
Dynamic Rate Shaping

of Compressed Digital Video

Alexandros Eleftheriadis

Submitted in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

Columbia University

1995

c 1995

Alexandros Eleftheriadis

All Rights Reserved

ABSTRACT

Dynamic Rate Shaping

of Compressed Digital Video

Alexandros Eleftheriadis

We introduce the concept of Dynamic Rate Shaping (DRS), a technique to adapt

the rate of compressed video bitstreams (e.g., MPEG-1, MPEG-2, H.261, JPEG) to

dynamically varying rate constraints by operating directly in the compressed signal

domain. Such a scheme is shown to be critical for multimedia communication sys-

tems, since it can guarantee universal interoperability between encoders/decoders

and networks with widely di�erent (and even time-varying) quality of service guar-

antees. The concept is shown to evolve naturally by considering �rst the operation of

an actual multimedia communication system, in the form of the \Xphone" testbed

that we have developed. It is shown that a key technique for enabling video com-

munication using a system based on a best-e�ort operating system and network is,

among others, adaptive rate control of the bit rate of video (JPEG in this case).

A natural extension of the adaptive rate control approach in Xphone is Data Par-

titioning. This scheme splits a compressed bitstream into two parts, and achieves

robustness by transmitting them over channels with di�erent quality of service guar-

antees. This provides the �rst critical step in detaching the manipulation of the

rate from the encoder. An analysis of optimal data partitioning is provided using

an operational rate-distortion context, and several algorithms are proposed. The

DRS concept then arises by eliminating the second bitstream and allowing the rate

constraints to vary over time.

DRS provides an interface between the encoder and the network, with which

the encoder's output can be perfectly matched to the network's quality of service

characteristics. In essence, DRS bridges the gap between constant and variable bit

rate video, providing a continuum of possibilities between the two. The problem of

optimal DRS is analyzed, and a family of optimal and fast algorithms is described.

We also show that Data Partitioning is a special case of \clustered constrained"

DRS. Some of the fast DRS algorithms perform extremely close to optimal; their

low complexity allows even purely software-based real-time implementation, thus

making them attractive candidates for incorporation in actual multimedia commu-

nication systems.

Contents

1 Introduction 1

1.1 Introduction : 1

1.2 Architectures for Multimedia Communications : : : : : : : : : : : : : 4

1.2.1 The Computer : 5

1.2.2 The Network : 12

1.2.3 The Video Codec : 17

1.3 Overview and Contributions of the Thesis : : : : : : : : : : : : : : : 19

1.3.1 The Xphone System : 19

1.3.2 Data Partitioning : 22

1.3.3 Dynamic Rate Shaping : 23

2 The Xphone System 27

2.1 Introduction : 27

2.2 The Xphone System Architecture : 32

2.2.1 Call Management : 33

2.2.2 Scheduling : 34

2.2.3 Network Transport : 36

2.2.4 Media-Speci�c Support : 37

2.3 Source Bit Rate Control : 38

2.3.1 The JPEG Compression Algorithm : : : : : : : : : : : : : : : 39

i

2.3.2 A Quantizer{Rate Model : 40

2.3.3 Adaptive Rate Control Algorithm : : : : : : : : : : : : : : : : 42

2.4 End-To-End Delay : 45

2.4.1 Sources of End-to-End Delay : : : : : : : : : : : : : : : : : : 46

2.4.2 End-to-End Delay Bounding : : : : : : : : : : : : : : : : : : : 48

2.4.3 Average End-to-End Delay Minimization : : : : : : : : : : : : 49

2.5 Audio/Video Synchronization : 52

2.5.1 The Synchronization Problem : : : : : : : : : : : : : : : : : : 53

2.5.2 Audio/Video Synchronization Algorithm : : : : : : : : : : : : 54

2.6 Concluding Remarks : 58

3 Data Partitioning 61

3.1 Introduction : 61

3.2 Motion-Compensated Transform Coding : : : : : : : : : : : : : : : : 65

3.2.1 The Optimal Transform|Karhunen-Loeve : : : : : : : : : : : 66

3.2.2 The Discrete Cosine Transform : : : : : : : : : : : : : : : : : 67

3.2.3 Video Compression Using Transform Coding : : : : : : : : : : 69

3.2.4 The MPEG Picture Structure : : : : : : : : : : : : : : : : : : 72

3.2.5 Motion Compensation : 75

3.3 The Data Partitioning Problem : 80

3.3.1 Data Partitioning : 80

3.3.2 General Problem Formulation : : : : : : : : : : : : : : : : : : 83

3.4 Data Partitioning in Non-Predictive Coding : : : : : : : : : : : : : : 84

3.4.1 Problem Formulation : 84

3.4.2 The Optimal Algorithm : 86

3.4.3 Performance Evaluation : 94

3.5 Data Partitioning in Predictive Coding : : : : : : : : : : : : : : : : : 97

ii

3.5.1 Problem Formulation : 97

3.5.2 The Causally Optimal Problem : : : : : : : : : : : : : : : : : 99

3.5.3 The Causally Optimal Algorithm : : : : : : : : : : : : : : : : 101

3.5.4 Performance Evaluation : 102

3.5.5 The Memoryless and Rate-Based Algorithms : : : : : : : : : : 104

3.6 Concluding Remarks : 106

4 Dynamic Rate Shaping 108

4.1 Introduction : 108

4.2 The Rate Properties of Compressed Video : : : : : : : : : : : : : : : 112

4.2.1 Variable Bit Rate Video : 112

4.2.2 Constant Bit Rate Video and Rate Control : : : : : : : : : : : 114

4.2.3 Video Rate and Communications Systems : : : : : : : : : : : 117

4.3 Dynamic Rate Shaping : 121

4.3.1 The Formulation of the Dynamic Rate Shaping Problem : : : 122

4.3.2 The Family of Dynamic Rate Shaping Algorithms : : : : : : : 125

4.4 Constrained Dynamic Rate Shaping : : : : : : : : : : : : : : : : : : : 126

4.4.1 Problem Formulation : 128

4.4.2 Causally Optimal, Memoryless, and Rate-Based Algorithms : 132

4.4.3 Performance Evaluation : 135

4.4.4 Clustering : 140

4.5 Unconstrained Dynamic Rate Shaping : : : : : : : : : : : : : : : : : 143

4.5.1 Problem Formulation : 145

4.5.2 Optimal Breakpoint Vector Selection : : : : : : : : : : : : : : 147

4.5.3 Performance Evaluation : 152

4.6 Applications : 154

4.6.1 Transcoding and Codec Interoperability : : : : : : : : : : : : 154

iii

4.6.2 Trick Modes : 155

4.6.3 Communication in Heterogeneous Networks : : : : : : : : : : 156

4.7 Concluding Remarks : 157

5 Conclusions 160

References 164

iv

List of Figures

1-1 A projection of the multimedia systems space. : : : : : : : : : : : : : 5

2-1 Xphone in a projection of the multimedia systems space. : : : : : : : 31

2-2 Xphone application layout. : 33

2-3 Xphone call management state model. : : : : : : : : : : : : : : : : : 34

2-4 Bandwidth vs. quantizer step size (B(Q)) for various image sizes. : : 41

2-5 Example scenario of video bit rate control algorithm. : : : : : : : : : 43

2-6 Quantizer (Q) hysteresis-based adaptation mapping (�Q = Q(t) �
Q̂(t), �Q0 = Q(t+ �t)� Q̂(t)). : 44

2-7 Adaptation of Q to network load in an actual videoconference (3 min

duration). : 45

2-8 End-to-end delay increments and audio bu�er occupancy in an actual

videoconference. : 47

2-9 Restart protocol for end-to-end delay bounding. : : : : : : : : : : : : 48

2-10 Estimated end-to-end delay with and without silence detection in

actual videoconferences (2 min duration). : : : : : : : : : : : : : : : 51

2-11 Estimated transmission delay with and without silence detection, for

the sessions of Figure 2-10. : 52

2-12 Audio output bu�er occupancy. : 55

3-1 Segmentation of images or video frames into blocks. : : : : : : : : : : 70

v

3-2 Zig-zag scanning pattern of transform coe�cients. : : : : : : : : : : : 72

3-3 The MPEG Picture Structure. : 74

3-4 The MPEG sequence structure (display and coding orderings). : : : : 78

3-5 Block diagram of a motion-compensated transform coder. : : : : : : : 79

3-6 Block diagram of a Data Partitioning system. : : : : : : : : : : : : : 81

3-7 Breakpoint position in the zig-zag pattern of DCT coe�cients. : : : : 82

3-8 Overview of the bisection algorithm. : : : : : : : : : : : : : : : : : : 89

3-9 Slice 20 (full-width, frame 0) from \Flower Garden", coded at 24

Mbps (x) and 12 Mbps (o). : 93

3-10 Data partitioning of frame-based, intra coded \Flower Garden", from

24 Mbps to 12 Mbps, using optimal and rate-based algorithms. : : : 96

3-11 Slice 20 (full-width, frame 3, P-picture) from \Mobile" coded at 4

Mbps and partitioned at 3.2 Mbps: (x) D̂(Bi), (o) D(Bi). : : : : : : 101

3-12 Bit distribution for the \Mobile" sequence coded at 4 Mbps, with I

period 12, and B period 3 (the overhead bits include all non-DCT

bitstream components). : 103

3-13 PSNR (Y only) for \Mobile" sequence, frame-based coded at 4 Mbps

and partitioned at 3.2 Mbps using the causally optimal, memoryless,

and rate-based algorithms. : 104

3-14 Distribution of accumulated error, causally optimal, and memoryless

distortions across all slices of a picture (\Mobile", coded at 4 Mbps

and partitioned at 3.2 Mbps, frame 3, P picture). : : : : : : : : : : : 105

4-1 Variable bit rate motion-compensated transform encoder. : : : : : : : 113

4-2 Constant bit rate motion-compensated transform coder with rate con-

trol. : 115

4-3 De�nition of Dynamic Rate Shaping. : : : : : : : : : : : : : : : : : : 123

vi

4-4 The family of Dynamic Rate Shaping algorithms. : : : : : : : : : : : 126

4-5 Breakpoint position in the zig-zag pattern of DCT coe�cients. : : : : 127

4-6 R(D) curves for an intra macroblock from \Flower Garden", coded

at 24 Mbps (x) and 12 Mbps (o). : 136

4-7 R(D) curves for the total (A and E) and current picture only (E)

shaping distortion for a macroblock from a P picture of \Flower Gar-

den", coded at 4 Mbps and rate shaped at 3.2 Mbps. : : : : : : : : : 136

4-8 Rate shaping of \Flower Garden" using the optimal, rate-based, and

recoding approaches. The source is coded at 24 Mbps and rate shaped

at 12 Mbps. : 137

4-9 PSNR performance for rate shaping of \Mobile" using the (causally)

optimal, memoryless, rate-based, and recoding approaches. The source

is originally coded at 4 Mbps and rate shaped at 3.2 Mbps (I pe-

riod 12, P period 3). : 138

4-10 Average PSNR performance for rate shaping of \Mobile" using the

(causally) optimal, memoryless, rate-based, and recoding approaches,

for various target rates. The source is originally coded at 4 Mbps (I

period 12, P period 3). : 139

4-11 Clustering approach for the reduction of algorithmic complexity. : : : 141

4-12 PSNR performance for clustered (C(44)) rate shaping of \Mobile" us-

ing the (causally) optimal, memoryless, and rate-based approaches.

The C(1) optimal algorithm is also shown. The source is originally

coded at 4 Mbps, and rate shaped at 3.2 Mbps (I period 12, P pe-

riod 3). : 142

4-13 The de�nition of breakpoint in the Constrained and Unconstrained

DRS algorithms. : 144

vii

4-14 R(D) \clouds" from a macroblock of \Mobile", coded at 4 Mbps.

The 12 DCT coe�cients generate 4,096 di�erent breakpoint vector

possibilities. : 148

4-15 Recursive nature of run-length code generation. : : : : : : : : : : : : 149

4-16 PSNR performance for rate shaping of \Mobile" using the uncon-

strained optimal and memoryless algorithms, as well as the con-

strained optimal algorithm. The source is originally coded at 4 Mbps

and rate shaped at 3.2 Mbps (I period 12, P period 3). : : : : : : : : 153

viii

List of Tables

2.1 Coe�cients of polynomials p1(x) and p2(x) in eq. (2.1) (B(Q) model). 42

3.1 Typical quantizer weights for frequency-weighted quantization (larger

weights correspond to coarser quantization). : : : : : : : : : : : : : : 71

ix

Acknowledgements

I would like to express my sincere gratitude to Prof. Dimitris Anastassiou who

supervised the research work contained in this thesis. Perhaps more important

than the tangible results of a doctoral dissertation is the process of intellectual

growth that produces them. I am particularly indebted to his guidance, his acute

understanding of the importance of system-level issues, and his encouragement to

pursue my own interdisciplinary interests.

During the development of this thesis I also had the bene�t of interacting with

a number of colleagues and friends. I thank in particular Professors Shih-Fu Chang

and Martin Vetterli, and my ex-colleagues Professors Antonio Ortega and Kannan

Ramchandran. Special thanks go to my colleague Sassan Pejhan with whom we

closely collaborated on a number of projects, and also Ilana Pelzig-Cellum and

Moleka Ahmed who assisted me in the development of the Xphone system. I would

also like to thank Drs. Arun Netravali and Joel Zdepski for taking time o� their

busy schedules to discuss with me several issues of the problems addressed in this

thesis. Finally, I would like to thank Drs. Arnaud Jacquin and Nikil Jayant for

providing me with the opportunity of spending two very stimulating summers at

AT&T Bell Laboratories.

The quality of the thesis has been signi�cantly improved by the diligent e�orts of

the members of my defense committee: Profs. H. Meadows, S.-F. Chang, S. Feiner,

and D. Duchamp, whom I all thank.

Finally, I would like to express my gratitude to my wife, Sonia, for her support

throughout the lengthy years during which this thesis was prepared.

x

1

Chapter 1

Introduction

1.1 Introduction

The concept of a multimedia computer system has emerged due, in large part, to

signi�cant advances in computing and networking technologies that allow the imple-

mentation of sophisticated systems. The sheer computation speed and memory sizes

of computers have grown exponentially during the past decade, and it seems that this

trend will continue well into the next decade; network bandwidth evolution actually

leapfrogged computers with the introduction of �ber-based transmission technology.

As the computer continues to penetrate into everyday life, users and developers

strive to �nd new ways of information representation and exchange [72, 10]. The

multimedia concept promises to ful�ll the need for expanded exibility and more

direct interaction with computers; in the same way that windows were the dominant

\presentation technology" of the past decade, multimedia will play a similar role

for future applications. The former uses high-quality, computer-generated graphics,

while the latter will be able to use natural video and audio as well. The concepts of

exible image/video also found their way into consumer electronics products (e.g.,

Compact Disk Interactive|CD-I|and Photo-CD).

The enabling technology for multimedia systems is video compression algorithms.

2

The raw bit rate of PCM-coded video (24 bits per pixel, 640 � 480 pixel frames, 30

frames per second) is approximately 220 Mbps, far exceeding today's general purpose

computer capabilities. Recent advances in compression technology for images and

video have resulted in reductions of two orders of magnitude, which are well within

today's limits. In addition, the work of international standardization organizations

and the increased interest in video applications for computers and consumer elec-

tronics products have resulted in VLSI implementations of these algorithms which

can be used for the development of real systems [11, 121, 5, 102, 81, 83, 4, 6, 91, 3].

Video coding, however, is just one of the components of a multimedia system.

The support of continuous, high-volume and real-time data (like video or audio) in

both computers and networks represents a tremendous shift in design methodology,

resulting in a re-evaluation of basic principles. Time dependency of information as a

concept only existed in dedicated systems (e.g., the telephone network, or embedded

systems); with multimedia, it becomes an issue for practically any application. The

focal point of multimedia research is to provide bit-pipe characteristics (guaran-

teed bandwidth, low and constant delay, accurate synchronization) to packet-based

systems, using algorithms and architectures that can be widely deployed.

In this thesis we provide solutions to a number of open problems in multimedia

communications, with particular emphasis on the treatment of compressed video

signals. Central to the whole thesis are the notions of \exibility" and \interoper-

ability," i.e., algorithms that allow di�erent components of a multimedia system to

work together, even if their design assumptions are radically di�erent. Our attempt

has been to utilize signal processing principles, and apply them in a computer net-

working context. This implies that a detailed understanding of issues in a number

of traditionally separate �elds was required, ranging from source coding theory to

advanced operating systems. We have found this atypical interaction extremely

3

interesting and fruitful. In fact, due to the inherently interdisciplinary nature of

multimedia, such an approach is often the only one that can provide meaningful

and useful results.

In this introductory chapter we �rst provide a brief overview of recent research

in the area of multimedia systems and multimedia communications (Section 1.2).

This will help us construct a reference framework for later analyses, and introduces

several interesting problems that can be directly or indirectly solved using the re-

sults presented in this thesis. We then present a brief outline of the key problems

addressed in this thesis, as well as a summary of its major original contributions

(Section 1.3).

In this overview we establish that the basic conclusions drawn concerning mul-

timedia communications are:

� there is a high degree of uncertainty in terms of guaranteeing time constraints

in a general purpose computer, even with real-time scheduling support,

� there is a high degree of uncertainty in terms of guaranteed quality of service

in the network, due to the tradeo� between latency and reliable transport and

also due to the bottlenecks of reliable multicast transport protocols,

� the structure of standards-based video codecs (e.g., JPEG, MPEG-1, MPEG-

2) which will be widely used in computers is not robust enough to e�ciently

accommodate such an environment.

These fundamental principles are the driving forces behind much of the develop-

ments in this thesis, and will be key themes in the chapters to follow.

4

1.2 Architectures for Multimedia Communications

The broad range of applicability of the term \multimedia system" necessitates the

establishment of some basic assumptions about the underlying components. We

identify three basic parameters that can serve as a rough basis for classi�cation

of such systems, all related to support of time-dependent operations. The �rst

parameter is the video codec (a key component of any truly multimedia system).

As will become evident in the sequel, the structure of the codec's algorithm and

the way the codec is interfaced to the system plays a signi�cant role in determining

the system's overall design. The second parameter is the equipment hosting the

codec; it can range from a general purpose computer|with or without real-time

support|to a specially designed dedicated device (e.g., a terminal with only display

and user input capabilities). Finally, the third parameter relates to the quality of

service (QoS) that the underlying network provides. The range here spans from

unreliable, multi-access networks, to ones with deterministic guarantees in terms of

both bandwidth and delay.

The 3-D parameter space is depicted in Figure 1-1. This parameterization is

\video-centric" and ignores several other potential media of a multimedia system,

such as multichannel sound or graphics. The assumption is that their overall con-

tribution to the bandwidth requirements of the system is small compared with that

of video. When this is not the case (e.g., in high-resolution 3-D animated graphics),

in several instances the same concepts applied to video can potentially be used for

these types of media.

We are mostly interested in applications that utilize general purpose computing

equipment; the relevant design area in Figure 1-1 is shown in light gray. This

represents the most interesting, and most complex, case; simpler cases, however,

like dedicated set-top units are also of importance. The area of high-end systems

5

JPEG H.261 MPEG

Video Codec

Multimedia Host Equipment

Dedicated Hardware

Real-Time OS

Best-Effort OS

Network QOS

Guaranteed

Statistical

Predictive

Best Effort

General Purpose
Multimedia Communication
Systems

Other

High-End Multimedia
Communication
Systems

Figure 1-1: A projection of the multimedia systems space.

is depicted in dark gray, and it includes real-time operating systems and network

transmission with guaranteed quality of service. In the following, we provide an

overview of the architectural considerations|and supporting algorithms|a�ecting

the computer, the network, as well as the codec itself. A broader overview, and

from di�erent perspectives, can be found in [62].

1.2.1 The Computer

Traditionally, general purpose computers are designed around a shared bus, with

the operating system controlling the access of resources by various application pro-

grams. In simple systems, where only a single application is allowed to run, the

design is straightforward and \at." In more complex multitasking or multiproces-

sor systems the operating system's layering is thicker, and its responsibilities are

6

more involved. The basic guidelines in both cases are fair resource sharing, and re-

liable processing or transfer of data between the various components of the system

(mass storage, memory etc.). During the years, a number of techniques have been

employed to maintain a geometric growth in terms of speed and memory sizes (bus

width increase, DMA, caches, pipelining, parallelism etc.). It should be noted that

the simultaneously increasing complexity of software has always been able to tax

the available hardware resources.

In supporting multimedia applications involving video and audio, a computer

must be able to handle continuous and real-time data ow. In addition, it must

provide time-dependent services for the timely transfer of information between its

various components. The di�culty in supporting these requirements is their time

and bandwidth scale; video for example may require the transfer of many kilobytes

per frame (i.e., every 33 msec, for a 30 frame per second video signal). Furthermore,

video and audio should be made available to applications with the same ease as text

and graphics. Although there are many systems which use dedicated connections

for video and audio (by bypassing the bus and/or the CPU, e.g., [9, 95]), their lack

of media integration precludes their classi�cation as multimedia systems.

1.2.1.1 The Operating System

The operating system has a central responsibility for supporting multimedia, as

the primary resource coordinating entity of the system. Current operating systems

utilize static priority scheduling for processes, using locks and blocking where ap-

propriate to facilitate resource sharing. As explained in [90] locking does not seem

to pose a problem for multimedia applications, due to their limited expected use

of shared data structures. Consequently, the primary objective of a multimedia

operating system is supporting time constraints speci�ed by application programs.

7

In order to meet such constraints it is essential to make the kernel fully pre-

emptible (by introducing extensive locking) [55, 80]. In addition, time constraints

have to be communicated to the system by applications. The form of these con-

straints can vary; due to the fact that some requests may be infeasible, time limits

are usually combined with priorities to facilitate the selection of requests to be

deferred.

It is important to note that software alone can not provide su�cient time-related

guarantees. Delays caused by interrupt and/or DMA processing in the lower half

of the kernel are substantial, but their adequate bounding requires hardware sup-

port [55]. Although bus scheduling and data path optimization techniques have

been proposed [120, 37], it seems unlikely that hardware support in a large scale

is possible. It is worth noting, however, that commercial operating systems have

started to incorporate timing information in their process scheduling algorithms

(primarily those derived from AT&T's Unix System V Release 4, e.g., SunOS 5.x,

IRIX 5.x), presumably to aid multimedia applications development.

An area which has received a lot of attention is disk scheduling for multime-

dia data. In order to support video on-demand and general multimedia database

services, special purpose disk scheduling and admission control algorithms have to

be employed. Techniques proposed constrain either the order of requests or the

physical block placement on the disk, in order to meet continuity requirements,

minimize bu�ering and maximize the number of users that can be concurrently

supported [107, 129, 118, 127].

1.2.1.2 Multimedia Services for Applications

Application-level multimedia services constitute a layer between the operating sys-

tem and the actual application. This layer has the responsibility of interfacing the

8

application with the actual media hardware (via the operating system), while pro-

viding features like media synchronization and coordination. A similar structure,

for example, is employed in the X Window system which provides distributed text,

raster graphics and coordination services. The literature on the subject is rather ex-

tensive (with even commercial implementations available, e.g., Apple's QuickTime),

and a detailed description of the various approaches is outside the scope of this sec-

tion. It will be useful, however, to provide a summarized view of the approaches

taken.

