 ( )

t t t

x y
b x y t

tt

σ β α

σπσ

∆ = ∆ ∆ ≥

  +
∆ = −   ∆∆   

 (3.9) 

where ∆t is the distance from the boundary, σ is the variance in pixels, α and β are 

constants, and where b is the Gaussian kernel that will blur the images in the memory. 

Now, we blur all the shots in the rest of memory (i.e. all shot-lets except those in the 

attention span) with the Gaussian kernel, as follows: 

 ( ),A A A
i i is s b t′ = ∗ ∆  (3.10) 

where, s′ is the modified shot-let, s is the original shot-let and ∆t is the distance of  this 

shot-let from the boundary to, and where * is the familiar convolution operator. Then, the 

coherence is readily computed using the coherence formulation similar to (3.8):  
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 (3.11) 

where the significant change has been the use of  the blurred shot-lets s′iA. Then, as in 

the previous section, the v-scene boundaries are located at the coherence minima 

location. 

3.8 Summary 

In this chapter, we have discussed our approach to detecting computable video scenes. 

There were three key components to our work: (a) a memory model, (b) recall and (c) 

coherence. We defined recall to be a measure of  inter shot similarity, that incorporated 

the shot durations, their temporal separation, in addition to their metric distance. 

Coherence was computed using the pair-wise recall of  all shots in the buffer, across the 

time boundary where we wanted to compute recall. We modified the original coherence 

formulation using shot-lets (shot fragments) since the original formulation could lead to 

misses in the coherence minima. Our experimental results indicate that our algorithm 

works well, however there is room for improvement.  

We additionally presented three new theoretical models for v-scene detection. The first 

model improved upon the original model by defining a new function on the shots — 
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self-coherence. The next two models began by reformulating the problem as one of  

successfully predicting the present with information in the past data. Then, we used the 

idea of  Kolmogorov complexity to define the algorithmic mutual information distance 

between the shots in the buffers. This enabled us to compute coherence under two 

circumstances — (a) perfect image representation and (b) perceptual distortion of  the 

images. 
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4 The computable audio scene 

4.1 Introduction 

In this chapter we shall present our approach towards detecting computable audio scenes 

(a-scenes). The computable audio scene is defined to be a segment of  data with long 

term consistency with respect to ambient sound. Note that each scene can often contain 

multiple overlapping audio classes (e.g. speech + environmental sounds), thus making the 

a-scene segmentation problem qualitatively different from the traditional audio scene 

classification problem, where a segment of  audio data is assigned membership to a single 

class. The work presented in this chapter is an important aspect of  the thesis since it 

complements the v-scene segmentation, thus helping us detect audio-visual computable 

scenes. We shall adopt a memory model based approach to detecting a-scenes (ref. 

section 2.5.2).  

4.1.1 Summary of  our approach 

Our approach to determine audio computable scenes can be summarized as follows:  

1. Compute features for the raw audio data in the attention span. The features can 

be of  three types — (a) scalar (b) vector and (c) point data. 
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2. Model the scalar feature sequence as the sum of  three types: (a) trend (b) 

sinusoids and (c) noise. 

3. A scene change is postulated to exist if  the features computed in the attention 

span are not correlated to features computed from the past data. Note that the 

memory model has two parts — the attention span that has the most recent data 

in memory and the rest of  the memory, that is used to determine if  the present 

differs from the past. In order to determine if  this is true, we do the following: 

a. Compute the features in the attention span. 

b. Move the time window for the computing the features back by δ sec. and 

recompute the features. 

c. Compute the distance of  the features just computed, with the features in 

the attention span. 

d. Repeat steps b and c till we have exhausted the data in the memory. We 

now have distance sequence, per feature. This helps us estimate the 

distance increase rate parameter β. 

e. Advance the original time window by δ sec. and repeat the steps a, b, c 

and d, until all the audio data has been analyzed. We now have computed 

the parameter β, per feature at every time instant. This parameter will 

have a local maximum at the scene change location. 

f. After performing some SVD based smoothing, determine local maxima, 

in each β sequence, for each feature.  
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g. Combine the local maxima using a majority vote to determine if  a 

scene change point exists. 

The rest of  the chapter is organized as follows. In the next section, we present a 

definition of  the computable a-scene. Then, in section 4.3, we present our approach 

towards modeling the audio data — we compute the different features, and present new 

signal models for a subset of  the features. In section 4.4, we shall show how to compute 

the dissimilarities for the features. In section 4.5, we present our segmentation algorithm. 

Then, in section 4.6, we present a simple, but robust approach to silence detection. We 

conclude the chapter by presenting experimental results in section 4.7 and the chapter 

summary in section 4.8. 

4.2 The computable audio scene definition 

In this section, we develop the computable audio scene model that is informed by the  

insights obtained from Computational Auditory Scene Analysis (ref. section 2.4.3). We 

model the scene as a collection of  sound sources. We further assume that the scene is 

dominated by a few of  these sources. These dominant sources are assumed to possess 

stationary properties that can be characterized using a few features. For example, if  we 

are walking away from a tolling of  a bell, the envelope of  the energy of  the sound of  the 

bell will decay quadratically. A scene change is then said to occur when the majority of  

the dominant sources in the sound, change. 
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We define a computable audio scene to be a continuous segment of  audio data that 

exhibits long-term consistency in ambient sound. In section 4.5.1, we shall formally 

quantify this intuitive idea of  consistency, in terms of  the local correlation decay rate of  

the different features. We denote such a segment to be a computable since it can be reliably 

and automatically determined using low-level features present in the audio data. 

4.2.1 Relating computable scenes to semantic scenes 

The segmentation algorithm developed in this work is completely general, however since 

the test-set is culled from films, it is useful to examine the relationship between a 

computable audio scene and a semantic scene. Under usual circumstances, the ambient 

audio is indicative of  location and changes in the ambient sound are indicative of  

changes in location. There are several interesting cases where a change in the audio data 

does not indicate a location change and where consistent audio does not imply the same 

physical location: 

• Part of  a semantic scene: Alice is seen in her room reading a book silently. We 

can hear the hum of  the fan. Then, she gets up and turns on the radio. Clearly, 

there are two computable audio scenes within the single audio-visual semantic 

scene. Hence, such audio scene changes correspond to events within the semantic 

scene. 

• Transient scenes: Suppose that we are watching a semantic scene depicting  a 

journey. Then, the director will show several, differing visual segments, with some 

well chosen ambient music. Here, the audio data isn’t indicative of  the locations 
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that are seen, but is a consequence of  directorial intent. He (or she) may want 

to develop a particular theme (or mood) while showing the journey. 

• Mtv/Montage scenes: These scenes are characterized by widely different 

visuals (differences in location, time of  creation as well as lighting conditions) 

which create a unity of  theme by manner in which they have been juxtaposed. 

However, they are characterized by a long-term consistency in the  audio track. 

4.3 Modeling the data 

In order to segment data into scenes, we adopt a causal, first-in-first-out (FIFO) model 

of memory (ref. section 2.5.2.2, Figure 2.4). The parameters of  this model are identical 

to the one used for computing v-scenes.  

Figure 4.1: We extract three types of features from each section in memory: 

vector sequences, scalar sequences and single point features. 

memory with raw audio data 

vector sequence 

scalar sequence 

single point 
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In this section we present our data representation framework. We model the audio 

data using three types of  features: scalar sequences, vector sequences and single points 

(see Figure 4.1). Features are extracted per section of  the memory, and each section is 

Tas sec. long (the length of  the attention span). 

The rest of  this section is organized as follows. In section  4.3.1, we discuss the features 

used in this work,. In section 4.3.2 we show the detail signal representations for our 

scalar sequence feature representation. This incorporates ideas of  trends, periodic 

elements and randomness. 

4.3.1 The features 

We now describe the features used in this work, grouped by the type (scalar, vector and 

point) of  the feature. 

4.3.1.1 Scalar sequences 

The scalar sequences used in this work are as follows: 

• Zero-crossing rate:  The number of  zero crossings in the raw signal, per 100ms 

frame. The zero crossing rate is indicative of  the spectral content of  the signal 

and is also an excellent speech/music discriminator [74]  [75] . 

• Spectral Flux: The norm of  the frame to frame difference of  the spectral 

magnitude: 1i iF F +− . Music has a higher rate of  change than speech [75] . 
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• Cepstral Flux: The norm of  the difference between cepstra [75] of  successive 

frames: 1i iC C +− . 

• Energy: This is simply the energy of  the raw data per frame, where each frame is 

100ms long. 

• Energy Sigma: This feature measures the variance of  the energy, per 1 sec. 

window. 

• Low energy fraction: Computes the fraction of  frames in each second of  data 

that have energy that is less than a certain global threshold. 
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 (4.1) 

where, each frame f is 20ms long and each window w is 1 sec. long. E(f) is the 

mean energy within the frame, while E(w) is the mean energy in the window w. 

I(f,w) is just the indicator function, and Lef denotes the low-energy fraction. For 

example, when the attention span is 10 sec. long, we would have 10 scalar values. 

This feature helps us determine whether a region is largely silent, with most of  

the energy concentrated in a small region. 

Note that the features have been evaluated at different time scales. For the scalar 

sequences, we obtain one point per 100ms frame for the first four features, but for the 

last two, we obtain one point per second. Hence, for example, with a attention-span 
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window size of  16 sec. we will have scalar sequences of  length 160 for the first four 

features and 16 point sequence for the last two features. 

4.3.1.2 Vector sequences 

Now, we describe the vector sequences determined in this work. 

• Multi-channel cochlear decomposition: A ten dimensional vector per frame, it 

is derived from the output of  a Patterson model of  the cochlea. We use a ten 

channel filter-bank, and  derive the envelope from each band-pass channel.  

• Cepstral vectors: 18 dimensional cepstra from each frame for the duration of  

the analysis window. 

• Mel-frequency cepstral coefficients (mfcc): In order to simulate the subjective 

spectrum we use a filter-bank spaced uniformly on the mel scale, which is a non-

linear, warped frequency scale.  We use 13 mfcc coefficients, per frame derived 

from a 40 channel filter-bank, [69] [79] . 

In each of  these cases, we use a frame length of  100ms. 

4.3.1.3 Scalar points 

Finally, we describe the scalar point data extracted in this work. 

• Spectral roll off  point: This is the 95th percentile of  the power spectrum. It is 

useful in distinguishing voiced from unvoiced speech and is also indicative of  the 

skewness of  the spectral distribution [75] . 
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• Zero crossing rate variance: This is just the variance of  the zero crossing 

rate for the entire window [74] . 

While the cochlear features were chosen since they model the cochlear response well, the 

rest of  the features were chosen for their ability to distinguish between speech and music 

[74] [75] [30] [69] . We now discuss the scalar sequence signal model in detail. 

4.3.2 The scalar sequence signal model 

The scalar sequence of  feature values are described by an additive model comprised of  

three parts: a trend, a set of  periodic components and noise. Thus, 

 ( ) ( ) ( ) ( ),F k t k p k n k= + +  (4.2) 

where, F(k) represents the feature value at the kth time instant, t(k), p(k) and n(k) 

representing the value of  the trend, the periodic component and the noise respectively, at 

time k. 

Figure 4.2: We model the scalar sequence as a sum of three components — trend, periodic 

components and noise. 

+ + = 

trend periodic components noise signal 
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The decomposition model of  the feature sequence is intuitive. The trend is 

represented using a low order polynomial of maximum degree two, the periodic 

components are represented via a conjugate symmetric basis ([97] , section 4.3.5) and the 

noise is not explicitly modeled. The low-order polynomial trend is a design constraint 

that implements Bregman’s  observation that source characteristics change slowly over 

time (ref. section 2.4.3). The noise is not explicitly modeled since we are primarily 

interested in computing a dissimilarity measure and not interested in reconstructing the 

signal.  

The decomposition in equation (4.2) , bears similarities to the sines+transients+noise model 

found in [97] . However, there are differences:  

1. In [97] , the author works on the problem of  lossy signal representation of  raw 

audio data, with a view towards scalable13 audio transmission and reconstruction. 

In our case we work on feature sequences instead of  raw audio data. This 

changes the framework used to model the data. 

2. We do not model feature transients; instead we model their graceful change. This 

is a direct consequence of  Bregman’s observations on the nature of  change of  

source characteristics. 

                                                

13 In terms of  bit rate. 
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3. We focus on computing dissimilarities rather than reconstruction. As a 

consequence, the features that we compute (e.g. the zero crossing rate) do not 

allow us to perfectly reconstruct the original audio data. 

4.3.3 Estimating components of  the scalar sequence model 

In this section, we present an algorithm to decompose a scalar sequence signal into three 

components: the trend, periodic components and the residual noise. We estimate the 

trend using a minimum mean-square error polynomial fit, and we determine the order of  

the polynomial by using the minimum description length principle (MDL) [5]  [36]  [71] . 

Then, after removing this trend, we compute the sinusoidal components in the residue, 

using the matching pursuit algorithm [97] . The final residue is the noise. Figure 4.3 

summarizes this computational architecture. 

Figure 4.3: The overall computational architecture for analyzing an input scalar sequence x[n]. 

Trends are represented using low order polynomials, periodic elements are represented using a 

conjugate symmetric basis. The noise is not explicitly modeled. 
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4.3.4 Trends  

The trend is a low order polynomial fit of  at most degree two. The trend is obtained 

using a least square fit to the data and we determine the order of  the polynomial using 

MDL. Briefly, MDL uses a two part coding scheme on the data to determine the correct 

model. The first part of  the coding scheme, represents the model, while the second part 

represents the data encoded with this model. MDL attempts to minimize the total 

number of  bits used to represent the data with a particular coding scheme14. Reference 

[36]  is an excellent tutorial, while [71]  is the classic paper on MDL.  

The trend t(n) has two possible representations:  

 
2

1 2( )
( ) a exp( ß )

op n a a n a n
e n n

= + +
= −

 (4.3) 

where, p(n) is the polynomial fit, n is the time index and the set {ao , a1 , a2 }represents the 

least square polynomial fit parameters. e(n) represents the exponential fit to the data with 

parameters α and β. In order to determine the optimal model for the trend, we first 

compute four fits: one exponential fit and polynomial fits of  degree 0, 1 and 2 

respectively. In order to pick the optimal fit, we use gMDL, a mixture form of MDL [36] 

. This is defined as follows: 

                                                

14 i.e. total number of  bits = number of  bits to represent the model + number of  bits to 

represent the data encoded with the model.  
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where, Rss is the residual sum of  squares for the fit (i.e. the squared error when using the 

trend to fit the data), n is the length of  sequence of  data, k is the number of  parameters 

in the fit and y is the data sequence vector. The minimum value of  gMDL over the 

different models is used to choose the optimal model.  

We chose to use gMDL over other MDL formulations such as Bayesian Information 

Criterion (BIC) and Akaike’s Information Criterion (AIC) since extensive experiments 

[36]  indicate that gMDL selects models better than BIC or AIC. In the next section we 

shall describe our approach to modeling the periodic components.  

4.3.5 Periodic components 

We use the idea of matching pursuits [54]  to model the periodic components. This 

section uses analysis similar to the work in [97] , where the author uses matching pursuits 

to model sines in his sines+transients+noise model of  raw audio data. We first summarize 

the idea of matching pursuits and then discuss our particular algorithm. 
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4.3.5.1 Matching pursuits 

We now present a brief  overview of  the matching pursuits algorithm, an iterative scheme 

to decompose signals using a highly redundant dictionary of  vectors. Let there be M 

elements in a dictionary D = {ek}; k ∈{0,1,..M-1}, where ek represent the basis vectors. 

All the elements are restricted to be unit norm. Let us assume that we need to model a 

signal x. Then, with the initial residual as ro, residual set to x, we have the following at the 

kth iteration: 
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Where 
ki

e is the dictionary element chosen in the kth iteration, <,> is the inner product 

operator, and where || is the absolute value operator.  

In equation (4.5), the definition of  βm ensures that the residual ßk m mr e−  is orthogonal to 

em. Clearly, the magnitude of  rk+1 is minimized by maximizing the magnitude of  αi. 

Hence, at each iteration, we remove the maximum energy from the residual. It can be 

shown if  we use  this procedure, the energy of  the residual converges to zero. 
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4.3.5.2 Subspace pursuits 

Subspace pursuits are generalizations of  the matching pursuits algorithm. Here, the 

residual is projected onto a subspace rather than a single vector. This is highly 

computationally intensive unless the subspaces are highly structured. The family of  

complex exponentials is an example of  a subspace where each subspace has the vector 

and its conjugate. Then, if  we use this subspace, the subspace matching pursuit problem 

resembles the analysis by synthesis sinusoidal modeling problem [97] . 

The dictionary element is defined as follows:  

 1 2[ ] exp , 0,1, , 1, 0,1, , ,m
j mne n n N m M

N M
π = = − = 

 
… …  (4.6) 

where, N is the length of  data sequence and M is the dictionary size. In our current 

implementation, we set the size of  the dictionary is to be 4N.  

Then, with αk=bkexp(jφ) as the largest correlation coefficient, the last line of  equation 

(4.5) is now modified as: 
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 (4.7) 

where the asterix operator * represents a complex conjugate. There are two terms at the 

end of  the first line of  equation (4.7), since we are projecting onto a subspace with two 

vectors — the complex exponential and its complex conjugate. 



   

 

107 

Now, the signal can be reconstructed as:  
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Where, K is the number of  components in our periodic model. Hence, the parameter set 

of  amplitude, frequency and phase triples (we denote each triple as a phasor — see 

appendix 13.2) can be stored and used for discriminating between two sets of  periodic 

components: 

 { } { }2 , , ? f , 0,1, .. 1k k
k k k k

b ia f k K
N M

= = = ∈ −  (4.9) 

We need a stopping criteria to determine K, the number of  components in our periodic 

model. Selecting K on using an energy criteria (e.g. stop after residual energy is less than 

1% of  the original signal energy) has two implications: (a) the number K is variable and 

changes for each segment (b) the variance of  the noise is now fixed. Instead we fix the 

number K, thus selecting the K components with the largest energies. In [97] , the author 

derives a fast implementation of  the subspace matching pursuit problem using the DFT. 

We have used that implementation in our work. 
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4.3.6 Noise 

The noise is not explicitly modeled since we are not interested in transmitting and 

subsequently reconstructing the original feature sequence. Here, we are only interested in 

computing the dissimilarity between two noise vectors. 

The order in which we compute the elements of  the scalar signal sequence, makes a 

difference since the sinusoidal basis is an over-complete basis. In particular, if  we first 

decompose the data into sinusoids, we will not be able to detect the trend since it will 

have been represented by the sinusoids. 

4.4 Computing the feature dissimilarities 

The features to be compared are extracted from different sections of  the memory and 

then compared. Figure 4.4 shows two sections a and b, from which we extract the 

features. 

Each feature used in this work falls into one of  three data types: scalar, vector and 

points. In this section, we shall derive the dissimilarities for the each of  the three data 

types. Note that the scalar signals are further decomposed into three sub-types: trends, 

Figure 4.4: The features are extracted from two different 

sections of memory, a and b and then compared. 

a 
memory 

b 
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periodic components and noise. Each subtype has its own dissimilarity measure 

associated with it. We begin our discussion with the scalar sequence.  

4.4.1 The scalar case 

In order to compute the distance between two scalar sequences, we decompose the 

sequence into three components: the trend, periodic components and the noise data, and 

then compute the dissimilarity for each subcomponent. 

4.4.1.1 Trends  

The trend is a low-order polynomial of maximum degree two. The polynomial degree of  

the trend is determined using MDL (ref. Section 4.3.4) and is hence variable. Let us 

compute the distance between two trends a and b, where a is defined over time-interval 

[0, ta] and b is defined over time-interval [-δ, tb] and where δ>0 and tb < ta. Note, 

+db a ast t T= = , where Tas is the length of  the attention span. The distance between two 

trends in memory is computed using a predictor based model. Hence, we extrapolate 

both trends such that both a and b are defined over [-δ, ta]. Then, the dissimilarity is 

defined as:  

Figure 4.5: The two trends from sections a 

and b are extrapolated and then compared. 

a 
b 
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where, a[ i ] and b[ i ] are the discrete time samples15 of  the two trends and where N is 

the number of  time samples in the extrapolated trends.  

An alternative formulation would be to compare the extrapolated trends to the original  

data, instead of  comparing the two trends, as we do now. This is not a good idea since 

the original data contains all three elements of  the signal model (trends + periodic 

components and noise).  

4.4.1.2 Periodic components 

The periodic components of  the signal model have been derived using the sines model in 

[97] . As mentioned in section 4.4.1.2, we represent the signal using a set of  k phasors. 

Each phasor is an ordered triple consisting of  the amplitude, frequency and initial phase 

of  the phasor. Now we wish to determine the distance between the corresponding 

periodic representations of  two scalar signals, a and b. Let the two corresponding phasor 

sets be A and B. Then: 

                                                

15 A feature value is generated every 100ms. 
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where, Ak and Bi refer to the kth and ith phasors of  sets A and B respectively. D(Ak, Bi) is 

the phasor distance (ref. appendix 13.2), dp is the distance between the two phasor sets 

and dh is the modified Hausdorff  distance16. Note that dh is an asymmetric distance. 

4.4.1.3 Noise  

Given two sets of  data a and b with noise-like distributions, we adopt the following 

procedure to compute the distance between the two distributions. 

1. Compute the standard deviations for each set: σa and σb. 

                                                

16 The original Hausdorff  distance is defined using the max function. However, this is 

sensitive to outliers. 

Figure 4.6: The solid blocks in the two sections represent phasors. Each 

phasor is an ordered triple: {a,  ω, θ} representing the amplitude, frequency 

and the initial phase of the periodic component. 

a 
b 
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2. Determine histogram centers for each set: Ca=[-3σa+∆a,…, 3σa-∆a] and 

Cb=[-3σb+∆b,…, 3σb-∆b], where ∆a=3σa/N and ∆b=3σb/N. and where the 

centers are spaced by ∆a and ∆b apart respectively. This gives us 2N-1 centers. 

Using 3σ for determining the extent (i.e. the domain) of  the histogram since for 

an arbitrary zero mean distribution: P(|x|�3σ) �1/9  (from Chebyshev’s 

inequality). 

3. Quantize sets a and b using both centers Ca and Cb. This way we get four 

histograms: ( ), ( ), ( ), ( ).
a b a bC C C CH a H a H b H b  The notation ( )

bCH a  refers to the 

distribution obtained by quantizing the set a with centers from Cb. By using the 

centers of  one distribution to quantize the other, we can easily determine the 

extent to which the two distributions are “matched.” The histograms are then 

normalized to generate probability distributions. 

4. We now use the Kullback-Liebler divergence measure [21] which is a measure of  

relative entropy between two distributions. 

 
( )

( ) ( ) log
( )KL

x X

p x
D p q p x

q x∈
∑P @  (4.12) 

where, p and q are two distributions defined over the set X. This function is 

readily shown to be non-negative and is zero if  and only if  the two distributions 

are identical. One way to look at equation (4.12) is the following — it measures 
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the penalty accrued in bits, when attempting to encode a random variable 

with true prior pdf  p(x), with a different pdf  q(x). 

Now, the distance between the two sets a and b is readily defined as: 
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The distances d1 and d2 are computing the mismatch between distributions. The 

advantages of  using this distance lies in the fact that it makes no assumptions on the 

model generating the data. Relative entropy is also used as the standard divergence 

measure between distributions in Information Theory [21] . At this point we have 

discussed the computation of  the scalar sequence dissimilarity, by computing the 

distances amongst the components of  the scalar sequence.  

4.4.2 Vectors 

The distance between two vector sequences is computed as follows. Let us assume that 

we have two sequences of  vector valued data X and Y with M elements each and where 

each component is n dimensional. (ref. Figure 4.7). Then, instead of  computing an 

element by element Euclidean distance, we compute a novel circular distance. This is 

done in the following way: 
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where, dk is the kth circularly shifted distance (k ∈[0,..M-1]), df is the feature distance17 

and between the elements of  the two vectors and  dv is the distance between the two 

sequences. This circular computation has several advantages: 

• If  the two vectors have a common sub-sequence, then, by using the circular shift, 

                                                

17 The distance function is different for different features. 

Figure 4.7: We compute a circular distance between two equal length vector sequences. The 

distance is computed by (a) arranging both sequences in a circle (b) rotating the outward 

sequence by one element each time and computing the average pair-wise distance between 

the corresponding elements. (c) the minimum of these rotated distances is the circular 

distance. 

:distance measure 

y 

x 
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we’d have found that sub-sequence in this formulation, thereby decreasing the 

distance. 

• Even if  two sub-sequences have been aligned using the circular shift, there is a 

penalty for misalignment in the rest of  the sequence. Had we performed a linear 

shift instead of  a circular shift, then we’d have to assign arbitrary penalty over the 

sections of  the sequence that do not overlap. 

• There is relative time ordering amongst the elements of  the vector sequence.  

This would not be possible had we treated the vector time sequence as a point set 

and then used the Haussdorff metric to determine the distance as the distance 

between two point sets. 

4.4.3 Point data 

The point data (e.g. variance of  the zero crossing rate) is a single value per segment (i.e. 

attention span). This is in contrast to the scalar and the vector variables generate a time 

sequence of  values, per section. Hence the distance between two point values a and b is 

simply: 

 ( , )pd a b a b= −  (4.15) 

Over the previous three sections, we have discussed the three types of  features used in 

our framework, component estimation in the case of  scalar sequences and the overall 

technique for computing dissimilarities for all three types. 
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4.5 The segmentation algorithm 

We now present our segmentation algorithm. We begin with a discussion of  the idea of  

using correlation of  the present data with the past, to determine a distance measure 

between two segments. Then in section 4.5.2, we shall estimate the rate of  increase of  

this correlation distance to determine the presence of  a segment boundary. In section 

4.5.3, we introduce the idea of  a principal sequence that uses eigenvalue analysis to 

determine scene change locations. We conclude with a section on combining the results 

of  the eigenvalue analysis. 

4.5.1 Determining correlations from memory 

The intuition behind using correlation between segments for audio scene segmentation is 

as follows: if  there is a true segment boundary to the left of  to, we would expect a 

measure of  correlation between segments to drop rapidly to the left of  the segment 

Figure 4.8: We compute each feature within the attention span. Then, we shift back the 

analysis window by δ sec. and re-compute all the features. We proceed this way till all the 

memory has been covered. Then we compute the distances between the feature values in the 

attention span with the rest of the segments. 

a 
memory 

b 

analysis 
window 

δ sec. 
to 
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boundary. This is because we would expect that adjacent dissimilar scenes to have 

low correlation.  

We determine correlations within memory anchored at to , for each type of  feature, using 

the following procedure (we set the analysis window size to be the same as that of  the 

attention span):  

1. Place the analysis window over the attention span and determine the feature 

values (see Figure 4.8). 

2. Shift the analysis window back by δ sec. and re-compute the features.  

3. Now, compute the distance between these two feature sequences using the 

distance measure corresponding to each feature type (ref. section 4.4) 

4. Repeat steps 2-3 till we have covered the entire memory. 

Then, we move the memory from to to to + δ and repeat steps 1-4. This is repeated until 

we have exhausted all of  the data.  

At the end of  this procedure, we have a sequence of  distance values for each feature, at 

discrete time intervals of  δ i.e. at t ∈ {to + p δ}, where p is an integer.  If  a scene change 

was located at to , to the immediate left of  the attention span (ref. Figure 4.8), we would 

intuitively expect the distance values to increase rapidly (i.e. the correlation values to drop 

rapidly) as the data ought to be dissimilar across scenes. 
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4.5.2 Estimating the distance increase rate 

We estimate the rate of  increase if  the distance to be a measure of  the decay in the 

correlation across segments. Now from the previous section we have the distance 

sequence di, for every feature. We model the distance sequence as follows:  

 

=

= + + ∈ − − +

=

2

0

( ) a ß ? ; [0, 1, .., 1],

ß ,
t

y t t t t N

dy
dt

 (4.16) 

where y(t) is the polynomial modeling the data sequence. ∴β is the rate of  increase of  the 

distance at time t =0 and we associate this value at each discrete time instant t ∈ 

{to + pδ}. Hence, at the end of  this analysis, we would have generated a time sequence 

of  distance increase rate estimates βi,  for each feature i 18. Then, the local maxima of  the 

distance increase rate sequence is the location of  the segmentation boundary. This is 

because β can only reach a local maxima, when the correlation between the adjacent 

segments is low. 

                                                

18 Note that each scalar sequence has three components: trend, periodic components and 

noise. A distance increase rate estimate is generated for each subcomponent.  
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4.5.3 β sequence analysis 

We now present the algorithm to analyze the time sequence of  the distance increase rate 

(i.e. β) estimates. Assume that we have M distance increase rate time sequences, one from 

each feature. Each time sequence is N points long19. Then we adopt the following 

procedure: 

1. Define dn to be a row vector containing the nth time sequence; n ∈ {0,…,M-1}. 

2. Construct an M by N matrix P such that the kth row of  P is dk.  

3. Then, using Singular Value Decomposition (SVD) [83] , we can decompose P in 

the following way: 

 t= ΛP U V  (4.17) 

where, t represents the transpose operator, the columns of  U (M by M matrix) 

are the eigenvectors of  PPt, the columns of  V (N by N) are the eigenvectors of  

PtP, the r singular values on the diagonal of   Λ (M by N ) are the square roots of  

the eigenvalues of  both PPt and PtP. 

4. Since the SVD automatically orders the eigenvalue according to magnitude, we 

determine the first L eigenvalues such that: 

                                                

19 Since the distance increase rate for each feature is evaluated at the same set of  discrete 

time instants t ∈ {to + p δ}, each sequence has the same number of  points. 
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where, r is the number of  singular values, and α is an energy threshold. Note, λo 

is the largest eigenvalue.  

5. Then, we compute ˆ ,P an approximation to P: 

 ˆˆ ,t= ΛP U V  (4.19) 

where, Λ̂  approximates Λ by having only the top L singular values of  Λ, with the 

remaining L-r singular values set to 0. By this procedure, we have projected the 

row vectors of  P onto the sub-space spanned by the L principal eigenvectors of  

PtP, corresponding to the L chosen eigenvalues.  

We now discuss a technique to combine the sequences within P̂ .  

4.5.4 Combining the β sequences 

The sequences in P̂  contain the distance increase rate (β) values. Intuitively, we should 

expect β to take on large values at the location of  the audio scene change. We will use a 

simple voting procedure to determine the degree of  agreement amongst the sequences. 

Hence, for each sequence: 
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1. Determine the local maxima locations using 2w +1 as the window size. 

Denote the maxima locations for the kth sequence as Mk={mo, m1.., mP}, where P 

is the number of  time sequences. 