The primary service to application programs is synchronization; it is typically

classi�ed as intra-media or inter-media. In the former case, also referred to as rate

synchronization, it guarantees the possible rate constraint imposed by the media

at hand (e.g., 64 Kbit/sec for audio). Inter-media synchronization guarantees that

actions pertaining to di�erent media but related either implicitly (video and audio)

or explicitly (by the user, as in an image and associated text), occur simultaneously.

The so-called \lip-sync," which refers to the synchronization of lip movement (video)

and the associated speech signal, is an example of inter-media synchronization.

Since an extremely attractive application of multimedia communication is multi-

point conferences, the multimedia service should also provide distributed access and

synchronization services (e.g., oor control). These usually take the form of serializa-

tion in computer-supported collaborative work environments, as well as synchroniza-

tion in the communications subsystem. In the following we discuss synchronization

at all levels of a multimedia system.

Clearly, in describing a multimedia document one has to specify the timing in-

terrelationships between the various component objects. Techniques that have been

proposed include timelines (as in the MAEstro system [36] and QuickTime), tempo-

ral scripting languages, Timed Petri Nets [84], and formal description techniques (as

9

in protocol validation) [30]; in addition, international standardization activities are

underway to construct an object-oriented representation of multimedia and hyper-

media objects (ISO's Multimedia and Hypermedia Experts Group|MHEG) [77].

In cases where the temporal characterization is relative (i.e., not based on a glob-

ally known clock), linear programming techniques can be used during run-time to

compute and execute a schedule [16]. Note that such an approach greatly simpli-

�es editing, but on the other hand imposes a considerable burden on the run-time

environment.

At a lower level, speci�c time-dependent interrelationships have to be main-

tained. Although the subject has received a lot of attention for the case of dis-

tributed systems (discussed below), little work has been reported for local synchro-

nization: it is generally assumed that adequate support is provided locally at each

host. One plausible proposed approach is restricted blocking [115]; as an example,

if a video stream has to be blocked at a synchronization point, instead of staying

idle (blocked) it displays the previous frame. This alone, however, does not provide

enough operational versatility (consider for example the case of a network connec-

tion: restricted blocking will essentially increase the end-to-end delay by an amount

equal to its duration).

A more elaborate approach is based on physical and logical synchronization

frames [94]. The former are handled internally by the system, while the application

applies synchronization control at the logical frame level (or in exception handling)

via \upcalls." The device speci�cs are abstracted using a device speci�cation lan-

guage. Two problems with this approach are: 1) the communication overhead

between the system and the application may be substantial if logical frames are

close in size to physical frames, and 2) accurate corrective operation by the applica-

tion may require knowledge of the underlying device state, which is hidden by the

10

layering. An essential issue here|considering that decisions have to be reached and

enforced in few tenths of milliseconds for video and audio|is the observability of

the system; a more detailed discussion of this concept is presented in Section 2.5

In distributed systems, where the network intervenes between the source and

the destination, similar synchronization problems appear. In multipoint environ-

ments an additional problem concerns sequencing of operations. Fundamentally,

synchronization problems over networks are caused by delay variance (jitter) and

clock drift. The latter can be eliminated if the network itself provides an accurate

clock, or bounded (to a few milliseconds per day) using special host-to-host proto-

cols [86, 87]. Depending on the underlying networking technology, the jitter scale

can vary very much; contrast for example a multi-access environment and a constant

bit-rate link1.

In order to eliminate jitter, a well-known technique is bu�ering at the receiver.

For example, in [31] extensive bu�ering (up to 1 sec) of multiple user reaction sce-

narios is proposed in order to accommodate jitter and minimize the response time

experienced by the user. In other words, the system \anticipates" the user's reac-

tions and prefetches the necessary material, essentially providing a caching mech-

anism. This, however, is unacceptable for person-to-person communication, where

the end-to-end delay has to be less than 250 msec2. Another approach, taken in [69],

consists of selective video frame dropping at the transmitter, together with audio

bu�ering at the receiver. Frames are dropped when the asynchrony between video

and audio exceeds a prespeci�ed limit. In order to facilitate accuracy, the system

actually decides on a possible drop only after it has acquired access to the|token

ring|network. Note that this requires an extremely tight coupling between the

1A discussion of the network's implications in multimedia systems is provided in Section 1.2.2.
2This number is drawn from traditional long-distance telephony requirements. For other col-

laborative tasks this number is signi�cantly reduced

11

application and the network controller, which may not always be possible (in [69]

the authors used a real-time operating system of their own design). A similar ap-

proach is taken in [105], where again the sender controls synchronization based on

periodic feedback from the receiver. The feedback substitutes the knowledge of the

precise network access time and, coupled with suitable delay bounds (maximum and

minimum), is used to monitor the playback process at the receiver. We should note

that a signi�cant drawback in placing the control in the sender is that it complicates

one-to-many connections.

A well known problem in multipoint applications is sequencing. This is a form

of synchronization, but pertains only to adequate ordering of requests or mes-

sages [124]. A simple example can be seen in a distributed editing environment;

clearly, user actions must be performed in the same order for all participants of the

session. The simplest approach in this case is to allow access to the \conference

oor" to a single user at a time [8], with an obvious reduction in interactivity and

exibility. Another approach is to have centralized control; all messages are sent to

a central coordinating entity (a bridge) which orders them and further distributes

them to all recipients. Such a scheme, with multi-level bridging, is proposed in [119].

The drawback in this case is that the bridge must be able to handle substantially

higher load than each individual participant. Since this bridging is application-

speci�c, it cannot be handled by networking hardware. Of course, not all data need

to be subject to serialization (in [119] sequencing is a per-packet option). For ex-

ample, if video and audio are used only for communication support purposes, they

may be sent directly and not through the bridge. The possibly di�erent transmis-

sion delays, however, may be noticeable to the conference participants. Another

framework for multi-point synchronization has been proposed in [111], and consists

of maintaining logical clocks bound to logical input or output devices. Clocks may

12

be active if incremented in real-time, or passive if incremented by the devices them-

selves. By binding di�erent devices to the same logical clock, synchronization can

be achieved. A possible drawback in this case is that, in order to avoid blocking,

continuous communication must be maintained between all participants to ensure

proper management of the clocks. Even worse, the proposed system breaks down

in|very common|symmetric con�gurations.

1.2.2 The Network

Digital video coding alone would not be su�cient to allow widespread use of mul-

timedia communications; although the achieved bandwidth reduction is signi�cant

(up to two orders of magnitude), it still required a similar increase in available net-

work bandwidth. The introduction of �ber-based transmission technology provided

the potential for multi-gigabit transmission [7]. Although this potential has not

been fully tapped yet|being limited by the speed of electronics|many commercial

computer networks today operate at rates of 100-150 Mbps (even with twisted-pair

or coaxial cabling), or even 622 Mbps and beyond.

The integration provided by Asynchronous Transfer Mode (ATM) broadband

networks [2, 56] will allow a single network base to provide a multiplicity of com-

munication services [24]. As the ratio of communication over computing resources

increased, and quality of service considerations were introduced, it became apparent

that a reevaluation of networking concepts was necessary [76]. We should also not

exclude from consideration existing technologies, like the current Internet Protocol

(IP version 4) [70] or its forthcoming replacement, IP version 6 [33].

Seeing the network from a user's perspective, we are primarily interested in the

transport and network layers and the various services they will provide in future

communication networks. Clearly, these services will be critical in shaping the

13

structure of multimedia applications, and vice versa. In the following we give an

overview of the current status of research in high-speed integrated network services.

Our intention is to identify characteristics from which an operating environment for

future multimedia applications can be extrapolated.

At a high-level, it is realized that signi�cant streamlining is necessary in protocol

stack design, in order to eliminate replication of functionality; although layering is

conceptually attractive, it should not hinder e�cient implementation [28]. One of

the most direct approaches that can be taken in high-speed protocol processing is

parallelism [65, 103, 133]. As network bandwidth leapfrogged CPU speeds, the num-

ber of available CPU cycles for processing a single packet was signi�cantly reduced;

parallelism provides a natural solution, applicable to modern protocol designs as

well [92]. Noting that processing power is a more scarce resource than bandwidth,

additional enhancements can be achieved by reduced protocol processing require-

ments [52].

1.2.2.1 Transport-Layer Protocols

Current transport protocol designs (e.g., TCP [71]) are based on window ow control

and error control; the window essentially speci�es the number of packets that can

be in the network, unacknowledged by the receiver. A large window size improves

throughput, but at the same time increases the necessary bu�ering at the transmit-

ting site. In Gbps transmission rates, the size of the data that can be in-transit in

the network until an acknowledgment is received by the sender can be quite large

(across the US this time is approximately 30 msec, translating to many MBytes of

data that may have to be retransmitted) [103]. In addition, �ber-based channels

have a very low bit-error rate; consequently, reliability will be mostly a�ected by

packet losses due to congestion rather than actual bit errors. Current error protec-

14

tion schemes are targeted towards the latter; also, in the case of windowing, they

are strongly coupled with ow control.

In order to eliminate the drawbacks of windows, rate-based ow control is pro-

posed as an alternative for high-speed communication. In order to handle packet

losses, selective retransmissions of groups of packets may be used [25, 26, 92]; such

a scheme can be augmented by packet-based forward error correction in order to

reduce the number of retransmissions [53]. In addition, periodic state exchange

can be employed to eliminate almost all error recovery procedures and reduce the

error recovery timers that have to be maintained [92, 103]. An important consid-

eration for transaction-oriented applications (e.g, Remote Procedure Calls|RPC)

is the call setup time. In addition to the well-known handshake techniques, timer

based methods can be employed in which a connection is implicitly setup by the

reception of the �rst data packet; connection establishment can be acknowledged

with the data packet sent back, while connection termination can be e�ected via

timers [103, 53].

An important issue related to the quality of service provided by the network

layer is logical multiplexing; if multiple streams are multiplexed at the transport

layer then the network layer will have to apply the most demanding requirements to

all of them, and hence signi�cantly reduce e�ciency [28, 51]. Consequently, logical

multiplexing above layer 3 (network) should be avoided.

1.2.2.2 Network-Layer Protocols

Although not directly interfaced to the users, the network layer plays an important

role, since it is there where quality of service is enforced. The advent of integrated,

multimedia services introduces stringent constraints on bandwidth and delay re-

quirements. For example, person-to-person communication may require constant

15

availability of bandwidth (ranging from a few Kbps to many Mbps), and a delay

acceptable for human communication (less than 250 msec). An issue further compli-

cating the problem is variable bit rate sources (e.g., coded video), whose analytical

modeling is di�cult.

In order to accommodate the requirements of individual users, the network layer

must provide admission control (to control admission of new users) and policing

functions (to enforce that prenegotiated tra�c agreements are not violated). These

functions are closely related to the service discipline employed at the output queues

of the network switches. A comparison of such rate-based service disciplines is pro-

vided in [131]. Apart from deterministically guaranteed services, statistical guaran-

tees may be useful as well [54]. In a similar vein, observing that network users may

be able to adapt to variable delay, a predictive service type was introduced in [27].

In this case the bound can not be statistically characterized; the system merely

asserts that some very high fraction of the packets obey the bound. An admission

control scheme for predictive service is described in [66].

A facility that is crucial for multipoint multimedia communication is the ca-

pability of the network to support multicasting. Clearly, the overhead involved in

emulating one-to-many communication via replicated packet transmissions can very

quickly deplete network resources. The traditional IP was extended to support mul-

ticasting, as described in [34, 32]. E�cient and scalable multicasting in ATM-based

networks is still a research topic (see for example [125] and references therein). The

lack of source addressing in the connection-oriented ATM scheme does not allow

direct cell demultiplexing by mere examination of the cell header (VPI/VCI).

The capability of the network|and lower|layers to support multicasting must

somehow be incorporated in the transport layer (both in terms of data transport

and in terms of session establishment). In [99], the multicast channel is approached

16

in a fashion similar to tune-in TV broadcast channels. The authors recognize that

receiver processing may be required to e�ect error concealment; hierarchical coding

is suggested for this purpose. This approach is of course only applicable to video

and audio, with no sequencing requirements. A reliable multicast protocol based on

negative acknowledgments is described in [49], but without regard for ow control

or sequencing. In the current version of IP (version 4), multicasting is accessed by

applications through the UDP protocol, which is connectionless and unreliable. The

same is expected to hold for the next generation of IP (IPng), i.e., version 6.

Regarding session establishment, a number of paradigms can be adopted. The

most di�cult case is the support of dynamically set up conferences. Due to the

fact that multicast addresses are essentially a network resource, some form of man-

agement must be enforced. Clearly, it would be unacceptable for two independent

sessions to be accidentally merged together by using the same addressing parame-

ters. Although this \crosstalk" can be eliminated by appropriate �ltering, since this

has to be done above the network layer it unnecessarily taxes computing resources.

Issues related to session control are addressed in [112].

We should note that a number of protocols incorporating parts of the above con-

cepts have been actually implemented. Designs speci�cally addressing multimedia

communication issues include the Tenet protocol suite developed at U.C. Berke-

ley based on the RTIP protocol (Real-Time Internet Protocol) [54, 130], and the

ISI/BBN suite based on the ST-II network protocol coupled with the NVP and

PVP transport protocols for audio and video respectively [18]. Detailed feature

and performance comparisons between various transport protocols can be found

in [35, 65, 88, 60]. Most recently, e�orts within the Internet Engineering Task Force

(IETF) have resulted in a new light-weight transport protocol for real-time commu-

nications over IP, called RTP [113]. RTP, however, is essentially a packet header

17

speci�cation rather than an actual protocol; it is up to the applications to implement

end-to-end algorithms for their particular requirements.

1.2.3 The Video Codec

Although the primary function of the video codec is to reduce the video source

bit rate, there are a number of parameters that can signi�cant a�ect a system's

architecture. A major consideration is the characterization of the codec's output

stream: it can be constant or variable rate. The \natural" rate of most codecs

is variable, which results in constant image quality. In recognition of the need of

constant bit rate video (e.g., for CD-ROM applications), bu�er control techniques

are widely used to constrain the output rate to a constant value. Bu�er control is a

feedback technique, in which the encoder monitors the contents of the output bu�er

which is emptied at a constant rate (the channel rate); the encoder adapts the coding

process in order to ensure that the bu�er never underows or overows [6, 3, 96].

In applications such as residential video distribution, video-on-demand, or con-

sumer electronics products, the above scheme|coupled with appropriate audio

coding|is su�cient. In a B-ISDN environment, the equipment can be attached

to ATM Adaptation Layers (AAL) 1 (constant bit rate|CBR) or 2 (variable bit

rate|VBR) [2, 24, 117, 114], or even AAL 5 (intended primarily for data transmis-

sion). The inherent ease with which dedicated hardware can be accurately clocked

does not create any synchronization or related problems in the equipment hosting

the codec. Of course, we do not claim that e�cient VBR tra�c support in a network

is easy; if however it is supported, the end-user equipment can easily utilize it.

As was discussed in Section 1.2.1, when the codec is hosted in a general pur-

pose computer, the latter's architecture greatly a�ects the system's performance.

Furthermore, the extent to which computers will be supporting AAL's 1 and 2 is

18

not yet clear. Considerations related to interface hardware cost, actual connection

costs (billing) and the bursty nature of network tra�c generated by computers in

non-multimedia applications may a�ect the extent of this support. In order to re-

duce the analytical source rate modeling di�culties posed by VBR video, special

purpose codecs can be devised whose equivalent bu�er occupancy feedback infor-

mation is provided by the network policing function. Although such an approach is

indeed attractive, we should note that general purpose computers will most likely be

equipped with general purpose codecs, that is, very few assumptions will be made

on the underlying channel (be it the computer's bus and/or a possible network

connection).

From the above discussion we see that it is quite likely that the codec will have

to be interfaced to an environment where uncertainty may prevail. On the computer

architecture side (Section 1.2.1.1) we saw that real-time support may be available,

but will not completely guarantee \hard" real-time constraints; on the network side

(Section 1.2.2), unreliability may be present in the form of packet loss due to con-

gestion. In addition, inherent ine�ciencies of reliable multicast transport protocols

may enforce unreliability in multipoint multimedia applications. We should also not

exclude current communication and computing facilities as a possible environment.

Although quality of service cannot be guaranteed, multimedia communication may

still be possible albeit with considerable quality loss. Currently proposed standard

codecs|JPEG, MPEG-1, MPEG-2, H.261|however, were not designed for unreli-

able channels. Although a hierarchical design may have been used (as for example

in MPEG), the degree with which it can be put in use to accommodate unreliability

in a computer/network environment as previously described is rather limited.

19

1.3 Overview and Contributions of the Thesis

As mentioned throughout this system-level overview, a basic feature dominating

general-purpose, computer-based multimedia communications is that of uncertainty:

time-based constraints can not be fully guaranteed by the host computer, the net-

work connection may not be fully reliable, and the network delay and jitter may

not be fully guaranteed. On the other hand, economies of scale, exibility and

compatibility considerations will result in the deployment of standards-based image

and audio-video codecs (JPEG, MPEG, or H.261). The structure, however, of these

codecs does not fully match the abovementioned constraints. The mismatch may

be even more pronounced in multipoint environments over heterogeneous networks.

These considerations have motivated us to explore techniques that can provide

high-quality communication even under these adverse conditions. Our approach be-

gins with the examination of algorithms for a general-purpose environment, consist-

ing of standard workstations and networking equipment. This environment exhibits

essentially all of the di�culties identi�ed in Section 1.2.

1.3.1 The Xphone System

A complete testbed (Xphone) has been implemented, and has been used to test

and evaluate several di�erent original algorithms. The testbed is based on stan-

dard workstations running a multiuser, multitasking operating system (SunOS 4.1),

equipped with cameras and JPEG video compression hardware boards. The work-

stations are connected with each other using a 10 Mbps Ethernet network, shared

among approximately 25 workstations. This setup represents a typical con�gura-

tion for computer-supported collaborative work environments, as well as for simple

desktop videoconferencing.

Xphone has been designed as a distributed multimedia communication applica-

20

tion development system; in that sense, it is not a stand-alone application but it

provides core services which facilitate the development of applications that require

real-time audio-visual communication support. This broader approach introduces

several interesting problems which would not be present under a more narrow per-

spective. Its architecture is novel and, in its latest version, is comprised of several

di�erent modules. The core of the system is the Xphone library which is linked

to the application process, and serves as the principal coordinating entity between

the application and the communication facilities that Xphone provides. Xphone

introduces the concept of intra-application scheduling, which e�ectively implements

a micro-scheduler within an application and totally transparent to it. We show that

such scheduling is critical for supporting continuous data ow for video and au-

dio within the event-driven architecture of windowing systems (e.g., the X Window

System). It is also essential for implementing e�ective synchronization algorithms.

In addition to scheduling, Xphone also introduced full session control services for

point-to-point communication. A complete protocol was designed for that purpose,

operating between applications and special Xphone servers residing in each machine.

The semantics of the session layer are identical to that of a telephone call, emulating

traditional videoconferencing systems.

Within the Xphone testbed we have introduced and evaluated several di�erent

algorithms. A key open problem is that of audio-video synchronization. Since audio

and video signals follow di�erent paths within the host computer and may also be

subject to di�erent delays by the network, achieving accurate synchronization is not

trivial. This is particularly so because of the sensitivity of the human perception to

even very small deviations. We introduce a technique which bounds the temporal

misalignment by the video frame rate; this guarantees that, as frame rates increase

with faster computers, the accuracy will also increase. Note that the frame period

21

is a very natural \unit of measurement" for synchronization purposes, as can be

seen by considering that for very high frame periods synchronization (at least when

speech signals are concerned) is rendered meaningless.

Another open problem which has been addressed in Xphone is the rate control

of the video signal. Due to the high variability of the best-e�ort, multi-access

network used, any a priori assumptions regarding the available network bandwidth

are inappropriate. We introduce a novel technique in which the instantaneously

available bandwidth is monitored, and a non-linearly �ltered version of it is used

to control the compression ratio used. Since the exact compression ratio cannot be

controlled (since it depends also on the source material), a statistical relationship

is derived between it and the encoder's quantizer step size for typical head-and-

shoulders images.

Finally, a critical parameter for person-to-person communication is the end-to-

end delay. Very long delays can signi�cantly inhibit interaction, as they introduce

unnatural \pauses." Long distance telephony requirements mandate that delay is

kept below 250 msec. Due to the nature of Ethernet, end-to-end delays for audio-

visual signals can reach 1 sec in less than a minute. To mitigate this problem, we

introduced the concept of \on-demand" compression and utilized silence detection.

The former compresses video frames and submits them for transmission only when

su�cient network resources are available. The latter, in addition to reducing the

overall bandwidth requirements, introduces \relief intervals" during which the audio

output bu�ers at the receiver are allowed to drain (and hence the current end-to-end

delay drops to zero).

The Xphone system's architecture and algorithms are discussed in detail in Chap-

ter 2.

22

1.3.2 Data Partitioning

In Xphone, the algorithm utilized for video compression (JPEG) is relatively simple.

Temporal independence of individual frames is very helpful in terms of adapting the

continuous video source to a bursty one (albeit at a lower frame rate), using on-

demand compression and transmission. Hence we proceed to examine more closely

techniques with which more complex codecs can be interfaced to the network. We

focus on motion-compensated, block-based transform coders which represent the

state-of-the-art in video compression. The ISO/IEC MPEG-2 standard is used as

an example, since it is the most complex in this family of algorithms, and is also

expected to be the dominant technique used for several years to come.

Our approach explores the concept of hierarchical transmission: the original

information is segmented into layers of high priority (a coarse-level representation)

and low priority (high-detail re�nement). The two layers are transmitted either

with di�erent priorities or, if the underlying network does not support prioritized

transmission, with di�erent levels of forward error correction. In cases of network

congestion or other error-inducing situations, the low priority layer is discarded �rst.

When a single-layer approach is used, any losses can be quite detrimental to the video

quality at the receiver. Since any redundancy has, to a great extent, been removed

in the coded representation of the signal during the source coding process, recovery

from losses using interpolation or extrapolation can be quite di�cult and oftentimes

ine�ective. The dual-layer approach achieves a much better visual quality at the

receiver, since a usable signal can always be decoded. We solve the open problem

of optimally partitioning a bitstream into two such layers, and in particular within

the context of the so-called \Data Partitioning" scalability mode of MPEG-2.

In data partitioning, transform coe�cients of each block of the compressed video

signal are segmented into two parts, hence forming the two di�erent layers. Low-

23

frequency coe�cients are included in the high-priority layer (for guaranteed trans-

mission) while the high-frequency ones are included in the low-priority layer (and are

potentially subject to losses). The technique is similar to the well-known techniques

of hierarchical or pyramidal coding, but a key di�erence here is that Data Partition-

ing can be applied even after encoding has taken place. This makes it applicable

not only to live video applications (e.g., news broadcasts, videoconferencing), but

also to stored video applications such as video-on-demand. We analyze the problem

of data partitioning in an operational rate-distortion context, and derive optimal

algorithms as well as fast approximations. The mathematical approach (based on

constrained minimization using Lagrange multipliers) is very similar to the one em-

ployed in the optimal JPEG thresholding work in [73, 74]; in this case, however,

we also take into account the temporal recursiveness inherent in the MPEG coding

scheme. We should note that although the technique is discussed within the context

of MPEG-2, it is applicable to essentially any block-based transform coding scheme,

including MPEG-1 and H.261.

1.3.3 Dynamic Rate Shaping

Finally, motivated by the work done in Xphone and the Data Partitioning problems,

and as a direct extension of it, we introduce the novel concept of \Dynamic Rate

Shaping." The point of view taken is that in order to optimize the information

transport mechanism, perfect knowledge of the transported data can only have a

positive e�ect. Consider for example the case where only constant bit rate audio

is being transferred over an unreliable network. In order to �lter out network and

computer-induced jitter, extensive bu�ering is required at the receiver. This, how-

ever, is contrary to low end-to-end delay requirements of personal communication

applications. A technique which can be used (and has also been implemented in the

24

Xphone system) in order to reduce both network load and end-to-end delay is silence

detection. Typically, the speech signal has a 50% (or less) activity; by detecting and

�ltering out silence, we reduce the bandwidth required, but we also provide \relief"

periods where jitter can be absorbed.

The above technique is nothing more than utilization of knowledge of the struc-

ture of the transported data to maximize the actual information throughput. In

order to properly detect silence, the system has to perfectly know how to operate

under the underlying audio coding scheme. A similar technique can be e�ectively

used for video. Such an approach also permits the use of priorities, if provided by the

underlying network mechanisms or via di�erent levels of forward error correction.

For the case of compressed video signals, of primary interest is the bandwidth

required for their transmission. A process with which the rate of a compressed video

bitstream can be modi�ed to comply with some given constraint will be called Rate

Shaping. If the constraint is allow to vary over time, then it will be called Dynamic

Rate Shaping.

One of the major concerns here is that the processing required for proper inter-

facing of a coded video bitstream to the network has to be within acceptable bounds;

fast algorithms have to be used, preferably implementable in software. This require-

ment precludes the obvious, but extremely expensive, approach of decoding the sig-

nal and recoding it at the new target rate. As will be shown in Chapter 4, recoding

can also yield inferior quality, which|at �rst glance|is a somewhat surprising re-

sult. In manipulating the coded bitstream, a dynamic rate shaping algorithm must

have knowledge of the bit-stream syntax and heavily capitalize on codec properties

(which themselves are linked to video signal properties). Conceptually, the codec

transforms the signal from its natural domain to one where redundancy is drastically

reduced; the codec-network interface, or dynamic rate shaper, has to operate on the

25

mapped domain of the codec's output, to achieve improved quality as perceived by

the end-user.

We analyze the problem of Dynamic Rate Shaping for motion-compensated,

block-based transform coders, with particular emphasis on the MPEG-2 scheme.

Our approach follows the treatment of Data Partitioning, that is, it uses an oper-

ational rate-distortion framework. We identify two major categories of algorithms

for DRS, namely requantization and selective transmission. Our focus is the latter

category, but comparisons are made with requantization using a recoding approach.

A family of algorithms is proposed, providing optimal solutions under di�erent

assumptions, as well as fast approximations. We segment selective transmission

algorithms into constrained and unconstrained. An optimal constrained algorithm

is obtained using Lagrangian optimization, and shown to be extremely complex in

terms of computational resources, but primarily unacceptable due to the excessive

delay it introduces.

A \causally optimal" algorithm is then proposed, which provides an optimal

solution when the added constraint of causality is introduced. By sidestepping the

recursive component of the coding process, a \memoryless" algorithm is shown to

perform almost identically to the causally optimal one (within 0.5 dB), hence pro-

viding an extremely good tradeo� between quality and implementation complexity.

This is a key result since it allows extremely simple and practical implementations.

Another key property is that, under a very large range of target bit rates, the

causally optimal and memoryless algorithms perform better than recoding.

Further enhancements are introduced in the form of \clustered" algorithms,

which signi�cantly decrease the degrees of freedom of the optimization problem

to reduce computational complexity. Two particular algorithms, C(4) and C(8),

are identi�ed as representing suitable compromises between complexity and perfor-

26

mance for real-time software-based implementation.

Finally, the unconstrained optimal DRS problem is attacked, and a fast algo-

rithm is derived using a combination of Lagrange multipliers and dynamic program-

ming. The algorithm is shown to be extremely complex, but does not provide sub-

stantial improvement over the constrained case (about 1 dB). This result augments

the already good properties of the memoryless constrained scheme.

The results presented in this thesis have also been published in [45, 47, 38, 39,

40, 21, 12]. For the bene�t of uniformity and cohesiveness, work which was not

directly related to the main theme of Dynamic Rate Shaping has not been included,

but can be found in [122, 46, 20, 19, 100, 41, 42, 43, 48, 44, 64, 101, 63].

27

Chapter 2

The Xphone System

2.1 Introduction

One of the enabling technologies for multimedia systems is video compression algo-

rithms. Recent advances in compression technology for images and video (JPEG,

MPEG-1, MPEG-2) have resulted in bandwidth reductions of two orders of magni-

tude, down to 1{2 Mbit/sec. In addition, the work of international standardization

organizations and the increased interest in video applications for computers and

consumer electronics products have resulted in VLSI implementations of these al-

gorithms which can be used for the development of real systems [4, 6, 5, 102, 91, 3,

121, 81, 83, 8].

Video coding, however, is just one of the components of a multimedia system.

The support of continuous, high-volume and real-time data (like video or audio) in

both computers and networks represents a tremendous shift in design methodology,

resulting in a re-evaluation of basic principles. Time dependency of information as

a concept existed only in dedicated systems (e.g., the telephone network, or embed-

ded systems) and Computer-Supported Collaborative Work (CSCW) environments;

with multimedia, it becomes an issue for practically any application. The focal point

of multimedia research is to provide bit-pipe characteristics (guaranteed bandwidth,

28

low and constant delay, accurate synchronization) to packet-based systems, using

algorithms and architectures that can be widely deployed.

The availability of some kind of real-time support from the underlying operating

system and network is important for high-quality, wide-area multimedia communi-

cations, and is currently a very active area of research (see e.g., [27, 59, 66, 130] and

references therein). It is nevertheless possible to provide multimedia communication

even in environments where delay uncertainty prevails (best-e�ort systems), albeit

with some quality degradation. In addition, algorithms employed in non-real-time

and real-time systems can be the same; although the latter will de�nitely perform

better, the techniques used to achieve this performance can be similar (especially

if the real-time support is not \hard"). Throughout this chapter we assume the

use of a best-e�ort operating system and network; in other words, no time-related

guarantees are provided.

A number of systems and techniques have appeared in the literature, addressing

various aspects of multimedia systems. Early e�orts provided audio communication

only [8]. Some systems use analog video and audio communication [9], with the

corresponding self-evident limitations in terms of media integration in user appli-

cations. A signi�cant volume of work has been reported at the system architecture

level [31, 94, 119], describing the interface between applications and multimedia

services and the latter's structure.

In the area of media synchronization, a number of techniques have been pro-

posed. These include incorporation of time constraints and scheduling of multime-

dia documents [16, 77, 84], media synchronization for database access applications

(where a high end-to-end delay is acceptable) [31, 105], and synchronization for

interactive multimedia communications [69, 68]. In the �rst and second areas, the

proposed techniques are basically used to derive time-stamps (or their equivalent)

29

with no further analysis of how these time-stamps will be enforced; in addition,

strong assumptions are usually made in terms of the performance of the underly-

ing network and host equipment [105]. In the third area, which is more directly

related to our work, the techniques described in [69, 68] require very tight coupling

of software/hardware layers (the authors use their own operating system).

In this chapter we describe the architecture and associated algorithms of the

Xphone multimedia communications system, which has been developed to support

the use of multimedia information both locally and across networks by end-user

applications. Our primary focus|and the major contribution of this chapter|is

on the techniques used for source bit rate control, audio/video synchronization and

end-to-end delay control, as well as the mechanisms with which these techniques

can be integrated into a coherent and usable service for application developers.

Source bit rate control uses features provided by the video encoding hardware to

accommodate network load variations and window size changes performed by users.

Audio/video synchronization and low end-to-end delay are essential for acceptable

human communication. Synchronization is achieved via an algorithm based on time-

stamps, while end-to-end delay minimization is achieved via silence detection and a

restart protocol.

The performance of these algorithms is demonstrated by a number of graphs

depicting system parameters in actual conferencing sessions. The current imple-

mentation supports point-to-point connections over TCP/IP; the above techniques

however are potentially applicable to other transport protocols, and can also be

used in multi-point connections. The selection of TCP was primarily dictated by

two factors. First, the e�ectiveness of the algorithms could be demonstrated with

minimal protocol-related complications, since all of them operate at a higher layer.

Second, use of the video source bit rate control algorithm and protection of the LAN

30

from congestion required the use of a ow-controlled transport protocol.

We should note that, since Xphone's original design (1991), several other desk-

top videoconferencing systems have been designed and implemented. The most

popular ones are those used in the so-called \MBONE," i.e., the multicast-enabled

part of the Internet, and include nv, vat, ivs, etc. All these applications are

dissemination-oriented: they multicast audio and video material over the network,

and users \tune-in" into the appropriate multicast addresses in order to receive it.

The lack of any transmitter-receiver interaction precludes any form of quality con-

trol, and the received video and audio quality is typically very poor. Furthermore,

audio and video are transmitted by di�erent programs, and no mechanisms are pro-

vided to e�ect synchronization. These characteristics make them suitable for very

large conferences, but not for small group, highly interactive collaboration. A small

number of commercial products have now also been introduced, utilizing algorithms

extremely similar to the ones used in Xphone.

The speci�c environment in which the system has been implemented and evalu-

ated is composed of Sun SPARCstation 2 workstations connected via an Ethernet

LAN used by 25 hosts. Video compression (JPEG) is provided by an XVideo board

from Parallax Graphics, while audio acquisition/playback is performed through the

workstation's audio hardware. Basic communication parameters of the system are

(averages):

� 8 fps for 320 � 240 24-bit video,

� 250 msec end-to-end delay, and

� 1 Mbps bandwidth (full-duplex, including 64 Kbps audio).

The positioning of this system in the space of multimedia communication systems is

shown in Figure 2-1. The axes denote increasing complexity and/or support features

Figure 2-1: Xphone in a projection of the multimedia systems space.

The structure of the chapter is as follows. In Section 2.2 we briey describe

the architecture of the system, and show how the individual algorithms described

later on are integrated. In Section 2.3 we describe our source bit rate control al-

gorithm. Section 2.4 describes the end-to-end delay properties of the system, and

shows how silence detection has been employed for its reduction by a factor of 50%.

In Section 2.5 we describe the audio/video synchronization algorithm used. We

conclude the chapter with some remarks and a summary of the major contributions

in Section 2.6

32

2.2 The Xphone System Architecture

The objective of the system is to provide distributed multimedia services to applica-

tion programmers. In other words, Xphone is not an application per se, but rather

a facility that multimedia system developers can employ for their speci�c needs.

Basic features that had to be provided are:

1. support for continuous data streams, such as video and audio, and intra-

application scheduling,

2. synchronization facilities, especially for video and audio, both locally and

across a network connection,

3. an easy to use and robust session management facility, and

4. compatibility with existing interactive application environments and develop-

ment practices (e.g., the X Window System).

It is not our intention to provide a speci�c multimedia object structuring like the

one found in multimedia documents; such constructions are located hierarchically

higher than Xphone, and can be easily accommodated by it.

The system comprises four main subsystems: call management, scheduling, net-

work transport and media-speci�c support. The latter includes support for I/O

operations for various media types and also the appropriate synchronization mech-

anisms (which for �ne-grain synchronization are dependent on the media device

speci�cs). In the following we briey describe each component. The structure of a

typical Xphone application is shown in Figure 2-2.

Figure 2-2: Xphone application layout.

2.2.1 Call Management

Call management in the Xphone system is a fully symmetric operation. It is per-

formed by a server process|which must be available in each workstation|that

receives and dispatches call control information to and from application programs.

When a server receives a connection request it noti�es the relevant user either by

periodically printing a message on the screen, or via the peer application if it is cur-

rently running. A connection request can be accepted or rejected by the end-user,

aborted by the caller or it can fail if an error occurs.

After successfully establishing a connection, the application processes exchange

data directly. Connections are terminated either by the the applications (hang-

up), or by system errors (connection failures). The call state model presented to

applications is shown in Figure 2-3. Note that all error-related transitions have

Figure 2-3: Xphone call management state model.

been removed for clarity. This model is similar to the one presented by a classical

telephone service, with the added bene�t of caller identi�cation.

During the connection establishment, the peer applications exchange the port

numbers [116] that they have already bound for actual data transmission. The

server has been implemented using the Remote Procedure Call (RPC) package, and

is registered to inetd for automatic invocation [116].

2.2.2 Scheduling

Scheduling at the application level is essential for providing continuity of data

ow. This is ampli�ed by the event-driven architecture of interactive, window-based

graphical user interface environments (like those based on the X Window System).

In these environments, the application is designed to react to prescribed events gen-

35

erated by the user or the system (e.g., when a button is pressed); the main program

control is handled internally by the supporting windowing software. Consequently,

a scheduling facility is provided so that: 1) software development can still be based

on the established call-back architecture, and 2) continuity of data ow is guaran-

teed. In doing so, the facility has to be seamlessly integrated to the windowing

environment; this has the additional bene�t that existing applications will be able

to use multimedia services with no modi�cations of their already developed code.

In our software we provide support for the XView and X Toolkit Intrinsics packages

(other toolkits can of course be easily added). The support consists of equivalent

substitutes to main-loop control functions of these packages, which use the Xphone

scheduler for window system event processing. Xphone event processing (e.g., a call

request) is performed synchronously with the scheduler; in other words events are

only dispatched between scheduler tasks in order to guarantee state consistency.

The scheduler can be seen as a static priority one, with the di�erence that

tasks are usually not removed from the scheduling queue. The scheduler processes

tasks in a round robin fashion, starting from the ones with highest priority. The

application program has the option of restarting a round, hence skipping low priority

tasks. Certain tasks|like windowing system event processing|are always given

the highest priority, as they can adversely a�ect the interactive response time of the

application.

Data I/O is performed via the scheduler as follows. Each medium (video, audio

etc.) is assigned a unique identi�er by the application. For each such medium read

and write functions have to be provided. The former reads data from the medium

device (or a storage device) and submits it to Xphone for network transmission.

The latter receives data from Xphone, originating from the network, and plays it

back on the medium device (or perhaps stores it in a �le). These two functions are

36

registered to the scheduler under the medium identi�er with a speci�ed priority. If

the priority is non-zero, the scheduler will automatically invoke the read function

when appropriate. The write function is invoked by the scheduler whenever a packet

with data of this speci�c type is retrieved from the network. The system attempts

to read data from the network between tasks and, if successful, it immediately

dispatches them.

With this scheme, the application can guarantee continuous data ow with a

single call to the scheduler that registers the appropriate I/O operations. The

fact that event processing is synchronous greatly simpli�es the application's code.

Moreover, the overhead of these operations is very small, and when appropriately

optimized allows the application to operate with very high performance.

2.2.3 Network Transport

The system currently uses the TCP/IP protocol stack, and hence the processing

here is minimal. The system structures the transmitted data with a header which

includes the medium identi�er, packet length and time-stamp information. When

a packet is received by Xphone, the header is transformed to a larger one which

includes an entry for a \reception" time-stamp. This can be used later on for time

keeping purposes (e.g., to monitor the end-to-end delay).

It is possible in a network connection to not be able to completely read or

write a medium packet from or to the network. While network read operations

may be incomplete (the system will complete the operation at a later time), write

operations must be completed when ordered. Although an output queue could be

used, it would increase the end-to-end delay considerably. To avoid this problem and

also to help increase throughput, after incomplete write attempts a read operation

is performed which, if successful, will dispatch a packet to the appropriate medium

37

write function. The incomplete write attempt is then resumed. This functionality

essentially makes ow control decisions visible to the application layer: incomplete

writes are triggered by �lled bu�ers at the transport protocol layer, which signi�es a

congestion situation. This property is critical in ensuring a small end-to-end delay,

since it prevents the creation of excessive queueing backlogs caused by congestion.

Of course, the tradeo� here is a temporarily lower frame rate for video, but this is

deemed much less severe than the e�ects of large end-to-end delays.

2.2.4 Media-Speci�c Support

This component is responsible for handling I/O and control operations for the vari-

ous media types. These operations depend heavily on the speci�c hardware platform

selected, and its accompanying software interfaces. In our environment the audio

hardware is treated at the application level as a regular Unix device, while the

XVideo board is operated through X Window System based operations. Although

a generic device interface would help application developers (and it has frequently

been proposed in the literature), it is extremely di�cult to capture the richness

of the various interfaces under a single entity. In addition, layering such a generic

interface on top of di�ering native interfaces may degrade performance. Our ap-

proach consists of providing support for I/O operations that conform to the Xphone

scheduler interface, but allowing the application the option to fully control other

operations (e.g., the video window size or its placement in a user interface).

Media synchronization is performed in this component, as it heavily depends on

the speci�cs of the implementation. Synchronization in our system is based on time-

stamps, which are placed by the acquisition routines (the media read functions) in

the medium data header. Fine-grain inter-media synchronization (basically between

video and audio) is performed by \supervised output:" the media write routines of

38

the media types to be synchronized are encapsulated under a single write operation

which performs the necessary decisions and invokes the appropriate media write

operations when necessary. Coarse-grain synchronization can be e�ected by the

time-stamp time line.

In the current implementation, the system uses the Sun audio device which pro-

vides 8-bit �-law companded audio at an 8 KHz sampling rate, and the XVideo board

from Parallax Graphics which provides \on-demand" JPEG coded video frames of

sizes up to NTSC resolution (640 � 480). On-demand implies that frame acquisi-

tion/playback and compression/decompression are under complete program control;

in other words, there is no bu�ering of the video source at the device driver level

(as opposed to audio which is continuously sampled).

2.3 Source Bit Rate Control

An important parameter of a multimedia communication system is the target bit

rate of video. Factors a�ecting its selection include the available network resources,

the capabilities of the computer hosting the video codec, as well as the structure of

the codec itself. For example, the bandwidth provided by today's local and wide

area networks spans more than two orders of magnitude, from 10 Mbps Ethernet to

100 Mbps using FDDI or the newest variants of Ethernet, and even more with ATM.

Most importantly, in environments where the network does not provide guaranteed

bandwidth or delay, the available bandwidth, as seen by the application, is often

highly variable. Use of a constant target bit rate in this case may adversely a�ect

both the end-to-end delay of the system and the video frame rate (the latter will be

a�ected when on-demand video coding or frame skipping is used).

The capabilities of the host computer also place limitations on the system per-

formance, as there are speci�c limits of data throughput sustainable by the various

39

components (bus, CPU etc.). Finally, the actual codec used has a dominant e�ect

on the range of achievable bit rates, as it directly controls both the compression

ratio and the maximum attainable frame rate. In cases where the compression pa-

rameters are �xed, the only possible way to control the source rate is by modifying

the frame rate. Most codecs (including JPEG), however, have the capability to

trade-o� image quality and bit rate. By exploiting this capability, one can adapt

to large variations of the network load. The algorithm described here assumes the

use of the JPEG compression algorithm, and it also provides for adaptation of the

source rate to video display window size (possibly performed by the user).

2.3.1 The JPEG Compression Algorithm

The JPEG algorithm for still image compression can be briey described as fol-

lows [5, 121, 102]. Each color component of the original image is divided into non-

overlapping blocks of 8 � 8 pixels. Each block is �rst o�set by �2P�1, where P is

the number of bits per color component (8 for true color). It is then transformed by

a forward Discrete Cosine Transform (DCT) [108] to yield 64 frequency coe�cients.

The DCT coe�cients are then quantized according to an implementation-dependent

quantization table, which is under user control. High frequencies, to which the hu-

man eye is less sensitive, are quantized using a coarse step size, while low frequency

components are subject to a much �ner quantization. This quantization step is the

principal source of lossiness in the JPEG algorithm. Next, the quantized coe�cients

are rearranged in ascending order of spatial frequency by starting with the DC (top-

left) coe�cient and proceeding in a zig-zag manner. The DC coe�cients are then

di�erentially encoded. The other 63 coe�cients are run-length encoded [91, 29]

to produce a string of zero AC coe�cients followed by a non-zero AC coe�cient.

The run-lengths are then entropy coded (Hu�man or arithmetic coding) to achieve

40

compression. Hu�man tables are also customizable. At the decoder the reverse

procedure takes place.

By varying the quantization tables, applications can achieve a trade-o� between

compression ratio and output image quality: the coarser the quantization, the higher

the compression ratio since the quantized coe�cients will be smaller and the strings

of zeros preceding a non-zero coe�cient longer. The quality of the output image,

however, will become poorer. In the speci�c video coding equipment that we used,

the quantization process is controlled by a single parameter Q; the higher the value

of Q, the coarser the quantization(i.e., Q is proportional to the quantizer's step

size). In addition, the achievable frame rate is an increasing function on Q (a higher

Q yields a higher frame rate). This is due to various system-level (bus, device driver

etc.) bandwidth bottlenecks.

2.3.2 A Quantizer{Rate Model

In order to adapt to network load and image size variations, it is necessary to �nd

an explicit relationship between Q, the source bit rate and the image size. An

analytical derivation of such a formula is not possible, as the resultant bit rate is

dependent on the source material. We have derived such a relationship by �tting a

non-linear model to experimentally obtained data. We have used 18 di�erent image

sizes ranging from 96 � 72 to 640 � 480 (aspect ratio 4/3). For each image size,

several minutes of video data (head and shoulders) were recorded and played back,

for values of Q ranging from 25 up to 600 (in steps of 25). For each such combination,

an average source bit rate was estimated (using the instantaneous values of frame

size over inter-frame time). These values where �tted using minimum squared error

techniques to the following non-linear model:

B = p1(W) + p2(W) log(Q) (2.1)

41

where B is the source bit rate in Mbps (here 1 Mbit = 1024 � 1024 bits), W is the

image area (measured in pixels), and p1(�) and p2(�) are 5-th order polynomials.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100 200 300 400 500 600

Qfactor

B
itr

at
e

(M
bi

t/s
ec

)

96x72

640x480

Figure 2-4: Bandwidth vs. quantizer step size (B(Q)) for various image sizes.

The selection of this speci�c model was based on its total squared error per-

formance. The coe�cients of p1 and p2 are given in Table 2.1. Figure 2-4 depicts

the relationship between B and Q for various values of W . We should note that

a tradeo� exists between the extent of the applicability of the model (in terms of

the values for p1 and p2) for various video material, and the performance that it

allows to be achieved. Furthermore, it should be emphasized that the above model

encompasses the whole video subsystem (i.e., acquisition, encoding, transfer to main

memory via the system's bus), and not just the encoder.