2. Define Ok from the Mk as: 

 ,
0

( ) d( ) ( )
l

k i k p
i

O n n m h n
=

− ∗∑@  (4.20) 

where, mi,k is the ith maxima of  the kth sequence and hp is the Hanning window of  

size p and lk is the number of  local maxima for the kth sequence Dk. Mk 

represents the audio scene change locations when only using the kth subsequence. 

Ok represents a smoothed version of Mk; this is intuitive and useful since there is 

ambiguity about the exact audio scene change location. Now, we adopt the 

following procedure: 

3. Define 
1

0

D

k
k

O O
−

=
∑@ where |D| is the cardinality of  D. O will now contain a 

series of  “mountains” corresponding to cases where the maxima of  two 

sequences align and small “hills” when they don’t. 
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4. Determine the weighted20 local maxima locations of O: Mo. If  the magnitude 

of O at these locations exceeds a threshold η, they are labeled as audio scene 

change locations. 

Our decision formulation  has the following advantages: 

• Projecting onto the subspace of  eigenvectors corresponding to dominant 

eigenvalues, has the effect of  project of  projecting onto the dominant 

subsequence.  

• Each sequence in P̂  generates its own sequence of  audio scene change locations. 

By smoothing (i.e. convolving with the hanning window) and then adding the 

sequences Ok to obtain O, we compensate for slight misalignments that arise in 

practice. These misalignments arise due to the fact that different features are 

sensitive to different aspects of  the audio signal and it is unlikely that all features 

will change at exactly the same time instant. 

We now describe our silence detection algorithm, an essential part of  our multi-modal 

fusion strategy described in chapter 5. 

                                                

20 We just compute the weighted centroid of  the “mountain.” 
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4.6 Silence detection 

In this section we describe our approach to determine silence in the audio data. Silences 

become particularly useful in detecting c-scene boundaries where v-scene boundary 

occurs in a relatively silent section. There are two forms of  silence in speech [82] : within 

phrase silences and between phrase silences. The within phrase silences are due to weak 

unvoiced sounds like  /f/ or /th/ or weak voiced sounds such as /v/ or /m/. However, 

such silences are short usually 20~150 ms long. In [82] , the author uses a two class 

classifier using Gaussian models for each pause class, to come up with a threshold of  

165ms. However, others have used a threshold of  647 ms [33] , for distinguishing 

significant pauses.  In our approach, we shall be interested in silences greater than 500ms 

duration. 

We shall use an adaptive threshold on the energy in the segment, to determine the 

presence of  silence. This results in a simple but robust algorithm. We proceed as follows: 

• Compute the mean energy in each frame, where each frame is 100ms. 

• Compute a histogram of  the energy values. Determine the median energy. 

• Construct a new energy histogram of  the frames that are less than the median 

energy. 

• Determine the global maxima of  this new histogram. The silence threshold is set 

to be at 3dB above this global maxima. 
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• Classify the frames below the threshold, as silence. Then post process the 

labels using a median filter. 

• Since we have a duration threshold of  500ms. for significant silences, collect only 

those silences that meet or exceed this duration threshold.  

Why do we adopt this two histogram strategy to determine the silence threshold? This is 

because from an empirical analysis of  the silence histograms, it became apparent that this 

was a multi-modal distribution, with peaks at the median energy and another peak for 

frames with very low energy. 

4.7 Experiments 

In this section we describe our experiments on determining the computable audio scene. 

We begin by describing the labeling process, needed in order to establish the ground 

truth. Then we shall describe our experimental results followed by a section that 

compares the results against other algorithms. 

4.7.1 Labeling the data 

The data comprises one hour segments from three English films — Sense and sensibility, 

Four weddings and a funeral, and Pulp Fiction. We attempt to label the data into coherent 

segments (i.e. audio segments that exhibit long term consistency). Similar to the labeling 

procedure adopted for labeling the video data into computable video scenes (ref. section 

3.6.1), we also set the minimum duration of  an a-scene to be 8 sec.  
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Table 4.1: Ground truth a-scene data obtained from labeling the video data separately from 

the audio data.  

Film A-Scenes 

Sense and Sensibility 69 

Four weddings and a funeral 72 

Pulp Fiction 50 

Then, the labeling criteria were as follows:  

• For silences greater than 8 sec. label the beginning and ends of  the silence.  

1. When encountering speech in the presence of music, label the beginning and the 

end of  the music segment.  

• Do not mark speaker changes as scene change boundaries. 

The audio data was labeled independently of  the video, since it became clear that the 

placement of  the audio scene change boundary was affected by the act of  watching the 

video. The result of  using this labeling criteria is shown in Table 4.1.  

4.7.2 Results 

In this section, we discuss the a-scene change detector results. First, we discuss the 

parameters that we need to set. For detecting audio coherence, video we set the attention 

span to be 16 sec. and the size of  the memory is set to 31 sec. The size of  the ambiguity 

window is set to 5 sec. The parameter δ, which specifies the granularity at which the data 
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is analyzed is set to 1 sec. (i.e. we change 1 sec. of  data from the memory, every time 

we wish to determine if  a scene change has occurred.). In general, increasing the 

memory size reduces false alarms, but increases misses. 

As with the video scene segmentation case, it is important to note that we are dealing 

with an asymmetric two-class problem (scene change vs. non-scene change) with few the 

number of  ground truth scene change locations (50 ~ 70) in an hour of  audio data. 

However, unlike the video scene case, where each shot boundary was a potential scene 

change boundary, there is no such “natural” potential audio scene change location. 

We now need to define precision and  recall, two standard measures of  performance, 

that are primarily used in information retrieval. Precision: hits /( hits + false alarms ), 

Recall: hits / ( hits + misses ), where hits, misses and false alarms refer to the detector 

performance. The results of  our experiments are shown in Table 4.2. The results of  the 

experiments indicates that the algorithm operated at low precision (~20%) and with high 

recall (~85%). 

Table 4.2: Audio scene detection results. In order: hits, misses, false alarms, precision and 

recall. 

Film H M FA Precision Recall 

Sense and Sensibility 59 10 198 0.22 0.91 

Pulp Fiction 43 7 204 0.18 0.86 

Four Weddings and a Funeral 55 17 198 0.22 0.80 
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Why did we focus on the high-recall and low-precision case? Clearly, we could have 

adjusted the parameters such that the precision was higher at the expense of  recall. 

There were several reasons: 

• Computable a-scene false alarms do not impact the c-scene results drastically (see 

Table 5.3). There are several reasons:  

• Computable scenes have end synchronization requirements with the on the audio 

and the video computable scenes. A c-scene false alarm can occur only if we have 

a-scene false alarm synchronized with a detected v-scene.  

• Since the precision of  the v-scene detector is much higher (see Table 3.2) than 

the a-scene precision, the c-scene precision is essentially limited by the precision 

of  the v-scene detector. Hence, in order to decrease the number of  c-scene 

misses, we need to have high a-scene recall. 

• Additionally, many a-scene false alarms will get eliminated due to the higher 

grouping rules for fusion (ref. chapter 5). 

• Even though we seemed to have signal level “coherence” requirement of  the 

labeler, it is clear that the labeler seemed to have grouped some of  the data at a 

semantic level. Many of  the false-alarms make sense at the signal level, but were 

overlooked by the labeler.  

Finally, we note that the precision and recall metrics, focus on the performance of  the 

algorithm with respect to the scene change locations only. These measures are not 

necessarily indicative of  the performance of  the algorithm. For example, if  we assume 
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the potential scene change location to occur at every point where we evaluated β (the 

distance increase rate), then the results are interesting. Note that the local maxima of  the 

β sequence is the a-scene change location. The number of  potential scene change points 

is then 3569 (i.e. 3600 -  memory size). Then, correct rejection is ~94% for all three 

films. 

4.7.3 Comparison with related work 

We shall briefly review the current results against other auditory analysis systems. A more 

extensive review of  the issues in prior work has already been presented in section 2.4. 

There has been much prior work on classification of  audio into generic audio classes such 

as speech / music and environmental sounds [53] [74] [75] [107] [84] .  

While the classification accuracies are very impressive — typically 95% for the best 

systems, the segmentation problem that we are dealing with here is a different problem. 

In our worldview, a coherent segment may actually contain multiple classes. They can be 

overlapping as in the case of  a person speaking with street sounds in the background, 

they can repeat over short time scales, as in the case of  the sound of  footsteps. The 

segmentation problem is important because it results in coherent segments, a key 

criterion for creating audio-visual skims (chapter 7).  

4.8 Summary 

In this chapter, we have presented our approach towards detecting computable audio 

scenes. We began with a discussion of  the features used in our system. The features 
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belonged to three types: (a) vector sequences (b) scalar sequences and (c) point 

features. Then, we presented a new scalar sequence signal model that decomposed the 

sequence as a sum of  three components — trend, sinusoids and noise. We presented an 

architecture for the signal decomposition, and described in some detail the MDL based 

polynomial estimation for the trend and the matching pursuit based algorithm for 

determining the optimal sinusoids. The noise was not explicitly modeled, since in 

segmentation, we not interested in exact signal reconstruction, but in computing 

dissimilarities amongst segments. We also discussed metrics for each type of  feature, 

including the sub-components for the scalar signal case. 

The memory model was central to determining the existence of  a scene boundary. We 

estimated the rate at which the features in the attention span change with respect to the 

rest of  the memory. Then, the local maxima of  the rate of  change was used to identify a 

potential audio scene change location. These distance increase rates were computed per 

feature, and a voting was adopted to determine if  a scene change exists.  

The experimental results indicate that our algorithm has low precision but high recall. 

Having high-recall was important in order to avoid misses in the computable scene 

detection. The high false alarm rate did not cause problems because of  two reasons: (a) 

the c-scene precision is essentially limited by the higher v-scene precision and (b) false 

alarms in computable scenes can only occur if  we have the a-scene false alarm 

synchronized with a detected v-scene and finally, (c) many of  the audio false alarms are 

eliminated by the imposition higher order grouping rules for multi-modal fusion. 
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5 Multi-modal fusion 

5.1 Introduction 

In this chapter, we show how to integrate information from the various detectors. In the 

previous two chapters, we showed how to detect the two elements that are central to the 

computable scene framework — (a) elementary audio and video computable scenes, and 

(b) silence. In a later chapter, we shall show how to detect the third key aspect of  our 

multi-modal fusion framework — structure detection. Since we have investigated 

structure detection as a problem independent of  the segmentation problem, we present 

the results of  structure detection in chapter 6. 

The use of  silence and structure for c-scene segmentation, are a form of  top-down 

constraints on the c-scene boundary detection algorithm. The reason why this imposition 

of  higher forms of  knowledge is necessary, is because the bottom-up approach in the 

computational scene model in section 2.5.4 can generate c-scenes that run counter to 

grouping rules that human beings routinely use. Note that we cannot infer the role that 

structure plays in visual comprehension (i.e. the structure level grouping that takes place 

with human beings), by merely detecting the existence of  structure.  

The rest of  this chapter is organized as follows. In the next section we introduce the 

three basic rules that govern c-scene detection algorithm. Then, we present the 
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procedure for c-scene detection in section 5.3, and in section 5.4, we present our 

experimental results. There, we discuss our experimental results, and discuss the causes 

of  our model breakdowns. Finally in section 5.5, we summarize the results in this 

chapter. 

5.2 The three rules for detection  

There are three principal rules for detecting c-scenes:  

• We detect a c-scene whenever we can associate a v-scene with an a-scene that lies 

within a window of WC  sec. 

• We declare a c-scene to be present when normal v-scenes (see section 3.5) 

intersect silent regions.  

• We always associate a c-scene boundary with strong v-scene boundary locations. 

The first rule is the synchronization rule for detecting c-scenes. The window WC is 

necessary as film directors deliberately do not exactly align a-scene and v-scene 

boundaries. They do this since this causes a perceptually smoother transition between 

scenes. There are some exceptions to this rule, which we discuss later in the section.  

The second rule is important as many transitions between c-scenes are silent (e.g. the 

first scene ends in silence and then the second scene shows conversation, which also 

begins with silence). In such cases, audio scene boundaries may not exist within WC sec. 

of  the v-scene.  
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The third rule becomes necessary when there is no detectable a-scene boundary 

within WC sec. of  a strong v-scene boundary. Strong v-scene boundaries occur as 

transitions between two v-scenes that are long in duration, and which can differ greatly in 

chromatic composition. Consider the following example. Alice and Bob are shown 

having conversation. Towards the end of  the scene, the director introduces background 

music to emphasize a certain emotion. Then, the music is held over to the next scene for 

more than a few seconds to establish thematic continuity. Note that in this case, there is 

no a-scene boundary near the v-scene boundary, nor is there a silent region near the v-

scene boundary.  

5.3 A procedure for detecting c-scenes 

We now present the detailed algorithm for c-scene detection. The notation used in the 

figures in this section: gray box: silence,  patterned box: structure, a-scene boundary: 

solid dot, v-scene: equilateral triangle, weak v-scene: solid right angled triangle (see Table 

5.1 for a list of  the icons used). Now, given the locations of  the basic a-scenes, v-scenes, 

structure and silence, we proceed as follows:  

Table 5.1: The table shows a list of icons used in the figures in this section and their semantics.   

Type Icon 

Silence  

Structure  

V-scene boundary  

A-scene boundary  

Weak V-scene  
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Step 1: Remove v-scene or a-scene changes or silence within structured sequences (i.e. 

within dialogs and regular anchors) (Figure 5.1). This is intuitive since human beings 

recognize and group structured sequences into one semantic unit.  

Step 2: Place c-scene boundaries at strong (see section 3.5) v-scene boundaries. Remove 

all strong v-scenes from the list of  v-scenes. 

Step 3: If  an a-scene lies within WC sec. of  a v-scene, place a c-scene boundary at the v-

scene location. However, there are three exceptions:  

• Do not associate a weak v-scene with a weak a-scene. 

• If  the v-scene is weak, it must synchronize with a non-weak a-scene that is within 

WC/2 sec. i.e. we have tighter synchronization requirements for weak v-scenes 

(Figure 5.2). 

Figure 5.1: Remove a-scene and v-scene boundaries and 

detected silence, when detected in structured sequences. 

Figure 5.2: Tight synchronization is needed between 

weak v-scenes and non-weak a-scenes. 
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• Do not associate a normal v-scene with a weak a-scene marked as silent21 (ref. 

Figure 5.3). The reason why this is done is because the a-scene is already weak, 

and additionally contains a significant amount of  silence. The a-scene was 

probably a false alarm. 

Step 4: Non-weak (see section 3.5) v-scene boundaries (i.e. normal boundaries. Note 

that strong boundaries would have already been handled in step 2) that intersect silent 

regions22 are labeled as c-scene boundaries (Figure 5.4). 

To determine whether a v-scene boundary intersects silence, we do the following:  

                                                

21 An a-scene is denoted as “silent” if  a significant portion of  the local window around 

the a-scene boundary contains silence. Typically the window is 2 sec. long and 95% of  

the data in the window needs to contain silence, for this classification. 

22 A region marked as “silence” is different from an a-scene marked as silent. The 

difference is that an a-scene boundary has been detected in the second case (no a-scene 

boundary exists in the case of  silent regions), but contains a significant amount of  

silence around the scene boundary. 

Figure 5.3: Do not associate  normal v-scenes with a-

scenes  marked as silent. 
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• Compute the fraction of  silence in a symmetric window (2WVS sec. long) around 

the v-scene boundary. Let LVS  and RVS be the left and right silence fractions. i.e. 

the amount of  data in the left and right windows that constitute silence.  

• Then, declare a c-scene boundary if: 0.8 0.8VS VSL R> ∨ >  

Now, we have a list of  c-scenes, as well as lists of  singleton video and audio scene 

boundaries. The c-scenes are then post-processed to check if  additional structure is 

present.  

5.3.1 Additional post-processing 

Once we have detected all the c-scenes, we use a conservative post-processing rule to 

eliminate false alarms. An irregular anchor shot in a semantic scene is a shot that the 

director comes back to repeatedly, but not in a regular pattern, within the duration of  the 

semantic scene. This is known in film-making, as the “familiar-image” [39] .  

Figure 5.4: Non-weak video coherence minimum intersecting 

silences (gray boxes) causes a c-scene boundary. 

Figure 5.5: The first and the last frames show the irregular anchor. This shot will appear 

sporadically over the whole scene. 

C
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In Figure 5.5, the first and the last frame shows the irregular anchor that will appear 

sporadically within this scene.  We check if  an anchor is present across adjacent scenes 

and merge them, if  present. We make this rule transitive: i.e. if  we have three c-scenes A, 

B, C, in succession, and if A and B have share a regular anchor and B and C share a 

(possibly different) regular anchor, then c-scenes A, B and C are merged into one c-

scene.  

5.4 Experimental results 

In this section we shall discuss the experimental results of  our algorithms. The data used 

to test our algorithms is complex: we have three one hour segments from three diverse 

films in English: (a) Sense and Sensibility (b) Pulp Fiction and (c) Four Weddings and a Funeral. 

We begin with a section that discusses the ground truth data. It is followed by  sections 

on c-scene boundary detection and structure detection. 

5.4.1 The ground truth 

The audio and the video data were labeled separately (i.e. label audio without watching 

the video and label video without hearing the audio). This was because when we use both 

the audio and the video (i.e. normal viewing of  the film) we tend to label scene 

boundaries based on the semantics of  the scene. Only the author of  this work labeled 

the data. Since we have already discussed the labeling procedure for the video and audio 

computable scenes in sections 3.6.1 and 4.7.1 respectively, we shall only summarize the 
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results of  the labeling in Table 5.2. Note, that in the ground truth, an a-scene and v-

scene are denoted to be synchronous if  they less than 5 sec. apart. 

Table 5.2: Ground truth data obtained from labeling the audio and the video data separately. 

The c-scenes are broken up into constituent units: P-pure, Ac-V (audio changes, visuals 

consistent), A-Vc: audio consistent, visuals change, and MM: mixed mode. 

C-Scenes 
Film A-scenes V-Scenes 

P Ac-V A-Vc MM Total 

Sense and 
Sensibility 69 57 33 11 5 2 51 

Four weddings 
and a funeral 72 61 31 8 8 6 53 

Pulp Fiction 50 40 25 4 8 1 38 

The ground truth segmentation in Table 5.2, show in addition to the elementary audio 

and video computable scenes the breakdown of  the types of  computable scenes. 

Recalling the discussion in section 2.5.4.1, there are four types of  computable scenes —

(a) pure scenes (b) Ac-V (audio changes, visuals remain consistent), (c) A-Vc: audio 

remains consistent but visuals change, and (d) MM: mixed mode, where the scene has 

synchronized audio and video scene change beginning and ending, but the scene also 

contains unsynchronized audio and video scenes 

Interestingly, pure c-scenes, i.e. those in which one audio scene synchronizes with one 

video scene, constitutes between 58-65% of  the total number of  c-scenes, thus validating 

the importance of  computable scene model in section 2.5.4.1. 
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5.4.1.1 Is it any easier to label c-scenes? 

One of  the key issues that came up in this work on computable scene detection was that 

of  labeling the audio and the video computable scenes. Note that the c-scene was easily 

determined using synchronization constraints on the elementary audio and video 

computable scenes.  

We attempted to give the labeler (the author) signal level criteria for determining these 

scenes — e.g. the v-scene had to exhibit long term consistency in terms of  chrominance 

and lighting, while the a-scene had to exhibit long term consistency in the ambient audio 

data. We had also ruled that  these elementary audio and video computable scenes had to 

be more than 8 sec. long.  

The evaluation of  the ground truth labels indicates that the despite the best efforts of  

the labeler, there were instances where the v-scenes had been grouped together based on 

a higher form of  abstraction (e.g. all shots take place in the same house, and the small 

differences in the chrominance are not taken into account) rather than on the signal 

levels of  the data. Often in the case of  a-scenes, it was difficult to determine the precise 

a-scene boundary location in very quiet periods in the data. On other occasions, 

conversations that were based on the same topic were grouped together; clearly this uses 

knowledge that the feature-level segmentation algorithm cannot possess.  

We believe that while c-scene labeling issue is problematic, it is not significant enough for 

us to consider going back to the idea of  using semantic scenes. The semantics of  scene 
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depend on so many non-measurable factors — the context of  the scene, the level of  

understanding of  the viewer, amongst others. Additionally, the semantics exist at multiple 

levels simultaneously, thus precluding a consistent labeling of  the data.  

The idea of  the computable scene is important, since it forces to think in terms of  task 

based segmentation — i.e. construction of  segments that facilitate other tasks. The 

overall goal of  our work in segmentation is to preserve the structure of  the original 

video, while constructing these computable scenes. These syntactically correct 

computable scenes form the input to our summarization algorithm. 

5.4.2 Segmentation results 

In this section, we discuss the scene change detector results. First, we discuss the 

parameters that we need to set. The memory and attention span sizes for the audio and 

video scene detection algorithm, and the synchronization parameter WC, which we set to 

5 sec (i.e. c-scene boundary is marked when the audio and video scenes are within 5 sec. 

of  each other). For detecting video coherence, video we set the attention span to be 8 

sec. (in accordance with our labeling rule) and the size of  the memory is set to 24sec.  

For detecting a-scenes the memory parameters are as follows: the size of  the memory is 

set to 31 sec. while the attention span size is set to 16 sec. In general, increasing the 

memory size reduces false alarms, but increases misses. For the v-scene detection the 

duration of  the shot-let is set to 1 sec. while for the a-scene detection, the duration of  

the shift is set to 1 sec.  



   

 

140 

In evaluating our results, we shall compare against c-scenes against the total number 

of  shots in the film, since they are all candidate c-scene change points. Secondly, it is 

important to note that we are dealing with an asymmetric two-class problem (scene 

change vs. non-scene change) where the number of  ground truth scene change locations 

is typically less than 10% of  the total number of  shots. Hence it is important to correctly 

reject non-scene change points in addition to correctly detecting the scene change points.  

The information retrieval metrics precision and recall23 are normally used to discuss 

detection results in the multimedia community. However, as discussed earlier (ref. 

sections 3.6.2, 4.7.2) we need better metrics for analyzing multimedia content analysis. 

This is because by focusing on the performance of  the algorithm with respect to the 

scene change locations only, they do not illustrate the performance of  an algorithm 

dealing with an asymmetric class distribution. Hence we present the entire confusion 

matrix (i.e. hits, misses, false alarms and correct rejection), in addition to presenting the 

precision and recall.  

The Table 5.3 shows the results for c-scene detection. These results are for the entire 

duration of  the film (each film is one hour long) and for all types of  transitions. We us 

the following notation: H: hits, M: misses, FA: false alarms, CR: correct rejection. Shots 

is just the number of  shots detected by the shot detection algorithm. NCL: non-scene 

                                                

23 Note that this term is different form the similar term used in our memory model (see 

section 3.3), that is used to measure inter shot similarity. 
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change locations; this is just the number of  shots less the number of  ground truth 

scene change locations. Precision: hits /( hits + false alarms ), Recall: hits / ( hits + 

misses ). 

Table 5.3: C-scene detector results. In order: hits, misses, false alarms, correct rejection, 

number of shots, number of non-scene change locations, precision and recall. 

Film H M FA CR Shots NCL Precision Recall 

Sense and Sensibility 48 3 21 570 642 591 0.70 0.94 

Pulp Fiction 36 6 22 414 478 436 0.62 0.85 

Four Weddings and a 
Funeral 41 12 18 665 736 683 0.70 0.77 

The result shows that the c-scene and the v-scene detectors work well. The recall for c-

scene detectors varies between 77 ~ 94% while the precision varies between 62 ~ 70%. 

The recall for the v-scene detector varies between 80~91% while the precision varies 

between 55 ~ 70%. Note that the correct rejection is excellent — around 95% across all 

cases. We now discuss two relevant aspects relevant to our results — sources of  error, 

the audio scene location uncertainty, and the relative importance of  the low precision.  

5.4.2.1 Shot detection errors 

Shot detection errors cause errors in c-scene detection. This is because misses in the 

video shot boundary detection algorithm cause the wrong key-frame to be present in the 

buffer, thus causing an error in the minima location.  In the film Four Weddings and a 

Funeral, there is a sequence of  four c-scenes that is missed due to very low chrominance 
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difference between these scenes; it is likely that the labeler managed to distinguish 

them on the basis of   a semantic grouping of  the shots. 

One possible solution to this problem is introduce a context dependency in our c-scene 

detection algorithm. For example, we could have a “low-chrominance” detector, and 

when this happens, bias c-scene detector towards the audio scene detector and if  there is 

a strong a-scene change, we would then label it as a possible c-scene boundary. 

5.4.2.2 A-scene location uncertainty 

Uncertainty in the audio scene change location is additional source of  error. Labeling the 

audio data is time consuming and often, there is genuine uncertainty about the a-scene 

change location. This can happen for example, when we have a long sequence of  low 

amplitude sounds (e.g. background sounds, soft footsteps)  that changes into silence. 

Thus, this can translate to c-scene misses. This uncertainty may be mitigated to a certain 

extent by using additional labelers, but is difficult to eliminate altogether. 

5.4.2.3 The c-scene algorithm has low precision 

It is clear that our algorithm apparently over-segments the data. A detailed look at the 

false alarms indicates that these scenes are correct from a computational standpoint (i.e. 

satisfied the requirements for a change), but were wrong semantically.  

For example consider the following scene. The director shows two people engaged in a 

conversation, with the backdrop of  a white wall. Then, there is a pause in the 

conversation and the couple are now shown before a large window with the backdrop of  
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a large green garden. Then, because of  the pause in the conversation and the change 

in the background, we would have synchronized audio-visual scene change. The only way 

this can be prevented is to either incorporate motion continuity into the v-scene 

algorithm (in case the director used a pan shot), or to infer from auditory analysis that 

that either the topic (or the speakers) have not changed. 

This seems to imply that even though we had signal-level guidelines for labeling the 

ground truth, in many cases, the labeler ended up labeling the data on a semantic level. 

Does the low-precision present a problem? The utility of  our results clearly depends 

upon the task. One of  the goals of  our work is to generate video summaries by 

condensing computable scenes (see chapters 7-10). There, we condense each computable 

scene via an analysis of  the visual complexity of  the shots and by using film syntax. In 

such tasks, it is more important to generate c-scenes that preserve the syntactical 

elements of  the original video (the structural elements are preserved), than to ensure that 

the semantics are consistent.  

There are situations where it becomes important to have high precision. Consider the 

following example. Let us assume that an company that streams legacy videos overt the 

internet wants to insert advertisements periodically in the data stream. In such a 

situation, it would want to ensure that the precision of  the automatic c-scene detection 

was close to 100%, since the users will get annoyed if  the advertisement suddenly 

appeared in the middle of  a scene (i.e. due to a c-scene false alarm). 
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5.4.3 Comparison with related work 

We now briefly compare our results with prior work. But first, we present a high-level 

summary of  our contributions to help place the comparison in a proper context. We 

have developed a conceptual framework for determining computable scenes. There are 

four types of  such scenes based on the relationships between audio and video scene 

change boundaries. The framework is based on the following (a) the impact of  film 

production rules on the data (b) the psychology of  audition  (c) high-level structural 

grouping constraints. Now, we compare the results against other algorithms for scene 

detection and structure detection. Note that the these algorithms use different datasets, 

and also have different objectives in mind. Hence direct performance comparisons are 

difficult. 

In [35] , the authors segment film data on the basis of  an adaptive shot clustering 

mechanism. They do not use auditory analysis, thereby ignoring the rich synergy between 

the audio and visual data. Their algorithm for clustering ignores the duration of  the shot 

while segmenting the video. This is important since a semantically meaningful scene can 

also be a few shots (or even a single shot), but of  a long duration. Hence the shot 

duration is an important consideration for segmentation. Additionally, they also do not 

consider the role of  structure (especially dialogs) while grouping shots into a scene (ref. 

Chapter 6).  

Prior work done in video scene segmentation used visual features alone [102] ,[44] . 

There, the authors focus on detecting scene boundaries for sitcoms (and other TV 
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shows) and do not consider films. However, since we expect the v-scenes in sitcoms 

to be mostly long, and coherent, we expect our combined audio visual detector to 

perform very well.  

The key differences with the work in [37]  are the following: (a) they use simplified audio 

visual model that looks for synchronized changes in the shot, audio and motion. (b) they 

do not investigate the long-term grouping and finally, (c) they do not analyze the effect 

of  structure on the segmentation result.   

5.4.4 C-scene detector breakdowns 

In this section we shall discuss three situations that arise in different film-making 

situations. In each instance, the 180 degree rule (see section 2.5.3) is adhered to but 

where, our assumption of  chromatic consistency across shots is no longer valid, thus 

causing errors in our c-scene detection algorithm. 

Figure 5.6: There is a sudden change of scale that is not accounted by the model. 
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5.4.4.1 Sudden change of  scale 

A sudden change of  scale accompanied by a change in audio cannot be accounted for in 

our algorithm. This can happen in the following case: a long shot24 shows two people 

with low amplitude ambient sound; then, there is a sudden close up of  one person as he 

starts to speak.  

Detecting these breaks, requires understanding the semantics of  the scene. While 

labeling, these types of  scenes get overlooked by the labeler due to semantic grouping 

and hence are not labeled as change points. 

5.4.4.2 Widely differing backgrounds 

                                                

24 The size (long/medium/close-up/extreme close-up) refers to the size of  the objects in 

the scene relative to the size of  the image. 

Figure 5.7: a right angled camera pan, between two 

very different backgrounds. 
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Widely differing backgrounds can exist across shots causing false alarms in our c-

scene detection. This can happen in two circumstances:  

• A right angled camera pan and  

• A set up involving two cameras.  

In the first case (Figure 5.7), the coherence model will show a false alarm for v-scene, 

and if  accompanied by an a-scene change, this will be labeled as a c-scene break. In the 

second case we have two opposing cameras having no overlap in their field-of-view 

causing an apparent change in the background. This can happen for example, when the 

film shows one character inside the house, talking through a widow to another character 

who is standing outside.  

5.4.4.3 Change in the axis of  action 

The axis of  action (i.e. the line of  interest, ref. section 2.5.3) can change in several ways. 

Let us assume that we have a scene which shows a couple engaged in conversation. The 

Figure 5.8: A circular tracking shot will establish a new axis.  
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director can change the axis of  action within a scene [8] by:  

• moving the one of  two people across the room or 

• by using a circular tracking shot around the couple, thereby establishing a new 

axis in both cases. (see Figure 5.8). The motion continuity alerts the viewer 

about this change. 

These examples clearly indicate the simplicity of  our computational model. These 

situations are problematic (incorrect boundary placement) only when they take place 

over long time scales (i.e. camera pans and stays there); Short term changes will be 

handled by our algorithm. Also, if  these changes exhibit structure, (i.e. in a dialog or in a 

regular anchor), these false alarms will be eliminated. One way to overcome the use of  

pans in films is to incorporate motion information into our decision framework. Motion 

continuity will be of  help in detecting the change of  axis scenario. 