42

p1 p2
x0 0.1290 -0.0463
x1 5.3007e-05 -1.6840e-05
x2 -7.7014e-10 2.5060e-10
x3 5.3620e-15 -1.7803e-15
x4 -1.7126e-20 5.7934e-21
x5 2.0236e-26 -6.9550e-27

Table 2.1: Coe�cients of polynomials p1(x) and p2(x) in eq. (2.1) (B(Q) model).

2.3.3 Adaptive Rate Control Algorithm

Our algorithm employs eq. (2.1) to adapt to network load variations as follows.

The system (video input function) maintains an estimate of the available network

bandwidth, based on measurements of actual throughput of the video stream only.

This is given by the average frame length times the average frame rate, over a

10-frame window. Every 10 frames, this estimate is consulted and a possibly new

value of Q is selected. Assume that B(t) is the current bandwidth estimate, W (t)

the current image area, and Q(t) is the current value of Q, as shown in Figure 2-

5. Then under no network load, the output bit rate would be given by: B(t) =

p1(W (t)) + p2(W (t)) log(Q(t)). If the network is loaded, then the actual bit rate

observed will be lower, say B̂(t), corresponding to a Q value given by:

Q̂(t) = exp10

(
B̂(t)� p1(W (t))

p2(W (t))

)
(2.2)

By selecting this new value, and hence moving from the operating point A1 to A3

in Figure 2-5, the system can lower its bandwidth requirements, and yet maintain

a su�ciently high frame rate. This, of course, has the e�ect of degrading spatial

image quality; the objective here is to sustain a frame rate which may already be

marginally acceptable, by tolerating a small degradation in spatial quality.

Figure 2-5: Example scenario of video bit rate control algorithm.

It should be noted that the measured bandwidth cannot exceed the one speci�ed

by eq. (2.1) (although this may some times happen since this is only an experimental,

statistical estimate). If the actual available bandwidth was known, then eq. (2.2)

could be applied directly to derive the new optimum value of Q. Since in our

environment this information is not available, a procedure must be provided which

will enable the increase of the source bit rate when the network load allows it.

The decision process used for the adaptation of Q is governed by the following

three mutually exclusive cases:

1. if Q̂(t) > Q(t) + 50, then Q(t+ �t) = Q(t) + 25,

2. if Q(t) + 50 > Q̂(t) � Q(t)� 25, then Q(t+ �t) = Q(t)� 25, and

3. if Q̂(t) � Q(t)� 25, then Q(t+ �t) = Q̂(t).

Figure 2-6: Quantizer (Q) hysteresis-based adaptation mapping (�Q = Q(t)�Q̂(t),
�Q0 = Q(t+ �t)� Q̂(t)).

In Figure 2-7 we show the variations of Q(t), B(t) and the frame rate F (t) over

an actual 3-minute session (W = 320�240). The values have been scaled as shown,

to facilitate comparative examination of the plots. Network load was introduced

by TCP/IP tra�c between two other hosts. As can be observed from the plots,

Q(t) increases whenever the available bandwidth as given by B(t) decreases. On

the other hand, if the network load permits it, reductions of Q(t) result in larger

45

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x105Time (milliseconds)

B
(t

),
 F

(t
)/

10
, Q

(t
)/

30
0

B(t)
Q(t)

F(t)

Figure 2-7: Adaptation of Q to network load in an actual videoconference (3 min
duration).

output bit rate (and further attempts to reduce Q(t)). More signi�cantly, however,

we note that although a 50% reduction occurs in the output bit rate during the

last minute, the e�ect on the frame rate is much smaller (a 10% reduction). This is

accomplished by a reduction in quality, as shown by the high Q values.

2.4 End-To-End Delay

The end-to-end delay in audio communication systems is a very important factor,

and is limited by the requirements imposed for human interaction. Acceptable end-

to-end delay values prescribed for long-distance telephony are in the range of a few

hundred milliseconds. Consequently, and since video in the Xphone system is on-

demand coded, the end-to-end delay requirements are dictated by that of the audio

signal, which is subject to a constant output processing rate. We should note that

46

this is not just an artifact of the particular audio representation used: audio must

always be sampled at a much higher temporal frequency compared to video in order

to at least guarantee intelligible speech quality.

2.4.1 Sources of End-to-End Delay

We de�ne the end-to-end delay as the time between acquisition and playback of an

audio sample. This delay consists of several components. There is the acquisition

time of the samples of an audio frame (a complete frame|which can have a variety

of sizes|must be acquired before the operating system dispatches it to the appli-

cation). Additional delay is introduced by network transmission, which includes

transport and lower layer protocol processing and physical transmission of the data

over the link(s). Finally, queuing delay is introduced at the audio output bu�er as

audio frames arrive in a bursty fashion. Other components such as bu�er copying

are ignored, as their e�ect is at a much smaller scale.

When a session is setup, the initial end-to-end delay consists simply of the ac-

quisition delay of the �rst audio frame1, plus the transmission delay associated with

it. From that point on, this delay stays constant as long as the audio output bu�er

at the receiver is never emptied. If the bu�er is emptied for a period of time, then

the overall end-to-end delay of the session is increased by exactly that time; since

the audio data can not be processed faster than their natural sampling rate, they

accumulate at the receiver's bu�er. This e�ect is demonstrated in Figure 2-8, where

we show the increments in the end-to-end delay after the reception of the �rst audio

packet and the corresponding audio output bu�er occupancy.

1Note that the audio acquisition bu�er size in our system is set by the operating system at
1024 bytes, which placed a lower limit on the acquisition delay of the �rst packet at 128 msec.

47

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14

x104

D
el

ay
 I

nc
re

m
en

ts
 a

nd
 O

cc
up

an
cy

/1
0

Time (milliseconds)

Figure 2-8: End-to-end delay increments and audio bu�er occupancy in an actual
videoconference.

Figure 2-9: Restart protocol for end-to-end delay bounding.

When the receiver senses the average delay to be larger than the prespeci-

�ed threshold, it sends a STOP message to the transmitter. Upon its reception,

the transmitter stops acquiring and sending audio and video frames and sends a

STOPPED message to the receiver. Meanwhile, the latter continues playing the

frames that it receives or are already in its audio bu�er. This is done in order to

avoid dropping audio packets that were sent prior to the sender being noti�ed of

49

the temporary interruption of communication.

Once the receiving host receives the STOPPED message, it knows that no more

audio packets are on the way. It then starts to monitor its audio bu�er, and once

it is empty it sends a RESUME message to the transmitter. When the transmit-

ter receives this RESUME message, it resumes normal operation. Note that the

restart procedure should only be used infrequently, as it interrupts the communi-

cation process. The duration of a restart procedure|and hence of communication

disruption|follows closely the current end-to-end delay. The actual estimation of

the end-to-end delay is described below.

2.4.3 Average End-to-End Delay Minimization

In order to mitigate the adverse e�ects of jitter, we employed silence detection in

the audio signal. Silence detection is widely used for bandwidth reduction purposes

in voice communication; here, however, we also use the silence parts of the speech

signal to reduce the end-to-end delay. Essentially, silent parts of audio provide

\relief" periods in which the output bu�er is allowed to drain. The waiting time at

the output bu�er is then considerably reduced.

The e�ectiveness of this technique is directly related to the speech activity factor,

which for telephone conversations is approximately 50%. In our system we have

found that the activity factor is actually lower (around 40%) due to the e�ect of

the higher end-to-end delay (similar to a long distance connection). Clearly, in the

case of an audio stream with no silence such an algorithm will have no e�ect. We

should note that an alternative approach in which the output bu�er occupancy is

reduced by selectively discarding very small audio segments (receiver drops) su�ers

from very rapid deterioration of speech quality due to temporal non-linearities.

The silence detector that we have employed is triggered by the di�erence between

50

successive samples of audio. We opted here for simplicity and minimal processing

overhead. Silence detection is always performed on a frame-by-frame basis, and is

applied from the beginning of the frame until a non-silent part is reached. To avoid

erroneous decisions, an initial segment of a frame is classi�ed as silence only if it is

at least one third of the frame's total length. For the same purpose, the �rst silent

part detected after a non-silent one is never classi�ed as silence. Although more

sophisticated designs could have been used, this su�ces to illustrate the e�ectiveness

of the approach. Note that frame headers are always transmitted, even if the entire

frame was classi�ed as silence; also, the size of the initial segment of the frame that

was classi�ed as silence is transmitted in the frame's header.

In order to demonstrate the e�ectiveness of the technique, the end-to-end delay

was estimated with and without the use of silence detection. The estimates (which

are also used to trigger the restart protocol) are based on per-frame measurements

of the abovementioned three principal components of the end-to-end delay (i.e.,

acquisition time, transmission delay, and output queueing), averaged over a window

of size 10. The acquisition time is simply given by the ratio of the length of the

frame (including silence, if any) to the audio sampling rate. The output queueing

time can similarly be computed by the ratio of the current output bu�er occupancy

to the audio sampling rate.

The estimation of the transmission delay is more involved, as timing information

from a single host has to be used in order to avoid clock synchronization problems.

For this purpose, transmission delay is estimated as half the round-trip delay. The

latter is obtained by sending a special packet with no data, that is immediately

transmitted back to the sender. The round-trip delay is then the di�erence between

the time this packet was sent, and the time it was received.

A new estimate is obtained between successive audio frame acquisitions. Due to

51

the very small frame header size the added overhead is quite small. Moreover, the

whole process is completely transparent to the application as it only involves the

registration of the appropriate modules to the Xphone scheduler during initializa-

tion. The accuracy of this transmission delay estimate is restricted by a number of

factors; in all cases where it is used (performance evaluation and restart triggering),

however, an error of few tens of milliseconds is not signi�cant.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14

x104

No silence detection

Silence detectionE
st

im
at

ed
 E

nd
-T

o-
E

nd
 D

el
ay

 (
m

se
c)

Time (milliseconds

Figure 2-10: Estimated end-to-end delay with and without silence detection in actual
videoconferences (2 min duration).

Figure 2-10 compares the estimated end-to-end delay with and without silence

detection, over two 2-minute sessions. A speech activity factor of 50 % was main-

tained. To demonstrate that the two experiments were carried out under similar

conditions (i.e., network load), the estimated transmission time for both cases is

shown in Figure 2-11. As can be seen, the end-to-end delay with the use of silence

detection has e�ectively been kept around 300 milliseconds, whereas with no silence

52

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

x104Time (milliseconds

E
st

im
at

ed
 T

ra
ns

m
is

si
on

 D
el

ay
 (

m
se

c)

_: Silence detection ..: No Silence detection

Figure 2-11: Estimated transmission delay with and without silence detection, for
the sessions of Figure 2-10.

detection it reached 600 milliseconds.

A more sophisticated non-linear algorithm has also been developed (based on the

so-called \Average Magnitude Factor"), and is described in detail in [63]. Exper-

imental results with this more accurate silence detection technique are essentially

identical with the ones presented here. The primary di�erence is that the per-

ceptual speech quality is improved, due to the elimination of false alarms (speech

segments classi�ed as silence). The average end-to-end delay is also reduced due to

the reduction of false positives (silent audio segments classi�ed as speech).

2.5 Audio/Video Synchronization

Synchronization is an essential part of any multimedia system, regardless of local or

distributed (across a network) operation. Synchronization can be intra-medium (or

53

rate synchronization) where it pertains to maintaining the natural rate of the source

(e.g., 64 Kbit/sec audio), or inter-media where it guarantees that the explicit (user

speci�ed) or implicit (as in audio and video) time relationships between di�erent

media types are enforced.

On the basis of di�erent time scales between the synchronization requirements of

di�erent media types, one can also distinguish between �ne-grain and coarse-grain

synchronization. The latter refers to cases where the misadjustment tolerances

are larger than those posed by video and audio (which are in the order of tens

of milliseconds). An example of this case is the display of a still image and its

associated text.

The most di�cult task is arguably the �ne-grain, inter-media synchronization

between video and audio, as the tolerances prescribed by human perception criteria

are very tight. Here we describe the algorithms that we have developed to attack

this problem. The results we obtained were very good, as judged by subjective

evaluation. As mentioned in Section 2.4, silence detection may be employed to help

maintain a low average end-to-end delay between restart operations. The use or not

of silence detection changes the algorithm slightly; both cases are analyzed below.

2.5.1 The Synchronization Problem

The objective of a synchronization algorithm can be stated as follows. Let taoi and

tpoi be the time of acquisition and playback of the i-th object of type o. Then, for

accurate synchronization the following conditions must hold:

1. tpoi � tpoi�1 = taoi � taoi�1 for all i and o (intra-medium synchronization), and

2. tpoi � tpki = taoi � taki for all i, o and k (inter-media synchronization).

Since obtaining the time from a computer|especially a multitasking one|does not

guarantee accuracy, both acquisition and playback times can only be approximated.

54

The above conditions can then only be approximately satis�ed.

In view of time-stamp uncertainty, the task of our synchronization algorithm is

to ensure that the following conditions hold:

1. tpoi�1 � tpkj < tpoi if t
a
oi�1

� takj < taoi for all o, k, i and j, and

2. tpoi < tpoj if t
a
oi
< taoj for all i and j.

Of course the latter is simply an ordering condition. We note that the above condi-

tions bound the synchronization misalignment by the time interval required for two

successive media acquisitions. As the performance of the system increases (e.g., a

higher video frame rate can be supported), the synchronization accuracy increases.

Such coupling of accuracy to CPU performance is both intuitive and desirable, given

the rapid pace with which CPU instruction speeds increase. We should also note

that the video frame period is a very natural \unit of measurement" of temporal

misalignment. For example, for very high frame periods (e.g., in the order of a

second), it does not make sense to consider synchronization at a �ne scale, since it

becomes perceptually irrelevant.

2.5.2 Audio/Video Synchronization Algorithm

At the acquisition phase, both audio and video frames are time-stamped with mil-

lisecond resolution before they are delivered to the network. Time-stamping occurs

immediately after acquisition; this implies that the time-stamp for audio marks the

end of the audio frame rather than its beginning. Note that it is essential that

time references are always based on the same clock, to avoid clock synchroniza-

tion requirements. For the audio signal which is subject to continuous sampling,

intra-medium synchronization has to be used to ensure that the full 64 Kbps rate

is serviced. This is done at the acquisition point, by simply always reading the full

contents of the audio input bu�er.

Figure 2-12: Audio output bu�er occupancy.

Let trvj and t
a
vj
denote the reception and acquisition time-stamps of the j-th video

frame respectively, with similar notation for the audio frames (trai and t
a
ai
). Let also

O(t) denote the output bu�er occupancy at time t in audio samples, and ra the

playback rate (here 8,000 samples/sec). In Figure 2-12 we depict the audio bu�er

occupancy evolution until the time of the j-th video frame's arrival trvj .

The �rst task of the algorithm is to position itself in the playback time-line.

To that end, it must �nd the acquisition time-stamp of the currently played (or

56

last played, if the output bu�er is empty) audio frame, which may not be the most

recently received. For this purpose, a �nite history of received audio frames is kept,

and the audio output bu�er occupancy is queried (O(trvj)). This audio frame history

is scanned until an audio frame k is found which satis�es:

lX
i=k

L(ai) � O(trvj) >
lX

i=k+1

L(ai) (2.3)

where L(ai) denotes the length of the i-th audio frame in samples, and l is the most

recent audio frame received.

2.5.2.1 Synchronization with no Silence Detection

We assume now that silence detection is not used, and distinguish between two

di�erent cases: 1) O(trvj) = 0, and 2) O(trvj) 6= 0. The �rst case implies that the

audio output bu�er is in \starved" state (with the corresponding consequences in the

end-to-end delay), and that the last audio frame has already been played out. The

synchronization algorithm then decides to drop or queue the video frame, depending

on if taak is greater or less than t
a
vj
respectively (note that the audio time-stamp refers

to the end of the audio frame).

In the second case (O(trvj) 6= 0), the decision has three branches, i.e., to drop,

playback or queue. The criteria are:

1. if tavj < taak�1 then drop,

2. if taak�1 � tavj < taak then play back, and

3. if taak � tavj then queue.

When no information is available for the (k � 1)-th audio frame, then the estimate

taak � L(ak)=ra is used instead of taak�1. Due to time-stamp inaccuracy, incorrect

57

decisions may be made if this estimate were used all the time. Clearly, as the

end-to-end delay increases, both the video and audio output queues will increase

in occupancy. Whenever the synchronization decision is initiated, it processes all

video frames currently resident in the video output queue until it is either empty,

or a frame that has to be queued up (wait) is found.

2.5.2.2 Synchronization with Silence Detection

When silence detection is used, the audio frame headers of completely silent frames

are still transmitted to the receiver; the length of frames that partially consist of

silence is conveyed in the frame header. In this case, an audio bu�er occupancy

of zero does not always designate starvation, since it may correspond to a silent

part. Moreover, this silent part may belong to an audio frame that has not yet

arrived, and hence it is not possible to accurately decide if the situation is normal

or abnormal.

For this reason, the three-part decision described above is employed in all cases,

except when the audio bu�er occupancy is zero and the last audio frame received

was not entirely silence (note that when the occupancy is zero, the last audio frame

received is always the reference one). When this happens and the video acquisition

time-stamp satis�es:

taak�1 � tavj < taak (2.4)

(criterion 2), then the video frame is dropped. In the case where a video frame is

queued up but the following audio frame is silence, then this algorithm will cause a

slight delay in the video frame's playback; since this however corresponds to silence,

there is no synchronization problem.

We should note that with the above bounded synchronization scheme, long-term

intra-medium synchronization for video is maintained, although its short-term, local

58

accuracy is traded-o� with audio/video inter-media synchronization. This tradeo�

is more heavily pronounced with a high video/audio interleave factor, which in turn

depends on the video acquisition hardware and the audio input bu�ering. In our

system this factor is typically 1:1 or 2:1. For much higher values|or if the video

encoding/decoding processes are highly asymmetric in terms of delay|an extra

control step would be required for intra-medium synchronization of video packets

during the time their associated audio packet was played back. For normal video

frame rates (up to 30 fps) and a con�gurable audio input bu�er it is always possible

to enforce a low interleave factor, and hence avoid any such complication.

2.6 Concluding Remarks

We have presented the architecture and the algorithms used in the Xphone multi-

media communication system. This system assumes the use of a best-e�ort operat-

ing system and network, and provides for synchronized video/audio playback with

bounded and minimized end-to-end delay, as well as source bit rate adaptation to

the network load. The major contributions of this chapter can be summarized as

follows:

1. The novel concept of intra-application scheduling for multimedia communica-

tion systems was introduced, and was shown to be essential for the transparent

support of continuous, multimedia data ow, as well as for achieving seamless

integration with interactive windowing environments.

2. A non-linear quantizer-rate model was proposed to describe the relationship

of quantizer step size and compressed bit rate for typical head-and-shoulders

video sequences.

59

3. An adaptive rate control mechanism was introduced in order to maximize the

perceptual video quality according to the available network bandwidth, and

also to adapt to changing video display window sizes. The algorithm trades-o�

spatial quality in order to achieve a su�ciently high frame rate.

4. We have shown that silence detection is a very e�cient mechanism for reducing

the average end-to-end delay. Further bounding of the maximum acceptable

end-to-end delay can be achieved using an appropriate restart protocol, albeit

with temporary disruption of communication.

5. We have introduced a novel synchronization algorithm for computer-based en-

vironments which, based on time-stamps, bounds the temporal misalignment

by the video frame period. The algorithm guarantees that as CPU speeds

scale up, so will synchronization accuracy. The approach also shows that very

good video/audio synchronization is possible, even with no real-time support.

Using the above techniques, the current system's implementation was shown to

achieve a frame rate of 8 frames/sec for a frame size of 320 � 240, an average bit

rate of 1 Mbit/sec (full-duplex), and an average end-to-end delay of 250-300 msec.

Further improvements can be achieved by a number of ways. For example, the

end-to-end delay can be further minimized by reducing the audio acquisition bu�er

size, by applying a more sophisticated silence detection algorithm, and by coding the

companded audio signal. Quality can also be improved by applying echo cancellation

techniques; the current levels of end-to-end delay can generate undesirable echo

phenomena. Experimentation has shown that their severity depends heavily on the

quality of the audio equipment used, and it can even be completely eliminated with

the use of a high-quality lavalier microphone. The video source rate bit rate control

algorithm can also be improved by providing a mechanism that will enable adaptive

60

calibration of the bit rate model been used.

Finally, a considerable improvement in overall performance can be attained by

substituting the TCP layer with an unreliable one that would, however, be able

to recover in cases of errors with no retransmissions. Although full reliability is

desirable for audio, packet losses can be tolerated for video. As the three primary

components of multimedia communication systems (codec, computer and network)

have competing requirements, techniques such as those described in this chapter

will become essential for their smooth cooperation.

61

Chapter 3

Data Partitioning

3.1 Introduction

The traditional problem in video coding for the past several decades has been that

of compression: describe the signal with as few bits as possible. The signal is

treated as a single waveform, while compression may be subject to transform and/or

prediction techniques [67, 57]. In several cases, however, it is bene�cial to segment

the original signal into multiple parts, and handle each one independently. Such

an approach was originally applied to speech using the so-called sub-band coding

approach [67], which partitioned the signal into multiple frequency bands. The

primary motivation is that, since the human aural system perceives the various

frequency bands in di�erent ways, one could apply di�erent compression techniques

to each of the sub-bands.

A more general application of this principle is the so-called pyramidal, or hierar-

chical approach [91]. Here the signal is again decomposed into a number of di�erent

layers, but now each layer represents a successive re�nement of the previous one.

During compression, each layer is formed by compressing the di�erence between

the original signal and its reconstructed version up to the particular layer. Conse-

quently, an equivalent point of view is that each layer represents the compression

62

error of its immediately lower layers. This representation is again typically (but not

necessarily) lossy, hence leaving a residual compression error. In sub-band coding

approaches, the individual layers are orthogonal to each other (or approximately so,

depending on the �lter bank used). For this reason, compression of the di�erent

layers can occur in parallel.

The bene�ts and applications of both approaches are numerous. A key feature

is that they can facilitate interoperability. A classical example from the analog

world is that of monochrome and color television receivers: the base layer here

is the luminance signal (the monochrome component), while the added layers are

the chrominance. The two layers are transmitted separately (modulated at slightly

di�erent frequencies), and hence allow monochrome receivers to process color signals

by \decoding" only the luminance part.

A more modern example from the digital domain is compatible High De�nition

Television coding: a layered approach allows the base component to be compatible

with standard resolution television receivers, and hence a single signal can be used

to service both systems.

Another important feature of layered compression is that it can be made robust

to channel errors. In particular, one can associate a better transmission environment

for the base layer, and less protected ones for the higher layers. In some transmission

environments this association is directly supported. In packet-based networks for

example, it is possible to mark higher layer packets so that, when congestion is

created in intermediate routers or switches, they are dropped �rst. In systems that

are not capable of prioritized transmission, one can essentially emulate the same

e�ect by using di�erent levels of forward error correction. By utilizing more e�cient

error-correcting codes for the lower layers, one can ensure|given some assumptions

about the channel \noise"|that the base layer will arrive intact at the receiver.