5.5 Summary 

In this chapter, we have presented a framework for integrating the three key components 

of  our computational framework — (a) computable audio and video scenes (b) structural 

elements (e.g. dialogs) and (c) silence. We showed why this integration was necessary 

since the silence and structure information impose top-down constraints on the audio 

and video scene boundaries. This help resolve ambiguities that cannot be determined 

with using just the a-scene and the v-scene detection models.  
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The scene segmentation algorithms were tested on a difficult test data set: three 

hours from commercial films. They work well, giving a best c-scene detection result of  

94%. We discussed three sources of  error in our algorithm — (a) errors in shot detection 

(b) ground-truth uncertainty in the a-scenes and (c) computational scene model 

breakdowns. We discussed model breakdowns related to (a) sudden changes of  scale, (b) 

widely different backgrounds and (c) changes to the axis of  action.  

5.5.1 Improvements 

There are several clear improvements possible to this work  

• The computational model for the detecting the video scene boundaries is limited, 

and needs to tightened in view of  the model breakdowns discussed. One possible 

improvement is to do motion analysis on the video and prevent video scene 

breaks under smooth camera motion.  

• Since shots misses can cause errors, we are also looking into using entropy-based 

irregular sampling of  the video data in addition to the key-frames extracted from 

our shot-segmentation algorithm.  
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6 Detecting structure 

6.1 Introduction 

In this chapter, we shall present our approach towards detecting visual structure. While 

detecting structure is an important problem in its own right, with specific semantics 

associated with a particular element of  structure, it also plays an important role in 

segmentation. This is because human beings tend to group elements of  structure into a 

single entity, and this “top-down” rule complements the “bottom-up” approach of  

segmentation algorithms, thereby preventing over-segmentation. 

We define a discrete, deterministic label sequence to be structured, if  that sequence is 

compressible i.e. the number of  bits required to represent the sequence in a lossless 

manner, is less than the number of  bits required to represent the original sequence. We 

shall be specifically looking at structures in video data, that have a generative mechanism 

(e.g. rules) associated with them. Additionally, we shall assume that these sequences have 

an associated metric, thereby defining the structural elements in terms of  the topological 

relationships between the elements of  the structure. In this work, we shall be examining 

structure only in the context of  a deterministic framework. 

Central to our structure detection algorithms is the idea of  the topological graph. This 

structure has video shots at the nodes and the edge strengths are simply the distances 
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between the nodes. Associated with each topological graph is a topological matrix 

constructed using the edge strengths of  the graph. In this chapter, we shall show two 

general mechanisms to detect structure:  

• Using exploiting the regularities within the topological matrix. 

• Randomizing the topology of  the structure to be detected. 

We will discuss the generative mechanisms associated with two specific visual structures 

that we are interested in — the dialog and the regular anchor, and we shall also show 

how we can use the general approaches outlined above, for detecting these two 

structures. It will be seen that the topological graph provides an extensible framework 

for detecting arbitrary generative structures.  

The rest of  this chapter is organized as follows: In the next section, we shall define the 

notion of  structure for a discrete sequence, in terms of  its compressibility. Then in 

sections 6.3 we shall look at the topology of  video sequences, and discuss a specific 

framework, the topological graph, in section 6.4. In section 6.5, we shall discuss the two 

structures that are the focus of  this work — the dialog and the regular anchor. In 

sections 6.6 and 6.7, we shall discuss our approach towards detecting dialogs and regular 

anchors respectively. In section 6.8, we present our experimental results and in section 

6.9, we discuss related work. Finally, we summarize the chapter in section 6.10. 
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6.2 What is structure? 

Let us assume that we are given a deterministic sequence S, containing discrete labels. Let 

there be n elements in the sequence. Then, the sequence is said to be structured (or said to 

have a property of  “structured-ness”) if  the following relationship is true: 

 ( | ) 1,K S n
n

<  (6.1) 

where K(S|n) is the Kolmogorov complexity [21] [51] (see section 13.1) of  the label 

sequence. Since the Kolmogorov complexity of  the sequence is shorter than the length 

of  the original sequence, equation (6.1) implies that the sequence S is compressible. Note 

that we are defining structured-ness of  deterministic sequences only. 

The definition of  structure in terms of  Kolmogorov complexity, may appear to make the 

problem of  discovering  structure intractable, since Kolmogorov complexity cannot be 

computed, but only estimated ([21]  [51] , also see section 8.2.2.1). The importance of  

the definition lies in the fact that it forces us to think of  structure in along of  the 

following two dimensions:  

• Generative mechanisms: Structure in deterministic sequences can occur as a 

result of  a generative set of  rules, or in the more general case, the output of  a 

deterministic program. 

• Structure detection as a compression problem: By constructing an 

equivalence between compression and structure, we can think of  structure 
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detection as the problem of  constructing efficient coding schemes for a label 

sequence. 

Structures present in video sequences, or in discrete real sequences are characterized by 

their topological properties i.e. the metric relationship between the elements of  the 

structure. However, this is not true in the case of  non-ordinal sequences such as DNA 

sequences, where only a logical relationship exists between the elements of  the sequence. 

In this work, we shall be looking at detecting visual structure in discrete sequences that 

have associated metric space, via robust statistical tests. We shall assume that these 

structures have been generated via specific deterministic, generative mechanisms. 

6.3 The topology of  video shots 

Structures (e.g. dialogs) contain important semantic information, and also provide 

complimentary information necessary to resolve v-scene boundaries. For example, in a 

dialog that contains very long shots (say 25 sec. each) showing very different 

backgrounds, the v-scene detection algorithm presented in section 3.4, will generate v-

scene boundaries after each shot. Computationally, this situation is no different from two 

long shots from completely chromatically different (but adjacent) v-scenes. Human 

beings easily resolve this problem by not only inferring the semantics from the dialogue, 

but also by recognizing the dialog structure and grouping the shots contained in it into 

one semantic unit. 
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Structures in video shot sequences, have an important property that the structure is 

independent of  the individual shot lengths. It is the topology (i.e. the metric relationships 

between shots, independent of  the duration of  the shots) of  the shots that uniquely 

characterizes the structure (see Figure 6.1). 

For example, in a dialog sequence (A-B-A-B-..), the lengths of  each shot will vary over 

the course of  the dialog, and in general are related to: (a) the semantics of  the dialog, (b) 

the presence of  one speaker to who may dominate and (c) relationship dynamics 

between the speakers i.e. the dominant speaker may change over the course of  the 

conversation. We now introduce the idea of  the topological graph, central to all of  our 

structure detection algorithms. 

6.4 The topological graph 

Figure 6.1: In the familiar dialog sequence, the sequence has interesting topological properties 

— (a) adjacent shots differ (b) alternate shots are alike and (c) this is independent of the 

duration of each shot. 
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Let Sd be the metric space induced on the set of  all images I in the video sequence, 

by the distance function d. Then, the topological graph TG = {V, E} of  a sequence of  k 

images, is a fully connected graph, with the images at the vertices (V) and where the 

edges (E) specify the metric relationship between the images. The graph has associated 

with it, the topological matrix TMAT,  which is the k by k matrix where the entry 

TMAT(i , j) contains the strength (i.e. the distance between the two images corresponding 

to the nodes) of  the edge connecting node i to node j in the graph.  

The distance between two N by N fully connected graphs is defined to be the distance 

between the corresponding topological matrices. Given two topological matrices A and 

B, the distance between them is defined as follows:  

 , ,
1 1

( , )
N N

i j i j
i j

d A B A B
= =

−∑∑@  (6.2) 

Figure 6.2: The idealized topological graph for a dialog subsequence, that is induced by 

associating a metric d on the on the entire video sequence I. 

1 

0 

1 

0 1 
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i.e. the distance is the sum of  the absolute difference between the corresponding 

entries of  the two matrices. Note that the distance is only defined for two graphs having 

the same number of  nodes. 

The idea of  the topological graph is distinct from the scene transition graph [102] [103] 

(see section 2.3.1). There, the authors cluster shots and construct a graph whose vertices 

represent the clusters and whose edges represent the shot transitions between the 

clusters. Then, they examine temporal relationships between these clusters to determine 

scene change points as well as dialogs.  

In this work, we are strictly interested in the topological property of  a sequence of  

images and not in determining scene transitions.  Each node in our fully connected graph 

represents a single shot and the edges represent the dissimilarity between the shots in 

each node. 

6.5 Topological structures 

We now investigate two generative structures in this work: the dialog and the regular 

anchor. 

6.5.1 Dialogs 

Dialogs in films have an interesting rule associated with them: showing a meaningful 

conversation between m people requires at least 3m shots [77] . Hence in a dialog that 

shows two participants, this implies that we must have a minimum of  six shots. A six 
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image length dialog A-B-A-B-A-B, is completely specified with the following 

idealized topological relationship: d(A , B) = 1, d(A , A) = 0, d(B , B) = 0. Formally, the 

generative rule for a dialog sequence D with n elements is as follows:  

 
( , 2) 0, 1, 2 , 2
( , 1) 1, 1, 2 , 1

6,

d i i i n
d i i i n

n

+ = = −
+ = = −

≥

…
…  (6.3) 

where, i represents the ith element of  the structure, d is the metric associated with the 

elements and n is the number of  elements in the sequence.  In Figure 6.2, we see the 

idealized topological graph corresponding to a dialog sequence. Then, for an idealized 

dialog sequence of  6 images (A-B-A-B-A-B) we would get the following topological 

matrix: 

 

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

 
 
 
 
 
 
 
 
  

 (6.4) 

6.5.2 Regular anchors 

Figure 6.3: A three image regular anchor. 
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A regular anchor is characterized by an anchor image, that repeats as every other 

image. The regular anchor topology is defined to begin and end with the anchor image, 

and hence regular anchor sequences are always odd length sequences. A three image 

regular anchor is shown in Figure 6.3. 

The sequence A-I1-A-I2-A is an example of  a five image regular anchor. The image A is 

the anchor and I1 and I2 can be arbitrary images. The idealized topological relationship is 

then: d(A , I1) = d(A , I2) = 1, d(A , A) = 0. The relationship between I1 and I2, can be 

arbitrary and we specify the edge (and the corresponding entry in the topological matrix) 

between the nodes representing I1 and I2 in TG as -1. The extension to general (2n+1) 

sequence now immediately follows. Formally, the generative rule for a regular anchor of  

length 2n+1 is as follows: 

 

0 , , : anchor, non-anchor,
( , ) 1 , : anchor, : non-anchor

1 , , : non-anchor

anchor image, 1, 3,5, , 2 1,
non-anchor image, 2,4 ,6, , 2 ,

1,

i j i j
d i j i j i j

i j i j

i n
i

i n

n

=
= ≠
− ≠

= +
=  =
≥

…
…  (6.5) 

where, the index i represents the ith element, and d represents the distance function, and 

the number of  elements in the anchor are 2n +1. Note that the definition states that the 

odd indexed elements (2n+1) are anchor images, while the rest are non-anchor images. 
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Topological matrices can contain a “don’t care” condition. For example, the 

topological matrix (equation (6.6)) for the five image regular anchor definition contains a 

“don’t-care” metric condition: 

 

0 1 0 1 0
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
0 1 0 1 0

 
 − 
 
 − 
  

 (6.6) 

where, 0 specifies that the images are identical, 1 specifies that the distance is very large, 

and –1 implies that we do not care about the metric relationship between these pair of  

nodes. Why does the don’t care situation occur? This is because the definition of  the 

regular anchor does not depend on the metric relationship between the two non-anchor 

images — the two images (in the case of  the five image regular anchor) could be 

identical or be completely dissimilar to each other. What is most important is that they be 

dissimilar to the anchor images. 

6.5.3 A note on the end conditions 

When we are constructing topological matrices for any pattern, we need to take into 

account the end conditions i.e. the relationship between the two ends of  the topological 

Figure 6.4: A three element anchor surrounded by two end nodes. 
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sequence that we are trying to detect and the surrounding elements. This results in an 

augmented topological graph and matrix.   For example, consider the three element 

regular anchor (Figure 6.4).  

Now, what should the topological condition be? While this in general will depend on the 

topological sequence that we are trying to detect, in the case of  the regular anchor the 

conditions are easy. The metric relationship between the two nodes can be arbitrary (i.e. a 

“don’t care” condition), but the two end nodes must be at a maximum distance from the 

topological sequence itself. Hence the augmented topological matrix is then:  

 

0 1 1 1 1
1 0 1 0 1
1 1 0 1 1
1 0 1 0 1
1 1 1 1 0

− 
 
 
 
 
 
 − 

 (6.7) 

where, 0 implies that the two nodes are at zero distance, 1 implies that they are at 

maximum distance and –1 is the “don’t care” condition. 

6.6 Detecting dialogs 

A dialog has a specific local topological property: every 2nd frame is alike while adjacent 

frames differ (Figure 6.1). In the idealized topological matrix for the dialog (equation 

(6.4)), this appears as the 1st off-diagonal being all ones, the 2nd off-diagonal being all 

zeros and the 3rd off-diagonal being all ones. We detect dialogs by exploiting the 

regularities in the topological matrix for dialogs. 
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We proceed by defining a periodic analysis transform, that maps a N by N real matrix 

to N numbers in the real number line, to estimate existence of  this pattern in a sequence 

of N shot key-frames. Let oi where i ∈{0, N-1} be a time ordered sequence of  images. 

Then, the transform is defined as follows: 

 
1

mod( , )
0

1
( ) 1 ( , )

N

i i n N
i

n d o o
N

−

+
=

∆ − ∑@  (6.8) 

where, ∆(n) is the transform, d is the L1 color-histogram based distance function, mod is 

the usual modulus function. The modulus function simply creates a periodic extension 

of  the original input sequence.  

We shall make use of  two statistical tests: the students t-test and the F-test. The student’s 

t-test and the F-test are used to compare two series of  numbers and respectively 

determine if  the two means and the variances differ significantly. There are two student-t 

test’s depending upon whether the variances differ significantly or not, and hence we use 

the F-test for variances to determine the appropriate Student’s t-test.  

6.6.1 The dialog presence condition 

We now present our test for detecting dialogs. Let us assume that we have a time-ordered 

sequence of N key-frames representing different shots in a scene. Then we do the 

following: 

• Compute the series ∆(n). 

• Check if  ∆(2) > ∆(1) and ∆(2) > ∆(3) (see  Figure 6.5). 
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A dialogue is postulated to exist if  one of  two conditions in step 2 is at least 

significant at α = 0.05 and the other one is at least significant at α = 0.1. We are trying to 

reject the two null hypothesis’ being tested, ∆(2) = ∆(1) and ∆(2) = ∆(3), at the 

significance level α. We reject the null hypothesis if  we believe that the observed 

difference between the means occurred by chance with a probability less than α. The 

reason why we can use the student’s t-test for the means, to determine whether the two 

means are different in a statistically significant sense, is because ∆(n) for each n is just the 

mean of N numbers.  

6.6.2 The sliding window algorithm 

We use a sliding window algorithm to detect the presence of  arbitrary length dialogs (but 

they at least have six frames) in the entire shot sequence for the video. The window size 

is set to six frames, since that is the minimum size of  the dialog [77] . The algorithm is as 

follows:  

Figure 6.5: A dialogue scene and its corresponding periodic analysis transform. 

Note the distinct peaks at n = 2, 4 . . . 

… 
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• Run the dialog detector on the current window. 

• If  no dialog is detected, keep shifting the window to the right by one key-frame 

to the immediate right until either a dialog has been detected or we have reached 

the end of  the video sequence. 

• If  a dialog has been detected, keep shifting the starting point of  the window  to 

the right, by two key-frames, until we no longer have a statistically significant 

dialog or if  we reached the end of  the video sequence.  

1. Merge all the overlapping dialog sequences just detected. 

• Move the starting point of  the window to be the first frame after the last frame 

of  the last successful dialog.  

The sliding window algorithm can sometimes “overshoot” and “undershoot.” i.e. it can 

include a frame before (or after) as being part of  the dialog.  These errors are eliminated 

by simply checking if  the local dialog topological property (i.e. the topological 

relationship A-B-A) holds at the boundaries. If  not, we simply drop those frames. This 

results in an algorithm that generates statistically significant dialogs, with precise begin 

and end locations. 

6.7 Detecting regular anchors 

In this section, we discuss our approach towards detecting regular anchors. We need  a 

new technique distinct from the one used for detecting dialogs, in order to detect regular 

anchors. Why does this become necessary? Note that the key point in our algorithm to 
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detect dialogs was the use of  the student’s t-test to make the detection robust. 

However, the statistical test requires at least 6-7 points in the topological pattern, for it to 

give statistically significant results. An elementary regular anchor pattern has just three 

elements, too few for us to test for statistical significance using the student’s t-test. 

The result of  this section is organized as follows: We begin by discussing the intuition 

guiding our solution in the next section, and then discuss regular anchor detection in 

section 6.7.2.  

6.7.1 An intuition 

The intuition in solving the small topological sequence problem lies in following 

observation: if  we randomly permute a sequence that has a specific topological structure 

(i.e. the topological relationships are well defined), then randomly permuting this 

sequence will destroy the topological structure of  the sequence. However, if  the 

Figure 6.6: The top sequence shows a three element regular anchor surrounded by the 

boundary elements. The lower sequence is the result of randomly permuting the first sequence. 

The intuition behind this permutation is that it will destroy the original topological structure, if 

such a structure was indeed present.  
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sequence did not have a strong topological structure to begin with, then such a 

permutation would not seem to alter the topological relationships dramatically. 

In other words — permuting a sequence of  random numbers, will more likely result in 

an another random sequence, while permuting a structured sequence will more likely 

result in destroying the structure (thus making the sequence appear random).  

6.7.2 The regular anchor detection algorithm 

We now present the detailed algorithm. But before we jump into it, we need to introduce 

the idea of  indistinguishable permutations. Then, we shall present our algorithm towards 

detecting three element regular anchors in section 6.7.2.2 and then conclude by 

presenting the algorithm for generalized regular anchor in section 6.7.2.3. 

6.7.2.1 Indistinguishable permutations 

Figure 6.7: This is a three element regular anchor, shown with the two 

boundary images. Permuting the first and the last image in the sequence does 

not alter the regular anchor pattern. 
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A random permutation of  a three element regular anchor along with the two end 

point elements, will result in some permutations that are indistinguishable from each 

other (ref. Figure 6.7). This is because, by definition, the regular anchor images are 

indistinguishable, and importantly permuting all the non-anchor images (the internal 

non-anchor images and the two end points) does not affect the regular anchor pattern.  

Now let us assume that we have a 2N-1 regular anchor pattern ra , with N anchor images 

and N-1 non-anchor images. Let us also assume that we have two end point images, thus 

making the total number of  images to be 2N+1. Now, 

 
2! !( 1)!,
2 ! !( 1)!( ) ,

(2 1)!

r

r

I N N
N NP I

N

= −

−
=

+

 (6.9) 

where |Ir| is the number of  indistinguishable permutations, and P(Ir) is the probability 

of  a particular permutation being a member of  the set of  indistinguishable 

permutations. Note that the factor 2! appears because there are two end point images.   

6.7.2.2 Detecting the three element regular anchor 

We now discuss the case of  detecting the basic three element regular anchor (see Figure 

6.4). Then, the number of  anchor images N, is 2. The corresponding idealized 

topological matrix T3R corresponding to a three element regular anchor is given by 

equation (6.7). Note that the matrix definition includes the two end point elements. 

Given a five element sequence, we wish to determine if  it is a regular anchor. Hence, we 

do the following:  
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• Compute the distance d1 (see equation (6.2)) between the idealized topological 

matrix and the topological matrix of  the input sequence.  

• Determine if  it lies in the indistinguishable set. This is done in the following way: 

• Compute (2N+1)! permutations of  the input sequence and compute the 

corresponding distance between each of  the resulting topological matrices and 

the idealized matrix.  

• A necessary condition for the test sequence being part of  the indistinguishable 

set is the following:  

 1{ | , 1, 2 (2 1)!},

(2 1)!(1 ( )),
i i

r

l d d d i N

l N P I

= > = +

≥ + −

…
 (6.10) 

where, l is the set of  distances that are greater than d1, N is the number of  

regular anchors and P(Ir) is the probability that a sequence is a member of  

the indistinguishable set. Equation (6.10) says that if  the cardinality of  l is 

greater or equal to the number of  distinguishable elements. Now that 

we’ve established a threshold using the cardinality of  the distinguishable 

elements, we also need a metric threshold on d1. The test is useful, since if  

a test sequence does not belong to the indistinguishable set, it cannot be a 

regular anchor sequence. 

• It becomes a very difficult task to set an absolute threshold on d1 since the dataset 

is very diverse. As a consequence, the dynamic range of  the distances for 
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sequences from different films to be very different. Hence we decided to use 

a dynamic threshold on d1 is computed in the following way. 

• Construct a large number of  random five element image sequences, where the 

images are taken from a large pool of  images, and compute the distance of  the 

corresponding topological matrices with the idealized matrix.  

• We then sort the distances and the threshold on d1 is as follows: 

 1 ,d β≤  (6.11) 

where β is a distance threshold such that a fraction α of  the distances are 

greater than d1. 

This way, we have two conditions for regular anchor detection: (a) the condition that the 

current sequence lie in the indistinguishable set, and (b) that the distance of  the 

topological matrix of  the input sequence with respect to the idealized topological matrix 

be smaller than a threshold. The threshold is data dependent and obtained dynamically 

using a pool of  images.  

6.7.2.3 Detecting arbitrary sized regular anchors 

In order to detect regular anchors of  arbitrary size, we need four five-element templates. 

This becomes clear in the following five element example. 
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In Figure 6.8, we see three of  the four five element templates — initial template (i), 

the extension template (c) and the end template (e). The fourth template is just the simple 

regular anchor template (s) seen in Figure 6.4. 

These basic templates become necessary since the length of  the regular anchor sequence 

is a priori unknown. These templates will allow us to detect any regular anchor sequence 

of  length 2N-1. Now the algorithm for detecting the arbitrary length regular anchor 

pattern of  length 2N-1, is as follows.  

The algorithm has two pointers: a start pointer is that is at image k and a moving pointer 

at image m. Initially, we set m = k . In the following steps, we need to perform template 

matching. The procedure is identical to the one described in section 6.7.2.2 except that 

we use the template described in the step rather than the simple template (s) used in that 

section. 

Figure 6.8: A five element regular anchor. The anchor images are black, the 

internal non-anchor images are light gray while the end images are dark gray. The 

figure shows three five element templates: initial (i), extension (c), and end (e).  

initial 

extension 

end 
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• Set m = k. Use the initial template (i), to check if  we are at the beginning of  a 

regular anchor sequence. If  there is a match set m = m + 1 and go to step 3 else 

proceed to the next step. 

• Check if  there is a match for the simple template (s) (section 6.7.2.2). If  there is a 

match, store the location of  the match, and then move the start pointer from k to 

k + 4, else increment k to k + 1. Go to step 1. 

• Now that we have a match for an initial template, there must be a match for an 

extension template for this to be a regular anchor. Check for the match for the 

extension template (c). If  there is a match set m = m + 2 and repeat step 3 until 

there is no match. If  there is no match, proceed to step 4. 

• If  there is no match, and we did not have any matches to the extension template, 

we don’t have a regular anchor structure. Move the initial pointer k to k + 1 and 

go to step 1. However, if  there was at least one extension template match, then 

set m = m – 1 (we moved two steps forward in step 3) and check for a match with 

the end template (e). 

• If  there is a match to the end template (e), we have successfully detected the 

regular anchor pattern. Set m = m + 4, k = m and go to step 1. 

In this manner, we can detect arbitrary length regular anchor patterns.  
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6.8 Experiments 

In the sections that follow, we present our results on dialog detection and regular anchor 

detection. 

6.8.1 Dialog detection 

In this section, we present our dialog detection results. The statistical tests that are 

central to the dialog detection algorithm make it almost parameter free. These test are 

used at the standard levels of  significance (α = 0.05). The sliding window size Tw (6 

frames).  

Table 6.1: The table shows the dialogue detector results for the three films. The columns are: 

Hits, Misses, False Alarms, Recall and Precision. 

Film H M FA Precision Recall 

Four Weddings and a Funeral 16 4 1 0.94 0.80 

Pulp Fiction 11 2 2 0.84 0.84 

Sense and Sensibility 28 3 0 1.00 0.91 

The results of  the dialog detector (ref. Table 6.1) show that it performs very well. The 

best result is a precision of  1.00 and recall of  0.91 for the film Sense and Sensibility. The 

Figure 6.9: The figure shows an example dialog, where misses in the key-frame 

detection prevented the dialog from being detected. Here, misses occur after the 2nd 

and the 4th frames. 
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misses are primarily due to misses by the shot-detection algorithm. Missed key-

frames will cause a periodic sequence to appear less structured. 

6.8.2 Regular anchor detection 

In this section we present our results on detecting the three element regular anchor. We 

choose to work with the same three films as before. The only parameter that we need to 

set is α, which we set to 0.75. (see equation (6.11)). The results for the regular anchor 

detection are shown in Table 6.2. 

Table 6.2: The results for the regular anchor detection. The symbols are as follows: H: hits, 

M: misses, FA: false alarms, P: Precision and R: recall. The primed variables refer to the modified 

hits, and false alarms, after we take the results of the dialog detector into account. 

Film H M FA P R H′ M′ FA′ P′ R′ 

Four Weddings 
and a Funeral 30 3 8 0.79 0.91 19 3 8 0.70 0.86 

Pulp Fiction 10 4 2 0.83 0.71 5 4 1 0.83 0.55 

Sense and 
Sensibility 34 4 4 0.89 0.89 14 4 3 0.82 0.78 

In Table 6.2, we show two sets of  results per film. The reason for that it as follows. 

When the detector is run, we get a lot of  hits, and many of  these hits are the boundaries 

of  dialogs. This happens when the shot that we transition to from a dialog to the next 

shot has a large distance to the elements of  the dialog, as well as the dialog element 

preceding the detected regular anchor element looks different from the other dialog 

elements (e.g. a different profile shot, or the shot may be at a slightly different scale). 

Note that all the detected structural elements satisfy the topological requirements of  the 
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regular anchors, and are hence valid. So, the first set of  results, are the “raw” results, 

without taking into account the results of  the dialog detector. The second set eliminates 

all those detected regular anchors, that were part of  dialogs. 

The results of  the regular anchor detection are good, with the best results for the film 

Sense and Sensibility. There were some interesting observations from the experiments.  

• While examining the missed regular anchors, it became apparent that some of  

them were caused by shot-detector false alarms, which disrupted the topological 

structure by adding an extra image.  

• Some of  the false alarms, while accurate topologically, are deemed incorrect since 

either the first or the last element belongs to a different scene. The reason why 

they were deemed as regular anchors, is because there was a strong graphic 

match, and there was a very similar color distribution. i.e. the director uses a very 

similar spatial and color composition in the subsequent scene. This is because the 

similarity in composition and color will make the transition between scenes 

appear smooth. 

We believe that the results of  both detectors can be improved by changing the metric, 

since the distance between the images is computed in the present work using a simple 

color histogram distance. The metric plays an important role since the regular anchor 

(and the dialog) is really a graphic match i.e. the shapes and the colors in the anchor 

images are very similar. Hence a metric that incorporates the spatial information (e.g. 
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color coherence vectors, other shape features) should improve the regular anchor 

detector. However, while this may introduce a few extra false alarms, this scenario is 

preferable to having misses. 

6.9 Related work 

There has been some work done in the area of  visual structure detection [101] [104] . 

This may be because much of  the multimedia community has focused on the problem 

of  detecting shots, scene segmentation or summarization. 

In [104] , the authors detect dialogs in the following way. After detecting shots, they 

cluster the shots, and thus assign a label to each shot. Then, they look at a subsequence 

of  these labels to see if  there are two dominant labels. If  these dominant labels exist, and 

satisfy a temporal ordering constraint, they declare the presence of  a dialog. There are 

some additional constraints to eliminate “noise” labels. The papers do not present 

detection results in terms of  precision and recall (they present the number of  dialogs 

detected only), making it hard to judge the quality of  their algorithm. 

The important difference between the work in [101] [104]  and topological analysis is 

that since that work relies on clustering before dialog detection, it would be difficult to 

detect structures where the metric relationships are arbitrarily specified (i.e. any number 

between 0 and 1; and not just 0 and 1). Such structures would be more amenable to 

detection by randomizing the topology. Secondly, more complicated structures may not 
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manifest themselves in a noticeable way in the STG; however regularities may be 

more visible in the topological matrix. 

6.10 Summary 

We now summarize the important aspects of  this chapter, which focuses on detecting 

visual structure. We denoted a discrete sequence of  labels to be structured, if  the 

Kolmogorov complexity of  the sequence was less then the sequence length. In this work 

we have focused on structures that satisfy the following two characteristics: (a) the 

structures formed by deterministic generative rules and (b) the structure is characterized 

by its topology, as a consequence of  a metric associated with the sequence.  

The idea of  the topological graph, is central to our framework for detecting structure in 

a sequence. We showed that a topological matrix is associated with every such graph, and 

can serve to compare two topologies. Then, we discussed two structures — the dialog 

and the regular anchor and discussed the generative rules associated with each.  

We detected dialogs in the following way. We constructed a transform that we called the 

periodic analysis transform, that exploited the regularities of  the topological matrix 

associated with a dialog. Then, we used statistical tests to decide if  the current sequence 

was a dialog. We described a sliding window algorithm that enabled us to detect dialogs 

of  arbitrary length. 

We detected regular anchors in the following way. Since the size of  the three element 

regular anchor is small, we used the following intuition to detect regular anchor: 
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randomizing a structured sequence will destroy the structure in the sequence. Then, 

we showed how this randomization trick could be used to detect regular anchors of  

arbitrary size.  

The experimental results indicated that both the dialog detection and the regular anchor 

detection worked well. However, the results in both cases can be improved, by taking 

into account new metrics that incorporate spatial information in addition to color.  

Hence, there are two general approaches that one can use  when detecting structure that 

is a priori known —  

• Exploit the regularities in the topological matrix (like was done in the case of  

dialogs)  

• Use the randomization of  the topology, if  there do not seem to be any 

regularities in the topological matrix.  

The framework proposed in this chapter is novel, and is easily adapted to other problems 

that where the elements of  the sequence have a metric associated with them. While the 

framework is extensible to other problems where the elements can be associated with a 

metric (e.g. detecting of  footsteps in an audio sequence). However, the work presented in 

this chapter is the starting point of  a theory of  topological analysis of  sequences; note 

that the at moment, we do not have a mechanism for detecting stochastic structures.   
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7 The summarization problem 

7.1 Introduction 

In this chapter, we introduce the problem of  summarizing video. It builds on the prior 

work on computable scenes and structure detection, by generating a summary 

multimedia clip per computable scene. We repeat the definition of  the summary as 

presented in the introduction. The Oxford English Dictionary defines the adjective form of  

the word summary25 as: 

Of  a statement or account: Containing or comprising the chief  points or the sum 

and substance of  a matter; compendious (now usually with implication of  

brevity). 