63

Examples of such channels are over-the-air broadcast, as well as individual virtual

circuits within packet-based networks.

A signi�cant drawback of layered approaches is that they are, in general, less

e�cient than their single-layer counterparts. In other words, for a particular signal

to noise ratio (SNR), it is better to compress a signal using a single layer than mul-

tiple ones. \Better" here implies that fewer bits are required to represent the signal.

In several applications, however, this is acceptable due to the added exibility. We

should also note that layered approaches also tend to be much more expensive to

implement that single-layer ones, due to the added encoding and decoding complex-

ity.

From a multimedia communications perspective, the most important drawback

of layering is that it is embedded in the encoding method. In other words, the layers

can only be constructed during the encoding process; doing so at a later stage would

require signi�cant computational resources, in essence consisting of full decoding

and recoding. There are several reasons, however, to desire a layered structure even

without support from the encoder. First, due to the cost of hierarchical (or scalable)

encoding, it is likely that single-layer, general-purpose encoders will dominate in

actual systems. Second, the exact partitioning point in terms of bit rates is not

obvious, due to the potentially large number of channel types over which the signal

may be transported. Finally, due to the loss in compression e�ciency it is likely that,

in applications such as video-on-demand, only a single-layer high-quality version of

the signal will be utilized (stored for retrieval by the users). It is then important to

examine approaches in which layering is provided after encoding has already taken

place.

In this chapter we examine one such approach, called \data partitioning", which

is applicable to any block-based, transform coding scheme. Our primary focus will

64

be the MPEG-2 coding scheme [6], which provides direct support in its bitstream

syntax to e�ect data partitioning, and in which partitioning was �rst introduced.

We analyze the problem of optimal data partitioning using an operational rate-

distortion approach. The optimal algorithm is characterized, and is shown to have

signi�cantly high complexity and delay, as a result of the temporal structure of

predictive compression. A \causally optimal" algorithm based on Lagrangian mul-

tipliers is described; it optimally solves the problem when the additional constraints

of causal operation and/or low-delay are imposed. A memoryless version of the

algorithm, theoretically optimal for non-predictive compression only, is shown to

perform almost identically but with signi�cantly lower computational complexity.

Finally, a fast, suboptimal algorithm using \rate-based" optimization is also pro-

posed, and is shown to perform quite close (within 1 dB) to the causally optimal

one.

The structure of this chapter is as follows. In Section 3.2 we present an overview

of motion-compensated transform coding, with particular emphasis on the MPEG

scheme. Although the description is somewhat extensive, this will help us delineate

the data partitioning problem, and de�ne it in mathematical terms. It will also

be useful for the development of Chapter 4, where the properties of the coding

algorithm are again at the core of the analysis. In Section 3.3 we introduce the

problem of data partitioning, and formulate it in an operational rate-distortion

context. In Section 3.4 we present the optimal solution for non-predictive coding,

whereas in Section 3.5 we analyze the more general predictive coding case. The

chapter concludes with Section 3.6, where a summary of the major contributions is

presented.

65

3.2 Motion-Compensated Transform Coding

The algorithmic foundation of practically all state-of-the-art, general-purpose video

coding schemes today is transform coding [91, 67]. The e�ectiveness of the tech-

nique is evidenced by its incorporation into all modern image and video compression

standards, namely MPEG-1 [4], MPEG-2 [6], H.261 [3], and JPEG [5]. The key idea

in transform coding is to map the original signal into a domain where compression

becomes easier. Since the objective of compression is to eliminate redundancy, the

optimal transformation is one that completely decorrelates the source signal.

Assume that we have N samples of a zero-mean signal:

x = [x(0); x(1); : : : ; x(N � 1)]T (3.1)

If f�ig is a set of linearly independent vectors spanning the N -dimensional vector

space, then x can be expanded in terms of �i's as:

x =
N�1X
i=0

X(i)�i (3.2)

where X(i) is the coe�cient of expansion given by

X(i) =
hx;�ii
h�i;�ii (3.3)

where h�; �i denotes inner product. Clearly, the vector x can be equally well repre-

sented by either the N samples xi in the original domain, or the N numbers X(i)

(or coe�cients) in the space spanned by the basis functions �i. If we assume that

only the �rst M (M < N) coe�cients in (3.3) are non-zero, then we will be able to

represent our signal in the f�ig space with just M coe�cients, and hence achieve

compression.

66

3.2.1 The Optimal Transform|Karhunen-Loeve

In practice, the calculation of optimal basis vectors �i is quite involved. Let x̂ be

the coded representation of x, i.e.,

x̂ =
M�1X
i=0

X(i)�i (3.4)

The Mean Squared Error (MSE) of the coded representation can then be described

by

� = E
h
(x� x̂)2

i
(3.5)

Assuming that x is real and that the �i are orthonormal, it can be shown [108] that

minimization of the MSE leads to the following eigenvalue problem:

(Cxx � �iI)�i = 0; i = 0; 1; : : : ; N � 1 (3.6)

where Cxx is the autocovariance matrix of the random vector x:

Cxx = E[xxT] (3.7)

The set of basis vectors�i that are solutions of (3.6) form the so-called Karhunen-

Loeve Transform (KLT) expansion, and the matrix

� = [�0;�1; : : : ;�N�1] (3.8)

is the KLT matrix of x. Due to (3.6), � diagonalizes Cxx, i.e.,

��1Cxx� = diag [�0; �1; : : : ; �N�1] (3.9)

67

The MSE due to the truncation in (3.5) can be written as

� =
N�1X
i=M

�i (3.10)

and is minimized by ranking the eigenvalues �i in a descending order.

Note that the vector X of coe�cients X(i) can be directly expressed as

X = ��1x (3.11)

hence the term transform. The KLT is optimal, in the sense that [108]: 1) it

completely decorrelates the signal in the transform domain, 2) it minimizes the

MSE in bandwidth reduction or data compression, 3) it contains the most variance

(energy) in the fewest number of transform coe�cients, and 4) it minimized the

total representation entropy of the sequence.

As we can see from eq. (3.6), the appropriate set of basis functions f�ig depends
directly on the signal's autocovariance matrix, hence the signal's statistics. The

problem can be solved analytically only in the simplest of cases, when particular

models are assumed for x [108]. A well-known example is Markov-1 signals, whose

autocovariance matrix has the form:

[Cxx]ik = �ji�kj i; k = 0; 1; : : : ; N � 1 (3.12)

for 0 < � < 1, where � is the adjacent sample correlation coe�cient.

3.2.2 The Discrete Cosine Transform

The dependence of the optimal transform on the source signal makes KLT an im-

practical approach for real applications. Of interest, however, are constant transform

68

matrices who are good approximations to the KLT in particular cases. One such ap-

proach, which has also proven to have perceptually good performance in image and

video compression, is the Discrete Cosine Transform (DCT). The N point forward

DCT transform X of a vector x is de�ned by1:

X(m) =

s
2

N
km

N�1X
n=0

x(n) cos

"
(2n + 1)m�

2N

#
; m = 0; 1; : : : ; N � 1 (3.13)

where

km =

8><
>:

1=
p
2 if m = 0 or N

0 otherwise
(3.14)

It can be shown that the DCT is a unitary transform, and hence its inverse is its

transpose:

x(n) =

s
2

N
kn

N�1X
m=0

X(m) cos

"
(2n + 1)m�

2N

#
; n = 0; 1; : : : ; N � 1 (3.15)

De�ning the DCT matrix as

[C]mn =

s
2

N
kn

N�1X
m=0

X(m) cos

"
(2n+ 1)m�

2N

#
; m; n = 0; 1; : : : ; N � 1 (3.16)

we have

X = Cx and x = C�1X = CTX (3.17)

A key property of the DCT is that it is asymptotically equivalent2 to the KLT

for Markov-1 signals, when the correlation coe�cient � tends to 1 [108]. Note

that this property holds independently of the value of N . As a result, the higher

1This is the DCT Type II; other versions are also possible (see [108]) but have not found
signi�cant use in image and video compression.

2Asymptotic equivalence here is formally de�ned under the weak Hilbert-Schmidt norm of a
matrix, which is proportional to the sum of the squares of its eigenvalues.

69

the correlation of the source, the better the performance DCT will provide for

compression purposes.

3.2.3 Video Compression Using Transform Coding

For the purposes of image and video compression, a two-dimensional transformation

must be applied. This is done in a separable fashion. Let

[x]mn = x(m;n); m; n = 0; 1; : : : ; N � 1 (3.18)

be a two dimensional N �N signal. Its 2-D DCT is de�ned by the N �N matrix:

X = CxCT (3.19)

The DCT is typically applied in non-overlapping blocks of an image or video frame

(or picture), as shown in Figure 3-1. Extensive experimentation has shown that a

good tradeo� in terms of complexity and performance is obtained with block sizes

of 8� 8 pixels (for picture sizes of CCIR 601 [1] resolution, i.e., 704� 480 pixels for

the US television system) [91].

The DCT-transformed blocks of the picture are then subject to quantization.

Due to the particular sensitivities of the human visual system, quantization is per-

ceptually, or frequency weighted. In other words, the quantization step size is not

uniform across the di�erent transform \frequencies". Typically, the DC coe�cient

(the signal's mean) is subject to very �ne quantization, whereas AC coe�cients are

quantized with progressively coarser step sizes. A typical quantizer weight matrix

is shown in the following table 3.1 [6]. The actual quantization step size can be

controlled, in order to achieve a particular target bit budget or rate (for the case of

video). Denoting by X(i; j) the DCT coe�cient, ~Xij its quantized version, Wij the

70

Image/Video Frame

N×N block

Figure 3-1: Segmentation of images or video frames into blocks.

quantizer weight, and by Q the so-called quantizer scale, we have:

~X(ij) =

$
�X(i; j)

WijQ
+
1

2

%
(3.20)

where � is a parameter (for the weight values of Table 3.1 we would have � = 16).

Quantization is the single source of quality loss in transform coding (hence mak-

ing it a \lossy" compression technique). In general, the frequency distribution in

the DCT domain tends to be concentrated around the DC component, with higher-

order AC coe�cients having values very close to zero. By using a large step size for

these coe�cients, their quantized representation becomes zero, making compression

much easier. Again, due to the lower sensitivity of the human visual system at

these frequencies, the resultant distortion is typically non-perceptible (for small to

medium compression ratios).

71

0 1 2 3 4 5 6 7
0 8 16 19 22 26 27 29 34
1 16 16 22 24 27 29 34 37
2 19 22 26 27 29 34 34 38
3 22 22 26 27 29 34 37 40
4 22 26 27 29 32 35 40 48
5 26 27 29 32 35 40 48 58
6 26 27 29 34 38 46 56 69
7 27 29 35 38 46 56 69 83

Table 3.1: Typical quantizer weights for frequency-weighted quantization (larger
weights correspond to coarser quantization).

After quantization, the DCT coe�cients of each block are scanned in a zig-

zag pattern. A typical con�guration is shown in Figure 3-2; small variations of this

pattern are also used. The zig-zag scan is used to create an ordered, one-dimensional

array of DCT values. The ordering priority is essentially the perceptual signi�cance

of each DCT coe�cient.

After the zig-zag scan phase, the resultant one-dimensional array is run-length

encoded [91, 29]. In other words, we convert the array to a representation in which

we jointly describe the number of consecutive zero-valued DCT coe�cients and the

value of the next non-zero coe�cient. Such a run-length is depicted in Figure 3-2.

This representation tends to be quite compact, since many coe�cients (particularly

higher-order AC ones) have been zeroed out due to the quantization process.

The encoder then utilizes Hu�man coding [29, 91] to e�ciently code the run-

lengths. Hu�man codes employ variable length codewords (VLCs): the most likely

run-lengths are assigned shorter codewords, while less likely ones are assigned longer

ones. This results, on the average, to fewer bits per symbol compared to a �xed-

length representation. The resultant VLCs are directly inserted in the bitstream.

We should note that for the particular case of the DC component, di�erential PCM

72

zig-zag scan

DCT Block

0,0

7,7

0

0

0

5

run-length

Figure 3-2: Zig-zag scanning pattern of transform coe�cients.

encoding is used; i.e., the encoder uses the value of the previous block as a prediction,

and only encodes the resultant di�erence.

3.2.4 The MPEG Picture Structure

The way compressed data is structured in the particular case of MPEG is of impor-

tance for the operation of the algorithms presented later on. We should note that

this structure is not used exclusively in MPEG, but in other schemes as well (e.g.,

in H.261 [3], which has minor modi�cations).

Up to now we have considered the video pictures without regard to the color

component. In reality, each individual picture is in fact composed of three elemen-

tary ones, one per color component. In video compression the YUV format [91]

is exclusively used, and is a linear transformation of the more familiar RGB color

73

space. This is not just the result of an analog tradition: because the Y (or lumi-

nance) component contains the fundamental picture structure, it is extremely useful

for signal processing purposes (e.g., motion estimation and compensation as we dis-

cuss later on). In addition, because the human visual system is less sensitive to

the quality of the chrominance components U and V, they can be represented with

fewer samples than Y. Typically only one sample of each of U and V is used for

every square block of 4 pixels of the luminance component, resulting in the so-called

4:2:0 chroma format. Essentially, the U and V components are subsampled by 2 in

each direction. Other formats include 4:2:2, in which the U and V components are

horizontally subsampled by a factor of 2, and 4:4:4 in which all components have

exactly the same number of samples in both directions.

The MPEG picture structure follows a hierarchical approach. Each layer of the

hierarchy utilizes a header, followed by the data of lower layers. An exception is

the lowest layer (the block), which does not employ any header information for

e�ciency purposes. Individual blocks are delineated using variable length end-of-

block markers after all DCT run-length codes have been inserted in the bitstream.

As shown in Figure 3-3, at the lowest level we have the 8 � 8 block, which is the

unit of transform coding. A 2 � 2 square of luminance blocks|together with their

associated 2, 4, or 8 chrominance blocks, depending on the chroma format|forms

a macroblock, which is the unit for quantizer selection and motion compensation

(see Section 3.2.5). A horizontal strip of a contiguous series of macroblocks forms a

slice, which is the unit for bitstream synchronization.

All recursively computed quantities (except in the temporal dimension), for ex-

ample DC predictors, are reset at the start of each slice, thus allowing the decoder

to quickly recover in cases of channel errors. Although a slice is shown in Figure 3-3

to span the whole width of the picture, this does not have to be the case. A slice

74

cannot, however, span multiple lines of macroblocks. Finally, the set of coded slices

forms the picture.

picture

slice

macroblock

DCT Block

0,0

7,7

Figure 3-3: The MPEG Picture Structure.

We should also note that individual video frames can be either progressive or

interlaced. In the latter case, the frame is composed of two temporally displaced

�elds: the odd �eld consists of the even-numbered lines (0, 2, and so on), while the

even �eld consists of the odd-numbered ones. It is important to observe that the

two �elds represent sampling of the scene at two di�erent time intervals. MPEG

allows for the �elds to be coded either together as a single frame, or individually

if it is preferential to do so. In our discussions both in this chapter and also in

Chapter 4, interlacing will not play a signi�cant role.

75

3.2.5 Motion Compensation

The compression algorithm, as described above, does not take into account any tem-

poral redundancy that may exist between successive pictures. It is evident, however,

that such redundancy exists and that it may be extremely helpful in achieving very

high compression ratios. Traditional techniques to remove redundancy in the tem-

poral dimension use a recursive approach, in the form of prediction.

Based on the past history of the (one or two-dimensional) signal, an estimate

of its future value is formed. The encoder then computes the di�erence between

the actual and predicted values, and transmits it after appropriate encoding. If the

prediction is successful, the energy of the prediction signal will be very small, hence

reducing the required transmission bit rate and increasing the quality. A signi�cant

amount of work has been done for the design of predictors for various types of

stochastic signal models [97, 98], with particular emphasis on speech applications.

Very simple zero-order prediction is typically used for video signals, due to their

particular structure. In order to improve performance, however, motion is taken

into account in the prediction process, thus giving rise to motion-compensated pre-

dictors. Here the prediction for any given pixel is not formed just by the value of

the collocated pixel in the previous frame (as in a simple linear predictor), but by a

spatially displaced one. The displacement from the collocated pixel is a two dimen-

sional quantity, and is appropriately termed motion vector. These motion vectors

are calculated at the encoder, and are embedded in the compressed bitstream for

use by the decoder. At the decoder side, the motion vectors are used to form the

predicted pixel values, to which the decoded prediction error will be added to recon-

struct the �nal picture. It has been shown [22, 23] that the same transform coding

technique used for the original images is near optimal for the case of prediction error

(di�erence) images as well (the KLTs are identical assuming a �rst-order Markov

76

model for the source).

In MPEG, motion estimation (or rather compensation, since the standard pre-

scribes only the decoding algorithm) is performed on a macroblock basis. In other

words, all the pixels of a macroblock share the same motion vector. This represents

a tradeo� between motion estimation accuracy and the overhead bits required to

transmit the motion vector values to the receiver. Several di�erent techniques can

be used to compute the motion vector values; the most popular and e�ective one

is full-search block matching [91]. For each macroblock of a picture, we try to �nd

a similar one in a small neighborhood of the previous picture. The search range is

typically�16 to �32 pixels in each direction. Similarity is de�ned by the sum of the

absolute values of the di�erence of the pixels (L1 norm). Letting xt(m;n) denote

the pixel value of picture t, the prediction error is de�ned by:

E(�x;�y) =

8<
:

15X
i=0

15X
j=0

jxt(m+ i; n+ j)� xt�1(m+�x+ i; n+�y + j)j
9=
; (3.21)

and the optimum motion vector is given by:

(�x�;�y�) = arg min
�x;�y

E(�x;�y) j�xj; j�yj � S (3.22)

where S de�nes the (typically symmetric) search range. Note that motion estima-

tion is exclusively performed on the luminance component; motion compensation,

however, is applied to all three color components.

In order to improve motion-compensated prediction, non-integer motion vector

values can also be used. In this case pixels that do not fall exactly on the sampling

lattice of the signal are interpolated from neighboring ones, typically using bilinear

interpolation [91].

The above two approaches, i.e., transform coding and motion-compensated trans-

77

form coding, provide very good compression e�ciency. It is possible, however, to

improve even further by using a slightly more complex prediction approach, allow-

ing bidirectional motion estimation. Here the encoded picture is not predicted only

from a past picture, but from a future one as well. This obviously requires that:

1) the appropriate coding delay is sustained, and 2) a frame reordering is utilized

during transmission, so that the future picture is encoded prior to the current one.

In bidirectional prediction we can use either of three di�erent modes: prediction

from the past picture, prediction from the future picture, or prediction (interpola-

tion) from both. In the �rst two cases, only one motion vector needs to be sent to

the decoder. In the third, two such motion vectors will have to be sent. In all three

cases, appropriate ags must be available in the bitstream so that the appropriate

prediction mode can be signalled. When the interpolative prediction mode is used,

the prediction block is formed as the average of the past and future picture blocks.

It has been found that the interpolative prediction mode is the most e�ective in

achieving high compression ratios in MPEG-1 and MPEG-2.

Motion vectors are encoded in a di�erential fashion, similar to DC coe�cients

of individual blocks. In other words, their di�erence from the previously computed

motion vector is encoded, using Hu�man coding. These motion vector predictors are

reset at the start of each slice, similarly to all other recursively computed quantities.

In the MPEG compression scheme, the above three prediction options give rise

to three di�erent picture categories. Pictures that are encoded with no prediction

are called intra, or I pictures. Those that are predicted from past pictures are called

predicted or P pictures. Finally, those that are bidirectionally interpolated are called

B pictures. The I picture is typically employed in a periodic fashion by encoders,

so that any errors introduced by transmission and propagated due to the recursive

nature of the decoding process are eliminated. The I picture period is typically 12

78

or 15 frames, while the P-picture period is typically 2 to 3 frames.

I B B P B B P

1 2 3 4 5 6 7

1 3 4 2 6 7 5

Display Order

Coding Order

Figure 3-4: The MPEG sequence structure (display and coding orderings).

A typical sequence structure for MPEG is shown in Figure 3-4. The �rst frame

is coded independently (I or intra), the fourth frame is predicted from the �rst (P),

while the intervening second and third frames are interpolated from the �rst and

fourth frames, and so on. Observe that the order in which the frames (or, more

accurately, their prediction errors) are transmitted (coding order) is not the same

as the one in which they are displayed (display order). Since the fourth frame (P) is

used as a reference for the second and third (B), it has to be coded (and transmitted)

�rst. This entails a coding delay equal to three frames in this particular case, so

that the encoder has access to the P frame following the B ones.

The sequence structure is strictly hierarchical; in other words, I-pictures are

independently coded, P-pictures are predicted from the closest past I or P picture,

79

Source

DCT

DCT-1

Q

Q-1

MC

Intra

Motion Vectors

On/Off
Frame

Store

DCT-1 Q-1

MC

Frame

Store

Intra

On/Off

ENCODER DECODER

Prediction Prediction

Figure 3-5: Block diagram of a motion-compensated transform coder.

while B picture are interpolated from the closest past and future I or P pictures.

We should note that, within a particular picture type, not all of the macroblocks

have to be encoded with the same prediction type. For example, it is possible to

have intra-coded macroblocks (i.e., not predicted by any mode) in both P and B

pictures.

In closing, we should mention that the above overview, although extensive, is

by no means exhaustive. In particular, many details of the MPEG compression

scheme were omitted, particularly with respect to features targeting interlaced video

compression. As we mentioned earlier, however, interlacing does not have any e�ect

on the results presented in this thesis, and hence these issues will be ignored. A

block diagram of a motion-compensated transform encoder-decoder pair is shown

in Figure 3-5.

80

3.3 The Data Partitioning Problem

3.3.1 Data Partitioning

Data partitioning is a feature of the MPEG-2 draft standard that provides for the

segmentation of a coded signal bitstream into two components or partitions [6]. It

can be a very e�ective tool for the transmission of video over channels that allow

selective protection of each of the partitions. Channels of this type can be imple-

mented, for example, using increased forward error correction, or employing high

priority transmission in an ATM-based networking environment. By transmitting

the most critical information with high reliability, i.e., over the highest quality chan-

nel, the average quality of the signal reconstructed at the receiver can be signi�cantly

increased for the same level of channel distortion. This feature is one of the major

bene�ts of pyramidal or|more generally|hierarchical, multi-layer coding schemes.

An important characteristic of data partitioning is that it can be employed even

after encoding has taken place, in contrast with other hierarchical approaches, such

as the SNR, spatial, or temporal scalability modes of MPEG-2 [6], or the embedded

DCT coding approach proposed in [109]. This is because the encoder does not need

to maintain a prediction loop per each signal layer, a necessary requirement for a

pyramidal scheme in which each coding layer is an enhancement of its previous one.