Note that the definition implies an understanding the semantics of  the document (or 

video), and constructing a summary document (or video) based on this knowledge. Such 

a level of  understanding for automatic analysis of  the audio-visual data is difficult, since 

this requires access to a body of  knowledge that is external to the data in the video.  

                                                

25 i.e. the word is to be used as in a “summary video” or a “summary text,” which in 

colloquial English is used as “video summary” and as “text summary” respectively. 
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The goals of  a video summary include the construction of  an audio-visual 

representational / visualization scheme that captures the underlying semantics of  the 

scene (in the sense as presented above). Examples of  such schemes include — image 

storyboards, slide shows and skims. An image storyboard is just a collection of  key-

frames laid out on a window; a slide show is a time-sequence of  key-frames, 

accompanied with the audio. A skim is just a short audio-visual segment, that contains 

the important semantic elements of  the original.  Issues common to prior work include:  

• There is no framework of  for adaptation, in response to either changes in the 

user needs, or computational resources (device constraints, network conditions 

etc.) 

• Fixed set of  semantics (e.g. in the prior work on skims) i.e. the semantics of  the 

summary is limited by the set of  pattern detectors used. 

• They do not examine the effect of  the grammar underlying the produced data on 

the summary. 

In this work, we propose a new conceptual framework for skim generation. In our 

worldview, the form of  the summary is dependent on many factors — (a) the nature of  

the task (search vs. browsing), as this affects the kind of  the information that the user is 

looking for (b) the capabilities of  user interface and (c) the computational resources of  

the device rendering the summary.  

Central to our skim generation approach is the entity-utility framework. The skims that 

we generate shall attempt to preserve certain entities that help satisfy the users 
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information needs. An entity is a real world “thing” with independent existence. 

Entities consist of  attributes; entities are constructed from the set of  attributes by using 

an appropriate set of  predicates. Associated with each entity is a utility function, and the 

skims are generated in a constrained utility maximization framework. 

7.1.1 Scope of  the problem examined in this thesis 

We now indicate some of  the issues related to summarization, that we did not consider in 

this thesis:  

• We summarize the entire video, by individually summarizing each computable 

scene — i.e. we assume that each scene is independent of  the other scenes. We 

do not exploit the inter-scene relationships that exist amongst scenes, at level of  

the whole video. For example, the first and the last scenes in a film could take 

place in a soccer field; then, knowing that the two locations are identical, we 

could more efficiently condense the second scene.[47] [48]  

• We do not consider the use of  text for the purpose of  summarization. We 

decided against using text, since it is frequently unavailable in legacy video as well 

as in many foreign language productions. However, when available, text is an 

important attribute and ought to be part of  the summarization scheme. 

• We do not consider scene-level syntax for summarization. An example of  such 

syntax is parallel story development — where the director develops the plot over 

two locations in a rhythmic fashion, alternating between the two locations. 
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Determining and exploiting such syntax is important since it will enable us to 

condense beyond what is possible by treating each scene independently. 

• We shall limit the scope of  the problem in this thesis to show adaptability to 

changes in target skim duration. However, the framework that we adopt is easily 

extensible (ref. [17] ) to handle other characteristics such as device constraints, 

network bandwidth etc.  

The rest of  this chapter is organized as follows. In the next section we shall review 

several strategies for video summarization — (a) image based storyboards, (b) slide 

shows and (c) video skims. Then, in section 7.3, we shall discuss related work on audio 

summarization, mainly focusing on techniques used in the computational linguistics 

community. In section 7.4, we present our new conceptual framework for skim 

generation — the entity utility framework. Then, in section 7.5, we conclude by 

summarizing the main ideas in this chapter.  

7.2 Related work: video 

In this section we shall present an overview of  the related work on video summarization. 

We shall discuss three visualization techniques — (a) image based storyboards, (b) slide 

shows and (c) video skims, which are the focus of  research in this thesis.  
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7.2.1 Image based storyboards 

Image based storyboards offer a key-frame based non-linear navigation of  the video data 

[76] [92] [95] [102] . Briefly, all image based storyboard algorithms broadly share the 

following approach:  

• First determine an appropriate feature space to represent the images (e.g. color 

histograms, edge orientation histograms)  

• Select a clustering technique (e.g. k-means) to cluster the image sequence in the 

feature space.  

• Compute a measure of  importance to determine the appropriate key-frame to 

represent the cluster. For example, a common technique is to pick the key-frame 

closest to the centroid of  the cluster. Figure 7.1 shows an example of  an image 

storyboard. 

Figure 7.1: An image storyboard 



   

 

182 

7.2.1.1 Video Manga  

In this section, we review the Video Manga [95]  approach to video scene visualization. 

The Manga project uses a measure of  importance to select the important segments for 

display, and then introduces the novel idea of  adaptive changing the key-frame size 

depending up the segment score. 

In this approach the video data is first adaptively clustered (ref. section 2.3.2). Let us 

assume that there are k clusters, each cluster containing many video segments. In order 

to assign an importance measure to each segment, they proceed as follows. First they 

compute the weight of  each cluster:  
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where Ci denotes the ith cluster, the || operator designates the duration of  each cluster 

i.e. the sum of  the durations of  the constituent segments. Then, the importance of  a 

segment is computed as follows:  

 
1

log ,k
j j

k

I L
ω

 
=  

 
 (7.2) 

where, I is the importance measure assigned to segment j of  the kth cluster, Lj is the 

duration of  the segment. Hence, a segment is deemed to be important if  it is both long 

and rare. Segments with measures that are greater than one-eight of  the maximum 
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importance score are chosen to be part of  the summary. The key-frame 

corresponding to each segment is chosen by selecting the frame corresponding to the 

center of  the segment.   

The authors set the size of  the key-frames in proportion to the importance score. They 

use three discrete sizes corresponding to three score ranges for the key-frames. The 

largest size being three times the smallest size. The rationale for choosing variable key-

frame sizes is that more important segments should be made more visible to the user, so 

that the user can access that portion of  the video more quickly. The idea being that more 

prominent a key-frame, the viewer will notice it more quickly.  

There are two criticisms of  this approach: 

• The importance based segment scoring can lead to problems in some cases. For 

example, consider the case of  three clusters, with one segment per cluster. And 

the durations of  the segments are S1 = 97 sec. S2 = 2 sec. and S3 = 1 sec. In this 

case, equation (7.2) implies that S2 is the most important segment, an unintuitive 

result given the dominance of  segment S1. For example, S1 could be a news 

anchor reading a story while S2 and S1 could be short clips showing a graphic.  

• Making the size of  the key-frame proportional to the importance of  the segment, 

will have its disadvantages. What could easily happen is that the human eye while 

scanning the images fixates on the smallest image precisely because it appears 

difficult to comprehend because of  its size. This criticism is just the visual analog 

to the familiar information theoretic argument that low probability events (in the 
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2D case, the size) have more information. Hence the viewer may decide to 

examine all the small key-frames before coming to a conclusion about the 

summary. 

7.2.1.2 Scene transition graphs 

In this section we review the scene transition graph as a visualization technique (in 

section 2.3.1, we discussed scene transition graphs as a method for video scene 

segmentation).  

The scene transition graph (STG) [101] [102] [103] [104] (ref. Figure 2.3) offers a 

compact representation of  the video. We can browse and navigate the video in a 

hierarchical, non-linear fashion. A STG shares similar characteristics to other image 

based storyboards in that it clusters frames in a feature space. However, by analyzing the 

shot transitions amongst the clusters, it provides for some of  the temporal dynamics to 

be visualized in the storyboard. The analysis of  the label transitions also allows the STG 

to detect elements of  visual syntax, such as the dialog. 

The problem with the scene transition graph is that like other image based storyboards, it  

offers a static snapshot of  the entire video. While the transition edges do display 

temporal relations between the cluster, they do not provide an effective summary since 

they can be hard to interpret, unless the user is familiar with the semantics of  the layout.  

In the appendix section 13.3, we discuss methods to improve the static image based 

summaries. 
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7.2.2 Slide shows 

A slide show is a video summary that is a time sequence of  frames played back with 

audio. The sequence of  frames, could just be the key-frames associated with each shot, 

or a subset of  the set of  the set of  key-frames. Slideshows introduce an element of  

dynamism into the summary, but unlike a video skim, do not adequately recapture the 

experience of  watching the original video. While user studies indicate that simple 

slideshows are not as preferable as other video summaries [38] , they may be useful over 

low-bandwidth networks.  

7.2.3 Video skims 

A video skim is a short audio-visual clip that summarizes the original video data. They 

are important because unlike the static, image-based video summaries, video skims 

preserve the dynamism of  the original audio-visual data. Applications of  audio-visual 

skims include:  

• On demand summaries of  the data stored in set-top boxes (interactive TV)  

• Personalized summaries for mobile devices. 

• News channels (e.g. CNN) that receive a tremendous amount of  raw footage.  

• Summarizing home video. 
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7.2.3.1 Prior work 

In this work, we shall review work done in four projects — the Informedia project at 

CMU [18] , the MoCA project [65] , and projects at Microsoft research [37]  and at IBM 

Almaden [91] .  

In the Informedia skimming project[18] , important regions of  the video were identified 

via a TF/IDF analysis of  the transcript. They also used face detectors and performed 

motion analysis for additional cues. The user studies conducted in [18] gave mixed 

results, the “optimal” skim gave better results over the other skims being tested, but the 

differences were not statistically significant. The MoCA project [65]  worked on 

automatic generation of  film trailers. They used heuristics on the trailers, along with a set 

of  rules to detect certain objects (e.g. faces) or events (e.g. explosions). It is difficult to 

evaluate the success of  the MoCA project since they do mention the results of  user 

studies. A conceptual issue with both the Informedia and the MoCA projects is that they 

focus on detecting important patterns (e.g. faces etc.). Concatenating shots that just 

contain “important” patterns ignores the underlying grammar in the produced video, 

thus causing the resulting skim to appear incomprehensible. 

Work at Microsoft Research [37]  dealt with informational videos. They looked at slide 

changes, users statistics and pitch activity to detect important segments. In that work, 

they compared three algorithms: (a) skims based on slide transitions (b) a pitch activity 

based skim and (c) a skim derived from combination of  usage statistics, slide transitions 
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and pitch activity. They found no statistically significant differences amongst the 

three methods. However, this could be a reflection of  the particular domain that worked 

with. 

Recent work [91]  at IBM Almaden has dealt with the problem of  preview generation by 

generating “interesting” regions based on viewer activity in conjunction with topical 

phrase detecting. The user activity was modeled by an HMM, where the output symbols 

represented the user actions, while the hidden nodes represented the user’s intent / 

satisfaction. When the summary of  a new video was required, a few people need to 

watch it in order for the summary to be generated. Then, for each user, we decode the 

hidden states, and a majority vote is taken to decide the “interesting” segments.  

7.3 Related work: audio 

In this section, we shall discuss some of  the related work in audio summarization. While 

there has been plenty of  related work on audio scene segmentation and indexing, there 

has been little work done on summarizing generic auditory data. However, the problem 

of  summarizing speech documents, has received much attention in the computational 

linguistics community [4] [40] [42] [33] [61] [81] [82] . Here we shall review Speechskimmer, 

[2] [4]  Barry Arons’ work on summarizing speech, as well as review work on discourse 

segmentation.  
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7.3.1 Speechskimmer 

In [2] [4] , the author describes Speechskimmer, a project that was geared towards 

summarizing spoken documents.  

In [4] , the author uses pause information to skim the speech. Pauses are important 

indicators of  semantic and syntactic cues within speech. In this work, pauses are used in 

two ways: pause shortening as well as the use of  pauses to determine the start of  

syntactic boundaries. The key issue with pause based analysis is that pauses can be of  

two types — hesitation pauses as well as grammatical pauses. Grammatical pauses tend to be 

much long than hesitation pauses, however the distributions of  the two types of  

durations show considerable overlap [61] . Hence a threshold based on the pause 

duration alone, will often result in segments that correspond to mid sentence hesitation 

pauses. However, in [61] , the author points out that the pitch contour in the segment 

prior to the pre-segment pause is a good indicator of  whether the pause is grammatical.  

Skimming based on pitch analysis alone was discussed in [2] . There, the focus was on 

detecting emphasized potions of  speech, since new topic introductions were often 

associated with an increase in the pitch of  the speaker. The algorithm to detect the 

emphasized portions of  speech was as follows. Pitch values were calculated over 10ms 

frames, were aggregated over one second windows. Then, once the pitch values were 

normalized for speaker variability, the top 1% frames were selected (i.e. the top 1% of  

the frames that have the highest pitch activity). Each one second window has a frame 

activity score — the number of  frames above the pitch threshold. The activity scores are 
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aggregated over eight second windows. Then, these eight second windows are ranked 

in terms of  their activity scores, thus resulting in an emphasized segment.  While both [2] 

[4]  have interesting approaches towards speech summarization, unfortunately neither of  

them presents user studies to evaluate the utility of  the approach.  

7.3.2 Discourse structure segmentation 

In this section we shall review the structure of  the spoken discourse, and the different 

approaches towards using the acoustic correlates of  prosody [33] [40] [42] [81] [82]  for 

discourse structure segmentation. Based on the work by [33] , each of  the intonational 

phrases are classified into five discourse categories [82] :   

• Segment initial sister (SIS): The utterance beginning a new discourse segment that 

is introduced as the previous one is completed. 

• Segment initial embedded (SIE): The utterance beginning a new discourse 

segment that is a subcomponent of  the previous one. 

• Segment medial (SM): An utterance in the middle of  a discourse segment.  

• Segment medial pop (SMP): The first utterance continuing a discourse segment 

after a subsegment has been completed.  

• Segment final (SF): The last utterance in a discourse segment.  
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A single category of  segment beginning utterances (SBEG’s) is created by combining 

the SIE, SIS and SMP elements of  the discourse [82] . Note that SBEG’s represent the 

new topic introductions in the discourse. 

The work done on acoustic correlates of  prosody [33] [40] [81] [82]  indicate that 

typically, SBEG’s have a preceding pause that is significantly longer than for other 

phrases, higher initial pitch values (mean, variance), and smaller pauses that end the 

phrase than for other phrases. In [82] , Lisa Stifelman uses a subset of  these correlates of  

prosody to determine SBEG’s in speech. It was used in the context of  a note taking 

device AudioNotes, where it was important to determine topic boundaries. In her SBEG 

classification results, she obtains a precision of  44% and a recall of  59%.   

Finally, it is important to note that there is an important difference between emphasis 

detection (e.g. [2] ) and detection of  SBEG’s. Emphasis in speech can occur anywhere 

within the discourse, including SBEG’s. Detecting SBEG’s is important since they are an 

important aspect of  the structure of  the discourse.  

7.4 An entity-utility framework 

In this section we present a new conceptual formulation for the problem of  skim 

generation. Then we shall show the application of  this framework for a specific type of  

audio-visual skim. This conceptual formulation is needed for several reasons. While there 

has been much prior work in both image and video based summarization schemes [18] 
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[22] [32] [37] [52] [65] [76] [92] [95] [100] [101] [102] [106]  they all focus very 

narrowly on creating summaries that attempt to preserve the semantics of  the original.  

However, while semantic level summarization is hard, importantly, prior work on 

summarization is also static, in the sense that neither the user information needs nor are 

the abilities of  the device are taken into account when generating the summary. Our 

framework considers the audio-visual skim generation in terms of  the following:  

• Entities defined on audio-visual data, at different levels of  abstraction,  

• Utilities that are assigned to each entity.  

• The user information needs.  

• The device on which the skim is to be rendered.  

• A skim generation mechanism that maximizes the utility of  the entities 

considered. 

An entity is a real world “thing” with independent existence26. Entities could be concrete 

such as a video key-frame, or abstract such as a video segment titled “beauty.” Each 

entity is associated with a set of  attributes and a predicate (i.e. a particular condition that 

specifies a relationship) on the set of  attributes.  

                                                

26 The ideas for the entity relationship model are based in part on the familiar entity-

relationship data model found in database analysis [27] .  
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Predicates can be caused by static (physical events, content producer) and dynamic 

(prior knowledge and user expectations) factors. The predicates can be of  different 

types: (a) temporal, (b) syntactical, (c) semantic and (d) due to the conventions of  the 

domain. Each entity is associated with a different utility function, that is altered 

depending on whether the entity is dropped or transformed.  

A skim is short video clip containing the entities that satisfy the user’s information needs 

(or tasks) as well the capabilities of  the device on which it is being rendered. We can 

readily construct a partial taxonomy of  skims: (a) semantic, (b) affect, (c) events and (d) 

discourse centric. These skims differ on their computability and in their usefulness to the 

viewer. In this work, we have focused on discourse centric skims (i.e. skims that focus on 

preserving SBEG’s) since they are computable. 

The rest of  this section is organized as follows. In the next section, we shall define the 

notion of  an entity and discuss some of  the causes as well as the predicate relationships. 

In section 7.4.2, we shall discuss the formulation of  the skim in terms of  the entities that 

the user seeks. In section 7.4.3, we shall present the skim generation goals. 

7.4.1 What is an entity? 

An entity is a real world “thing” with independent existence. Entities could be concrete 

such as a video key-frame, or abstract such as a video segment titled “beauty.” Each 

entity is associated with a set of  attributes and a predicate on the set of  attributes. For 

example, a video frame is an entity with attributes of  the set of  pixels (each of  assume a 
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certain value.), where the predicate specifies the relative positions of  the constituent 

pixels. It is instructive to think of  an entity to be associated with a “bag” of  items; the 

predicates then help select items from this bag, to construct the entity.  

We can also construct entities from other entities in a hierarchical fashion. For example, a 

video shot is a collection of  key-frames with predicates of  start time, end time, and 

ordering (i.e. the exact sequence of  frames) requirements. A dialog is an entity that 

comprises video shots with predicates of  selection, topology and time ordering.  

Hence, an entity is associated with an attribute set, and the predicates construct a single 

subset that defines a particular entity instance. For example, let us assume that we have a 

video segment that has N shots. Then, the kth shot can be defined as follows: 

 { }( )| ( ), ( ), ( , ) 1,k S SV S P f f start k f end k continuity S k= ∈ ≥ ≤ =  (7.3) 

The kth shot is the subset S of  the powerset27 P of  the video frames f, such that each 

frame fS belonging to the set S satisfies the start and the end requirements of  the shot. 

The frames fS must also satisfy continuity requirements — for every frame other than the 

last frame, the successor frame must also be present. Depending upon the predicate, 

entities can seem to exist at many different levels — shots, syntactical elements, semantic 

                                                

27 This is just the set of  all subsets of  a given set. For example, if  the set S = {a,b}, then 

the powerset of  S is {{a,b}, {a}, {b}, {φ}}. 
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elements etc. We now discuss the causes of  relationships between modalities and also 

discuss a few of  the different types of  relations. 

7.4.1.1 Causes of  predicates 

Entities defined via relations on elements across different modalities can occur due to at 

least four different factors: 

• The relationship is caused by a physical event (e.g. the firing of  a gun). 

1. The relationship is due to the creator of  the content — the director shows a 

couple with romantic music on the audio, thus setting the “mood.” 

• The prior knowledge of  the viewer of  the physical events shown as well as the 

conventions of  the domain.  

• The expectations of  the viewer. Often the interpretation of  the audio-visual data 

will be predicated on what the viewer wants; as a consequence, the viewer will 

construct relationships in an attempt to fulfill his expectations from the data. 

We term the first two predicates to be static and the last two as dynamic. This is because 

the relations defined in the first two points deal with relationships that have been 

inserted statically by the content producer. However, in the last two cases, regardless of  

the static relations in the video, the viewer’s prior knowledge and expectations change the 

relations (or create new ones) amongst the entities. 
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7.4.1.2 Types of  predicates 

In this section, we discuss some of  the different types of  relations that exist within and 

across modalities.  

Temporal: These relations (which can occur within and across modalities) can either be 

(a) synchronous (e.g. lip movement accompanied by speech) or (b) causal (e.g. sounds of  

a doorbell followed by a visual of  the door opening).  

Syntactic: A topological relationship between elements — this can be amongst and 

within modalities. Examples of  topological relations include the dialog, and the footsteps 

(i.e. visuals followed by a sound).  

Semantic: These are high-level relations that exist due to the content producer and due 

to the prior knowledge of  the viewer.  

Film conventions: There are relations that exist in film that arise out of  the director’s 

desire to create a certain affect  (i.e. emotional response). We list a few of  them below: 

Figure 7.2: video and audio entities. The dotted line 

indicates a relation amongst the low-level entities. 
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• Graphic: In this form, the director will ensure that objects appear in certain 

locations of  the video, in a periodic manner (e.g. location of  the principals in a 

dialog). 

• Rhythmic: The director can induce a certain rhythm to the shot sequence by 

carefully selecting the durations of  the constituent shots. 

• Spatial: In the absence of  an establishing shot, the audience will spatially connect 

the shots in the sequence (i.e. the audience will assume that the shots are in the 

same physical location; this is also known as the Kuleshov effect [8] ). 

Note that different domains of  production will contain different rules of  syntax. For 

example, in soccer, the content producer will return to a zoom-out view (thus showing a 

global game state), after showing close ups and medium-shots. 

7.4.2 Skims and entities 

In this section, we first discuss factors affecting skims and then we shall formulate the 

skim in terms of  the entities found in the data, the user needs and the device on which 

the skim is to be rendered. 

7.4.2.1 Factors that affect skims 

There are at least two factors that affect the skim generation algorithm — the task of  the 

user and the device constraints. We divide up tasks into two broad categories: active and 

passive tasks. A task is defined to be active when the user requires certain information to 
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be present in the final summary (e.g. “find me all videos that contain Colin Powell.”). 

In a passive task, the user does not have anything specific in mind, and is more interested 

in consuming the information. Examples include previews in a set-top box environment, 

browsing in a video digital library.  

The device on which the skim is to be rendered affects the skim in at least two ways: the 

nature of  the user interface and the device constraints. The UI can be complex (e.g. the 

PC), medium (e.g. a palm pilot) and simple (e.g. a cell phone). The UI affects the 

resolution of  the skim, and also influences the kinds of  tasks that the user has in mind 

(e.g. it is difficult to input a query on a cell phone).  

The computational resources available on the device — cpu speed, memory, bandwidth, 

availability of  a video rendering device,  all affect the skim in the following ways: the 

resolution of  the skim, as well as the decision to include video in the skim. 

7.4.2.2 Entities, tasks and the device 

A skim can be viewed as a time compressed audio-visual clip that contains those entities 

(from the original video) that best matches the information needs (or tasks) of  the user 

and the capabilities of  the device on which it is being rendered (see Figure 7.3). For 

Figure 7.3: a skim depends on the user’s information needs and the device. 
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passive 

active 
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example, consider the problem of  generating a summary for a baseball game that 

contains MPEG-7 metadata. Then, independent of  the viewer, the video data contains 

entities that arise due to physical events, the semantics of  the game as well as due to the 

content producer. 

Now, let us assume that we have a viewer who is interested in watching a summary of  a 

Yankees game highlighting the performance of  the short-stop Derek Jeter. Then, the 

summary must contain all the entities relevant to the user’s information needs —  (a) 

events that change the game score (b) the entities that include this player (e.g. hitting, 

running around bases, fielding the ball and throwing someone out). Now, if  the device in 

question cannot render video (but only audio and still images), then many of  the entities 

that the user has requested, cannot be fulfilled (e.g. causal entities such as hit followed by 

speech). 

7.4.2.3 Taxonomy: skims come in different flavors 

In this section we attempt to identify some of  the different skim forms and for each 

skim type, we also discuss its computability and usefulness to the viewer. 

Semantic: Here, we attempt to preserve the key semantics in the data. These could be 

specified by the user (in the form of  a query — “What did George Bush do today?” ), or 

the content producer, who may specify (via MPEG-7 metatags) the content to be 

retained in the skim. This skim type is the closest to what the user wants, but in general, 
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it is very difficult to compute the entities required to satisfy the user needs. However, 

if  the content producer inserts MPEG-7 metatags, generating the skim may be feasible. 

Affect based: In this form, the user is interested in a skim that retains the “mood” or 

the affect  [1]  generated by the content producer. As an example, the heightened pace 

(arising from the sequence of  fast cuts) during an action sequence can be maintained by 

preserving the film rhythm. This is useful for example, in creating movie previews. The 

viewer may be interested in knowing if  the film is exciting, sad etc. While there has been 

some work done in computing affects [1] , this is a challenging area of  research. 

Events: An event refers to the change of  state (or the change in property) of  an entity. 

This skim will contain a subset of  all the events in the domain. For example, the user 

could specify that in the skim of  a particular soccer game, only those events pertaining to 

a particular soccer player be retained. This is particularly useful in constrained domains 

(e.g. baseball videos) where it is possible to construct high-performance event detectors. 

Note that while events can have specific semantics associated with them, a semantic skim 

attempts to answer higher level questions. The answers will comprise as events well as 

non-events. 

Discourse centric: This skim will attempt to parse the discourse structure of  the speech 

in the video, and determine the most significant audio segments using prosody analysis. 

While this skim type can be computed automatically, detecting significant phrases in 

noisy environments is still a very challenging task. The assumption that speech conveys 

semantic information that is most easily understood, may not be true — if  we drop 
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related speech segments, then the segment chosen for the summary may not be 

entirely clear.  

7.4.2.4 Entities and utilities 

In this thesis, we shall preserve five entities:  

• Elements of  syntax, as they are critical in keeping the skim intelligible.  

• Speech segments, since they are the most direct form of  the high-level entities 

present in the film (as opposed the visuals, for example.) 

• Synchronous entities: these entities ensure that the audio and the video data are 

synchronous, thereby increasing the coherence of  the skim. 

• Segment coherence: we must ensure that each atomic audio or video segment is 

coherent. 

• Film rhythm: The relationship between the durations of  the shots in the 

sequence; this is a form of  affect [1] . 

In our framework, we associate a utility function with each entity. The utility is a measure 

of  the entity’s contribution towards the information that the user desires. In our 

particular implementation, while we shall associate explicit utility functions with the 

atomic audio and the video entities to ensure coherence, as well as the film rhythm entity, 

we shall see in chapter  10, that it is not necessary to construct explicit utility functions 
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with the other entities. We shall maximize their presence, in the process of  searching 

for the optimal solution. 

In general, the utilities that shall be associated with the entities need to determined by an 

expert, particularly if  the effects of  the variation of  the parameters of  an entity have 

perceptual effects.  

7.4.3 Skim generation goals 

The goal of  this work is the automatic generation of  audio-visual skims for passive tasks, 

that summarize the video.  This is to be achieved via a constrained utility maximization 

of  the entities that satisfy the users information needs. While constructing the skim, we 

make the following assumptions: 

• We do not know the semantics of  the original. 

• The data is not a raw stream (e.g. home videos), but is the result of  an editing 

process (e.g. films, news). 

• The time that the user has to watch the skim is known. 

The assumption of  the data stream being produced is an important one, since we shall 

attempt to preserve the grammar of  the underlying produced video, so as to preserve 

meaning. The research issues that emerge in the entity-utility framework are as follows:  

• How do we automatically determine a correspondence between the user 

information needs and the entities that can be found in the data? 
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• How to determine the “correct” form of  the utility function? i.e. the 

formulation of  the correct relationship between the parameters of  the entity, to 

reflect our goals. 

• How do entities across that exist in different media, affect each other’s utility 

function, when they appear at the same time? 

Since we work on passive tasks, the user is not dynamically changing the entities that 

ought to be present in the skim. Based on our analysis of  the desirable characteristics of  

passive skims, we can determine a set of  entities that ought to be present in such skims. 

7.5 Summary

In this chapter, we introduced the problem of  video summarization, presented related 

work on video and audio summarizations and also presented a new conceptual 

formulation of  the problem. 

We presented related work on video summaries. We discussed image based story boards. 

There we discussed scene transition graphs and the Video Manga project that used 

adaptive key-frame sizes. In the context of  video skims, we discussed work done at the 

Informedia and the MoCA projects, and showed some conceptual difficulties with their 

approach.  

We presented a discussion on the audio summarization techniques. We focused on the 

work done in the computational linguistics community on discourse based segmentation. 

A particular element of  the discourse SBEG, is important as these phrases often 
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represent topic changes, both in read and in spontaneous speech. We discussed that 

these elements of  structure show strong correlates to the pitch and the pause durations 

associated with the segment, leading a way to detect them.   

In this chapter we formulated the problem of  video summarization as one of  a 

constrained utility maximization of  the entities that satisfy the user information needs. 

We defined entities to comprise attributes, that are selected using predicates to define a 

particular instance of  an entity. Then we discussed the causes of  the different kinds of  

predicates and also discussed the different types of  predicates that lead to the formation 

of  different entity types.    

We discussed the different factors affecting skim generation — the task, the user 

interface and the device constraints. We discussed the different skim types — (a) 

semantic, (b) events and (c) discourse centric. This work focuses on generating discourse 

centric skims. Finally, we discussed the skim generation goals. 

While we have chosen to focus on a particular subset of  relationships amongst the 

entities, the nature the task (passive) and made assumptions about the device, the utility 

maximization framework is very general and is easily extended [17] . For example, if  we 

are to render the audio visual data on which the audio device is malfunctioning, then we 

just have to set the utility of  the audio segments to zero in the maximization. i.e. the 

utility functions of  the entities that we are trying to preserve in the skim are easily 

modulated by device and network characteristics.  
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8 Skims: Visual analysis  

8.1 Introduction 

In this chapter, we present our approach to the problem of  condensing video data. The 

solution uses two key intuitions — (a) we can reduce the duration of  each shot, by 

analyzing the visual complexity of  that shot and (b) the visual coherence of  produced 

film data arises from the use of  film grammar in constructing these video sequences.  

The motivation for the use of  visual complexity of  a shot arises from empirical 

observations in film making as well as from experimental psychology. We define visual 

complexity using the idea of  Kolmogorov complexity and show that it can estimated 

using the Lempel-Ziv algorithm. A psychological experiment, helps relate the minimum 

amount of  time required for comprehending a shot to the visual complexity of  the shot. 

Why is the underlying film grammar important? The shots comprising a scene in a film 

are highly fragmented in the sense that each shot shows only a portion of  the entire 

scene. Yet the viewers manage to effortlessly “interpolate” these shots to construct an 

internal representation of  the scene. The reason why this is possible is due to the use of  

grammatical rules in film construction. An important goal in this work is to reduce these 

syntactical elements in a manner such that their essential meaning is preserved. This is 
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done by analyzing the techniques for film production, and determining the minimum 

number of  shots required for that element to be interpreted correctly by the viewer. 

The rest of  this chapter is organized as follows. In the next section we discuss the idea 

of  visual complexity. We present motivating examples, a definition and sections that 

show how we can estimate the visual complexity of  a shot. Then, in section 8.3, we 

present a detailed discussion on the importance of  syntax in visual data, and how we can 

reduce these syntactical elements while retaining their essential semantics. In section 8.4, 

we present a discussion on the issues raised in this chapter. Finally, in section 8.5 we 

summarize the main results in the chapter.  

8.2 Visual complexity 

In this section, we shall discuss the relationship between visual complexity of  an image 

and its time for comprehension. We begin with insights that stem from film-making and 

experimental psychology. Then, we shall define a measure of  visual complexity and show 

how it can be estimated using standard compression algorithms. Then, we shall relate the 

comprehension time for a shot to its visual complexity via a psychological experiment 

and then obtain time-complexity bounds. 

8.2.1 Insights from film-making and experimental psychology 

In this section we shall discuss empirical observations in film-making followed by a brief  

review of  recent experiments in psychology that indicate a relationship between concept 

complexity and concept learnability. 
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8.2.1.1 The shot and its apparent viewing time 

In film-making, there exists a well known empirical relationship between the size of  the 

shot28 and its apparent time (i.e. time perceived by the viewer) [77] . For example, 

consider the two images in Figure 8.1. From the first image, it is immediately clear that 

we have a close-up of  a woman, who is looking slightly to the right of  the viewer. The 

second image, a long shot, takes a little more time to decipher — two people seemed to 

be engaged in a duel, but it is unclear what objects they are using to duel. Stefan Sharff  

in his elegant treatise on film [77] , says: 

Close-ups seem to last relatively longer on the screen than long shots. The content 

of  the close up is immediately identified and understood. The long shot on the 

                                                

28 The shot size (e.g. long / medium / close-up / extreme close-up) refers to the size of  

the objects in the scene relative to the size of  the image. 

Figure 8.1: figure (a) shows a close up while figure (b) shows a long shot. It seems 

to take a little longer to comprehend the action in figure (b). Why does this happen? 

(a) (b) 
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other hand, is usually filled with detailed information which requires eye-scanning over 

the entire tableau. The latter takes time to do, thus robbing it of  screen time. 

This phenomena is exploited by film-makers, allowing them to dilate and condense time 

based on visual effects alone. For example, in action or chase sequences, directors use 

shots with a lot of motion, and visual detail, that only lasts for a short while. This causes 

the audience to be always “behind” in understanding the sequence, thus heightening 

anxiety.  

8.2.1.2 Concept complexity and learnability 

In [28] , Jacob Feldman conducted a series of  fascinating experiments on the relationship 

between the subjective difficulty in learning a Boolean concept and its Boolean 

complexity. For example, consider a concept C with three features and three positive 

examples:  

 ' ' ' ' ' ' 'C a b c a b c a bc= + +  (8.1) 

where, the literals a, b and c could represent a: round / not-round, b: moving / not-

moving, and c: red / not-red. This formula can be easily reduced to its irreducible form 

by using the rules of  Boolean logic : 

 '( )'C a bc=  (8.2) 

The Boolean complexity of  this concept C is defined to be three, since it has three literals in 

its irreducible form. More generally, a concept having n literals in its irreducible form has 
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Boolean complexity n. Concept C is from the 3[3] family, where each concept is 

defined as disjunction of  three positive examples, and where each example is represented 

using three literals. More generally, a concept belongs to a D[P] family, where concepts 

are defined using P positive examples, using D features.  

We also need to introduce the concept of  parity. A concept belonging to the D[P] family 

could be defined using P positive examples and 2D-P negative examples, or vice-versa; 

note that in both cases, the concept has the same Boolean complexity. Feldman defines 

up-parity to be the case when P < 2D-1, and down-parity to be the case when P ≥ 2D-1. 

Feldman conducted a series of  experiments on human subjects, for different D[P] 

concept families. His main conclusion was that the subjective difficulty in learning a 

concept is well predicted by its Boolean complexity of  the concept i.e. to its logical 

incompressibility. For concepts with the same Boolean complexity, the subjective 

difficulty was ordered by parity — i.e. concepts with up-parity were learnt more easily 

than concepts with down-parity. While parity and Boolean complexity accounted for 

most of  the observations in the experiments, there was residual variance to suggest the 

presence of  other factors. 

Clearly, there is empirical evidence from film-making as well as experimental evidence 

from psychology to indicate a link between the visual complexity of  a shot and its 

comprehensibility. 
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8.2.2 Defining visual complexity 

We define the visual complexity of  a shot to be its Kolmogorov complexity. Let x be a 

finite length binary string of  length n. Let U(p) denote the output of  an universal Turing 

machine U when input with program p. Note, a universal Turing machine U is a Turing 

machine that can imitate the behavior of  any other Turing machine T. It is a 

fundamental result that such machines exist and can be constructed effectively [51] . 

Then, the Kolmogorov complexity of  the string x is defined in the following way: 

 
: ( )

( | ) min ( ),U
p U p x

K x n l p
=

@  (8.3) 

where, l(p) is the length of  the program p, and n is the length of  the string x and where 

KU(x | n) is the Kolmogorov complexity of  x given n. Hence, the Kolmogorov 

complexity of  x, with respect to an universal Turing machine U is the length of  the 

shortest program that generates x. The Kolmogorov complexity of  an arbitrary string x 

is non-computable due to the non-existence of  an algorithm to solve the halting problem 

[21] [28] .  

8.2.2.1 Bounds on Kolmogorov complexity 

In this section we show how to generate an asymptotically efficient bound on 

Kolmogorov complexity using Lempel-Ziv encoding [21] . Lempel-Ziv encoding is a 

form of  universal data coding that doesn’t depend on the distribution of  the source. We 

now prove a simple lemma, to show how Kolmogorov complexity can be asymptotically 
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upper-bounded by the Lempel-Ziv codeword. The proof  involves the use of  two 

theorems, which we shall state without proof, since they can be found in [21] . 

Theorem 8.1 Let the stochastic process {Xi}be drawn i.i.d according to the probability mass function 

f(x), x ∈ℵ, where ℵ is a finite alphabet. Let 1( ) ( )nn
iif x f x

=
= ∏ . Then there exists a constant c 

such that 

 
log1( ) ( ) ( | ) ( )

n

n n

x

n cH X f x K x n H X
n n n

ℵ
≤ ≤ + +∑  (8.4) 

for all n. Thus 

 1 ( | ) ( ).nE K X n H X
n

→  (8.5) 

where, |ℵ| is the size of  the alphabet, H(X) is the entropy of  the stochastic source. 

Theorem 8.2 Let { }iX ∞
−∞ be a stationary ergodic process. Let l(X1,X2,…,Xn) be the Lempel-Ziv 

codeword length associated with X1,X2,…,Xn . Then  

 1 2
1

limsup ( , , , ) ( ) with probability 1.n
n

l X X X H X
n→∞

≤…  (8.6) 

where H(X) is the entropy rate of  the process. 

Now we can easily show the following lemma.  
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Lemma 8.1 Let { }iX ∞
−∞ be a stationary, ergodic process over a finite discrete sized alphabet ℵ. 

Let lLZ(X) be the Lempel-Ziv codeword length of  a string X, where X = {X1, X2, …, Xn}. Then, 

 1 1lim ( ) ( | ).LZ U
n

l K n
n n→∞

→X X  (8.7) 

Proof: By the definition of  Kolmogorov complexity, the following inequality is true: 

( | ) ( ) .U LZK n l c≤ +X X  The result then follows immediately from theorems 8.1 and 8.2.  

Hence, we can use the Lempel-Ziv compression algorithm to upper bound the visual 

complexity of  a shot. Note however, that the bound is only asymptotic, hence for any 

finite sequence the Lempel-Ziv universal coding scheme may not be efficient. 

8.2.2.2 Estimating visual complexity 

In this work, we tested two lossless compressors — gzip [110]  based on the Lempel-Ziv 

(LZ77) algorithm and bzip2 [111]  based on the recent Burrows-Wheeler transform 

(BWT) [14] . The algorithms based on the BWT have exhibited greater compression 

rates on files than those based on the well known Lempel-Ziv algorithm. In our 

experiments, the size of  the bzip2 codeword was typically 5 ~ 10 % smaller than the 

corresponding gzip codeword. Bzip2 also produced a smaller codeword than gzip for every 

image in our corpus. Hence we estimated Kolmogorov complexity using bzip2. 

The output of  a compressor operating on an image I is a program. This program, when 

input to a universal Turing machine emulating the decompressor will decompress the 
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program to output the original image I. Hence the length of  the BWT codeword for 

the image I is just the size of  the bzip2-ped file in bytes. We normalize the complexity by 

dividing it by the image size. 

The images were preprocessed to generate a header-less file. Each image in the corpus 

(3600 images) was converted to a gray-scale image. This is because the specific order in 

which the color channels are stored in the file will affect the compressibility of  the file. 

For example, we could store the color information of  each pixel as a RGB triple, or we 

could store the entire red channel first, then the green channel, finally followed by the 

blue channel. Other storage schemes are also possible. Since these effects are not central 

to the thesis that is being tested, we converted the images to gray-scale. 

The raster-order in which the gray-scale image is stored in the file also affects its 

compressibility. This is because bzip2 (and gzip) operates on one dimensional sequences. 

In this paper, we compute the compressibility of  images stored in row-major and 

column-major form and chose the order that minimized the size of  the resulting 

codeword. 

8.2.3 Complexity and comprehension 

In this section we discuss an experiment that helps determine the relationship between 

complexity and comprehension time. We conducted our experiments over a corpus of  

over 3600 shots from six films. A shot was chosen at random (with replacement) and 

then its key-frame presented to the subject (the author). We choose the 5th frame after 
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the beginning of  the shot, to be its key-frame. We acknowledge that there exists a 

considerable debate in the community on the choice of  the representative key-frame. 

Representing each shot by its key-frame is reasonable since our shot detection algorithm 

[109] , is sensitive to changes in color and motion.  

Then, we measured the time to answer the following four questions (in randomized 

order), in an interactive session:  

• who: [ man / woman / couple / people ] 

• when: [ morning / evening / afternoon ]  

• what: [ any verb e.g. looking, walking ] 

• where: [ inside / outside ].  

The subject was expected to answer the questions in minimum time and get all four 

answers right. This prevented the subject from responding immediately. Note that 

questions such as “How?” or “Why?” were not used in the experiment since they cannot 

be answered by viewing just one image. Such questions need an extended context (at 

least a few shots) for an answer. In the example image shown in Figure 8.2, the answers 

Figure 8.2: A typical image used in the experiment.  
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to the four questions would be who: people, where: outside, when: can’t say, what: 

jumping / standing. 

We conducted ten sessions (to avoid fatigue), where the subject was questioned on 100 

key-frames. In the end, we had the reaction times to 883 unique shots (we averaged the 

reaction times over duplicates). For each question, “none” or “ambiguous” was an 

acceptable answer. The response times in such cases are valid since they measure the 

time to reach a decision. 

8.2.4 Time-complexity bounds 

 We now analyze the relationship between the average comprehension time (i.e. the 

average of  the times to answer who? where? what? and when?) of  an image X and the 

normalized complexity of  the key-frame (i.e.: K(X)/N, where N is the image size). 

Figure 8.3 (a) shows a plot of  the average comprehension time versus visual complexity. 

If  we generate histograms of  the average comprehension time by discretizing the 

Figure 8.3: (a) avg. comprehension time vs. normalized complexity (b) histogram plot of 

avg. comprehension time across different complexity bins (c) one slice from plot (b) suggests 

a Rayleigh distribution. Plots (a) and (b) show time against visual complexity, while in plot (c), 

we plot a slice of the density for a specific value of complexity. 

(a) (b) (c) 



   

 

215 

time 

Ub 

Lb 

Rayleigh 
bound 

complexity 

complexity axis, then each histogram slice is well modeled by a Rayleigh distribution 

(Figure 8.3 (b)-(c)). By using the 95th percentile cut-off  for each histogram we get an 

estimate of  the upper-bound on the comprehension time. The lower-bound on the 

comprehension time is generated by determining a least squares fit to the minimum time 

in each histogram. The resulting bounds are shown in Figure 8.4. The equations for the 

lines are as follows: 

 
( ) 2.40 1.11,
( ) 0.61 0.68,

b

b

U c c
L c c

= +
= +

 (8.8) 

where c is the normalized complexity and Ub and Lb are the upper and lower bounds 

respectively, in sec. The lines were estimated for c ∈ [0.25, 0.55] (since most of  the data 

lies in this range) and then extrapolated.  

Let us assume that we are given a shot of  duration to and normalized complexity c. Then, 

if  condense it to at most Ub(c) sec by removing the last to -  Ub(cS) sec., we can be sure 

Figure 8.4: Avg. comprehension time (sec.) vs. normalized complexity 

(x-axis) showing comprehension (upper/lower) bounds. The dots in the 

figure represent the Rayleigh (95th percentile) bounds. 
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that the resulting shot would be comprehensible 95% of  the time. Note that if  the 

target time of  the shot is less than the upper bound Ub for that shot, we use the upper 

bound. However, if  the original length of  the shot is less than the upper bound it is not 

reduced any further. 

8.2.4.1 Notes on the time complexity relationship 

There are several interesting observations to be made from Figure 8.3 and equation 

(8.8).  

• Both the lower and upper bounds increase with complexity, keeping in line with 

intuition.  

• The key-frames used in the experiments are from six films with widely varying 

content. It is interesting to note that the average reaction time is not uniformly 

distributed per complexity bin.  

• The existence of  the lower bound indicates that regardless of  the complexity of  

the shot, a minimum reaction time is required for comprehension.  

The upper bound comprehension time is actually a conservative bound. This is because 

of  two reasons: 

• There is an implicit assumption in our method that the shots as viewed by the 

viewer are i.i.d. In this work, we do not incorporate into our analysis, the effect 

of  structure (e.g. dialogs) or temporal correlation on comprehension time. Hence, 

we should expect that after the first shot in a scene, time to comprehend the 
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remainder of  the shots will be less than the amount of  time required to 

decode those shots independently. For example in the case of  the familiar dialog 

(A-B-A-B-A-B), once we’ve seen the first image, it should be easier to 

comprehend the third image in the sequence.  

• In the experiments, the subject consciously attempts to answer the four questions. 

However, while watching an film, we do not do so. Hence, we should expect 

these experimental times to reflect an additional “conscious processing” time. 

8.3 Syntax analysis 

In this section we shall give a brief  overview of what constitutes “film syntax.” Then, we 

shall discuss why it becomes useful when analyzing films. Then we shall give algorithms 

for time condensation with two specific syntactic elements. 

8.3.1 What are the elements of  syntax? 

An examination of  the sequence of  shots in a scene reveals that at any given moment, 

the shots represent fragments of  the whole scene. i.e. they only show a small portion of  

entire setting at any one time. This is to be contrasted with viewing actors on the stage in 

a play. There, we see whole set, all the time. How do viewers, who watch the scene, 

effortlessly interpolate between these shots? The answer lies in understanding film 

syntax. 
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Film syntax refers to the specific arrangement of  shots so as bring out their mutual 

relationship [77] . In practice, this takes on many forms (for more examples see chapter 

2, [77] ):  

• Varying the shot duration, to direct attention.  

• Changing the scale of  the shot (there are “golden ratios” concerning the 

distribution of  scale).  

• The specific ordering of  the shots (this influences the meaning). 

These syntactical “rules” may appear ad-hoc but it is important to keep in mind that they 

have been developed by trial and error by film-makers over the past hundred years. It is 

the syntax of  the film that lets us piece together the information contained in the shots. 

8.3.2 Understanding the role of  syntax 

In order to appreciate the importance of  syntax, we need to contrast shots with words in 

a written document. Words have more or less fixed meanings and their position in a 

sentence is driven by the grammar of  that language. In films however, it is the phrase (a 

sequence of  shots) that is the fundamental semantic unit. Each shot can have a multitude 

of meanings, that gets clarified only in relation to other shots. It is the film syntax that 

provides meaning to the filmic phrase. 

The Informedia [18] and the MoCA [65]  projects use object detectors (e.g. face 

detectors etc.) over the entire video, for selecting important segments. In the Informedia 

project  the audio was selected by first performing a TF-IDF analysis of  the transcript 
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and then selecting the complete phrase surrounding the highly ranked words. The 

resulting “best” skim did better than other types of  skims but fared significantly worse 

than the full video. In the MoCA project, faces (particularly close-ups) were considered 

important and preserved in the skim; they also used specific audio event detectors (e.g. 

explosions etc.) to locate audio segments that they considered important. 

An object detector based approach (e.g. Informedia, MoCA) to skims, for films, at a 

conceptual level, makes the analogy “shots as words.” However, this is in contrast to the 

way film-makers create a scene, where the syntax provides (or changes) the meaning of  

the shot sequence. Hence, deciphering the film syntax ought to give us a mechanism to 

reduce data while preserving the essential semantics. Secondly, since films vary widely in 

their content, we face the question of  the number and the kinds of  detectors to 

implement. Using a limited number of  object detectors will imply that every summary 

ought to contain a subset of  those patterns. 

 The Informedia and the MoCA projects analyze data over the entire video. However, 

they do not perform scene level analysis for skim generation. In this thesis, we analyze 

the data within one scene. In future work, we plan on utilizing the interesting syntactical 

relationships amongst scenes that exist in the video [77] , for condensation. 

8.3.3 Rules for syntax based removal 

In this section, we develop rules for syntax based reduction for two elements — (a) the 

progressive phrase and (b) the dialog.  
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We define a phrase to be a sequence of  shots designed to convey a particular 

semantic. A progressive phrase is a linear progression of  visuals without any repetitive 

structure. For example, consider the following scene: Alice enters the room looking for a 

book. We see the following sequence of  shots (a) she enters the room (b) she examines 

her book-shelf  (c) looks under the bed (d) locates the book and the camera follows her 

as she sits on the sofa to read. A dialog is the familiar structure discussed in depth in 

section 6.5.1, is just a repeating A-B-A-B-A-B pattern of  canonical images.  

Table 8.1: Three types of syntax reductions that depend on the element (dialog/progressive) 

and the number of shots k. 

Breakpoints for each type 
Element Min. phrase 

length I II III 

Dialog 6 k ≤ 15 15 < k < 30 k ≥ 30 

Progressive 3 k ≤ 6 6 < k < 15 k ≥ 15 

According to the rules of  cinematic syntax, a phrase must have at least three shots:  

Two well chosen shots will create expectations of  the development of  narrative; 

the third well-chosen shot will resolve those expectations. [77] .  

Sharff  also notes that depicting a meaningful conversation between m people requires at 

least 3m shots. Hence in a dialogue that shows two participants, this rule implies that we 

must have a minimum of  six shots.  

Let us assume that we have a scene that has k shots. Then, we perform three types of  

syntax reductions (break points based on heuristics) based on the number of  shots k 
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(Table 8.1). The number and the location of  the dropped shots depend on k and the 

syntax element (i.e. dialog or progressive). It is reasonable to expect that the number of  

phrases in a scene, increase with the number of  shots. In the following discussion, we 

examine three types of   scenes using a fictional film with a character called Alice. 

For short scenes (type I reduction) we assume that there is a single phrase, containing 

one principal idea, in the scene. For example, the director could show Alice, walking back 

to her apartment, in a short scene. 

In scenes of medium duration (type II reduction) we assume that there are at most two 

phrases. For example, < 1st phrase >: Alice could be shown entering her room,  

switching on the lights, and be shown thinking. < 2nd phrase >: then, she is shown 

walking to the shelves looking for a book, and is then shown with the book. We assume 

that scenes of  long duration, (type III reduction) contain at most three phrases. 

Modifying the previous example — < 1st phrase >: Alice is shown entering the room, 

< 2nd phrase >: she is shown searching for the book, < 3rd phrase >: she walks with the 

book to her desk and makes a phone call. Hence, the reduction attempts to capture the 

Figure 8.5: Three syntax reduction mechanisms. The black boxes are the 

minimal phrases and will not be dropped, while the gray shots can be dropped. 

( I ) ( II ) 

( III ) 
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phrase in the middle and the two end phrases. Unlike written text, there are no 

obvious visual29 “punctuation marks” in the shots to indicate a “phrase change.” Hence 

our syntax reduction strategy, which will capture the phrases in scenes of  short and 

medium duration, may cause error in scenes of  long duration. 

We now explain the shot dropping strategy. In type I reduction, (Figure 8.5 (I)–(III)) we 

drop shots from the right, since the director sets up the context of  the scene using the 

initial shots. In type II, we expect an initial context, followed by a conclusion. Here, we 

start dropping shots from the middle, towards the ends. In type III, the scene is divided 

into three equal segments, and shots are dropped from the two interior segment 

boundaries. This strategy thus preserves the important phrases that begin, conclude the 

segment as well as preserving important portions of  the middle phrase. 

8.3.4 Dealing with shot detector uncertainty 

In this section we show how the errors in shot detection algorithms affect the rules of  

syntax. Practical shot-detection algorithms have misses and false alarms, each of  which 

has a different effect on skim generation:  

• Shot misses can cause our shot condensation algorithm (ref. Section 8.2.4) to 

remove a missed shot. For example, consider a progressive phrase that has five 

                                                

29 However, we may be able to detect a “phrase change” within a scene, by analyzing the 

audio and the transcript. 
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shots, however the last shot was not detected, leaving us with only four shots. 

Then, if  we use the shot condensation algorithm discussed in section 8.2.4, in the 

case of maximum condensation, we would entirely remove shot five from the 

skim, since the key-frame shot four would dictate the length of  the condensed 

shot.  

• False alarms will cause our syntax based reduction algorithm to remove more 

shots than permitted by the minimum requirements. Again let us consider the 

case where we have five shots in the progressive phrase. Let us assume that there 

is one false alarm, between shots one and two, increasing the number of  shots to 

six. Then from Table 8.1, the minimum number of  shots that must be kept when 

doing syntax based reduction, is three. Now if  we attempt to remove the last 

three shots, we would have removed the shot number three from the correct 

sequence, one that should not have been removed.  

In this work, we only focus on false alarms. This is because false alarms manifest 

themselves as an increase in the number of  shots detected, with the shot boundaries 

known (unlike shot misses, that can occur anywhere in the segment), hence we can 

compensate for them.  

We conducted a test with nine variations of  our shot detection algorithm [109] . The 

algorithm had two adjustable thresholds for motion and color, and each parameter was 

set to three possible values: {low, medium, high}. Table 8.2 shows the results of  the 

tests. We used 112 shots from four scenes, each from a different film. The test set had 54 
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dialog shots and 58 non-dialog (i.e. progressive) shots. The shot detectors had no 

false alarms in the section which had dialogs. Hence the parameter of  interest is the 

probability of  false alarm given a non-dialog scene: P(Fa | Nd).  

Table 8.2: Shot detector variations. Each row show the in order: the motion and color 

parameter thresholds, recall, precision,  prob. of false alarm P(Fa),  P(Fa | Nd): prob. of false 

alarm give a non-dialog scene. The 97.5% confidence upper bound for P(Fa | Nd). 

Motion Color Recall Precision P(Fa) P( Fa | Nd ) 97.5% 

L L 0.97 0.72 0.28 0.55 0.64 

L M 0.96 0.71 0.29 0.55 0.65 

L H 0.96 0.71 0.29 0.55 0.65 

M L 0.92 0.93 0.07 0.14 0.23 

M M 0.91 0.94 0.06 0.12 0.21 

M H 0.91 0.94 0.06 0.12 0.21 

H L 0.90 0.94 0.06 0.11 0.19 

H M 0.86 0.95 0.05 0.10 0.18 

H H 0.84 0.95 0.05 0.10 0.18 

We use standard statistical techniques [57] , to compute the 97.5% confidence upper 

bound for P(Fa | Nd). In this current work we use the following shot detector: {motion: 

M, color: L}. The table implies that for this shot detector, P(Fa | Nd) ≤ 0.23, with 97.5% 

confidence, over unseen data sets. 

The upper bound on P(Fa | Nd) is then used to modify the minimum number of  shots 

that must remain in a progressive scene. If  the progressive scene contains N shots, with 

m  minimum number of  shots (from the rules in section 8.3.3), then m is modified as:  
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 ( )d|N 0.5am m N P F′ = + +  i  (8.9) 

where m′ is the new minimum    is the floor function. function. The second part of  

equation (8.9), is just the expected number of  false alarms. For example, in a scene with 

type II reduction, assume that N = 12, then, m = 6 and m′ = 9 (from equation (8.9)) 

Hence the increase ∆m = 3, and the minimum number of  shots to be retained is 9.  

Modifying the minimum number of  shots to drop ensures that we do not violate the 

minimum shot requirements of  the syntactical elements of  the scene. 

8.4 Discussion 

In this section we analyze some of  issues raised in this chapter in some more detail. We 

begin with a discussion of  the implicit assumptions in our comprehension time 

experiment. In section 8.4.2, we present alternatives to the video segment selection 

heuristic adopted in this work.  

8.4.1 The comprehension time experiment 

We now discuss two aspects of  the comprehension time experiment that are important: 

(a) use of  a single still image and (b) the number of  subjects in the experiment. 

Implicit in the use of  a single image in our experiments, there are two simplifying 

assumptions here: 



   

 

226 

• The semantics of  the shot (in terms of  the four questions) are adequately 

captured by our key-frame. 

• The semantics do not change during the course of  the shot. (i.e. the answers to 

who / where / when / what do not change during the course of  the shot).  

Clearly, in complex shots, both of  these assumptions may be violated. We also tried to 

conduct the experiment with videos (i.e. by watching the shot) rather than with key-

frames. However, watching the video proves to be too distracting to measure the 

response time to the four specific questions.  

Only the author of  this work participated in the experiment. This is problematic and 

clearly, a more comprehensive study is needed. However, in order to compensate for this 

deficiency, the subject was tested on  1000 images, picked at random from a very diverse 

corpus, so as to generate reliable statistics. The user study results from the experiments 

(appendix 13.3, 13.5 and the results in section 10.7) are encouraging. They indicate that 

the viewers find the skims resulting from the shots condensed to their upper bounds to 

be highly coherent, thus validating our comprehension experiment. 

8.4.2 Video segment selection 
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In this work, we reduce the duration of  a shot by throwing away frames towards the 

end of  the shot. For the sake of  definiteness, we discuss the case of  reducing a 10 sec. 

shot to 2.5 sec. 

We choose to keep the initial segment for the following reason — the director “sets-up” 

the shot (i.e. provides the context in which the action takes place) in the first few frames. 

Hence, by preserving the initial segment, we hoped to preserve the context. In a shot of  

long duration, the semantics of  the shot can change considerably, and in such cases, our 

strategy will not capture the important information within the shot. 

We did consider several alternate strategies. One is to sub-sample the shot (in the current 

example, by factor of  4). Since the skim is to be rendered at 30 fps, this will cause several 

problems: (a) the video will be sped up causing the data will appear too quickly, at four 

times the information rate of  the original shot and (b) since we wanted to include audio 

in future work, lip-synchronization will be lost and finally, (c) the aesthetics (that exist at 

30 fps) of  the original shot will also be lost. 

Another strategy is to sub-divide the original shot using a heuristic. In the current 

example, we could choose to keep the first second, the last second and the middle 0.5 

Figure 8.6: we drop the frames in a shot from the end. 
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second of  the current shot. This will create two new shot boundaries where none 

existed and we conjecture that this will prove to be disconcerting to the viewers 

(particularly at high condensation rates). Note that since film content is completely 

unconstrained, creating a universal measure to mark a segment within a shot to be 

important, proves difficult. 

8.5 Summary 

In this chapter, we have presented a novel framework for condensing computable visual 

scenes. The solution has two parts: (a) analysis of  the visual complexity of  the shot, (b) 

film syntax analysis. We define the visual complexity of  a shot to be its Kolmogorov 

complexity. Then, we proved a simple lemma that helped us bound this measure via the 

Lempel-Ziv algorithm. Then we conducted an experiment that allowed us to map visual 

complexity of  a shot to its comprehension time. This resulted in a conservative time-

complexity bound, that allows us to compute the minimum duration of  the shot for it to 

remain comprehensible. 

The syntax of  the shot sequence influences the semantics of  a scene. We devised 

algorithms based on film-making techniques to come up with heuristics to reduce the 

length of  the syntactical element. We showed syntax reduction strategies for two 

elements of  syntax — the progressive phrase and the dialog. We showed how we could 

guard against the errors in practical shot-detectors in our syntax reduction rules. Finally, 

we discussed the important issue of  syntax based summarization schemes against 

traditional object detector based summarization schemes. While we showed that syntax 
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based summarization schemes are powerful in the case of  arbitrary structured 

domains when we potentially have a large number of  “objects.” However, we also 

concluded that it may be useful to combine the two schemes in certain in the case of  in 

specialized domains, where efficient object detectors may be available and where the 

semantics of  the object is well known and assumed fixed. 
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9 Skims: Auditory analysis 

9.1 Introduction 

In this chapter, we discus our approach for auditory analysis for generating the skim. The 

issues presented here are a dual to the visual analysis presented in the previous chapter, 

and we shall use the results of  both chapters to create the skim. 

In prior work on audio-visual skims, audio was either used with the transcript [18] or to 

serve as an object detector [52]  i.e. determination of  interesting segments by detecting 

events such as gunshots etc. Since the insistence of  a transcript is limiting, as is the idea 

of  using a few object detectors, we need a principled approach, that will work well on 

generic audio data. In our approach to summarization, we do two things: 

• Classify segments into different classes such as speech, noisy speech, silence and 

environmental sounds. The skim generation mechanism is sensitive to the class 

context.  

• Determine significant topic boundaries. These are phrases of  speech that serve to 

introduce new topics, in structured as well as in spontaneous speech.  

Then, after post processing, we have a ranked list of  audio segments, where we have 

placed maximum emphasis on the significant phrases.  
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The rest of  this chapter is organized as follows. In the next section, we shall briefly 

discuss why simple approaches to audio summarization do not work well. Then in 

sections 9.3 and 9.4, we shall present our approach to classifying audio segments and 

detecting significant phrases. Then, in section 9.5, we shall present our results. Finally we 

shall conclude by presenting a summary of  this chapter. 

9.2 Why is summarizing audio a hard problem? 

A summary of  the audio data must have at least these three characteristics: (a) the 

individual audio segments must be coherent (i.e. intelligible), (b) must satisfy certain 

minimum duration constraints depending upon the audio class and (c) the speech 

segments must contain complete speech phrases i.e. they must not contain phrases that 

are cut mid-sentence. The speech segments are particularly important in any audio 

summary, since their semantics are immediately clear.  