As a direct consequence, it is also less robust in the sense that neither partition is

self-contained; loss of information in either one will cause error propagation and ac-

cumulation during the decoding process if temporal predictive/interpolative modes

are used. As we will see later on, error accumulation can in fact be kept under

control. Although data partitioning is currently supported only in MPEG-2, it is

trivial to incorporate into other coding schemes.

The system diagram of the data partitioning scheme is shown in Figure 3-6. In

between an MPEG-2 encoder/decoder pair, the bitstream (assumed here to be coded

81

ENCODER DP DECODER

CHANNEL 1

CHANNEL 0

DM

Partition 0

Partition 1

Data
Merging

Data
Partitioning

x y ŷ

p0

p1

B

B<B^

Figure 3-6: Block diagram of a Data Partitioning system.

at the constant rate of B Mbps) is split into two parts, each being transmitted on

a di�erent \channel". Throughout this chapter we will assume that channel 0 is a

perfect one, i.e., it exhibits no losses, errors, or insertions. We will also assume that

it has a given �xed available bandwidth B̂ < B. Channel 1 is assumed to exhibit

arbitrary stochastic behavior (a minimax problem formulation will make the details

of this behavior irrelevant).

In other words, we are given a bitstream of bit rate B, but our communication

resources only allow us to reliably transmit at a bit rate of B̂. The problem is then

how to optimally split the bitstream into two parts, the base one complying with

the rate constraint B̂, so that the quality of the decoded signal at the receiver is

maximized.

Partitioning is performed at well-de�ned points in the bitstream syntax [6], called

breakpoints. These can occur at various levels of the bitstream hierarchy. For our

82

purposes, and to ensure that partition 0 is independently decodable, we will con-

strain the allowable breakpoint positions so that critical quantities such as mac-

roblock address increment (indicating the relative position of a macroblock with

respect to the previously coded one) and DCT DC di�erential values (for intra-

coded macroblocks) are included in partition 0. As a result, partitioning will only

a�ect the number of coe�cient run-length codes that will be carried in partition 0,

while the rest will be assigned to partition 1. This is depicted in Figure 3-7.

breakpoint

picture

slice

macroblock

DCT Block

0,0

7,7

0

0

0

5

run-length

partition 0

partition 1

Figure 3-7: Breakpoint position in the zig-zag pattern of DCT coe�cients.

Note that, in MPEG-2, the breakpoint value is the same for all blocks of a

given slice. The breakpoint value, i.e., a �xed-length code indicating the number

of run-length codes that are included in partition 0, is included in the slice header.

Sequence headers are replicated in partition 1 to increase robustness, and hence the

total rate for the transmission of the signal is slightly increased. In partition 1, the

breakpoint value is set to 0 since it is not needed. We now proceed to a mathematical

83

formulation of the problem.

3.3.2 General Problem Formulation

Denoting by y the coded video signal, by ŷ the output of the decoder, by pi the

signal of the i-th partition, and by R(�) the bit rate, the problem of optimal data

partitioning can be expressed as follows:

min
R(p0)�B̂

fky � ŷkg (3.23)

The metric k � k above denotes the squared error criterion:

kxk � xTx =
N�1X
i=0

x(i)2 (3.24)

and is applied only in the luminance component. The rate constraint, however,

refers to all three color components. Since channel 1 is assumed to exhibit stochastic

behavior, we consider the deterministic problem of minimizing themaximum average

distortion D, i.e.,

min
R(p0)�B̂

n
D

def
= maxfky � ŷkg

o
(3.25)

This corresponds to the case where the entire partition 1 is lost. D will be referred

to in the sequel as the \partitioning distortion".

The optimization window in (3.25) is not speci�ed, and it can span from just

a part of a picture, up to any number of pictures. In general, and taking into ac-

count that data partitioning as described here is performed after encoding has taken

place, it is desirable to keep the end-to-end delay low. Computational complexity

considerations impose additional constrains on the window length, as will be made

evident later on. Consequently, we will typically be interested in solutions of (3.25)

that consider up to a single complete picture.

84

An important aspect of the problem not readily evident in (3.25) is its recur-

sive nature, caused by the corresponding recursive process with which y and ŷ are

generated (decoded) when P and B pictures are involved. In the following we sep-

arately consider the two cases: optimal data partitioning in non-predictive coding

(I pictures only), and optimal data partitioning in predictive coding (I, P, and B

pictures).

3.4 Data Partitioning in Non-Predictive Coding

3.4.1 Problem Formulation

In intra-picture only partitioning, there is no temporal dependence between pictures.

Consequently, the partitioning distortion will simply consist of the DCT coe�cients

that were assigned to partition 1. As we noted in Section 3.2.2, the DCT matrix is

unitary, i.e.,

CTC = I (3.26)

As a result, the energy of the signal in the spatial domain is equal to its energy in

the transform domain. In other words, and considering the one-dimensional case for

simplicity, if:

X = Cx (3.27)

then

xTx �
N�1X
i=0

x(i)2 =
N�1X
i=0

X(i)2 � XTX (3.28)

Now let b denote the truncation point, i.e., all DCT coe�cients from b up to N �
1 are moved to partition 1. Considering the truncated|in the DCT domain|

85

representation ~x of x and using (3.28) we have:

kx� ~xk = kX� ~Xk =
N�1X
i=b

X(i)2 (3.29)

eq. (3.29) provides an expression for the truncation, or partitioning distortion di-

rectly in the DCT domain. Generalization to two dimensions is straightforward.

Let us now consider the partitioning distortion in two dimensions for a group of

blocks. We recall that the breakpoint values are identical for all blocks of a given

slice i (Section 3.3.1). This value will be denoted by bi, and indicates that the bi-th

and higher-order DCT run-length codes of all blocks of this slice will be removed

and placed in partition 1. The domain of bi is the set of values f0; 1; : : : ; 64g. Since
blocks are transformed independently, the partitioning distortion for a set of blocks

will simply be the sum of the partitioning distortions of the individual blocks.

Denoting the DCT coe�cient of the k-th run-length of block j of slice i byX i
j(k),

and the set of blocks that belong to slice i by Si, we can express the partitioning

distortion for a particular slice as:

Di(bi) =
X
j2Si

X
k�bi

X i
j(k)

2
(3.30)

Note that this is a function of the breakpoint value bi. Since error calculations

are only done on the luminance component, we will assume that, for chrominance

blocks,

Di(bi) = 0 (3.31)

Returning to eq. (3.25), we can now explicitly express the problem of minimizing

86

the maximum partitioning distortion D as:

min
R(p0)�B̂

fmaxfky � ŷkgg () minPS

i=1
Ri(bi)�B̂

(
SX
i=1

Di(bi)

)
(3.32)

where Ri(bi) denotes the rate required to encode slice i when the breakpoint value bi

is used, and S is the total number of slices considered (may span several pictures).

Our objective here is to �nd those values b�i , i = 1; : : : ; S that minimize the

maximum distortion as given in (3.32). An exhaustive search would be clearly

impossible, as the number of possible combinations that would have to be examined

can be huge (65S). We recall that data partitioning is typically applied immediately

prior to transmission (when the value of B̂ becomes known), and hence complexity

and delay considerations are very important.

3.4.2 The Optimal Algorithm

This constrained minimization problem can be solved using the approach of La-

grange multipliers [50]. A similar algorithmic approach but in a di�erent context

has been used in [73, 74, 126]. The Lagrange multipliers approach converts the con-

strained optimization problem to an unconstrained one, by adding more dimensions

to the parameter space. Consider the following problem. Given a constaint B, �nd

min
b2A

D(b) (3.33)

subject to

R(b) � B (3.34)

Then the following theorem holds [50].

87

Theorem 1 For any � � 0, the solution b�(�) to the unconstrained problem

min
b2A

fD(b) + �R(b)g (3.35)

is also the solution to the constrained problem (3.33){(3.34) with the constraint

B = R(b�(�)), that is, with R(b) � R(b�(�)).

The proof is quite simple and can be found in [50]. It is important to properly

appreciate the consequences of what Theorem 1 provides. In particular, it does not

guarantee any solution to the constrained problem (3.33){(3.34) (in other words,

the two problems are not equivalent). It only indicates that for every nonnegative

�, there is a corresponding constrained problem whose solution is identical to that

of the unconstrained one. If, however, R(b�(�)) happens to be equal to B, then

b�(�) is the desired solution for the constrained problem.

Since the constraint B in our problem is given (the reliable channel bandwidth

B̂), our algorithm will have to �nd an appropriate value for � so that R(b�(�) = B.

Since the domain of b in our case is discrete, such an exact solution may not be

attainable. We will consequently be satis�ed with a solution for which R(b�(�)) is

as close as possible to B.

Returning to our original problem, we can rewrite (3.32) as an unconstrained

problem as follows

min

(
SX
i=1

Di(bi) + �
SX
i=1

Ri(bi)

)
(3.36)

By de�ning the per-slice quantity

Li(�; bi)
def
= Di(bi) + �Ri(bi) (3.37)

88

the above can be rewritten as

min

(
SX
i=1

Li(�; bi)

)
(3.38)

We observe that, given a particular �, the minimization problem above can be

solved independently for each slice, since Li(�; bi) � 0. In other words, each Li

can be minimized independently of the others. This structure helps to signi�cantly

reduce the complexity of the problem. Within each particular slice, one can even use

exhaustive search to obtain the optimum breakpoint value b�i , since the possibilities

are limited (65 in the worst case). Hence the complexity of the problem becomes

proportional to 65S, where S is the number of slices (recall that for a full-search it

is 65S).

In order to �nd the optimal solution b�i , however, we must also �nd the ap-

propriate value �� for �. This can be accomplished using an iterative bisection

algorithm [73, 74]. The algorithm starts with two initial estimates for � (typically

its extreme values 0 and1), and continuously re�nes its estimate until convergence

is achieved.

Figure 3-8 illustrates the procedure for the simple case of a single slice. The

graph shows the various rate-distortion points (marked with \x") when di�erent

breakpoint values are selected. For example, point A (�rst from the left) corresponds

to the breakpoint value b = 0, i.e., to the case where all DCT coe�cients are carried

in partition 1. This gives rise to a particular partitioning distortion D and rate R

that is required to represent the slice, as depicted in the �gure. The rate is non-zero,

since there are also overhead bit for headers etc. Similarly, point C corresponds to

the breakpoint value b = 2. Since more DCT coe�cients are included in partition 0,

89

R

D

λ=|∆D/∆R|
B

λl=0

λu=∞

A

BC

^

Figure 3-8: Overview of the bisection algorithm.

the rate is slightly increased but the distortion is reduced. Hence the R(D) curve3

is monotonically non-increasing. The curve does not necessarily have to have 64

points, since typically only a small number of run-lengths are needed to encode each

block.

We should note that these R(D) curves are not results of a stochastic minimiza-

tion problem as in rate-distortion theory [29, 14], but discrete point curves that

result from actual compression and di�er from slice to slice. This is the reason why

the term \operational" rate distortion minimization is used to di�erentiate it from

the stochastic case. An R(D) curve obtained from actual data is shown in Figure 3-9

at page 93.

3Although the term \R(D) curve" will be used throughout this thesis, we should note that,
strictly speaking, it is imprecise as it implies continuity.

90

As initial values for � we select the two extreme cases �l = 0 and �u = 1
(the subscripts are for \lower" and \upper' respectively). In the former case the

minimum is achieved by independently minimizing the distortion, and hence the

optimal breakpoint for this value of � (denoted by b�(�)) is obtained by using the

maximum possible value of b: b�(0) = bmax � 64. This solution is indicated at point

B in Figure 3-8. In the case �u = 1, the minimum is achieved by independently

minimizing the rate, corresponding to b�(1) = 0 or point A of Figure 3-84. At points

A and B we also show the lines that pass from these points and have as a slope the

negative value of their corresponding �. Observe that these points minimize the

expression: D(b) + �R(b) + c, and hence for some value of the constant c (for the

particular �) the optimum solution is on the line, while all other points are above

it.

We observe that our initial estimates R(�l) and R(�u) contain the desired target

rate B̂, which ensures that the problem is feasible. The next step is to select a new

value for �, which can be done in any number of di�erent ways. Lacking any a priori

information on the R(D) curve, and given its high variability from slice to slice, a

plausible selection is the slope of the line segment interconnecting our original points

A and B. We thus have:

�next =
D(�u)�D(�l)

R(�l)�R(�u)
(3.39)

Next, we minimize D(b) +�R(b) for this particular �, and obtain as a solution, say,

point C. Note that the new optimal breakpoint value will be between those of points

A and B.

4Using this formulation, and for purposes of precision, the rate should be exactly 0; one can
always, however, subtract the overhead bit rate from the rate constraint B̂, ensuring this way that
R(0) = 0.

91

We then examine which of the intervals

[R(b�(�u)); R(b
�(�next))) and (R(b�(�next)); R(b

�(�l))] (3.40)

contains our target bit rate B̂, and repeat the procedure from the start using these

new values of � as starting points. If it turns out that R(b�(�next)) = B̂ then we

have found an exact solution. In practice, convergence will occur when the new

R(D) point coincides with one of the initial two points.

We now present the detailed description of the algorithm, applicable to any

number of slices. Since in an actual implementation it is more convenient to deal

directly with the number of bits instead of the rate, in the following we can consider

that rate-related quantities refer to just quantities of bits. The two are proportional

to each other, related by a normalization constant, and hence the two interpretations

are equivalent.

We denote by b�i (�) the optimal breakpoint for slice i for the particular value of

�, and R�
i (�) and D�

i (�) the optimal rate and distortion respectively of slice i for

the given value of �, i.e., we have:

R�
i (�)

def
= Ri(b

�
i (�)) and D�

i (�)
def
= Di(b

�
i (�)) (3.41)

We also denote by Rbudget the target bit budget for the particular set of slices fSig.
We should note that although the average rate of partition 0 has to be less than

or equal to B̂, there is exibility on how the target bit budget for any given set of

slices is allocated.

92

Lagrangian Minimization Algorithm

Step 1: Initialization

Set �l = 0 and �u =1. If the inequality:

NX
i=1

R�
i (�u) � Rbudget �

NX
i=1

R�
i (�l) (3.42)

holds as an equality for either side, an exact solution has been found. If the above

does not hold at all, then the problem is infeasible (this can happen if the target

rate B̂ is too small). Otherwise go to Step 2.

Step 2: Bisection and Pruning

Compute:

�next :=

�����
PN

i=1[D
�
i (�u)�D�

i (�l)]PN
i=1[R

�
i (�u)�R�

i (�l)]

����� (3.43)

and �nd R�
i (�next) and D�

i (�next) such that B�
i (�u) � B�

i (�next) � B�
i (�l).

Step 3: Convergence Test

If
NX
i=1

R�
i (�next) =

NX
i=1

R�
i (�u) or

NX
i=1

R�
i (�next) =

NX
i=1

R�
i (�l) (3.44)

then stop; the solution is B�
i (�u), i = 1; : : : ; N . If

NX
i=1

R�
i (�next) > Rbudget (3.45)

then �l := �next, else �u := �next.

93

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

Bits Per Pixel

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
Y

 o
nl

y)

Figure 3-9: Slice 20 (full-width, frame 0) from \Flower Garden", coded at 24 Mbps
(x) and 12 Mbps (o).

The bisection algorithm operates on the convex hull of the R(D) curve of each

slice. Consequently, points which lie above that, and hence are not R(D) optimal,

are not considered by the algorithm. Figure 3-9 shows the R(D) plots for an actual

slice (frame-based, intra coding of \Flower Garden" at 24 and 12 Mbps, slice 20|

full-width|of frame 0). Worth noting is the locally non-convex behavior in both

cases. This property can be traced back to the structure of the MPEG-2 run-length

encoding tables [6], where speci�c examples of non-convexity can be easily found. In

most cases (and particularly for P and B pictures as we will see later on), the number

of R(D) points which lie above the convex hull is small, and hence in practice they

do not represent a signi�cant problem.

In some cases, if the R(D) curve of a slice is su�ciently misbehaved, the bisec-

tion algorithm can be set o� track, with a resulting underutilization of the target

bit budget. In order to mitigate this e�ect, and also to speed up operation, each

iteration considers a continuously shrinking interval of possible breakpoint values

(\pruning"). This will result in convergence of the algorithm to a much smaller set

of non-convex points, and is a byproduct of convexity.

94

3.4.3 Performance Evaluation

The collection of necessary data in eq. (3.36) that is needed to run the algorithm, re-

quires only parsing of the input bitstream up to inverse quantization of the DCT co-

e�cients. In other words, all operations can be performed directly in the compressed

domain. Note that distortion data are computed from the luminance component

only, whereas rate data are computed from all three components. The parsing pro-

cess represents a very small fraction of the complete decoding process; the dominant

processing step in decoding is in fact the inverse DCT.

The window S (number of consecutive slices) in which the algorithm operates

has been considered up to now a design parameter. Since data partitioning is per-

formed after encoding, it is desirable to minimize the additional delay introduced

by the extra processing step. Even in cases where partitioning is applied on stored

material prior to transmission, delay is a very important parameter for interactive

applications. A plausible selection is then a complete single picture (frame or �eld).

As we mentioned in the previous section, the target bit budget Rbudget can be

set quite arbitrarily, given however that the average rate does not exceed B̂. This

represents another degree of freedom which is not (and cannot be) optimized by the

above algorithm. A convenient selection is obtained by choosing for each picture

the value

Rbudget = (B̂=B)R �Ro (3.46)

where R is the size (in bits) of the currently processed frame (or,more generally, set

of slices), and Ro is the number of bits spent for coding components of the bitstream

that are not subject to data partitioning (overhead bits for headers, motion vectors,

etc.). Allocated bits that are left over from one picture are carried over to the

subsequent picture. Note also that R is immediately available after the complete

picture has been parsed.

95

It is very easy to show that the budget selection in (3.46) guarantees that the

target bit rate is not exceeded. We have:

Rbudget +Ro =
B̂R

B
(3.47)

and the average value �R of R over time is �R = B. Hence the average rate for the

partitioned picture will be:

Rbudget+Ro =
B̂ �R

B
= B̂ (3.48)

In addition, we can also show that this allocation can satisfy any scaled bu�ering

constraints that may be imposed. This will be further discussed in Chapter 4.

The value given by eq. (3.46) carries over to the partitioning algorithm several

properties of the encoder. In particular, we observe that bit allocation is performed

in a manner proportional to the one decided by the encoder. Assuming that an

\intelligent" encoder has been used, the original bit allocation may have been metic-

ulously optimized; utilizing a proportional allocation in the partitioning process can

help to improve the overall video quality. In the case where bu�ering constraints

are imposed to partition 0 for placement prior to transmission, one can convert

the problem to a bu�er-constrained optimization problem. The approach would be

similar to [96], although the problem there was focused on quantizer selection. It is

doubtful, however, that the signi�cant extra complexity of the problem can in fact

achieve improved results (an optimal fast algorithm for this problem is not known).

The computational overhead of the iterative algorithm is small, with convergence

achieved typically within 8{10 iterations. Figure 3-10 shows the results of applying

the algorithm to 20 frames of \Flower Garden", using frame-based intra coding at 24

Mbps, and with a target rate of 12 Mbps for partition 0. The quality metric used is

96

0 2 4 6 8 10 12 14 16 18 20
23

23.5

24

24.5

25

25.5

26

26.5

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

optimal

rate−based

Figure 3-10: Data partitioning of frame-based, intra coded \Flower Garden", from
24 Mbps to 12 Mbps, using optimal and rate-based algorithms.

\Y-PSNR", i.e., the Peak SNR of the luminance component only. PSNR is derived

from the squared error e = ky � p0k using:

PSNR = �10 log10

2552

e

!
in dB (3.49)

where 255 is the peak value for the luminance signal (using an 8-bit representation).

Also shown in Figure 3-10 are the results of a simpler algorithm that uses rate-

based optimization. In this latter case each slice is independently assigned a target

bit budget proportional to its original size Ri, and a breakpoint is selected so that

this budget is not exceeded (leftover bits are carried over to the next slice). In other

words, we select the breakpoint of each slice as:

b�i = max
n
bi : Ri(bi) � Rbudgeti

o
(3.50)

The bit budget for each slice is set according to:

Rbudgeti =
Ri

Rbudget=S
(3.51)

97

where S is the number of slices. In order to compute Rbudgeti, a complete picture

is read; this makes the algorithms comparable in terms of the optimization window

used. Note that this algorithm is purely rate-based, i.e., the distortion is completely

ignored. Lagrangian optimization outperforms in this case the rate-based algorithm

by 0.6 dB on the average.

3.5 Data Partitioning in Predictive Coding

3.5.1 Problem Formulation

When all variants of picture coding types are used (I, P, and B), the problem of

data partitioning becomes signi�cantly more complex. The decoding process (see

Figure 3-5 in page 79) can be described by:

yi =Mi(yi�1) + ei (3.52)

where Pi denotes the i-th decoded picture (in coding order), Mi(�) denotes the

motion compensation operator for picture i, and ei denotes the coded prediction

error. The �rst picture is assumed to be intra-coded, and hence

e0 = y0 (3.53)

Although, for simplicity, a single reference picture is shown above for motion com-

pensation, the expression can be trivially extended to cover the general case (which

includes B pictures).

By applying data partitioning and decoding partition 0, eq. (3.52) becomes:

ŷi =Mi(ŷi�1) + êi (3.54)

98

where êi denotes the partitioned prediction error. Recall that the original partition-

ing problem was set in its minimax form in eq. (3.25) of Section 3.3.2 (page 83) as

follows:

min
R(p0)�B̂

n
D

def
= maxfky � ŷkg

o
(3.55)

Using (3.52) and (3.54), and observing that the maximum average distortion is

maximized when ŷ = p0 (i.e., partition 1 is lost), eq. (3.55) becomes:

minPN

i=1
Ri(bi)�B̂

MX
p=1

Mi(yi�1)�Mi(ŷi�1) + ei � êi

 (3.56)

where M is the number of pictures over which optimization takes place. Note that:

Mi(yi�1)�Mi(ŷi�1) 6=Mi(yi�1 � ŷi�1) (3.57)

i.e., motion compensation is a non-linear operation, because it involves integer arith-

metic with truncation away from zero [6].

From eq. (3.56) we observe that, in contrast with the intra-only case, optimiza-

tion involves the accumulated error:

ai
def
= Mi(yi�1)�Mi(ŷi�1) (3.58)

Furthermore, due to the error accumulation process, partitioning decisions made

for a given picture will have an e�ect in the quality and partitioning decisions of

subsequent pictures. As a result, an optimal algorithm for (3.56) would have to

examine a complete group of pictures (I-to-I), since breakpoint decisions at the

initial I-picture may a�ect even the last B or P picture. Not only the computational

overhead would be extremely high, but the delay would be unacceptable as well.

It is desirable then to seek fast solutions with small delay, that are able to control

99

error propagation in a well-de�ned fashion.

An attractive alternative algorithm is one that solves eq. (3.56) on a picture

basis, and where only the error accumulated from past pictures is taken into account.

This algorithm will be referred to as causally optimal. In addition, in order to avoid

similar complications that arise when the optimization window spans more than

one picture, we will restrict our discussion for the case where the windows is up

to a complete single picture. This property is also an indirect consequence of the

causality argument.