Let us now examine three approaches where we condense the duration of  the audio 

without regard to the context (i.e. there is no classification of  the data into different 

classes). Let us assume that we wish to condense an audio track that is 100 sec. long, by 

90%.  

• Downsampling: Downsampling the audio data by 90% will leave the  audio to 

be severely degraded. This is because from elementary signal analysis, the 

frequency spectrum of  the audio signal will expand by a factor of  10, thus 

causing the pitch of  the speech segments to increase dramatically. A secondary 
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consequence of  subsampling is that in order to maintain lip-synchronization 

between the audio and the video data, we must now subsample the video data by 

a factor of  10. This will cause the video to appear incoherent as well. 

• Pause-Removal Synchronous Overlap Add (PR-SOLA): PR-SOLA [37]  is a 

non-linear time compression technique that eliminates long pauses, and attempts 

to preserve the original pitch in the output. This is done in the following way:  

• Detect silences, and condense them to a minimum of  150ms. 

• Overlap adjacent frames of  audio data, and determine the overlap extent that 

causes maximum cross-correlation between the two frames. The second frame is 

then added to the first at the maximal overlap point.  

PR-SOLA is hard to use with such speedups since user studies [39]  indicate that 

users do not prefer to have the speech sped up beyond 1.6x (i.e. ~40% 

compression). 

• Synchronous segment selection: What happens if  we first condense all the 

video shots, as discussed in chapter 8, and then select only those audio segments 

that are synchronous with the condensed video shots? Then, user studies indicate 

that the resulting audio stream is choppy and difficult to comprehend [18] . 

9.2.1 Our approach to summarization 

We use a context sensitive (i.e. audio class dependent) approach to generating coherent 

audio summaries. There are two key aspects to our analysis of  audio:  
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• Segment classification: Construct robust classifiers on the audio data using 

Support Vector Machines (SVM) [19]  robust classifiers on the audio data. There 

are four classes of  interest: (a) clean speech, (b) noisy speech (c) environmental / 

music sounds and (d) silence. Then, we use a duration dependent Viterbi 

decoding [69]  algorithm to impose a class dependent minimum segment 

duration.  

• Significant phrase detection: We detect significant phrases in speech by 

constructing SVM classifiers on pitch and pause information. These phrases 

represent important discourse boundaries (i.e. new topic boundaries), in both 

structured and spontaneous speech [33] [40] .  

The significant phrase classifier is run in parallel and cross-validated against the audio 

segment classifier result. and combine them with the classification result. In the end, we 

Figure 9.1: The audio data is processed in parallel, by the audio 

classifier and the significant phrase detection algorithm.  

audio
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are left with long coherent segments of  audio data, that include segments which have 

significant phrases. Figure 9.1 shows the system diagram for the auditory analysis. In the 

next two sections we shall discuss the audio segment classification and the significant 

phrase detection algorithms in detail. 

9.3 Audio segment classification 

In this section we discuss the procedure for audio segment classification, we begin with 

the features used, followed by a description of  the algorithm used. 

9.3.1 Features used 

We use 16 features in our approach ([30] , [53] , [69] , [72] , [75] ): (1) loudness, (2) low-

band energy (3) high-band energy (4) low energy ratio (5) spectral roll off  (6) spectral 

flux (7) spectral centroid (8) spectral entropy (9) MFCC (10) delta MFCC (11) RASTA, 

(12) PLP and four variants of  the zero crossing rate (13) ZCR, (14) mean ZCR, (15) 

variance of  the ZCR [74]  and (16) high ZCR [53] .  

The cepstral features, RASTA and PLP were chosen since they are well known to be 

good speech discriminators [30] [69] . All other features were chosen for their ability to 

discriminate between music and speech. Also see section 4.3.1 for a more detailed 

description of  the features. We now discuss the classification procedure. 
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9.3.2 The approach to segmentation 

We use a tree structured classification procedure (ref. Figure 9.2) to classify each frame 

(100 ms. duration) into four classes: speech, noisy speech, music / environmental sounds 

and silence. The features used for the classification are extracted per frame. After 

removing all frames classified as silent (ref. section 4.6 for details on silence detection) 

the remaining frames are then classified using a tree structured SVM classifier (ref. 

Figure 9.2) into three classes (non-speech (i.e. environmental sounds / music), speech, 

noisy speech).  

Why do we adopt a classification strategy here instead of modifying the segmentation 

algorithm proposed in chapter 4? Firstly, since the segmentation algorithm uses long 

term coherence to determine boundaries, the segments from the segmentation algorithm 

Figure 9.2: The tree structure for the audio segment classifier. Each gray dot 

represents a two-class SVM classifier 
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non-speech 
speech 

speech noisy speech 

feature extraction 

silence removal 

Viterbi decoder 



   

 

236 

may encompass more than one class. This can happen if  the class is repeated quickly.  

Since we are interested in the class of  the segment as this affects the skim algorithm, we 

just use the classifiers.  

Each classifier used in our approach is a C-SVM classifier [16] [19] [112] , used with the 

radial basis kernel. The C-SVM classifier has two parameters that must be set: C and γ. 

The optimal parameters are found using a grid search on C and γ, by performing five-

fold cross-validation on the data, for each candidate pair. The optimal parameters are 

determined to be C=5.0 and γ=0.025. 

The classification results are then fed into a modified duration dependent Viterbi 

decoding algorithm, to smooth the classifier output. We discuss the duration dependent 

decoding in more detail in the next section. 

9.3.2.1 The duration dependent Viterbi decoder 

The modified Viterbi decoder makes use of  the class transition probabilities, classifier 

error and a duration utility function to come up with the maximum likelihood class path. 

The class transition probabilities are  determined from the ground truth. The classifier 

confusion matrix is determined by running the classifier over the training data.  

The duration utility function is used to penalize short and long segments. The form of  

the function is class dependent since each class has a different minimum duration 

requirement. Formally: 
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where d is the duration of  the segment, U(d) is the utility of  the segment of  duration d, 

Dmin and Dmax are the minimum and the maximum duration of  the class respectively. Df 

is a hard upper bound beyond which the utility of  the segment drops to zero. Note that 

Df ?  Dmax. 

The first part of  the utility function rises exponentially to 1 since we would like the utility 

to drop exponentially, when the duration is less than the lower bound for that class. The 

utility is a constant within the bounds since we do not discriminate between the different 

durations. Beyond the preferred upper bound, the utility drops linearly to zero at Df. The 

reason why this drop is linear rather than exponential is that longer duration segments 

Figure 9.3: The duration utility plotted as a 

function of the segment duration. 
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will sound coherent to the user, so the rate at which the utility drops, cannot be as 

great as for the case when the duration is less than the lower bound. The time Df 

behaves like an hard upper limit on the segment duration. 

The update equations for the Viterbi decoder are slightly different from the standard 

Viterbi decoder, and we present them here for the sake of  completeness. 
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Where, δt is the likelihood score at time instant t, aij is the class transition probability, 

Ci(o) is the probability of  the true class being i when the classifier outputs class o as the 

result of  the classification. ˆ
tU  is the product of  the segment utilities, prior to time t. N is 

the number of  classes, T is the total number of  observations, α, β and γ are weights in 

the update equation, used to modulate the influence of  the duration utility function. 

Note, in the implementation of  the algorithm, we use the logarithm of  all the variables. 

The result of  the classification procedure can result in some short segments (since the 

utility is non-zero for small durations). Then, we run a median filter to merge adjacent 

segments, and additionally merge adjacent segments marked as silent. We now present 

our computational approach towards detecting significant phrases. 
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9.4 Detecting significant phrases 

In this section, we shall summarize our work on detecting phrases in speech that 

introduce a new segment in the discourse [41] ,[80] . These segment beginnings (SBEG’s) 

are important as they serve as the introduction of  new topic in the discourse (ref. section 

7.3).  

There has been much work in the computational linguistics community [40] [41] [61] [80]  

to determine the acoustic correlates of  the prosody in speech. Typically, SBEG’s have a 

preceding pause that is significantly longer than for other phrases, higher initial pitch 

values (mean, variance), and smaller pauses that end the phrase than for other phrases 

[40] [41] . Note that pauses can be either silent, or filled (e.g. “umm..”). In this work, we 

shall concern ourselves with silent pauses only, since filled pauses do not reflect topic 

changes.  

In our algorithm, we extract the pitch and the energy values at for different parts of  a 

segment to be classified, in addition to extracting the pause durations. Given a candidate 

segment, we shall extract pitch and energy values from the beginning, the end and from 

Figure 9.4: When classifying a candidate segment, we extract features from different parts of 

the candidate segment, as well as extract features from the pre-pausal segment. The duration of 

the preceding and the succeeding pauses are also used for classification. 
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the entire segment. We shall also extract pitch and energy features from a small 

segment prior to the pause that precedes the candidate segment. Work in [61]  

demonstrated the utility of  the pre-pausal segment in disambiguating between 

grammatical and ungrammatical pauses. This is illustrated in Figure 9.4. Prior work [2] 

[4] [37]  that implements speech based summarization, indicates that users prefer 

relatively long segments of  speech. In this work we restrict our attention to phrases that 

last between five to fifteen seconds. 

We now present our approach towards detecting SBEG’s: 

• Perform silence detection, and determine significant pauses. In prior work on 

detecting SBEG’s [41]  [80] using the pre-segment pause, the significant pause 

threshold (i.e. the threshold above which a pause was deemed significant) ranged 

Figure 9.5: The system for detecting segment 

beginnings (SBEG), which mark new topic phrases.   

audio data 

sig. pause detection 

construct candidate phrases 

SVM classifier 

SBEG’s 
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between 160ms and 576ms. We use a threshold of  150ms; i.e. in order for a 

segment to be a candidate, the pause duration must exceed 150ms.  

• A candidate segment lies between two significant pauses, and in addition satisfies 

the segment duration requirements (i.e. is between 5~15 sec. long) mentioned 

earlier.  

• Extract the pitch and energy values for different parts (beginning, end and the 

entire segment) of  the candidate segment, as well as the pre-pausal segment. The 

beginning and the end segment durations are 2 sec. long, while the length of  the 

pre-pausal segment is 500ms. Concatenate the extracted feature values into one 

single feature vector. 

• The feature vector extracted from the candidate segment is then classified using a 

C-SVM classifier, that uses a radial basis function kernel. This approach is 

summarized in the system diagram, Figure 9.5 

9.5 Results 

In this section, we present results of  the audio segment classification as well as the 

significant phrase detection. 

9.5.1 Segment classification 

We used 45 minutes of  audio data from two films (Bladerunner, Four Weddings and a 

Funeral) to train our SVM classifier. The data is complex and contains speech overlaid 

with background sounds, music and other environmental sounds. The data was labeled 
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by the two people — the author and another PhD student using the following 

labeling criteria: (a) segments classified as “music” were western music; speech was 

labeled as “noisy” or “clean” depending upon the level of  the background sound; all 

other segments were labeled as “environmental” sounds. Weak speech segments 

embedded in environmental sounds (e.g. sounds from the street) were labeled as 

environmental sounds. The confusion matrixes for the two SVM classifiers (after a five-

fold cross validation) is are shown in Table 9.1 and Table 9.2. 

Table 9.1: the confusion matrix result of the speech (S) vs. Non-speech classifier (¬S). The 

rows indicate the classification result for each ground truth class.  

T \ C S ¬S 

S 0.76 0.24 

¬S 0.13 0.87 

 

Table 9.2: the confusion matrix result of the speech (S) vs. noisy-speech classifier (NS). The 

rows indicate the classification result for each ground truth class. 

T \ C S NS 

S 0.84 0.16 

NS 0.06 0.94 

Where the labels in the tables are as follows: T: true label, C: classifier result, S: Speech, 

¬S: non-speech (i.e. music / environmental sounds), NS: noisy speech. 

In work related to speech/music classification both [74]  and [75]  report excellent results 

(98.4% and 95% accuracy respectively). However, both of  them test on commercial FM 
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music stations, where the speech (the disc jockey’s voice) tends to be very clean and 

the music segments are restricted to the songs. The results in [53]  are over a more varied 

dataset (MPEG-7 test CD), and the results are excellent — 96% accuracy in 

discriminating speech versus non-speech. While our results are not quite as good, we 

believe that increasing the size of  the training set, and adding more discriminating 

features will improve our performance. 

9.5.2 Significant phrase detection 

We used data from three films Blade Runner, Sense and sensibility, Pulp fiction  to label 324 

phrases as “significant” or as “non-significant.” We labeled only those phrases that were 

complete grammatical phrases as significant. Examples of  non-significant phrases 

include — phrases that begin or end mid-sentence, and the list of  cue phrases (e.g. “now, 

what do you want to eat?”) [40] .  

The phrases used for training, were detected automatically, but were labeled manually, by 

the author of  this research. For the purposes of  training, every segment that satisfied the 

following criteria was labeled by the author as a significant phrase or not a significant 

phrase: 

• It was a speech segment.  

• The segment lasted between 5 and 15 sec. long 

• The segment began and ended with a significant pause. 
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A simple program was then used to generate all segments that satisfied these criteria, 

and the labels were assigned by listening to the audio data. 

The ground truth had 48 significant phrases and 276 non-significant phrases. The results 

of  five fold cross-validation on the 324 phrases, using an SVM (radial basis kernel, γ = 

0.04, C = 100, 117 support vectors) gave 100% precision and 100% recall. We believe 

that this result is perhaps due to two factors: (a) labeling by one person only, and (b) the 

data was very consistent. We expect the performance to be lower in a more diverse test 

set. 

In [81] , the author uses pitch analysis for discourse segmentation, and she compares her 

result to manually segmentation of  the discourse. The discourse is segmented to five 

levels. She achieves a precision and recall of  50% and 53% respectively, for SBEG’s that 

include level 3 and lower. Level 0 refers to the outermost level of  the discourse. Note 

that in [2] [4] , the author focuses on pitch based detection of  emphasized portions of  

speech; however, emphasized portions of  speech can occur anywhere within a discourse, 

and do not necessarily mark the beginning of  a new segment boundary. 

The results of  the audio segment classifier output and the significant phrases are merged 

as follows. Whenever a segment is marked as a significant phrase, the corresponding 

audio classifier labels are marked as clean speech. We do this as our significant phrase 

classifier is more reliable than the audio segment classifier.  This will cause some 

segments to become fragmented, and they are merged by taking a majority vote of  the 

adjacent segments. We run the two classifiers in parallel, since using the classifiers 
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sequentially, would have the undesirable result of  having the results of  one classifier 

affect the results of  the other.  

The segments are then ranked with the following priority (a) clean speech (b) 

environmental sounds (c) noisy speech. These priorities are important when we start to 

drop audio segments, as will be discussed in the next chapter.  

9.6 Summary 

In this chapter, we have discussed our approach to auditory analysis for skims. We began 

by discussing three simple approaches to summarization that do not use the class 

context: (a) downsampling (b) PR-SOLA and (c) synchronous segment selection. Our 

approach to generating audio summaries has two principal components: (a) segment 

classification and (b) significant phrase detection.  

The audio segments were detected as follows. After removing the silences from the data, 

we classify each frame of  data using robust SVM classifiers. The result of  the classifier is 

then fed into a duration dependent Viterbi decoder that smooths the output labels using 

a class dependent utility function and the prior classifier error. 

The significant phrases were detected as follows. We first detect significant pauses, as 

they often precede significant phrases. Once this is done, we select candidate segments 

that lie between two consecutive significant pauses, and extract features from different 

parts of  the segment. Then, we use a SVM classifier to classify the feature vector thus 

extracted, as a significant phrase. After some additional post-processing, we are left with 
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a ranked list of  audio segments, some of  which have been marked as significant. 

While the results of  the segmentation and the significant phrase detection are good, we 

believe that they can be improved.  
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10 Utility maximization 

10.1 Introduction 

In this chapter, we formulate the problem of  passive skim generation as a constrained 

optimization problem. We attempt to maximize the utility of  the entities (video shots, 

audio segments, syntactical elements etc.)  that we seek to preserve in the skim. Such a 

conceptual framework is important for several reasons: 

• The optimization formulation causes us to think of  a skim as a collection of  

entities, and forces us to come up with measures of  each entity (i.e. its utility) and 

its relevance to the overall skim. 

• The entity-utility optimization framework is a very general, extensible framework 

[17] . It allows us to model arbitrary interactions amongst entities as constraints 

on the optimization, thus enabling us to determine the solution in a principled 

manner, as opposed to resorting to ad-hoc methods whenever we are confronted 

with preserving a specific constraint. 

We begin by identifying the different entities that we seek to preserve in the final skim. 

The utility functions for both video and the audio segments have certain constraints 
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imposed on them, that arise principally from boundary conditions as well from 

asymptotic behavior. Other functional constraints include symmetry, differentiability and 

concavity. We shall additionally derive functions that govern their mutual interaction. 

The skims have three types of  constraints: (a) audio visual synchronization constraints 

(b) duration bounds on the segments and (c) constraints due to visual syntax. The 

optimization procedure is biased towards preserving the target entities. In this work, we 

derive sufficient conditions for the optimization solution to exist, and the constraints on 

the audio and video segments are relaxed till these requirements are met. 

The user study evaluates the optimal skim against two other competing skim generation 

algorithms. The results indicate the optimal algorithm results in statistically significant 

improvements over the other two algorithms, at high condensation rates.  

The rest of  the chapter is organized as follows. In the next section, we review the 

notation to be used in the rest of  the chapter. Then, in section 10.2, we shall discuss the 

specific entities that we shall preserve in the course of  generating the skim. In section 

10.3, we shall discuss the derivation of  the audio and visual sequence utility functions 

and in the following section, we shall discuss functions that govern the mutual 

interaction amongst video and audio segments. In section 10.5, we shall introduce the 

idea of  tied multimedia constraints and in section 10.6 we shall present the detailed 

constrained minimization procedure. Finally, we shall conclude the chapter with sections 

on experiments and a summary. 
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10.1.1 Notation 

In the sections that follow we shall use the following notation. The letters a and v when 

used as subscripts, are used to denote the audio, video segments respectively, while the 

subscript o is used to denote the original segment. Nv and Na represent the total number 

of  video shots and audio segments in the original sequence; To is the original duration of  

the sequence, the target skim duration is Tf, and to,n,v and to,k,a represent the original 

duration of  shot n and the kth audio segment in the scene respectively. Define indicator 

function φv(n) = 1 iff. nth video shot is present in the condensed scene. Define 

Nφ,v = ∑ φv(n), the number of  shots in the condensed scene. φa(n) = 1 iff. nth audio 

segment is not silent, and hence Nφ,a = ∑ φa(n) is the number of  non-silent audio 

segments. 

10.2 What entities will we preserve? 

The focus of  our work is in the creation of  passive, discourse centric skims (ref. section 

7.4.3), that are also maximally coherent, in the sense of  intelligibility. In order to 

construct such skims, we seek to preserve the following entities. 

• Syntactical elements: The syntax of  the video shots has a dual role: (a) its 

presence it essential to communicate meaning and (b) the specific elements of  

film grammar used, alter the meaning of  the video sequence. Hence the 
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preservation of  the syntactical entities will preserve the original intent of  the 

director.  

• Speech segments: This entity is the most direct form of  communication by the 

director (or, in other words the least ambiguous of  the semantic entities used by 

the director.), when compared to visuals in the data or the specific sounds, that 

are designed to evoke a specific feeling (fear, repulsion etc. ). Hence, the 

preservation of  the speech entities should increase the intelligibility of  the 

sequence30.  

• Synchronous entities: Many entities that are to be found in produced data, have 

synchronous audio-visual events — the shot of  a person speaking (the lips will be 

synchronized to the speech) etc. The preservation of  such entities will again  

increase the overall coherence of  the skim.  

• Segment coherence: We must ensure that each of  the “atomic” entities such as 

video shots and the audio segments, are individually coherent — this implies that 

we keep their original durations as far as possible, and reduce their duration with 

care, in a class dependent manner. 

                                                

30 Of  course, this is not always true. For example, an actor may speak in response to a 

visual entity; hence preserving the speech segment alone will not be sufficient. Indeed, it 

may engender confusion; the only way to prevent this is to recognize the visual entity and 

its relationship to the speech segment. This is beyond the scope of  this thesis. 
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• Film rhythm: This is affect entity i.e. the relationship between the durations 

of  the individual shots have been carefully chosen to convey a specific emotion 

(or affect) (ref. section 7.4.1.2). Its preservation is also important to preserve 

meaning. 

Now that we have discussed the entities of  interest, over the next few sections, we shall 

describe the utility functions associated with some of  these entities and the optimization 

procedure for generating the optimal skim. While we shall describe utility functions 

associated with segment coherence and film rhythm, we shall preserve other entities 

without associating an explicit utility value to with them. The syntactical elements are 

preserved by following a specific procedure for syntactical element reduction (ref. section 

8.3.3). The synchronous entities as well as the speech entities are preserved implicitly by 

biasing the optimization search procedure.  

10.3 Utility functions 

In order to preserve the entities that were discussed in the previous section,  we need to 

associate utility functions with video shots and audio segments as well as preserve some 

of  the affect entities.   

We model the utility of  each of  the entities separately, and in particular, we do not model 

joint interactions between audio and video segments. While such a model will be more 

sophisticated than the ones that we shall present in the following sections, we do not do 

so for two reasons:  
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• We do not have experimental evidence on the effects of  this coupling (i.e. 

how the presence of  audio affects the visual comprehension and vice versa) to 

justify a using a heuristic. This coupling has a strong effect on comprehension, as 

anecdotally evidenced by the effect of music on Mtv montage video sequences. 

There, we do not seem to be unduly bothered by the fast transitions between 

images and the montage style editing of  the video; this is because of  the 

coherence of  the music.  

• The separable model is simple and computationally tractable. 

We make the additional assumption that the sequence of  video shots (and the audio 

segments) in a scene are assumed to be i.i.d., thus allowing us to model the utility of  a 

video shot (audio segment) independently of  other shots (segments). 

10.3.1 Video 

The video shot utility function, models the comprehensibility of  a shot as a continuous 

function of  its duration and its visual complexity. Why is this new formulation necessary 

given the complexity bounds in section 8.2.4 ? The bounds in that section delineate the 
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bounds of  comprehension31 — importantly, they do not tell us how the 

comprehensibility of  a shot changes when we decrease its duration.  

The non-negative utility function of  a video shot S(t, c), where t is the duration of  the 

shot and c is its complexity, must satisfy the following constraints: 

1. For fixed c, S(t, c) must be a non-decreasing function of  the duration t: 

 1 2 1 2( , ) ( , ), ,S t c S t c t t≤ ≤  (10.1) 

   This is because decreasing the shot duration by dropping frames from the end of  

the shot (section 8.2.4, that discusses shot condensation), cannot increase its 

comprehensibility. 

2. Boundary constraints:  

 
( ,0) 0,
( ,1) 0, ,

S t
S t t

=
= ∀

 (10.2) 

This constraint arises due to the following observation: complexity c = 0 implies 

the complete absence of  any information, while c = 1 implies that the shot is 

purely random. Hence the utility of  such shots must necessarily be set to zero. 

                                                

31 For example, the upper bound (ref. equation (8.8)) tells us that 95% of  shots when 

reduced  to their upper bounds will remain comprehensible.  
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3. Constraints on the function form: Additionally, we would like the shot utility 

function to be bounded, differentiable, separable and concave. While 

boundedness prevents singularities, differentiability allows us to use faster 

gradient descent optimization algorithms. The effect of  the utility function being 

concave, is that we can readily make use of  convex optimization techniques to 

ensure a single solution. We make the function form separable only for 

tractability. 

Thus, the form of  the shot utility function is as follows: 

 ( , ) (1 ) (1 exp( )),S t c c c tβ α= − − −i  (10.3) 

The values for α and β were determined from the result of  the first user study test (see 

Appendix 13.4). Note that the function is concave in both t and c. The use of  the 

exponential makes the function asymptotically bounded, and it also agrees with an 

intuitive observation — the rate of  change of  the shot utility should decrease with increase 

in the shot duration. For example, let us assume that we have two shots: one that is 2 sec. 

long, while the other is 200 sec. long. Now, in both cases if  we remove the last one sec. 

the decrease in utility in the first case should be much larger than the decrease in utility in 

the second case. 

Given the symmetry in the boundary constraints, symmetry with respect to complexity is 

reasonable. The functional form stems from differentiability and the concavity 

constraints. It is easy to come up with a more general separable model (e.g. higher order 
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polynomials), however, we chose not to do so, to avoid the possibility of  over fitting. 

The shot utility function is shown in Figure 10.1. 

10.3.1.1 What happens when we drop a shot? 

Let us assume that we have 10 shots in a sequence, and we need to drop the 6th shot. 

What then is the loss in utility as a consequence of  dropping a shot? Since a shot is just 

barely comprehensible when it is condensed to its lower bound, the amount of  utility 

that is irretrievably lost when that shot is dropped is proportional to S(tLb,c) i.e. the utility 

evaluated at its lower bound. Then, when a shot i is dropped, we assign a utility loss P(tp,i) 

to the shot as follows:  

Figure 10.1: The shot utility function plotted as a function of the complexity (x-

axis) and time (y-axis). The z-axis shows the function value. 
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where, λ modulates the shot utility, tp,i is the proportional time for shot i i.e. 

, , ,ο= ip i i f ot t T T  and where tLb,i and tUb,i are the lower and upper time bounds for shot i, 

and S is the shot utility function (see Figure 10.2).  

The modulation function λ has the following effect — when the proportional duration is 

greater than the upper bound, the loss in utility is large. However, when the proportional 

duration is less than the upper bound, the λ decreases linearly to zero at the lower 

bound. i.e. the loss in utility at durations close to the lower bound or below the lower 

bound is negligible. There are two reasons why we modulate the shot utility loss S(tLb,c) :  

Figure 10.2: A graph of the modulation function λ plotted against 

the proportional duration. 
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• The shot utility loss function is an estimate of  the loss in utility. Certain high 

compression rates cannot be achieved even if  we condense each shot to its lower 

bound. Hence, in such cases, the utility loss associated with dropping a shot must 

be less than the utility of  the shot evaluated at the lower bound. An estimate of  

the utility loss in such cases, can be achieved using the proportional solution to 

generating the skim. 

• Let us return to the example with 10 shots. Let us assume that the original 

duration of  the sequence was 100 sec. and we are required to meet a target time 

of  10 sec. Then, one solution is the proportional solution — reduce the duration 

of  each shot by 90%. However, in this case, some of  the shot durations would 

fall below the lower bound for each of  those shots, and thus become 

incomprehensible. Hence we need to associate zero utility loss with such shots. 

• The motivation for the form of  the utility loss, also comes from an observation 

in one of  the early user studies on visual skims (Table 13.2): users preferred as 

far as possible to see the complete sequence, over the possibility of  dropping 

shots (see the “best” and “worst” ratings on the skims in Table 13.2).  

Hence the modulation function λ, biases the optimization towards creating sequences 

that have no dropped shots and in which each shot remains above the upper bound for 

that shot. Note the following: 

• A shot cannot be arbitrarily dropped; shots can only be removed as dictated by 

the rules of  syntax. 
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• Two shots that have the same complexity, but different original durations, will 

have different drop penalties, since their lambda term will be different. This is 

understandable since we should impose a greater penalty term for dropping a shot 

of  longer duration (the proportional durations will be in the ratio of  the original 

durations.). 

10.3.1.2 The sequence utility function 

The sequence utility function is then readily defined as follows:  

, ,
, : ( ) 1 : ( ) 0

1
( , , ) ( , ) ( )

v v

v v v i v i p j
v i i j j

U t c S t c P t
Nφ φ φ

φ
= =

 
 = −
 
 

∑ ∑r r  (10.5) 

where, 0 1: , ...v Nt t t t
r

and 0 1: , ... Nc c c cr  represent the durations and complexities of  the 

shot sequence, S and P represent the shot utility and the loss function respectively. 

Equation (10.5) says that the net utility of  a shot sequence is the sum of  the utilities of  

the shots in the sequence less the loss due to the shots that were dropped. In the next 

section, we discuss the utility function for an audio segment. 

10.3.2 Audio 

We do not have any experimental results indicating a complexity-time relationship for 

audio similar to the experiments of  section 8.2.4, however, it seems fairly reasonable to 

conjecture its existence. Hence, the form of  our audio utility function will be similar to 

the video shot utility function presented in the previous section.  
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Table 10.1: The variation in λ and β with the class type. 

Type   λ β 

Silence  6.67 1 

Environmental sounds 0.33 3 

Clean Speech 0.2 5 

Noisy Speech 0.2 2 

We define the utility function for a non-silent audio segment of  duration t belonging to a 

class32 k as follows: 

 ( , ) (1 exp( ))k kA t k tβ λ= − −  (10.6) 

Figure 10.3: The audio utility function for the different classes, plotted as a 

function of segment duration. The plot has the y-axis scaled. 
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where, A is the utility function and where β and λ are class dependent parameters. 

The class dependent parameters change the rate of  change of  the utility function with 

the duration of  the segment Table 10.1 shows the variation in  β and λ  with the class 

type.  

The β and λ values in Table 10.1 were generated using a heuristic, but the relative 

ordering of  the λ values is important. The β and λ values were chosen so as to bias the 

utility functions in favor of  the clean speech. Since noisy speech was deemed to be less 

“useful” than environmental sounds / music, we placed a greater utility on the 

environmental sounds over noisy speech. Note that since λ affects the rate at which the 

utility function reaches its asymptotic value (i.e. β), it was important that the utility of  

silence be insensitive to changes in duration, above the minimum silence duration. This is 

the reason for the large value of  λ, for the silence utility function. 

10.3.2.1 The audio segment utility loss function 

When an audio segment is dropped, we assign a utility loss as follows: 

 ( )2( ) ( )/i iL t t tο θ= −  (10.7) 

                                                                                                                                            

32 Recall from section 9.3, that we have four classes in our system: clean speech, noisy 

speech, environmental sounds and silence. 
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where, ti is the duration of  the ith silence, and where tο and θ are normalizing 

constants. Note that a “dropped” audio segment is actually silent. The equation seems to 

indicate that we penalize large as well as very small silences. This is intuitively correct 

since an extremely short silence (say duration < 50ms) will sound as harsh break. Figure 

10.4 shows the plot of  the utility loss function as a function of  the segment duration. 

Then, similar to equation (10.5), we define the audio utility to be the sum of  the utilities 

of  the constituent segments. 

, ,
, : ( ) 1 : ( ) 0

1
( , , ) ( , ) ( )

a a

a a a i a i i a
a i i i i

U t k A t k L t
Nφ φ φ
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 
 = −
 
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∑ ∑
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 (10.8) 

Figure 10.4: The plot shows the audio utility loss function as a 

function of the segment duration.   
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where, 0 1: ,a Nt t t t
r … and 0 1: , Nk k k k

r … represent the durations and the class labels of  

the audio segments in the skim, and where the functions A and L represent the audio 

segment utility and the loss function respectively. 

10.3.3 A note on dropped segments 

Why do we convert dropped segments to silence? After all, we do not insert blank (i.e. 

black) frames, when we condense video shots. We do so following reasons: 

• Unlike video shots that typically last 2~4 sec. in a film, speech phrases can last up 

20 sec. Hence, dropping a significant speech phrase33 has a very different impact 

as far as meeting the target skim duration is concerned. Hence, it may possible to 

undershoot the time budget, by removing the speech segment in its entirety. This 

implies that we cannot meet the time budget at all. We avoid this situation by 

inserting a silence. 

• Silence, unlike black video frames, is perceptually acceptable. 

• The silence utility function is flat beyond the minimum duration, thus allowing us 

to condense silence effectively.  

                                                

33 Note that only speech segments (either significant or noisy) are dropped in their 

entirety. This is because we cannot trim speech, as this will create harsh breaks. Non-

speech sounds are trimmed to their lower bound, before they are dropped. 
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10.4 Penalty functions 

In this section we introduce the penalty functions for both audio and video segments. 

These penalty functions circumscribe the interactions amongst groups of  video and 

audio segments.  

10.4.1 Film rhythm 

In this section we show how we can preserve the film rhythm entity discussed in section 

7.4.1.2 (introduced there in the form of  a predicate). The original sequence of  shots 

have their duration arranged in a specific proportion according to the aesthetic wishes of  

the director of  the film. Clearly, while condensing a scene, it is desirable to maintain this 

“film rhythm.” For example, consider a scene with three shots of  durations 5 sec. 10 sec. 

and 5 sec. maintaining the scene rhythm would imply that we preserve the ratios of  the 

duration (i.e. 1:2:1) of  the shots. We define the rhythm penalty function as follows: 
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 (10.9) 

where R is the penalty function, and where, ti is the duration of  the ith shot in the current 

sequence, while to,i is the duration of  the ith shot in the original sequence. The ratios are 

recalculated with respect to only those shots that are not dropped, since the rhythm will 
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change when we drop the shots. The function as described in equation (10.9), 

penalizes the shot sequence only if  the original film rhythm is not maintained.   

10.4.2 Audio slack 

In film previews, one common method of  tightly packing audio segments within a 

limited time, is to make them overlap by a slight duration. This not only condenses the 

audio segment, but also makes for a smooth transition amongst audio segments. We use 

a simple quadratic function to implement the cross-fading of  the overlapping segments. 

We associate a slack variable ξ, with each audio segment  that allows it to overlap the 

previous segment by ξ sec (see Figure 10.5). This variable is bounded as –2 ≤ ξ ≤ 0, for 

all segments except the first segment, for which it is necessarily zero. This allows us to 

condense audio data a little more without losing too much comprehensibility. We need to 

penalize excessive slack, and hence we have a slack penalty function. 

 2
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Figure 10.5: The  figure shows two audio segments overlapping by ξ. 
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where, ξi is the slack variable for the ith segment, Eo is a constant that normalizes the 

sum to 1, ki is the class label for the ith segment, and η is a class dependent coupling 

function that weights the interaction between adjacent classes, in a class dependent 

manner.  

Table 10.2: The table for determining the coupling factor η. The columns indicate the class of 

the preceding segment, while the rows indicate the class of the current segment. 

Type Speech Silence Environmental sounds / 
music 

Speech ∞ ∞ 1 

Silence ∞ ∞ ∞ 

Environmental sounds / 
music 

1 ∞ 0.5 

The coupling table for η, is shown in Table 10.2. We have three classes, with noisy 

speech and clean speech being treated alike. Similarly, we do not make a distinction 

between music and environmental sounds. There, the rows indicate the class of  the 

previous segment, while the columns indicate the class of  the current segment. For 

example, the table indicates that the η(speech, speech)=∞. This is because we do not 

want two adjacent speech segments to overlap, since the overlap will cause both speech 

segments to lose coherence. Here, the coupling factor η=∞ forces the overlap ξ to be 

zero. Note also, that the coupling factor related to silence is always ∞. This is because we 

never want a segment marked as silence to overlap with any other segment. Such an 

overlap only reduces the duration of  the silence. It is preferable to do this reduction using 
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the utility associated with the silence entity. We now discuss the principal constraints 

on our optimization. 

10.5 Constraints 

There are three principal constraints in our algorithm: (a) audio-visual synchronization 

requirements (b) minimum and maximum duration bounds on the video shots and the 

audio segments and (c) the visual syntactical constraints. We shall only discuss the first 

two constraints since we’ve have extensively covered the syntactical constraints in section 

8.3.3. 

10.5.1 Tied multimedia constraints 

A multimedia segment is said to be fully tied if  the corresponding audio and video 

segments begin and end synchronously, and in addition are not condensed (i.e. no part of  

either the video shot or the audio shot has been removed). Note also, that video shots / 

audio segments that are tied cannot be dropped from the skim. The multimedia 

segments can also be partially tied only on the left or on the right, but in this case the 

Figure 10.6: the gray box indicates a speech segment and the 

dotted lines show the corresponding tied video segment. 

tied 
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corresponding segments are only synchronous at one end, and the video (audio) can 

be compressed. 

In Figure 10.6, we show a fully tied segment corresponding to the section of  audio 

marked as a significant phrase. Since the beginning (and ending) of  a significant phrase 

will not in general coincide with a shot boundary, we shall split the shot intersected by the 

corresponding audio boundary into two fragments. To each fragment, we associate the 

complexity of  the parent shot.  

We need to modify the shot condensation procedure detailed in section 8.4.2. Since we 

have introduced a new shot boundary by artificially splitting a shot into these fragments, 

blindly adopting the condensation procedure in section 8.4.2 will create visible artifacts 

(i.e. the viewer will see new shot breaks, that were absent in the original film). Hence, in 

order to prevent new shot boundaries from appearing in the skim, we condense the shot 

Figure 10.7: Both figures show an artificial shot boundary, in a single shot, induced by a tie 

constraint. The gray boxes refer to the portions of the shot fragments to be dropped, while the 

arrows indicate the direction of the condensation. In figure (a) if we condense the two shots 

from the ends, we will create a new, visible shot boundary that didn’t exist before. If we adopt 

the condensation scheme shown in figure (b), no new shot boundaries would be created. 

(a) 

(b) 

shot boundary 
due to tie 
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fragment to the left of  the new boundary to the right while the shot fragment to the 

right of  the new boundary is reduced according to 8.4.2, to the left. Figure 10.7 

illustrates this procedure.  

Each tie boundary induces a synchronization constraint:   

 
1 2

, ,
1 1

N N

v i a j j
i j

t t ξ
= =

= +∑ ∑  (10.11) 

where N1, N2 are the number of  video and audio segments to the left of  the boundary 

respectively, tv,i is the duration of  the ith video segment, ta,j is the duration of  the jth audio 

segment and ξj is the slack variable associated with each audio segment. In equation 

(10.11), the left side is just the sum of  the duration of  all the video shots to the left of  

the synchronization boundary. Similarly, the right side is the sum of  the duration of  all 

the audio segments and their corresponding slack variables. Note, a fully tied segment 

will induce two synchronization constraints, while a partial tie will induce one 

synchronization constraint.  

A skim represents a highly condensed sequence of  audio and video, with a high 

information rate. Hence, a tied segment by virtue of  being uncondensed and 

synchronous allows the viewer to “catch-up.”  

10.5.2 Duration bounds 

Each video shot and audio segment in the skim satisfies minimum and maximum 

duration constraints. For both the audio and the video segments, the upper bounds are 
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just the original segment durations. For the video shot fragments, the lower bounds 

are determined from the complexity lower bound (equation (8.8)).  

For the audio segments, we have heuristic lower bounds, per audio class: silences 150ms, 

music / environmental sounds: 3 sec. Speech segments (i.e. complete phrases that are 

bounded by significant silences) are kept in their entirety and hence lower and upper 

bounds are made equal to the original duration. These heuristics will ensure that we have 

long audio segments in the skims, thus increasing the coherence of  the skim.  

We reduce the duration of  the music / environmental sounds by trimming the end of  

the segment (except for the last segment, which is trimmed from the beginning). Speech 

segments are either kept in their entirety or dropped completely if  the target time cannot 

be met. The reason why this is done is because trimming speech segments will make 

them sound incoherent since we may then end up cutting a sentence in the middle. 

10.6 Minimization via constraint relaxation 

In this section we shall describe the procedure for obtaining the audio and video 

segment duration using a principled minimization procedure.  

10.6.1 Algorithm bias 

We focus on the generation of  passive discourse centric summaries that have maximal 

audio visual coherence. We ensure skim coherence by biasing the algorithm in the 

following manner:  
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• Speech segments: We deem the speech segments to contain the maximum 

information, and we shall seek to maximize the presence of  speech segments in 

the skim in two ways:  

o Biasing the audio utility functions in favor of  the clean speech class.  

o Biasing the audio-visual skim solution search to favor the presence of  

clean speech segments. In case the audio segments do not contain clean 

speech, the skim generation algorithm will work just as well, except that in 

this case we would not be biased with respect to any one class. 

• Visual syntax: We ensure that the principles of  visual syntax are not violated  

• Ties: We shall attempt to ensure that we have as many tie constraints as possible. 

This is because these constraints ensure synchrony between the audio and the 

video segments. 

10.6.2 Constructing tied multimedia segments 

In this implementation we construct fully tied multimedia segments the following way. 

We first assume that the audio has been segmented into classes with all the significant 

phrases marked. All the speech phrases marked as significant (and additionally labeled as 

“clean speech”) are ranked depending on the degree of  significance of  the segment. 

Then, we associate multimedia tied segments with these ranked speech segments only. 

All other segments (including “noisy speech”) have the same low rank and are not tied to 

the video.  
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In the sections that follow, we assume the following: we are given Tf, the target 

duration of  the skim, the audio has been segmented and the clean speech segments 

ranked, and that the video has been segmented into shots. We now discuss our algorithm 

in two stages — first by presenting an overview of  the solution, followed by the details 

of  the algorithm. 

10.6.3 Solution overview 

We first present the intuition behind our strategy for ensuring that a feasible solution 

region exists for the optimization algorithm. The approach has the following key ideas: 

Figure 10.8: searching for a feasible solution by successively 

relaxing the synchronization constraints. 

does a video 
solution exist? 

minimization segment 
durations 

relax sync. 
constraints 

constraints: 
1. duration bounds 
2. sync. constraints 
3. visual syntax 

yes 

no 

find feasible audio 
solution 
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1. A fully tied multimedia segment ensures the following: (a) the corresponding 

audio and video segments are uncondensed and (b) none of  these segments can 

be dropped. Hence, removing one synchronization constraint from a fully tied 

segment allows us to condense the audio and video segments and if  necessary, 

drop them from the final skim. 

2. Only clean speech segments (i.e. significant phrases marked as clean) are fully 

tied. Since speech segments have been ranked according their significance, we 

remove one constraint starting from the lowest ranked speech segment. 

3. Once a feasible video solution region has been found, a feasible audio solution is 

guaranteed to exist, since we can always drop audio segments that are not in fully 

tied segments, by converting them to silence Note: (a) the silence class has a very 

small lower bound: 150ms. Hence we shall always be able to meet our audio skim 

budget (b) we pick the audio segment to drop in this order: pick noisy speech 

segments first. Then, if  none exist, pick the segment that minimizes the deficit. 

Briefly then, we do the following: (a) start will all clean speech segments tied. (b) drop 

shots and relax constraints starting with the least significant tied speech segment, till the 

video budget is met. (c) Once the video budget is met, meet the audio budget by 

dropping audio segments in rank order. This is summarized in Figure 10.8. 

The visual syntax constraints require that a minimum number of  shots be present in the 

skim. Hence, there will some condensation rates that cannot be met even after removing 

all the synchronization constraints. In that case, we create a “best” effort skim. This is 
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done by first removing as many shots as allowed by the rules of  syntax, and then 

setting the duration of  each shot to its lower bound. The skim target duration is then 

modified to be the sum of  the duration of  these shots.  

We now present the details of  the strategy to ensure feasible solutions for our 

optimization procedure. We are interested in ensuring solution feasibility, because we 

wish to avoid an iterative backtracking procedure, in the case where there is no solution 

possible (i.e. the target skim time can be achieved. This can happen for example when 

there are too many multimedia tie constraints.). 

10.6.4 Ensuring a feasible video solution 

In order to ensure that a video solution exists before performing the optimization, we 

adopt a two stage check strategy. We first make sure that the video shots can meet the 

constraints and once this is ensured, we ensure that the audio segments can meet the 

target skim time.  

The algorithm to ensure that the solution exists is as follows. We assume that we have Nv 

video shots and that Nmin is the minimum number of  shots due to the syntactical 

constraints (ref. section 8.3.3). 

1. Begin with all the clean speech segments marked as fully tied. Then, the 

corresponding video shots will also be marked as tied and will be uncondensed.  

2. While Nv ≥ Nmin check if  a video skim will satisfy the constraint equation:  
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where, lv,i and uv,i are the lower and upper bounds for the ith shot, χ(i) =1 if  the ith 

shot is not condensed and φv(i)=1 if  the shot is not dropped. Tf is the target 

duration. In equation (10.12), note the following: (a) if  a shot is not compressed, 

then the contribution of  this shot is just the original duration. (b) If  the shot can 

be condensed, then it can be condensed up to its lower bound. The equation 

simply says that the sum of  the durations of  all the shots that are not  dropped, 

must be less than the target duration Tf. 

3. If  eq. (10.12) is not satisfied then (if  Nv > Nmin drop one shot (ref. section 8.3.3) 

and repeat step 2 until the constraint is satisfied, else go to step 3). 

4. If  the video feasibility constraint eq. (10.12), is not satisfied, untie one constraint 

from the lowest ranked speech segment. Note, untying a constraint does two 

things: (a) allows the video shots to be condensed and (b) if  necessary, allows 

them to be dropped from the skim.  

5. If  no solution is feasible even after untying all the constraints, the best effort 

video solution is generated. This is done by first removing as many shots as 

allowed by the rules of  syntax, and then setting the duration of  each shot to its 

lower bound. The skim target duration is then modified to be the sum of  the 

duration of  these shots. 
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At the end of  this procedure, have a feasible video solution region and we know the 

following variables: the number of  constraints in the final skim, and the number of  

video shots to be retained in the skim. 

10.6.5 Ensuring a feasible audio solution 

We now present our algorithm to ensure that we have feasible solution region for audio. 

1. A feasible audio solution region exists if  for every two consecutive tie boundaries, 

the following inequality holds: 
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where, we are examining the audio segments between tie boundaries k-1 and k, 

ga(i,k) = 1 if  the ith audio segment is present between the two tie boundaries, la,i is 

the minimum duration of  the audio segment, and ξi is the corresponding slack 

variable. Similarly, gv(j,k) = 1 if  the jth video shot is present between the two tie 

boundaries. Note that the minimum duration of  an audio segment depends upon 

the class.  

Why is this inequality sufficient to ensure that an audio solution is feasible? First 

note that Vmin is the minimum possible duration of  the corresponding video 

shots between the two tie boundaries. The equation for Vmin is simply the sum of  

the minimum durations of  the shots that are not dropped, between the two tie 
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boundaries. Then, the first part of  equation (10.13), simply states that the sum 

of  the minimum durations of  the audio segments plus the corresponding slack 

variable, between the two tie boundaries must be less than Vmin. If  this is true 

then for every possible video solution, we will have an audio solution. 

2. If  the inequality is not satisfied, we remove one audio segment, by converting it 

to silence. To do this pick the segment that minimizes the deficit in the inequality 

(10.13). We look to remove noisy speech segments first, followed by music and 

environmental sounds and then speech (lowest ranked first). Note that converting 

the segment to silence causes the minimum duration of  the segment to drop to 

150ms. Go to step 1. 

At the end of  this procedure, we shall have a feasible audio solution region.  

10.6.6 The mathematical formulation 

We now define the objective function Of that gets minimized as a consequence of  our 

minimization procedure. Then, given the target duration Tf : 

1 2( , , , ) ( , ) ( )f a v c A a V vO t t n O t O tξ ω ξ ω= +
r rr r r r

(10.14) 

where, ω1, ω2 are constant weights. OA, OV, represent the audio, and video objective 

functions respectively and are defined as follows: 
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where, λ1, λ2 are weighting factors. Note that once we have feasible solution regions, 

, ,a vk φ φ
r are constants. Note that the functions E and R, refer to the audio slack and the 

film rhythm penalty functions.  The individual shot durations are determined as follows: 
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where nc is the number of  final synchronization constraints, T(k) is the class dependent 

audio lower bound. The first two constraints in equation (10.16) are duration constraints, 

the next two are total time budget constraints, while the last equation refers to the 

synchronization constraints. Note that Nmin is the minimum number of  shots to be 

retained in the scene, and this arises from the syntactical rules discussed earlier. Also, the 

shots can be dropped only in a constrained manner using the rules in section 8.3.3.  

10.7 Experiments 

In this section we shall detail the results of  our user study that was used to test the 

efficacy of  our approach for audio-visual skims (Two other user studies that deal with 
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visual skims i.e. skims that do not contain audio,  are discussed in the appendix ( 13.4 

and 13.5)). 

10.7.1 Introduction 

The scenes used for creating the skims were from three films: Blade Runner (bla), Bombay 

(bom), Farewell my Concubine (far). The films were chosen for their diversity in film-making 

styles. While we arbitrarily picked one computable scene from each film, we ensured that 

each scene had a phrase as well as a dialog. 

All the audio-visual analysis, as well as the utility optimization was done in MATLAB, 

while the actual skim generation was done using the windows media video SDK (see 

Figure 10.9). 

10.7.2 Three algorithms compared 

We conducted experiments with three different skim generation mechanisms: 

Figure 10.9: The application for generating audio-visual skims. 
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• The optimal audio-visual skim 

• A proportional skim  

• A semi-optimal skim  

Where, the optimal audio-visual skim is the one generated by our utility based 

optimization. The proportional skim is generated as follows: let us assume that we wish 

to condense the segment by 75%; then in a proportional skim, each video shot and each 

audio segment would be compressed by 75%; in both cases, we trim the data from the 

right of  each video shot (audio segment)). A semi-optimal skim has proportional video 

(as described in the preceding few lines) and the optimal audio segments from our audio 

Figure 10.10: The original video and the four skims: optimal, semi-optimal and proportional. 

segment types —red: video, green: audio; black: discourse segment. . Note that the semi-

optimal and the proportional skims have the same proportional video data, and the optimal and 

the semi-optimal skims have the same optimal audio data. 

original optimal semi-opt prop. 

tim
e 

significant phrase 
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segment analysis (ref. chapter 9) algorithm. . In Figure 10.10, the red segments 

(appears as dark gray in print) represent the video data, while the green (light gray) 

segments represent the audio segments; the black rectangle shows the significant phrase. 

Note that the semi-optimal and the proportional skims have the same proportional video 

data, and the optimal and the semi-optimal skims have the same optimal audio data. 

In the earlier user study results (see appendix 13.4 and 13.5) with visual skims (that 

contained no audio) showed that a utility based visual skims were perceptually better (in a 

statistically significant sense) than proportionally reduced visual skims. Since presence of  

the optimal audio segments will make the third skim more coherent than the 

proportional skim, we deem it semi-optimal.  

10.7.3 The user study  

In our user study, we compared the algorithms at three condensation rates: 90%, 80% 

and 50%. Ideally, we would have liked to create one skim per condensation rate, per film. 

However, this would have meant that each user would have had to rate 27 skims (because 

there are three films, three scenes and three condensation rates), an exhausting task. 

Instead, we used a single scene at each condensation rate, thus creating three skims for 

each rate (one from each algorithm), and  since there are three condensation rates, (90%, 

80%, and 50%), we thus created nine skims.  We compressed the film Bombay at 90%, 

Blade Runner at 80% and Farewell my Concubine at 50%. 
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We conducted a pilot user study with twelve graduate students. Each film was on the 

average, familiar to 2.33 students. The testers were expected to evaluate each skim, on a 

scale of  1-7 (strongly disagree – strongly agree), on the following metric: Is the sequence 

coherent? They were additionally asked to indicate their agreement in answering the four 

generic questions of  who? where? when? what? (ref. Section 8.2.3) for each skim. The 

setup was double-blind and each user watched the skims in random order. 

10.7.4 Results 

The results are shown in Table 10.3. The rows in Table 10.3 show the averaged scores 

across users for the optimal algorithm and the differences from the optimal for the other 

two algorithm. Positive numbers imply that the raw score of  the optimal algorithm is 

greater than the corresponding non-optimal skim. The numbers in bold indicate 

statistically significant differences from the optimal. We computed the statistical 

Figure 10.11: The difference between the raw optimal score and the minimum of the 

other two scores. The differences are significant at 80% and 90% compressions rates 
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significance using the standard student’s t-test. The test scores indicates that the 

optimal skim is better than the other two skims, at a confidence level of  95% at the high 

condensation rates (90% and 80%). Interestingly, the optimal skim was not significantly 

better than the other two skims at the 50% condensation rate. Figure 10.11 shows a 

graphical illustration. 

Table 10.3: User test scores. The columns: algorithms (optimal, semi-optimal, proportional), the 

film, condensation rate, and the five questions. The table shows values of the optimal and the 

difference of the scores of the (semi / pr) skims from the optimal. Bold numbers indicate 

statistically significant differences. 

Algo. Film Rate Coh? who? when? where? what? 

opt  5.25 5.92 5.50 6.00 5.58 

semi / pr 
bom 90 

2.3 / 0.9 1.1/ 0.75 0.9 / 0.5 1 / 0.75 1.6 / 0.6 

opt 4.83 6.00 5.50 6.00 5.58 

semi / pr 
bla 80 

1.8 / 1.7 0.5 / 1.3 0.3 / 0.8 0.3 / 0.9 1.1 / 1.2 

opt 4.75 5.92 5.75 6.00 5.25 

semi / pr 
far 50 

-0.2/ 0.5 0.3 / 0.2 0.1 / 0.1 0.3 / 0.3 0.0 / 0.2 

10.7.5 Discussion 

Why do the significance tests yield different results at the high and low rates? At low 

condensation rates, our optimal skim, does have proportionately reduced video shots. 

This is because of  two reasons:  

• The rhythm penalty function (see section 10.4.1) ensures that the shots are 

proportionately condensed.  
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• The utility function is exponential (see section 10.1.1) — flattening out at long 

durations.  

Hence the optimal result will be pretty similar to the  other two skims. At the high 

condensation rates, proportionately reducing the skim is not possible as this approach 

will severely decrease the skim utility (it decays exponentially). This is because as some 

shots will fall below the lower bound for comprehension.  

In Figure 10.12, we show the parts of  the optimal skim at 80% condensation rate. Note 

that the skim has captured the dialog element, the significant phrases (the shots are not 

condensed), and preserves the synchronized beginnings and endings. We do not have an 

gunshot detector, and it appears in the skim because the end is synchronized. The other 

two skims will not contain significant phrases, the audio and video will be completely 

unsynchronized.  

Figure 10.12: The blade runner optimal skim showing the important elements captured 

by our algorithm. The gray box shows the location of the sig. phrase.  

do you make up these 
questions, Mr. Holden? 

office sounds gunshot dialog 
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10.7.5.1 What about other skim forms? 

This work focuses on creating discourse centric skims, by ensuring that as many speech 

segments get included and are synchronized as far as possible. The approach also makes 

sure that the skims are coherent by preserving the underlying film syntax. The user study 

results are very positive indicating that the skim is coherent at high condensation rates.  

However, we can improve on this approach for some constrained domains (e.g. medical 

videos). When the relationship between the data and the semantics is clear, using object 

detectors followed by a skim generation mechanism that preserves syntax, will generate 

meaningful skims, that capture the essential semantics. Affect and event driven skims are 

easily created within our framework by adding additional constraints on the audio and 

video segments. However, it is much harder to detect affect, except for very specific 

forms. Event based skims make sense in specific domains (e.g. baseball), but event 

discovery in an unconstrained domain is a difficult problem. 

10.8 Summary 

In this chapter, we have formulated the problem of  skim generation as a constrained 

optimization problem that attempts to preserve certain entities within the skim. We are 

interested in five different entities: (a) elements of  syntax (b) speech segments (c) 

synchronous multimedia entities (d) coherent audio and video segments and (e) film 

rhythm. While some of  them are explicitly associated with utility functions, others are 

implicitly preserved by biasing the solution search. 



   

 

285 

We derived the utility functions of  the audio and video segments, by employing three 

kinds of  constraints: (a) boundary constraints, (b) asymptotic constraints and (c) 

constraints on functional form. We also derived utility loss functions that are used to 

penalize dropped audio visual segments. This results in the formulation of  an audio, and 

video sequence utility function. Our approach uses a separable models, making the 

problem computationally tractable. 

We introduce the idea of  tied multimedia segments that ensures synchronization for the 

speech entities. Given a time budget, we first ensure solution feasibility by ensuring that 

the video and the audio time budget can be met separately. This is done in the following 

way. Since all the audio segments are classified into four different classes — (a) clean 

speech, (b) noisy speech (c) environmental sounds / music and (d) silence, we start the 

solution search by ensuring that all the speech segments are fully tied. Then, we relax the 

constraints on the tied segments till we have solution for the video segments. The audio 

solution existence is guaranteed by ensuring that certain duration bounds are satisfied. 

Once we are guaranteed of  the existence of  the audio and the video solutions 

optimization routine generates the optimal solution.  

We conducted a pilot user study on three scenes, generating skims using three skim 

generation algorithms, at three different condensation rates. The results of  the user study 

shows that while the optimal skims are all regarded as coherent, the differences ate 

statistically significant only at the high rates (i.e. 80% and 90%). 
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11 Conclusions and future work 

11.1 Introduction 

In conclusion, we shall first summarize the work presented in this thesis, along the lines 

of  the three sub-problems that have been tackled here — segmentation, structure 

detection and audio visual summarization. Then, in section 11.3, we shall present some 

possible improvements to the models used in this work. Then in section 11.4, we shall 

present a few potential areas of  future research. 

11.2 Research summary 

We now present a summary of  the work done in this thesis. We begin by summarizing 

our approach to segmentation. 

11.2.1 Segmentation 

This thesis developed a novel framework for segmenting audio-visual data. We focused 

on the detection of  computable scenes, that arise out of  interactions between elementary 

computable audio and video scenes. These elementary scenes are segments of  data that 

are consistent with respect to a certain set of  features. There were four key ideas in our 

approach on segmentation:  
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• The idea of  a finite, causal memory model to segment both audio and video 

data. 

• Making use of  production rules in film-making.   

• Using constraints from computational auditory scene analysis. 

• Incorporating higher forms of  knowledge such as structure and silence. 

In chapter 3, we presented our approach to determining computable video scenes. The 

scene detection is predicated on the use of  a memory model. We showed how to 

compute two important measures on the data stored in the memory — recall  and 

coherence. Recall computes the similarity between shots in the memory buffer, and which 

incorporates a dissimilarity measure, the duration of  the two shots and the time 

separation between the shots. Coherence, a measure of  inter-segment similarity, was 

defined using the measure for recall. Computable scenes were deemed to exist at the 

local coherence minima.  

In this chapter, we also presented three new conceptual memory models that improved 

on the basic model used for experiments in this thesis. While the first measure 

introduced the idea of  segment self-coherence to help improve the segmentation results, the 

other two models made use of  the of  Kolmogorov complexity to determine the 

relationships between the data in the memory. 

In chapter 4, we presented our work on detecting the computable audio scene. As with 

the problem of  detecting computable video scenes, the computable audio scene 
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detection made use of  a model for memory. We computed three types of  features 

from the data in the attention span — (a) vector sequences, (b) scalar sequences and (c) 

point data. Then, we presented a new sines+trends+noise signal model for scalar sequences 

that additionally incorporated Bregman’s observation on audio source continuity. Then 

we presented dissimilarity measures for each generic type of  feature.  

The a-scenes were detected in two stages. First, we computed the correlation of  the 

feature values computed in the attention-span with the rest of  the data. Then, for each 

feature, we computed a scene change location by detecting the local maxima of  the rate 

of  increase of  the feature distance. Then, these local maxima computed from each 

feature are merged in a simple voting scheme. In this chapter, we also presented our 

silence detection algorithm. 

Finally in chapter 5, we presented our approach to detecting computable scenes via a 

multi-modal fusion framework. Here, we presented rules that incorporated higher forms 

of  knowledge such as structure and silence information to detect computable scenes. 

The higher forms of  knowledge (e.g. the fact that viewer group the shots in a dialog 

sequence to be part of  the same scene) are extremely important, since these groupings 

(rules) cannot be inferred from an analysis of  the feature level data. We also presented 

several cases where the assumptions underlying the computational  model, break down. 
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11.2.2 Structure detection 

This thesis presented a novel topological framework for detecting a priori known 

structures. We defined structure in terms of  the compressibility of  the data, using the 

framework of  Kolmogorov complexity. In this work, we have focused on detecting 

discrete time, temporal structures that have known generative mechanisms. We also 

assumed that the elements of  the sequence have a metric associated with them.  

In chapter 6, we presented our approach towards structure detection. Central to our 

framework on structure detection is the idea of  the topological graph that is constructed 

from the sequence to be analyzed. This is a fully connected graph that contains shots at 

the nodes and whose edge strengths are defined using the dissimilarities between the 

shots in the nodes. We also introduced a topological matrix, associated with each 

topological graph. 

We presented two general techniques for structure detection:  

• Exploiting the structure of  the topological matrix for detection. This was used 

for detecting dialogs. 

• Using random permutations of  the topology to determine the presence of  

structure. This was used in regular anchor detection. 

While we have applied the theory to detecting visual patterns, the framework that we 

present is applicable to other problems that have deterministic generative mechanisms. 
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However, a lot of  work still needs to be done — note for example, that we do not 

handle the case of  stochastic generative models.  

11.2.3 Summarization 

In this thesis, we presented a novel approach toward summarizing audio-visual 

computable scenes. These are the key ideas in our framework: 

• An entity-utility framework for skim generation. In this approach, we attempt to 

preserve those entities that satisfy the user information needs. The skim is 

generated by maximizing the utilities associated with those entities that we are 

trying to preserve in the skim. 

• The idea that comprehensibility of  a shot is related to its visual complexity. We 

define visual complexity using the idea of  Kolmogorov complexity. 

• The idea that preservation of  video syntax is essential to keeping the skim 

coherent. We show reduction mechanisms for specific syntactical elements, that 

preserve the semantics associated with the syntactical elements.  

• The use of  prosody for detecting new topic beginnings in the speech data.  