Note that in order to accurately compute ai, two prediction loops have to be

maintained: one for a decoder that receives the complete signal, and one for a

decoder that receives only partition 0. This is because of the nonlinearity of the

integer arithmetic of motion compensation expressed by eq. (3.57). With the penalty

of some lack in arithmetic accuracy, these two loops can be collapsed together. In

the following we will assume that the (optimal) dual-loop operation is always used.

3.5.2 The Causally Optimal Problem

The causally optimal problem can now be formulated as follows. Substituting

eq. (3.58) in (3.56) we have

min
R(p0)�B̂

fkai + ei � êikg (3.59)

We must now obtain an expression for the total partitioning distortion ai + ei � êi.

As in the non-predictive case of Section 3.4.1, we �rst consider a single block.

Let A(k) denote the k-th DCT coe�cient of the accumulated error a (in zig-zag

scanning order), E(k) the corresponding coe�cient of the decoded picture e, Ê(k)

100

the one of the partitioned picture, and b the breakpoint value. We then have

kai + ei � êik =
N�1X
i=0

�
A(k) + E(k)� Ê(k)

�2

=
N�1X
i=0

A(k)2 + 2
N�1X
i=0

A(k)
�
E(k)� Ê(k)

�
+

N�1X
i=0

�
E(k)� Ê(k)

�2

=
N�1X
i=0

A(k)2 + 2
N�1X
i�b

A(k)E(k) +
N�1X
i�b

E(k)2 (3.60)

since

Ê(k) =

8><
>:
E(k) if k < b

0 otherwise
(3.61)

Observe that the total distortion involves not only the accumulated error and

the current picture's partitioning error (identical to the non-predictive case), but

crossterms as well.

Due to the independence of individual blocks, we can extend (3.60) for a complete

slice. We should note, however, that while the prediction error DCT coe�cients are

represented by their run-lengths, and the truncation point is also de�ned by the

number of run-length to be included in partition 0, the accumulated error has no

such representation. Consequently, a mapping function I(k) is necessary that maps

the k-th run-length of a block into the appropriate position in the zig-zag scanning

pattern.

Denoting by D̂i(bi) the total partitioning distortion of slice i for the breakpoint

value bi, we have

D̂i(bi) =
X
j2Si

8<
:
N�1X
k=0

Ai
j(k)

2 +
X
k�bi

2Ai
j(I ij(k))Ei

j(k) +
X
k�bi

Ei
j(k)

2

9=
; (3.62)

where Si denotes the blocks of slice Si, A
i
j(k) is the k-th DCT coe�cient (in zig-zag

scanning order) of the j-th block of the i-th slice of the accumulated error ai, and

101

Ei
j(k) is the DCT coe�cient of the k-th run-length of the j-th block of the i-th slice

of the coded prediction error. Using (3.62), the data partitioning problem (3.59) for

the predictive case can be formulated as:

min
R(p0)�B̂

fkai + ei � êikg () minPN

i=1
Ri(bi)�B̂

(
SX
i=1

D̂i(bi)

)
(3.63)

where S is the total number of slices in the optimization window.

3.5.3 The Causally Optimal Algorithm

The minimization problem in (3.63) can be solved using the Lagrangian optimization

approach of the non-predictive case in Section 3.4.2, using the more general de�nition

of the distortion D̂ given by eq. (3.62).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

350

400

Bits Per Pixel

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
Y

 o
nl

y)

Figure 3-11: Slice 20 (full-width, frame 3, P-picture) from \Mobile" coded at 4
Mbps and partitioned at 3.2 Mbps: (x) D̂(Bi), (o) D(Bi).

Of particular concern is the convexity of the R(D) curves when the total distor-

tion (including the accumulated error) is taken into account. Figure 3-11 shows the

R(D) curve for slice 20 of frame 3 (P-picture) from the sequence \Mobile" coded at 4

Mbps (frame-based coding) and partitioned at 3.2 Mbps using the causally optimal

102

algorithm. The upper curve takes into account the accumulated error ai, whereas

the bottom one involves only the prediction error partitioning distortion ei � êi.

We observe that convexity is clearly present. In fact, for predicted pictures,R(D)

curves tend to be uniformly convex, compared with intra pictures which tend to

have a concave middle segment. We have experimentally veri�ed that this property

holds even for small slice sizes (e.g., 11 or 4 macroblocks per slice, instead of the

regular 44 which amounts to the whole picture width), although the curves become

progressively atter.

3.5.4 Performance Evaluation

An important issue in mixed-mode coding, as in non-predictive coding, is the target

bit budget that will be set for each picture (or more generally, set of slices). The

matter is more complicated than in the intra-only case, due to the irregular bit dis-

tribution among pictures of di�erent types. In a typical situation, I and P picture

DCT coding requires a signi�cant number of bits, while B picture sizes are domi-

nated by header and motion vector coding bits. Figure 3-12 depicts the number of

total vs. overhead bits for the \Mobile" sequence coded at 4 Mbps. \Overhead"

here includes everything except the DCT coe�cients which are subject to partition-

ing. Observe the evident periodic pattern between I pictures, and the irregularity

of the bit distribution between I, P, and B pictures.

As a result of the bit distribution irregularity, B pictures provide much less

exibility for data partitioning. In order to accommodate this behavior, I and P

pictures are assigned proportional bit budgets as in Section 3.4.3. For B pictures

the same is done, except when the resulting bit budget is negative, in which case it

is set to 0. The negative budget, however, is accounted for, so that the bits spent for

the B picture are subtracted from the budget of the immediately following picture.

103

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5
x 10

5

Field Number

B
its

 (
T

ot
al

/O
ve

rh
ea

d)

Figure 3-12: Bit distribution for the \Mobile" sequence coded at 4 Mbps, with
I period 12, and B period 3 (the overhead bits include all non-DCT bitstream
components).

Note that an optimal bit allocation for each picture would be a direct by-product

of the optimal non-causal algorithm.

Figure 3-13 shows the Y-PSNR resulting from the causally optimal algorithm

on 15 frames of the \Mobile" sequence (I distance N=15, I/P frame distance M=3),

frame-based coded at 4 Mbps and partitioned at 3.2 Mbps (80% of the rate goes to

partition 0). This is the signal quality that would be observed by a decoder that

receives only partition 0, compared with one that receives both partitions. We see

that I and P frames su�er the most, while B frames are in general up to 1 dB better.

The complexity of solving eq. (3.63) is signi�cant, as it requires at least one

complete decoding loop for the luminance signal. If the non-linearity of the motion

compensation is taken into account, then two such loops are required. In addition,

since motion compensation is performed in the spatial domain while partitioning

is performed in the DCT domain, a forward DCT computation module is required

as well in order to compute Ai
j(�). As a result, the implementation complexity is

between that of a decoder and an encoder.

104

0 5 10 15
25.5

26

26.5

27

27.5

28

28.5

29

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

causally optimal

rate−based

memoryless

Figure 3-13: PSNR (Y only) for \Mobile" sequence, frame-based coded at 4 Mbps
and partitioned at 3.2 Mbps using the causally optimal, memoryless, and rate-based
algorithms.

3.5.5 The Memoryless and Rate-Based Algorithms

Given the complexity of the causally optimal algorithm, it is interesting to examine

the bene�t of error accumulation tracking. This can be evaluated by applying the

algorithm of Section 3.4.2 (intra-only case) to the mixed-mode case, since the only

di�erence is the accumulated error term ai. Bit budget allocation, however, is

performed as discussed in Section 3.5.4 (mixed-mode case).

Surprisingly, the results of this memoryless mixed-mode partitioning algorithm

are almost identical to the causally optimal one. Figure 3-13 shows the relevant

PSNR values for the \Mobile" sequence. The di�erence is in general less than 0.1

dB and the curves can hardly be distinguished. We have experimentally veri�ed

that this holds for a very wide range of bit rates (i.e., down to 50% reduction, or

more depending on the original rate and picture resolution) and slice sizes. The

di�erence, however, increases slightly to 0.2{0.3 dB. We should note that these

di�erence values are perceptually insigni�cant.

This is a very important result, as it implies that we can dispense completelywith

105

the error accumulation calculation and its associated computational complexity,

for a minimal cost in performance. The quality degradation between the causally

optimal and memoryless algorithms will be perceptually insigni�cant, across the

spectrum of slice sizes and partition rates.

This property is hinted at by Figure 3-11 (page 101) upon closer examination.

The upper and lower curves are almost identical, except for a vertical shift. Figure 3-

14 depicts the two types of distortions (from the causally optimal and memoryless

algorithms) as well as the accumulated error across all slices of a picture. We observe

that the two distortions behave in very similar ways as we move along the picture. In

order for the accumulated error to a�ect the partitioning decisions, either the slope

of the R(D) curves or the overall accumulated error distribution across a picture

would have to be signi�cantly a�ected. This, however, is not the case, because at

each picture the partitioning decisions are optimally made.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Slice Number

D
is

to
rt

io
n

(Y
-R

M
S

)

causally optimal

memoryless

accumulated error

Figure 3-14: Distribution of accumulated error, causally optimal, and memoryless
distortions across all slices of a picture (\Mobile", coded at 4 Mbps and partitioned
at 3.2 Mbps, frame 3, P picture).

Finally, we examine the performance of the rate-based optimization algorithm

introduced in Section 3.4.3 (eq. (3.50)), in a mixed-mode coding environment. Since,

106

as was previously pointed out, rate-based optimization does not take into account

the distortion, there is no di�erence whether or not the accumulated error is tracked.

Consequently, the only di�erence lies in the bit budget allocation. Figure 3-13

depicts the results obtained on the \Mobile" sequence, with the same coding and

partitioning parameters as before. We see that the rate-based algorithm is inferior

by about 1 dB. The complexity, however, is signi�cantly reduced as well, as the

Lagrangian optimization iteration is avoided. This makes the rate-based algorithm

attractive, when complexity and/or implementation costs are of importance.

3.6 Concluding Remarks

The problem of optimal data partitioning in motion-compensated transform coding

was analyzed, with particular emphasis in its use by the MPEG-2 video coding

standard. Data partitioning can be a very e�ective tool for transmission of single-

layer video bitstreams over unreliable channels, including channels that provide

prioritized transmission (i.e., virtual channels in packet-based networks). A key

property of the approach is that it can be applied even after encoding has already

taken place, and thus is applicable not only for live transmission systems, but also

for stored video applications such as video-on-demand. A potential drawback of the

approach is that, in contrast with other scalable coding approaches, neither of the

two partitions in which the bitstream is split is self-contained. Consequently, due to

the recursive nature of motion-compensated compression, if part of the bitstream is

lost (namely, from partition 1), error accumulation will occur.

The major contributions of this chapter can be summarized as follows:

1. We provided an analysis of data partitioning in an operational rate-distortion

context. An optimal algorithm based on Lagrange multipliers was derived for

non-predictive (intra-only) coding, and shown to be less complex than a full

107

decoder.

2. For the predictive coding, or mixed-mode case (I, P, and B pictures) the

optimal algorithm was characterized and shown to possess signi�cantly high

complexity and delay, as a complete group of pictures was required to be

processed at a time. As an alternative, a \causal" minimization formulation

was proposed, in which only the accumulated error from past pictures is taken

into account (while the one propagated to future pictures is ignored).

3. An optimal algorithm for the causal problem was developed as a generalization

of the non-predictive case. Experimental results have shown that the algorithm

performs quite well, with P and B pictures having about 1 dB higher quality

than I ones.

4. It was then shown that tracking the error accumulation from one frame to the

next does not actually bene�t the partitioning process in any signi�cant way,

and hence that a memoryless algorithm employing Lagrangian optimization is

su�cient.

5. Finally, a faster but suboptimal algorithm that uses rate-based optimization

was also proposed for comparison purposes. It was shown to perform quite

close (within 0.6 dB on the average) to the optimal one for the intra-only case,

but proved to be inferior by 1 dB on the average for the mixed-mode case.

The discovery of the extremely good performance of the|relatively simple|

memoryless algorithm is an important result, as it drastically reduces the complexity

of the algorithm. The signi�cance of this property is strengthened by observing

that, as has been experimentally veri�ed, it holds across the whole spectrum of

partitioning rate ratios and slice sizes. The results of this chapter will be generalized

in the following one, where we discuss the Dynamic Rate Shaping concept.

108

Chapter 4

Dynamic Rate Shaping

4.1 Introduction

In applications of digital video communications there are many cases where control

of the bit rate of video is needed, even after encoding has already taken place. One

example is video-on-demand services, in which transmission of precoded material

may occur over a wide variety of channels. Users may access the video server using

dial-up lines (with a capacity of few tens of Kbps), wireless channels (capacity of few

Mbps), traditional local area networks (in the order of 10 Mbps), high-speed LANs

(100 Mbps or more). The material that has been encoded and placed in the server

may potentially have to be transmitted over all these di�erent types of channels.

Using a single-layer coding approach, a decision has to be made for which channel

type to optimize the representation. Choosing a low-rate channel will compromise

quality for high rate users; choosing a high rate will make the service unusable for

low rate users. The alternative of storing multiple versions of the same material at

di�erent rates is unattractive, since it multiplies storage requirements. Furthermore,

multiresolution coding with too many layers would be undesirable, due to the loss

in coding e�ciency.

Another example is transmission of real-time or precoded video material over

109

channels with limited or no quality of service guarantees. This includes CSMA/CD

LANs (e.g., Ethernet), as well as virtual circuits in ATM networks. Although tech-

niques have been developed to employ rate control for live sources based on network

feedback [47, 75] (one such technique is discussed in Section 2.3), no solution is

currently available for prerecorded material. Similarly, consider a variable bit rate

video source that is fed to an ATM virtual circuit: due to the di�culties in modeling

such tra�c, the tra�c characterization used for admission control and policing will

not necessarily match that of the source. Instead of dropping vital information at

the source or in internal network nodes (when congestion occurs at intermediate

switches), an operation that would manipulate the bitstream so that it complies

with what the network can deliver would be an extremely useful proactive measure

against resource exhaustion.

Another environment that could potentially bene�t from such \post-encoding

rate control" operation would be multipoint communication with mobile hosts. Since

the mobile link is typically of much lower bandwidth than wired ones, by reducing

the video rate at the base-to-mobile link, wired participants would still be able

to utilize the full bandwidth available to them without being compromised by the

presence of wired ones. The same argument holds for heterogeneous (at least in

terms of bandwidth) internetworks.

Finally, an environment that continuously grows in importance is that of general

purpose computers. Due to the variety of network transport mechanisms that can

be employed and the potential use of video for applications not involving network

transmission, it is most likely that general-purpose (transport-independent) video

codecs will be used. This includes MPEG-1 and single-layer (non-scalable) MPEG-2.

It is desirable, then, to provide a mechanism that can gracefully interface the codec

with the particular transport facilities used, if any. Other environments where such

110

techniques would be extremely useful include \trick-mode" operations (fast forward,

rewind, etc.), decoder interoperability, transcoding, etc. These will be discussed in

more detail in Section 4.6.

In all the above cases, the common theme is the need to manipulate the coded

bitstream so that it complies with the bandwidth availability of the underlying

communication resources, or the processing capability of the receiver. In general,

this manipulation is performed at the transmitting host, just above the transport

layer, and interfaces the coded video bitstream with the transport service. It is

also possible to perform it in intermediate nodes within the network, which would

be specially con�gured to provide such \value-added" services, similar to today's

videoconferencing bridges.

We refer to this rate manipulation operation as Dynamic Rate Shaping (DRS).

The term dynamic refers to the possibility that rate constraints are time-varying,

while shaping is used instead of rate control to: 1) di�erentiate our approach from

that of classical encoder rate control in which the variable rate of an entropy-coded

bitstream is matched to a �xed channel rate, and 2) to more accurately capture the

posterior (with respect to coding) nature of the operation. Note that DRS is quite

di�erent from tra�c shaping (e.g., in DRS the tra�c's average rate can change).

Also, DRS can be used in new types of hybrid guaranteed/best-e�ort services, such

as the ones described in [17].

In order for rate shaping to be viable it has to be implementable with reasonable

complexity and yield acceptable visual quality. With respect to complexity, the

straightforward approach of decoding the video bitstream and recoding it at the

target rate would be obviously unacceptable; the delay incurred would also be an

important deterrent. Hence algorithms of complexity less than that of a cascaded

decoder and encoder will be sought. These algorithms will ideally operate directly

111

in the compressed domain of the signal. In terms of quality, it should be noted that

recoding does not necessarily yield optimal conversion; in fact, since an optimal

encoder (in an operational rate-distortion sense) is impractical due to its complexity,

recoding can only serve as an indicator of an acceptable quality range. As will be

shown, regular recoding can be quite lacking in terms of quality, with DRS providing

signi�cantly superior results.

We present a family of algorithms that solve the problem of dynamic rate shaping

for motion-compensated transform coders, including MPEG-1, MPEG-2, H.261,

and JPEG. We identify two major categories of algorithms, quantizer-based and

selective-transmission-based. Our focus is on the latter category, for which we derive

several di�erent algorithms, optimal under di�erent circumstances. The operational

rate-distortion approach utilized in Chapter 3 is used here as well, and it is shown

that data partitioning is a special case of dynamic rate shaping. We also discuss

several fast approximations and analyze their performance. It is shown that some of

those perform almost identically to their corresponding optimal ones, thus making

them excellent candidates for (even software-based) implementation. While the

approach is applicable to any motion-compensated block-based transform codec,

the MPEG-2 [6] standard is used for all simulation results presented.

The structure of this chapter is as follows. In Section 4.2 we discuss some key

properties of the rate behavior of video signals, their impact in communications

applications, as well the mechanism of rate control. This section complements Sec-

tion 3.2, which provided an overview of the motion-compensated transform coding

process, and motivates the DRS concept. In Section 4.3, we present a mathematical

formulation of the problem of dynamic rate shaping, and identify its several variants.

Section 4.4 discusses the Constrained DRS algorithm (optimal when certain struc-

tural constraints are imposed) and its variants, and shows that it is a generalized

112

version of the data partitioning problem. Section 4.5 presents the Unconstrained

DRS algorithm, which is optimal for the selective-transmission based category. Sec-

tion 4.6 discusses several possible applications of DRS, and how the results of this

chapter would impact them. Finally, we conclude in Section 4.7 with a summary of

the major contributions of this chapter.

4.2 The Rate Properties of Compressed Video

The representation of uncompressed digital video requires a constant rate, as a result

of the regular three-dimensional sampling lattice and the use of a constant number

of bits per pixel and per color component. This rate is typically extremely high, in

the order of 200 Mbps depending on the picture size and the chroma format used.

By employing compression as with the motion-compensated transform coding tech-

niques discussed in Section 3.2 (or other), one can reduce this rate by several orders

of magnitude, down to a few Mbps, with small|if any|perceptually noticeable loss

in quality. This \mapping", however, of the signal from its original spatio-temporal

domain to the compressed one, signi�cantly distorts its rate behavior. Since the

compressed signal will be subsequently transmitted across a network, or handled

internally by a local system, it is very important to identify the impact of this rate

behavior on overall system design.

4.2.1 Variable Bit Rate Video

As we have seen from the encoding algorithm description in Section 3.2, the com-

pressed video bitstream is composed of three primary components: header informa-

tion, motion vectors, and DCT coe�cients. Header information requires, in general,

a roughly constant number of bits across di�erent pictures. Slight variations are pos-

sible, since header information also includes prediction modes, macroblock types,

113

etc., which may dynamically vary between pictures or even across the same picture.

Motion vectors are encoded di�erentially, using Hu�man|or variable length|codes

(VLC). Similarly, DCT coe�cients, which are encoded in the form of run-lengths,

are also represented via variable length codewords. Figure 4-1 depicts the block

diagram of a motion-compensated transform encoder, where the Hu�man (VLC)

coding stage is shown.

Source

DCT

DCT-1

Q

Q-1

MC

Intra

Motion Vectors

On/Off
Frame

Store

Prediction

VLC

VLC

MUX

Channel

Figure 4-1: Variable bit rate motion-compensated transform encoder.

As a result, the rate of a compressed video bitstream is inherently variable. When

the same quantizer parameter (i.e., quantization step size) is used for all macroblocks

and pictures, the resultant bitstream is called a Variable Bit Rate (VBR) bitstream.

This is, of course, not the only way to produce a variable rate bitstream, but the

term VBR has been used almost exclusively to denote this coding approach. Use of

the same quantizer across the whole video sequence results in identical quality (at

least in terms of theoretical SNR) for all pictures, and hence VBR encoding is also

114

known as constant quality or constant Q encoding (where Q refers to the quantizer

step size, which essentially de�nes quality).

4.2.2 Constant Bit Rate Video and Rate Control

In traditional communication applications (i.e., those based on circuit-switching),

the notion of a channel involves a constant bandwidth (capacity) and delay, together

with some statistical characterization of the unavoidable noise. For this reason,

signi�cant e�orts have been expended over the years to convert the variable length

bitstream produced by transform coders into a constant bit rate one.

The classical model of constant bit rate conversion consists of attaching a bu�er

of size B at the output of the encoder. The bu�er is continuously emptied at the

constant channel rate. The bu�er's occupancy is monitored, and the encoder takes

appropriate actions to avoid overow or underow. Overow would obviously lead

to loss of information, while underow is undesirable when the coded bitstream is

used to generate transmission timing information at the receiver. Let B(t) denote

the bu�er's occupancy just prior to coding picture unit t (a unit may be a block,

macroblock, slice, or even a whole picture), r(t) the number of bits required to

encode picture unit t, and rC the channel rate expressed in terms of the average

bits per picture (i.e., rC is the channel rate multiplied by the picture period). The

bu�er's occupancy evolution is then governed by the recursive equation

B(t+ 1) = B(t) + r(t)� rC B(0) = 0 (4.1)

whereas the encoder must ensure that, for all t,

0 � B(t) � B (4.2)

115

Source

DCT

DCT-1

Q

Q-1

MC

Intra

Motion Vectors

On/Off
Frame

Store

Prediction

VLC

VLC

MUX

Channel

Buffer

Q(B)

B

Rate Controller

Figure 4-2: Constant bit rate motion-compensated transform coder with rate con-
trol.

116

The process with which the bu�er's occupancy is controlled is called rate control.

The rate controller modi�es the encoder bitstream rate by adapting the quantization

process based on the bu�er occupancy, as shown in Figure 4-2. In its simplest form,

the rate controller is simply a linear relationship between the quantizer step size and

the bu�er occupancy. Assuming that the quantizer scale Q (which is proportional

to the step size) can take values in the set f1; 2; : : : ; Qmaxg (typically Qmax = 31),

then the rate controller uses the equation:

Q(t) =

$
B(t)

B
Qmax

%
+ 1 (4.3)

to set the value of Q for unit t. When B(t) = B, Q(t) is simply set to Qmax.

Eq. (4.3) establishes a closed loop between the bu�er and the encoder, and by

virtue of (4.1) ensures that the average number of bits used per unit is rC. When

the bu�er occupancy becomes high, coarser quantization is utilized so that fewer

bits are required to code each unit, and vice versa. Note that the above scheme

does not guarantee that overow or underow will never occur. If the statistics of

the source, however, do not vary very quickly with time, the probability of that

happening becomes very low.