In chapter 8, we presented our visual analysis for skim generation. There wre two key 

ideas in this chapter — (a) the notion of  visual complexity and its relation to 

comprehension time and (b) the idea that preservation of  visual syntax is essential to 

making the resulting skims coherent.  
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In chapter 9, we presented our auditory analysis for skim generation.  There, we did 

two things in parallel — (a) we classified segments using a robust SVM classifier, into 

three classes and (b) we detected significant phrases (i.e. SBEG’s) by using the acoustic 

correlates of  prosody. We merged the results from the two components and in the end, 

we were left with a sequence of  labeled audio segments that were ranked according to 

their significance. 

In chapter 10, we presented our utility based framework for skim generation. The goal 

of  this framework was to maximize the utility of  those entities that satisfy the users 

information needs. In this work we were interested in generating passive skims, and hence 

the entities to be retained in the skim are a priori known. There were three broad issues 

that were raised in this chapter — (a) identification of  the specific entities that we need 

to preserve, (b) the utilities that we need to associate with these entities and (c) the search 

strategy for ensuring that the existence of  a feasible solution to the optimization 

problem.  

We conducted user studies that compared the output of  the optimal skim generation 

mechanism against two other algorithms. The user studies indicate that the skims were 

received well by the users, and all were regarded as coherent. However, the 

improvements of  the optimal skim over the other two algorithms were significant in a 

statistical sense, only at the highest condensation rates — 80% and 90% condensation.  
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11.3 Improvements to the framework 

The task of  building a system that automatically summarizes the entire video is a 

challenging one. While the thesis began as an effort to present a complete solution to the 

problem, there are necessarily gaps to be found in the framework that need to addressed 

in the future. 

11.3.1 Complex memory models  

The memory models presented in sections 2.5.2.2, 3.7.1-3.7.2 are simplistic in their 

approach to memory. They do not take in account the structure of  the shot sequence (or 

the structure in the audio data), or the context in which the shot (or the audio segment) 

appears in the video. The context in which the shots appear and the order in which they 

appear are important, since they (e.g. shot repetition) can serve to reinforce certain 

emotional responses to the data.  

It would also be interesting to create a model of memory that is able to incorporate top-

down rules (e.g. directorial styles.). For example, often when we are watching the films of  

a particular director, we have become “trained” to that director’s visual style (specific 

color compositions, the pace of  the film, and any non-linear story mechanisms.). Hence 

incorporating such top-down rules will adapt the memory models to new situations. 
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11.3.2 Film-making constraints  

In this thesis we have incorporated several important ideas from film-making — the 

importance of  visual syntax for comprehension, camera placement rules that were used 

for segmentation and making the sound flow over the cut (i.e. allowing sound segments 

to overlap while creating skims (ref. section 10.4.2)). However, there were other 

constraints that were not included.  

Continuity editing refers to a set of  principles that attempt to make the shot cuts 

invisible (or in other words, continuous) to the viewer. The camera arrangement rule (ref. 

section 2.5.3) is an example of  the principle. We now give more examples [8] :  

• Match on action: Motion continuity is an important aspect of  continuity editing. 

Here, the director will attempt to preserve the direction of motion across shots. 

For example, if  in a shot an actor moves from left to right, then in the next shot 

(even if  it is part of  another scene), the director will have camera movement / an 

object / actor move in a left to right fashion. 

• The 300 rule: Directors ensure that the successive positions of  the camera at 

least differ by thirty degrees, from shot to shot. The reason that they do this is 

because if  the difference in the viewing angle is too small, the two shots will look 

very similar and the cut between shots will seem abrupt.  

• Match on location: Often, when directors are showing a sequence of  faces (or 

objects), they will ensure that the location of  the faces / objects are “matched” 

i.e. they occur in the same location on the screen. For example, in a dialog scene, 
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the director will ensure that the locations of  the actors with respect to the 

frame, remains the same, over the course of  the dialog. 

11.3.3 Joint audio-visual experiments 

In this thesis, we have approached the problem of  generating an audio-visual skim, by 

condensing the audio and the video segments independently. We conducted experiments 

on the relationship of  visual complexity to visual comprehension time and determined 

duration bounds on visual comprehension. 

However, this assumption that the audio and the video data do not interact when we 

comprehend multimedia data is simplistic. This interaction can clearly affect the time for 

comprehension — for example, the viewer may not mind watching a video that has 

plenty of  short duration video shots, as long as the audio is long and coherent (e.g. MTV 

videos). A slideshow is another example where the user doesn’t mind seeing still key-

frames of  the shot, as long as the audio data is long and coherent.  

The existence of  a joint model may also allow us to perform a tradeoff  in two 

dimensions simultaneously — time (i.e. the duration of  the video shot / audio segment) 

and spatio-temporal quality (i.e. spatial resolution of  the video over the duration of  the 

shot, the quality of  the audio over the duration of  the audio segment.). Hence, it is 

important that we conduct psychological experiments that investigate the joint coupling 

of  the audio-visual data on comprehension. 
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11.3.4 Fine-grained estimates of   complexity 

In this thesis, we use a single measure of  complexity, per shot. Implicit in this approach 

is the assumption that the visual data does not change much over the course of  the shot. 

However, it is clear that visual complexity is really a continuous function over the course 

of  the shot. By using a single number for the shot, we have essentially performed a zero-

order hold on the original curve.  

Why is the continuous curve useful? When we reducing the duration of  the shot in the 

current framework, the change in the utility for this shot will lie on the intersection of  

the c=constant plane and the original utility function (see Figure 10.1). This implies that  

given a specific shot, the rate of  change of  the utility, only depends upon the duration of  

the shot. This will change, once the complexity measure is continuous.  

The consequence for this will be felt when we are trying to decrease the duration of  the 

entire sequence. Now, since we are using a continuous measure of  complexity, the rate 

of  change of  will depend on both the current complexity value and the duration. Thus, 

for example, for a particular shot, the loss in utility may suddenly decrease if  the current 

portion of  the shot is of  low complexity. The main advantage of  such a solution is that 

it enables us to better adapt to changes in the shot’s visual complexity in the process of  

condensing the shot. 

11.4 Future directions 

We now highlight a few possible future research directions. 
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11.4.1 Summaries: anytime, anywhere 

One of  the key contributions of  this thesis is the idea of  the entity-utility optimization 

framework. In this thesis, we have focused on the problem of  automatic generation of  

passive summaries. While the thesis shows a framework for utility maximization of  a 

small set of  entities, there were implicit assumptions in this work, on the bandwidth, the 

capabilities of  the device and the nature of  the user interface. 

It would be an important extension of  this framework to come up with a single 

framework that given the following: (a) entities requested by the user (b) network 

resources (c) device capabilities (CPU speed, type of  user interface) (d) utilities associated 

with the entities and (e) user preferences, generates a convex optimization problem with 

constraints. While some of  the constraints will arise due to the properties of  the 

individual entities, other constraints that need to be inferred from how entities interact 

with each other.  

Clearly, the nature of  the utility function will play an important role in this framework. 

These functions will often have to be specified by a domain expert (e.g. relationship 

between bandwidth and perceptual video quality); however, it is a non-trivial task even 

for the expert to determine the form of  the utility function i.e. the relationship between 

the parameters that affect the utility of  the entity. These ideas will follow up on recent 

work [17] , where we discuss several open issues in this direction, and also introduce a 

formal modeling of  ARU (adaptation-resource-utility) spaces and their relationships.  
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11.4.2 Extensions to current work on summarization 

The work on video summarization presented here, can be extended in at least two 

directions:  

• Video skims that incorporate scene level structure analysis, transcript analysis and 

user preferences.  

• Developing algorithms for other forms of  summaries such as image summaries 

that capture the dynamism of  the video (i.e., that include audio, transcripts and 

animations).  Appendix 13.3, has more details on how image storyboards could 

be enhanced. 

We are also interested in a particular video summarization problem of  creating dynamic 

summaries for meetings. The idea involves creating summaries incrementally, allowing a 

participant who is late for a meeting to catch-up quickly. 

11.4.3 Working with raw data 

This thesis has focused on analyzing produced data from commercial films. The central 

idea in our work, that we can use the syntactical elements in the domain for 

summarization, can also be used in other produced domains, once their essential 

syntactical elements have been identified. 

What then, of  raw non-produced data? There is a tremendous amount of  data that is 

shot by ordinary consumers in the form of  home videos, as well plenty of  raw footage 
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received by news organizations, from reporters working in the field. For example, 

CNN receives over 300 hours of  raw footage every day.  

For unstructured content, manually editing and annotating raw footage is time-

consuming. Editing tools by themselves, do not ensure interesting home videos.  It 

would be intriguing to apply the rules of  cinematic syntax investigated in this thesis as 

well as the principles of  continuity editing, onto this raw data and thereby impose 

structure on this data, thus automatically synthesize new content.  

We plan to adapt the current work on audio-video segmentation and summarization to 

impose structure on raw video. However, a fully automatic solution to the problem is not 

feasible, given the diversity of  user preferences. Hence, a solution would necessarily 

involve some user interaction. 

11.4.4 Structure discovery  

The work presented in this thesis deals with structure detection, the problem of  detecting a 

priori known patterns in data. One of  the important challenges in multimedia analysis is 

to be able to automatically discover the presence of  structure in the data. The important 

questions include: 

• When is a sequence said to be structured?  

• What are the forms (i.e. stochastic, deterministic, specific generative mechanisms 

etc.) of  structure? 
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• At what time scales does the structure manifest itself ? Can we discover them 

automatically? 

We believe that our definition of  structure using Kolmogorov complexity is a useful 

starting point for addressing this problem, since it makes the problem of  structure 

discovery equivalent to the problem of  determining efficient compression mechanisms. 

One can conceive of  an optimization framework that incorporates MDL (the minimum 

description length principle) for determination of  the segment boundaries and the 

different time scales, as an initial guess at the solution. 

11.4.5 Multimedia information visualization 

An interesting problem in multimedia content analysis is to be able to visualize 

information in large collections of  data. Examples of  where this can happen include 

digital libraries, where the user’s query may yield many valid results; thus a mechanism 

that allows the user to quickly drill down to the relevant video is needed.  

Work at the Informedia project at CMU has focused on the issue of  visualizing the 

results of  the video query using semantic concept maps, and additionally specific 

visualizations such as geographical maps and time scales, to represent the results. 

However, the relationship between the data and the method of  visualization was project 

dependent, and the relationship was set by the algorithm designer.  
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The work at the Informedia project is really about the search for the right visualization 

in the space of  all possible visualizations (including different forms of  auditory 

feedback). We would like to contribute to this work in two ways:  

• A framework that given the specific data set, uses (a) a library of  visualizations (b) 

device capabilities and (c) user preferences, to automatically determine the correct 

form of  the visualization.   

• Focus on visualization of  a single video as opposed to a collection. This is useful 

in visualizing data such as surveillance videos.  

11.4.6 Environment attentive algorithms 

In any content analysis algorithm, there are trade-offs (with some qualifications) between 

representational complexity and the resulting distortion and error rate.  We are interested 

in the problem of  how real-time content analysis / classification algorithms adapt to 

changes in computational resources (CPU, memory, device constraints) and still give real-

time performance perhaps at the expense of  additional error. This idea is useful in 

mobile devices that have limited power and device capabilities.  

Newer chips from Intel and Transmeta, dynamically change the operational speed of  the 

CPU, in response to battery conditions. In such cases, static content analysis algorithms 

(e.g. video decoders, handwriting / voice recognition etc.) will no longer operate in real-

time, unless they change their representational schemes. This will increase the error, but 

that may be tolerable in many situations. 
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13 Appendix 

13.1 Kolmogorov complexity 

In this section we briefly review the idea of  Kolmogorov complexity [21] [51] . Let x be 

a finite length binary string of  length n. Let U(p) denote the output of  an universal 

Turing machine U when input with program p. Note, a universal Turing machine U is a 

Turing machine that can imitate the behavior of  any other Turing machine T. It is a 

fundamental result that such machines exist and can be constructed effectively [21] [51] . 

Then, the Kolmogorov complexity of  the string x is defined in the following way: 

 
: ( )

( | ) min ( ),U
p U p x

K x n l p
=

@  (13.1) 

where, l(p) is the length of  the program p, and n is the length of  the string x and where 

KU(x | n) is the Kolmogorov complexity of  x given n. Hence, the Kolmogorov 

complexity of  x, with respect to an universal Turing machine U is the length of  the 

shortest program that generates x. The Kolmogorov complexity of  an arbitrary string x 

is non-computable due to the non-existence of  an algorithm to solve the halting problem 

[21] [51] . In section 8.2.2, we shall show efficient asymptotic upper-bounds on 

Kolmogorov complexity, as well techniques to estimate complexity. 
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13.1.1 Estimating K(x |y) 

In this section we show how to estimate the conditional Kolmogorov complexity of  an 

image x given another image y. Let us assume that the size of  image x is N by N pixels. 

We also assume that the image x can be divided up into l  non-overlapping blocks of  size 

k x k34. Then for each block B in image x  we do the following: 

• Find the corresponding k x k region in image y that minimizes the L2 distortion. 

Note the start coordinates of  the block and also store error matrix (i.e. the pixel-

by-pixel difference between the two regions) to allow for exact reconstruction of  

the block. The optimal start locations is computed in the following way:  

 ( )
2

, 1 1
( , ) arg min ( , ) ( , )

k k

x y y
a b i j

p p I a i b j B i j
= =

= + + −∑∑  (13.2) 

where, a and b are the start coordinates and can lie anywhere in image y, B is the 

block in image x, for which we are trying to find the best match and where k the 

size of  the block in image x. 

                                                

34 The fact the image and the block are both square is for clarity of  explanation. The 

image and the blocks could be rectangular; additionally the blocks could also be of  

different sizes.  



   

 

317 

• Repeat step 1 for all the blocks. Now, we have the locations of  the 

corresponding regions in image y for each block in image x as well as the error 

matrix. 

• Now, construct one dimensional sequence of  symbols in the following manner.. 

We process the blocks in image x in raster scan order. Then for each block in 

image x :  

• First store the pixel locations of  the best match in image y. i.e. store the locations 

as (px, py). 

• Store the error matrix in raster scan order. 

• Repeat the first two steps until we have processed all the blocks in image x. 

• At the end of  the previous step, we would have constructed an one dimensional 

sequence of  symbols. Now compress this one dimensional sequence using a 

standard compressor such as bzip2 [111] .  

We have thus computed K(x|y), the conditional Kolmogorov complexity of  image x 

with respect to image y. 

13.1.2 Estimating K(x|A) 

In this section, we show how to compute K(x|A), the conditional Kolmogorov 

complexity of  an image x given a buffer of  images A. Computing this measure is very 

similar to computing K(x|y), the conditional Kolmogorov complexity of  image x when 

given image y, presented in the previous section. 
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As in the previous section, let us assume that the size of  image x is N by N pixels. 

We also assume that the image x can be divided up into l  non-overlapping blocks of  size 

k x k. Now, additionally assume that we have r images in buffer A. Then, the procedure 

to compute the Kolmogorov complexity remains identical to the previous section, with 

one important difference — the minimization in equation (13.2) is now to be carried out 

over the entire buffer. Thus:  

 ( )
2

, , 1 1
( , , ) arg min ( , ) ( , )

k k

x y n
a b n i j

p p q I a i b j B i j
= =

= + + −∑∑  (13.3) 

where as before, n is the image index in the buffer A and can be any one of  the r images, 

a and b are the start coordinates and can lie anywhere in image In, B is the block in image 

x, for which we are trying to find the best match and where k the size of  the block in 

image x. The rest of  the procedure to calculate the conditional Kolmogorov complexity 

remains the same as the previous section. 

13.2 The phasor distance 

A phasor ( ) exp( ( ?))p n a j nω= − +  is represented using an ordered triple: {a, ω, θ}. 

Where, a is the amplitude of  the phasor,  ω is the frequency and θ is the initial phase. To 

determine the distance between two phasors, assume that we are given two phasors p(n) 

and q(n) with corresponding triples {a, ω1, θ1} and {b, ω2, θ2}. We further assume that 

they are defined over n ε [0,..N-1]. From figure A.1 it is easy to see that the instantaneous 

distance is:  
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 2 2
1 2 1 2( , , ) 2 cos(( ) (? -? ).d p q n a b ab nω ω= + − − −  (13.4) 

Now, the squared distance averaged oven N points is: 

 2 2 1 2

1 2

1 exp( ( ) )1
( , ) 2 Re exp( ? ) .

1 exp( ( ))
j N

D p q a b ab j
N j

ω ω
ω ω

  − − = + −   − −   
 (13.5) 

Such a distance formulation has many advantages.  

• The distance should be a function of  all components of  each phasor {a,  ω, θ} as 

well as the number of  data points, N. 

• The squared distance between two phasors will be uniformly distributed in the 

range 2 2 2 22 , 2a b ab a b ab + − + +  . Hence, for large values of  N, we should 

expect D to converge to 2 2a b+ (weak law of  large numbers). 

Figure 13.1: Instantaneous distance in the complex plane, between two phasors 

{a,ω1,θ1(n)} and {b,ω2,θ2(n)} at time n. 

∆θ(n) 
{a, ω1} 

distance 
{b, ω2} 

x 

 j  y 
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1. For small N, we should expect the distance to be affected by the initial phase 

and this should gradually be less significant. 

13.3 Enhancing image storyboards 

Conventional image based storyboards do not capture the dynamism of  the underlying 

audio-visual data. Hence there has been some effort to improve the interactivity of  these 

schemes [95] . There, the image summary was enhanced with text (either from manual 

transcripts or OCR) and presented in a manga35 like fashion. We outline four possible 

ways of  enhancing current image summarization schemes. 

• Text balloons: If  we have text aligned transcripts, then it may be possible to 

extract the important sentences corresponding to the cluster and then displaying 

them when the user moves the mouse over the relevant image. 

• Audio segments: If  we perform an acoustic analysis of  prosody [40] , then we 

can identify important boundaries in the discourse (both for spontaneous and 

structured speech). Then, we could associate each key-frame with this audio 

segment. In the usage scenario, the user would click on the key-frame to hear the 

corresponding audio segment.  

• Animations: At present image based storyboards are static i.e. the image 

representing each cluster does not change over time. An interesting variation 

                                                

35 Manga is the Japanese for a comic book. 
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would be to represent each image by an animated GIF, which cycles through 

other images in the cluster when the user moves the cursor over the storyboard 

key-frame. Another attempt at infusing dynamism is the dynamic STG [101]  in 

which the shots comprising each cluster are rendered slowly over time.  

• Structure and syntactical highlights: Many domains possess very specific rules 

of  syntax and characteristic structural elements that are meaningful in that 

domain. Examples of  structure in films include the dialog and the regular anchor 

(ref. section 6.5). Specialized domains such as baseball, echocardiogram videos 

have a very specific syntactical description. These domains would greatly benefit 

from higher-order domain grouping rules that arranges the key-frames of  the 

cluster in a manner highlighting the rules of  syntax and the domain specific 

structures. 

13.4 Skims: The first user study  

This was the first user study done for the evaluation of  visual skims [88] . We now note 

the important differences with the audio-visual skim generation discussed in chapter 10: 

• The skims were generated using visual analysis alone. They contain no audio, i.e. 

they are silent.  

• There is no utility framework for modeling user comprehensibility, thereby 

precluding a principled generation of  the skim.  
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o Without the user model, it is, for example, hard to quantify the effect 

of  reducing a shot by say 10% on comprehensibility.   

• Lack of  a utility model also has another effect.  Within the framework of  this 

experiment, it is not possible to come up with a unique way to achieve a certain 

condensation rate. Say we want to condense a sequence by 50%. Then, this 

condensation could be achieved either by condensing all the shots by 50%, or by 

dropping half  the shots, or perhaps a combination of  the two. What is optimal? 

This problem is addressed with the utility optimization framework of  chapter 10. 

• The syntax based shot dropping strategy in chapter 10 is more sophisticated, 

since it incorporates the shot detection false-alarm rate when making a decision. 

Also, for a dialog, in this experiment, the shots were only dropped from the right.  

The scenes used for creating the skims were from four films: Blade Runner (bla), Bombay 

(bom), Farewell my Concubine (far), Four Weddings and a Funeral (fou). The films were chosen 

since they exhibit diversity in film-making styles. 

13.4.1 Experimental set-up 

For each video sequence, it is possible to condense the sequence to any condensation 

rate. Also note that since we are conducting a user study, it is only possible to coarsely 

sample the time complexity graph Figure 8.4 (note that each shot is a single point on 

this graph), since each user can only see a small number of  skims before getting fatigued. 
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Since this was to be our first experiment, we chose to chose to test our theories at 

critical locations, where we felt that it may break down. 

The skims were of  the following types:  

• Upper bound (Ub): each shot was reduced to its upper bound (ref. Section 8.2.4) 

after estimating its visual complexity. In this skim, no syntax reduction scheme is 

employed. i.e. all the shots in the original sequence are present.  

• Lower bound (Lb): each shot was reduced to its lower bound (ref. Section 8.2.4) 

after estimating its visual complexity. In this skim, no syntax reduction scheme is 

employed. i.e. all the shots in the original sequence are present. 

• Pure syntax (Ps): In this skim, we employ maximal syntax based reduction. 

However, all the shots that are present in this skim, are kept at their original 

lengths. i.e. none of  the shots in this skim form undergo visual complexity based 

duration reduction. 

• Syntax with upper bound (Ps-Ub): In this skim, we employ maximal syntax based 

reduction, and all the shots that remain in the skim are reduced to their upper 

bound. 

• Syntax with lower bound (Ps-Lb): In this skim, we employ maximal syntax based 

reduction, and all the shots that remain in the skim are reduced to their lower 

bound. 

Hence, each skim represents a maximally reduced skim for that type ( Table 13.1). We 

conducted a pilot user study with five PhD students. The study used four films (one clip 
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from each), with five skims per clip. Each clip had progressive and a dialog scene. 

The testers were largely unfamiliar with the films (each film on the average was familiar 

to 1.5 students) and  were expected to evaluate the skims on two metrics:  

• Coherence: do the sequence of  shots tell a story?  

• Skip original?: confidence that having seen the skim, there is no need to see the 

original.  

The metrics were on a scale of  1-7 (strongly disagree = 1 and strongly agree = 7). None 

of  the clips or the skims had audio. We additionally asked each tester to rate the “best” 

and the “worst” skim per clip. In case of  ambiguity, they could name more than one 

“best/worst” skim. 

Table 13.1: Skims lengths in seconds for each clip and skim type. The numbers in brackets 

represent the percentage reduction. The films in order: Blade Runner, Bombay, Farewell my 

Concubine, Four Weddings and a Funeral. 

Film Orig. Ub Lb Ps Ps-Ub Ps-Lb 

bla 184 44 (76) 21 (89) 114 (38) 35 (81) 16 (91) 

bom 114 45 (60) 21 (82) 41 (64) 22 (81) 10 (91) 

far 153 53 (65) 26 (83) 103 (33) 31 (80) 15 (90) 

fou 165 31 (81) 14 (92) 58 (65) 17 (90) 8 (95) 
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13.4.2 Results  

Table 13.2: Test scores from five users. C: coherence, So: skip original? The last two rows 

represent best/worst preferences. 

Film Ub Lb Ps Ps-Ub Ps-Lb 

 C So C So C So C So C So 

bla 5.8 4.6 5.0 4.0 6.8 5.6 5.2 4.2 5.4 4.2 

bom 6.6 6.4 5.6 5.6 6.0 5.0 5.0 4.0 4.6 3.8 

far 6.2 5.6 5.8 5.6 5.4 4.2 3.8 3.6 4.0 3.6 

fou 6.0 4.6 5.4 4.4 5.6 3.8 5.4 3.0 4.8 3.0 

all 6.15 5.3 5.45 4.9 5.95 4.65 4.85 3.7 4.7 3.65 

best 9 5 4 2 1 

worst 1 3 3 6 9 

We showed the users a test clip and explained the two questions of  coherence and “skip 

original?” We then showed the original clip, two skims, the original clip again and then 

followed by three more skims. The original was shown first to establish a context and 

then shown again in the middle of  the test to refresh the user. This procedure was 

repeated for the remaining three clips. For each clip and each test taker, we randomized 

the order of  the skims. The results are shown in Table 13.2. 

13.4.3 Discussion 

The raw test scores as well as the “best/worst” classification by the user (Table 13.2) 

clearly indicate that the upper bound (Ub) works well. The use of  syntax has mixed 

results; while Ps and Ps-Ub get high coherence scores, they are not consistently judged to 



   

 

326 

be the best (only 6/21). Ps-Lb has the maximum data reduction, hence it is not 

surprising that it fares poorly. 

The Table 13.2, has some interesting trends that are worthy of  scrutiny: 

• For each film, the coherence of  the upper bound skim is greater than the 

coherence of  the lower bound skim. This implies that for the same sequence 

complexity, decreasing the shot durations decreases intelligibility of  the skim.   

• When the skim is generated in the “pure syntax” mode, they are still perceived as 

highly coherent (average score: 5.95). However, when coupled with complexity 

based reduction (upper and lower bound based reduction), the perceived 

coherence falls off  dramatically. This leads us to conclude that the information 

loss due to dropping a shot may not be perceptible when the shots are close to 

the original lengths (i.e. at low condensation) and become more rapidly 

perceptible at high condensation rates. 

A note on the user study. One of  the things that became apparent after the user study 

was that the participants were sometimes judging the quality of  the skim based on 

comparisons with the original, using specific markers. For example, if  a shot containing a 

flag that was present in the original, but was missing from the skim, the participants 

would label it as less coherent, whereas they ought to have judged the skim on its own 

merit. This “pattern-recognition” that seemed to have taken place in the experiment 
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prevents us from improving the skim quality in a meaningful way, since skims by 

definition entail a loss of  information.  

13.4.4 Conclusions 

We conducted a pilot user study on four clips by using five different skim types, each 

generated at maximal condensation. The results of  the user study indicate that while all 

skims are perceived as coherent (C>4.7) the upper bound based skim (60~80% 

condensation) works the best with the syntax based summaries providing mixed results.  

13.5 Skims: The second user study 

This section will detail the results of  the second user study done at Columbia. These are 

the main differences with respect to the optimal skim generation algorithm in chapter 10. 

• The skims used in this experiment have no audio i.e. they are silent. 

• The utility based skim generation formulation used in this experiment is less 

sophisticated than the one described in chapter 10. This is because of  the 

following reasons: 

• There is no utility formulation for audio data. 

• The incorporation of  audio necessitates the development of  coupled constraints 

on both audio and video, making the optimization more difficult. 

The scenes used for creating the skims were from four films: Blade Runner (bla), Bombay 

(bom), Farewell my Concubine (far), Four Weddings and a Funeral (fou). The films were chosen 
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for their diversity in film-making styles. While we arbitrarily picked one scene from 

each film, we ensured that each scene had one dialog segment. We detected shots using 

the algorithm to be found in chapter 2,  [109] , and with the shot-detector parameters 

{motion: M, color: L} (ref. Table 8.2). 

13.5.1 Experimental set-up 

We used this study to compare two algorithms — the one described in section 13.1, [88]  

and the one described in [90] .  Briefly, in the first algorithm, we attempted reduction to 

the target time by proportionately reducing the duration of  each shot. If  the target time 

could not be met in this manner, we would then drop shots according to rules of  syntax. 

The second algorithm uses a utility based skim generation formulation, that also 

incorporates shot detector uncertainty in its formulation.  

We created two skims (one from each algorithm) at each of  the four different 

condensation rates (90%, 80%, 70% and 50%). Ideally, we would liked to have created 

one skim per condensation rate, per film. However, this would have meant that the user 

would have to rate 32 skims (two algorithms, four rates, four scenes), an exhausting task. 

We ordered the scenes according the number of  shots, and the scene with the maximum 

number of  shots was compressed at 90%; the scene with the next highest number of  

shots at 80% and so on. A little thought indicates that this is a difficult test set for testing 

our algorithm. 
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We conducted a pilot user study with five graduate students. Each film was on the 

average, familiar to 2.25 students. The testers were expected to evaluate (Table 13.3) each 

skim, on a scale of  1 - 7 (strongly disagree – strongly agree), on the following metric: 

Does the sequence tell a story? They were additionally asked to rate their confidence in 

answering the four generic questions of  who? where? when? what? for the four skims 

(ref. Section 8.2.3). Each user watched the skims in random order. After the viewers had 

evaluated all the eight skims, we also asked the users to evaluate the two skims at each 

condensation rate. For each pair, they were asked indicate (Table 13.4) degree of  

agreement (scale 1 - 7) with the statement: skim A is better than skim B. 

13.5.2 Results  

The test scores indicate that the new improved algorithm outperforms the old one at 

almost every condensation rate and at every question. This improvement is statistically 

significant. We computed the students t-test on the result of  the direct skim comparison. 

The null hypothesis that the two skim algorithms were identical was rejected at 

confidence level better than  99.99%.  

Table 13.3: Test scores from five users. The columns: the algorithm used, the film, 

condensation rate, and the five questions. 

Algo. Film Rate Story? where? what? who? when? 

new / old bla 90 4.8 / 4.0 6.8 / 6.6 5.8 / 5.6 6.6 / 6.8 5.2 / 5.0 

change   + 0.8 + 0.2 + 0.2 - 0.2 + 0.2 

new / old far 80 5.8 / 5.2 7.0 / 6.8 6.4 / 6.2 7.0 / 6.8 6.4 / 6.4 

change   + 0.6 + 0.2 + 0.2 + 0.2 0.0 
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new / old bom 70 6.4 / 5.6 7.0 / 6.8 6.4 / 6.2 7.0 / 7.0 6.2 / 6.2 

change   + 0.8 + 0.2 + 0.2 0.0 0.0 

new / old fou 50 6.4 / 5.8 7.0 / 7.0 6.4 / 6.0 7.0 / 6.8 5.8 / 5.4 

change   + 0.6 0.0 + 0.4 + 0.2 + 0.4 
 

Table 13.4: The result of the double-blind side-by-side comparison of the two skim algorithms. 

The new algorithm is preferred over the old one for all condensation rates. This improvement is 

statistically significant.  

Rate New > Old? 

90 % 5.0 

80 % 5.2 

70 % 6.2 

50 % 5.6 

All 5.50 

13.5.3 Discussion 

From the Table 13.3, it seems that the excellent user feedback tapers off  at the 80% 

condensation rate (the story? column in Table 13.3), indicating that perhaps the syntax 

based reduction is too restrictive; at 90% condensation rate it may be better to drop 

more shots thus increasing the average shot duration of  the remaining shots. 

13.5.4 Conclusions 

We conducted a pilot user study on four scenes, generating skims using two skim 

generation algorithms, at four different condensation rates. The results of  the user study 

shows that while all skims are perceived as coherent, the skims generated at less than 
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80% condensation work well. We also showed that the improvement in skim 

comprehension,  due to the new algorithm over the old one is statistically significant. 

 

 