Much more complicated rate approaches are also possible, that take also into

account the source signal [104, 58]. There are also rate control schemes that take

into account semantic information (e.g., the location of faces or facial features), like

the model-assisted rate control algorithms we have proposed in [47, 42, 43, 44, 64].

These techniques achieve a better distribution of the bit budget to critical segments

of a video sequence, but all tend to be heuristic. More rigorous analyses of the

problem have also been developed (see, for example, [96, 82, 126] and references

therein).

Note that modern systems deviate signi�cantly from the above model. While

117

it is still applicable to purely hardware-based solutions, such as an encoder that is

directly interfaced to a channel, computer-based encoders and networks have totally

di�erent paradigms of communication. For the case of the host, the fundamental

unit of transmission is no longer the bit but is rather a memory bu�er (e.g., a page,

for systems using virtual memory). Furthermore, memory space in general purpose

computers is less likely to be tightly bounded. Similarly, computer networks utilize

packet-based transmission, and their bandwidth and delay behavior is much more

complicated than what the above model suggests.

4.2.3 Video Rate and Communications Systems

As we have discussed in Chapters 1 and 2, the quality of service (QoS) is one of the

most important parameters of a communication system. Traditional telecommuni-

cation facilities based on circuit-switching technology provide constant bandwidth

bit pipes with �xed delay and well-de�ned error behavior. Data communication fa-

cilities, on the other hand, typically provide no QoS guarantees, and only operate on

a best-e�ort basis. They include individual LANs as well as the Internet as a whole.

Modern network architectures, and more speci�cally ATM-based networks, attempt

to bridge the gap between the two by combining features from both: connection-

oriented operation, packet-based transmission, and small (�xed) packet length for

low delay in real-time communication applications [56].

4.2.3.1 Networks with Quality of Service Guarantees

A key feature of the integrated networking approach in ATM (inherited from data

networking) is the concept of statistical multiplexing. The key principle in statis-

tical multiplexing is that, if we multiplex a large number of variable rate streams,

the bandwidth required for their transmission will be less than the sum of the band-

118

widths required for each one individually. This is because rate peaks in some stream

will most likely coincide with valleys in others, and hence the variation will tend

to cancel out. In fact, as one would expect, the aggregate bandwidth required will

simply be the sum of the average rates of the individual streams.

When a user requests a connection from an ATM network, he or she establishes

an agreement, or tra�c contract, with the network with respect to the tra�c that

will be generated and transported. The tra�c contract is based on a prede�ned

tra�c characterization vector, which may include parameters such as peak and

average cell (packet) rates, maximum burst size, cell delay variation, etc. [56]. The

network management layer will decide to accept the connection if the projected

tra�c load can be accommodated by the network without compromising the tra�c

contracts of other users; otherwise, the request will be declined. This process is

called admission control.

In order to protect itself from abuse, the network monitors the user's tra�c at

the point it enters the network, and ensures that the agreed-upon tra�c bounds

are not exceeded. If a user exceeds the parameters of the tra�c contract, then

the system will discard the cells corresponding to the excess tra�c. Alternatively,

the network may simply mark them as excessive and if, during the course of the

transmission, a switch becomes congested, it will discard them at that time. This

process is called policing.

The above model assumes that the user's tra�c can be adequately modeled by

a standardized, universal tra�c characterization vector. The importance of the

tra�c's behavior in designing admission control algorithms has prompted a sig-

ni�cant amount of research in the area of video tra�c modeling and multiplex-

ing. Very sophisticated models have been developed, including Markov-Modulated

Poisson Processes (MMPP), Transform Expand Sample (TES), etc. (see for exam-

119

ple [78, 61, 79, 110, 85] and references therein). Despite their complexity, these

models have not been proven to be universally applicable.

The di�culty of the modeling problem can be traced back to the structure of the

encoder. The rate variability is due to the use of Hu�man encoding, which employs

variable length codes. These are designed so that highly likely events are encoded

with shorter codewords, while less likely ones with longer codewords. Depending on

the source material, the number of bits needed to encode a picture may exhibit large

variations: pictures with uniform appearance and few details will in general require

fewer bits; complex sequences with very high-speed motion, on the other hand, will

require much more. In essence, the richness of visual content itself prohibits the

development of a simple, yet accurate, tra�c model.

The consequences of inadequate tra�c models can take two di�erent forms. For

optimistic models (i.e., those that underestimate the source tra�c), we will have

information loss since excess tra�c will be �ltered out by the policing function. For

pessimistic models (i.e., those that overestimate the source tra�c), we are wasting

network resources. The example of peak rate allocation (i.e., allocation of a channel

based on the maximum rate of a variable rate video bitstream) belongs to the

latter category. Obviously, such an approach defeats the whole purpose of using an

integrated network architecture, and falls back to the traditional circuit-switching

system model.

4.2.3.2 Networks without Quality of Service Guarantees

The category of networks without QoS guarantees includes traditional data net-

works (e.g., Ethernet LANs), as well as virtual circuits in which no service guaran-

tees have been established [93]. Due to the higher cost of establishing high-quality

connections, and also because this type of virtual connection will be popularized by

120

distributed computing applications (e.g., Internet connections), it is expected that

they will represent a signi�cant proportion of the total number of connections.

In this case the tra�c that can be handled by the network can be arbitrary,

and can also vary signi�cantly over time. Clearly, any a priori assumption that

can be made by an encoder's rate controller are totally useless. Unless the network

happens to be in a state in which the o�ered tra�c can be accommodated, high-

quality communication is totally impossible. Potential adverse phenomena include

severe end-to-end delays, very high jitter (delay variation), and very high loss rates.

In order to accommodate audio-visual applications in such an environment, ap-

plications must exhibit \elasticity." In other words, they must be able to adapt to

the changing network conditions in order to keep the quality of service as high as

possible. We have used such an approach in Chapter 2, in the context of the Xphone

system's JPEG coding adaptive rate control algorithm. A similar approach has been

followed in [75] in the context of MPEG. Both ideas utilize network feedback in or-

der to control the encoding process1. Observe the similarity with traditional rate

control, in which the feedback was produced by a channel bu�er.

Although these techniques have merit, they have the signi�cant problem of not

being able to handle precompressed material. Since they require direct communi-

cation of the network state to the encoder, they are only applicable to live video

applications. Another drawback is that they require specialized encoders (i.e., sys-

tems that are speci�cally designed to accept and utilize network feedback), and

hence are more expensive.

Current applications (e.g., nv, vat, vic, etc.) that are routinely used in the

MBONE (the multicast-enabled part of the Internet) follow a very simple approach

1For the JPEG case, and due to the very challenging environment used in Xphone, we have also
seen that in many cases it is necessary to drop frames altogether in order to maintain an adequate
communication environment.

121

towards quality of service. Since they are designed for dissemination-oriented com-

munication (e.g., broadcast of seminars) and not highly interactive sessions, they

employ a best-e�ort approach. A target bit rate is �xed (in the order of 128 Kbps)

depending on the \scope" of the session (local, regional, national, or international),

and transmission is done with no regard to the reception quality. As one might ex-

pect, the quality is quite poor. Although this open-loop and best-e�ort approach is

reasonable when the number of receivers may potentially be in the thousands (and

given the current Internet's capabilities), person-to-person or small group commu-

nication has much stricter performance requirements. E�orts are underway within

the Internet Engineering Task Force (IETF) to provide improved quality of service

in IP (and IPng) using reservations (RSVP) [132]; this will at least provide good

delay bounds for real-time tra�c.

4.3 Dynamic Rate Shaping

From the preceding discussions, we observe that we essentially have two di�erent

viewpoints in terms of the video rate produced or transported. On the one hand

we have video encoders that live in the dual worlds of traditional CBR and highly

unpredictable VBR compressed video. On the other hand we have networks that can

carry either CBR tra�c, or statistically characterized VBR tra�c, or only provide

best-e�ort capabilities. The problem of carrying CBR video is well understood. As

we pointed out earlier, though, there are cases when the video and channel rates

can be incompatible. In the most interesting case of VBR video, the principles

assumed by these two viewpoints on how the tra�c behaves are very di�erent, and

will almost always result in very poor performance.

The objective of dynamic rate shaping is then to bridge the wide gap between

CBR and VBR video with a continuum of alternatives and hence, using hopefully

122

simple and e�cient algorithms, to allow complete interoperability of the video sig-

nal with any kind of transport mechanism. By separating the dependency of the

encoder and the transport mechanism we allow their designers to independently use

the best possible designs. For example, the network designer will select a tra�c

characterization vector for which admission control becomes tractable and e�cient

to implement throughout a network. Similarly, the encoder designer will use the

rate behavior that best represents the source material. If necessary, a dynamic rate

shaping processor can then ensure interoperation between the two, if necessary. Note

that by optimizing the two components independently it is almost certain that we

will not achieve a global optimum. The search for such an optimum, however, is|in

all likelihood|a futile exercise due to the large number of parameters involved. At

present no general \optima" are known, even for the individual problems.

We thus de�ne rate shaping as an operation which, given an input video bit-

stream and a set of rate constraints, produces a video bitstream that complies with

these constraints. For our purposes, both bitstreams are assumed to meet the same

syntax speci�cation, and we also assume that a motion-compensated transform cod-

ing scheme is used. This includes both MPEG-1 and MPEG-2, as well as H.261 and

JPEG. If the rate constraints are allowed to vary with time, the operation will be

called dynamic rate shaping. Throughout this discussion we assume that MPEG-2

is used as the video coding syntax. An overview of the general transform coding

approach, including MPEG-speci�c features, was provided in Section 3.2.

4.3.1 The Formulation of the Dynamic Rate Shaping Problem

The rate shaping operation is depicted in Figure 4-3. We are given an input bit-

stream y with some rate characteristic B(t) and a rate constraint BT (t), and we

are asked to produce a bitstream ŷ whose rate B̂(t) complies with this constraint.

123

Note that no communication path exists between the rate shaper and the source

of the input bitstream, which ensures that, by design, no access to the encoder is

necessary.

DYNAMIC

RATE SHAPER
B(t) Mbps B(t) Mbps

^

Constraint: BT(t)

MPEG MPEG

y ŷ

bitstream bitstream

Figure 4-3: De�nition of Dynamic Rate Shaping.

Of particular interest is the source of the rate constraints BT (t). In the simplest

of cases, BT (t) may be just a constant and known a priori, e.g., the bandwidth of

a circuit-switched connection. This is the case when we are converting a high-rate

bitstream for transmission over a low-capacity channel. It is also possible that BT (t)

has an a priori well-known statistical characterization. This would be the case, for

example, in ATM networks, where the statistical characterization is governed by the

tra�c contract and the policing function.

Finally, another alternative is that BT (t) is generated by the network over which

the output bitstream is transmitted. This information could be potentially provided

by the network management layer, or may be the result of end-to-end bandwidth

124

availability estimates. This would be used, for example, in best-e�ort networks.

Such an approach has been followed in the Xphone adaptive rate control scheme

(Section 2.3), and also in [75].

The objective of an optimal rate shaping algorithm is to minimize the conversion

distortion, i.e.,

min
B̂(t)�BT (t)

fky � ŷkg (4.4)

The metric k�k denotes the squared error criterion. Note that no assumption is made

about the rate properties of the input bitstream, which can indeed by arbitrary. As

we will see, the attainable rate variation (B̂=B) is in practice limited, and depends

primarily on the number of B pictures of the bitstream and the original rate B(t).

In addition, there is no indication in eq. (4.4) of either the optimization window,

or the optimization parameters (i.e., those for which we are called to �nd the op-

timal values). The nature of the optimization parameters gives rise to structurally

di�erent problems, which lead to slightly di�erent types of algorithms. The various

alternatives are discussed in the next section.

The optimization window, as in the case of data partitioning in Chapter 3, is

considered a design parameter. There are several issues a�ecting its choice. A very

important one is the computational complexity that we are prepared to accept;

longer windows will require signi�cantly more processing time and bu�ering space

than shorter ones. Another key factor is the dynamics of the transport mechanism

used, if any. If the constraints provided to the rate shaper change very quickly com-

pared to the picture period (33 or 16.5 msec), a short optimization window should

be used in order to capture these variations. For more slowly varying networks,

the performance bene�ts of larger windows can be exploited. In the simulation re-

sults presented in this chapter, all optimization windows are set to cover a complete

picture.

125

Finally, we should point out that, as in the data partitioning case, y and ŷ may

be generated by a recursive process. Rate shaping will introduce error accumulation

phenomena, which will have to be taken into account.

4.3.2 The Family of Dynamic Rate Shaping Algorithms

Assuming that a motion-compensated transform coding technique is used to gener-

ate the input bitstream and decode the output one, there are two fundamental ways

to reduce the rate:

1. modifying the quantized transform coe�cients by employing coarser quanti-

zation, and

2. eliminating transform coe�cients.

In general, both schemes can be used to perform rate shaping. Requantization leads

to recoding-type algorithms, for which it has been shown (at least for the bu�ered-

constraint case) that optimal solutions exist, but are very complex. In addition, as

we will see later on, they do not necessarily perform as well. Our focus here is in

\selective transmission" algorithms (i.e., those that only select transform coe�cients

for elimination from the bitstream). This concept is directly linked, as we will see,

with the data partitioning problem of Chapter 3, traditional zonal sampling [67], as

well as the optimal thresholding of JPEG-compressed images analyzed in [73, 74],

and the mathematical treatment is very similar.

For purposes of comparison between the two approaches, we will use recoding

as a representative algorithm of requantization. This serves a dual purpose, since

recoding is also the brute-force approach in performing rate shaping (although too

complex and expensive to be of practical value). We should note that a requanti-

zation approach has recently been proposed (independently of our work) for rate

conversion of H.261 video in [89, 128].

126

DRS

Quantizer
Based

Selective Transmission
Based

Recoding-like
Algorithms

Generalized
DRS

Unconstrained
DRS

Constrained DRS

Non-clustered Clustered

Figure 4-4: The family of Dynamic Rate Shaping algorithms.

These two broad categories of algorithms give rise to a number of special cases.

The complete family is shown in Figure 4-4. Algorithms that combine requantization

and selective transmission will be referred to as generalized rate shaping algorithms,

and will not be discussed here. The selective transmission category (indicated by

the gray area) is further segmented into constrained and unconstrained algorithms.

The former is subdivided into clustered and non-clustered. We �rst discuss the

constrained DRS algorithm �rst, as it is the simplest.

4.4 Constrained Dynamic Rate Shaping

In the Constrained Dynamic Rate Shaping (CDRS) algorithm, we add a structural

constraint to the optimization problem of eq. (4.4): rate reduction will occur by

eliminating a contiguous string of DCT coe�cients at the end of each block. In

127

that sense, CDRS performs a truncation in the transform domain. The number

of DCT run-length codes to be kept in each block will be called the breakpoint,

as shown in Figure 4-5. The process is very similar to data partitioning, with the

di�erence that now the breakpoint value is di�erent for each block. Assuming that

the MPEG scheme is used, we require that at least one DCT coe�cient will remain

in each block. This is necessary in order to avoid certain syntax complications,

which include recoding the coded block patterns (which indicate which blocks in

each macroblock are included in the bitstream), and reexecuting the DC prediction

loops. As a result, breakpoint values will range from 1 to 64.

breakpoint

picture

slice

macroblock

DCT Block

0,0

7,7

0

0

0

5

run-length

Figure 4-5: Breakpoint position in the zig-zag pattern of DCT coe�cients.

128

4.4.1 Problem Formulation

4.4.1.1 The Intra-Only Case

We can formulate the problem of Constrained DRS by borrowing the line of analysis

used in Sections 3.4.1 and 3.5.1. In particular, we �rst express the distortion for

a single block, and then proceed to consider the total rate shaping distortion. We

consider one-dimensional quantities for simplicity. Let

x = [x(0); x(1); : : : ; x(N)]T (4.5)

denote the pixel values of a (one-dimensional) block, and

X = [X(0);X(1); : : : ;X(N)]T (4.6)

its DCT coe�cients. Let also x̂ and X̂ denote the corresponding quantities of the

truncated representation; i.e., for a breakpoint value of b > 0 we have:

X̂(k) =

8><
>:
X(k) if 0 � k < b

0 otherwise
(4.7)

and

x = CTX (4.8)

where C is the N -point DCT matrix. Using the unitarity of the DCT transform

matrix, we have shown in (3.29) that the truncation error can be expressed as:

kx� ~xk =
N�1X
i=b

X(i)2 (4.9)

129

In other words, the distortion is simply the energy of the coe�cients that are re-

moved.

Due to the independence of the blocks of a picture (and considering just the

intra case at this time), the total shaping distortion will simply be the sum of the

individual distortions for each block. A matter of importance is that, in contrast

with data partitioning, we are now free to select a di�erent breakpoint value per

block. This includes not only luminance blocks, but chrominance ones as well.

Consequently, the total distortion will have to have contributions from all three

color components. Such a combined metric is very di�cult to derive in a meaningful

sense, since it depends heavily on the way color is perceived by the human visual

system, as well as the particular color space used [91].

If we consider for example a di�erence � in the luminance component only, and

the same di�erence in a chrominance component, a metric which would treat all

three components identically would give the same result. The perceptual e�ect,

however, of these two distortions would be radically di�erent, particularly for large

�'s. One could possibly use a weighted average of the distortions in the three

components, but again the selection of appropriate weights would be arbitrary.

To avoid this complication, we only de�ne distortion for the luminance com-

ponent. In order to be able to accommodate all di�erent chroma formats, the

selection of a breakpoint will be performed at the macroblock level. This represents

the \least common denominator" in terms of matching the spatial area of luminance

and chrominance blocks.

We can now express the total distortion, again for the intra-only case, as follows.

Let Di(bi) denote the distortion for macroblock i when the breakpoint value bi is

used, and let X i
j(k), 0 � k � 63 denote the value of the DCT coe�cient of the k-th

130

run-length of the j-th block of the i-th macroblock. We then have:

Di(bi) =
X
j2Y

X
k�bi

X i
j(k)

2
(4.10)

where Y denotes the (four) luminance blocks of a macroblock. Consequently, the

minimization problem of eq. (4.4) can be formulated as follows

min
B̂(t)�BT (t)

fky � ŷkg () minPM

i=1
Ri(bi)�BT (t)

(
MX
i=1

Di(bi)

)
(4.11)

whereM denotes the number of macroblocks in the optimization window, and Ri(bi)

denotes the rate required to encode all three color components of macroblock i using

the breakpoint value bi, i.e.,

Ri(bi) =
X

m2Y[U[V

Rm
i (bi) (4.12)

where Rm
i (bi) denotes the rate for block m, and U and V are the sets of block

numbers of the chrominance components U and V of a macroblock.

4.4.1.2 The Mixed Mode (I, P, B) Case

In order to derive a similar expression to (4.10) for the mixed-mode coding case,

we need to take into account the recursive nature of the decoding operation. As

we noted in Section 3.5.1, when we make rate shaping decisions for a given picture

we not only have to take into account the error accumulated from past pictures,

but also the error that will be propagated to future pictures. This requires that

a complete group of pictures, from I to I, is considered jointly in the optimization

process. Complexity and delay considerations of such an attempt totally rule out

this possibility.

131

As in data partitioning, a causality argument will be invoked in order to constrain

the optimization window and avoid a \look-ahead" optimization algorithm. Using

this argument, when rate shaping decisions are taken for a given picture we only

consider the error accumulated from shaping decisions from past pictures; the error

that will be propagated to future pictures is ignored. We should note that this error

component will be revisited when we will process a following picture, since it will

appear in the accumulated error from past pictures. Also observe that the causally

optimal problem is unconditionally optimal for the intra-only case.

We start from the expressions for the decoding process with, and without rate

shaping, i.e.,

yi =Mi(yi�1) + ei; e0 = y0 (4.13)

and

ŷi =Mi(ŷi�1) + êi; ê0 = ŷ0 (4.14)

where M(�) is the motion compensation operator, and ei is the coded prediction

error. By de�ning the accumulated error ai as

ai
def
= Mi(yi�1)�Mi(ŷi�1) (4.15)

the minimization problem of eq. (4.4) can be written as:

min
B̂(t)�BT (t)

fkai + ei � êikg (4.16)

Finally, using a proof similar to the one of Section 3.5.2, we can express the

shaping distortion Di(bi) for macroblock i when breakpoint value bi is used as:

D̂i(bi) =
X
j2Y

8<
:
N�1X
k=0

Ai
j(k)

2
+
X
k�bi

2Ai
j(I ij(k))Ei

j(k) +
X
k�bi

Ei
j(k)

2

9=
; (4.17)

132

where N is the block size, Y denotes the luminance blocks of a macroblock, Ai
j(k)

is the k-th DCT coe�cient (in zig-zag scanning order) of the j-th block of the i-th

macroblock of the accumulated error, and Ei
j(k) is the DCT coe�cient of the k-th

run-length of the j-th block of the i-th macroblock. Note that a mapping function

I ij(k) is also used to map run-length positions in the prediction error to zig-zag scan

positions in the accumulated error.

The causally optimal problem can now be expressed from (4.16) as:

minPM

i=1
Ri(bi)�BT (t)

(
MX
i=1

D̂i(bi)

)
(4.18)

Eq. (4.18) generalizes (4.11) by considering the more general de�nition of distortion

D̂i(bi) given by (4.17). This is because, for the intra-only coding case, we have

Di(bi) = D̂i(bi). As a result, the same algorithm that solves (4.18) also solves (4.11).

Such algorithms are presented below.

4.4.2 Causally Optimal, Memoryless, and Rate-Based Algorithms

For the solution of the constrained minimization problem expressed by eq. (4.18) we

use the Lagrange multiplier approach employed for the data partitioning problem in

Section 3.4.2. In particular, by introducing the Lagrange multiplier �, we consider

the unconstrained minimization problem

min

(
MX
i=1

D̂i(bi) + �
MX
i=1

Ri(bi)

)
(4.19)

As we have discussed in Section 3.4.2 (Theorem 1), for some particular value of �

which our algorithm will have to �nd (if it exists), the solutions to (4.18) and (4.19)

133

become identical. By de�ning

Li(�; bi)
def
= D̂i(bi) + �Ri(bi) (4.20)

Eq. (4.19) can be written as

min

(
MX
i=1

Li(�; bi)

)
(4.21)

We note that

Li(�; bi) � 0 (4.22)

since all quantities involved are non-negative.

From the representation in (4.21) we observe that, for a given �, minimization

with respect to the breakpoint value bi can be performed independently for each

macroblock. This reduces the complexity of the problem to the order of 64M ,

compared with a brute-force full-search method that would require examination of

64M possibilities.

In order to �nd the optimum value �� for �, and hence the optimal breakpoints

b�i , the same iterative bisection algorithm used in the data partitioning problem can

be employed. The detailed description can be found in Section 3.4.2 (page 92); we

should note that D̂ should be substituted in place of D.

Again, an issue is the target bit budget Rbudget that is to be set for each opti-

mization window. In our simulations we used a constant target rate, and hence the

proportional bit allocation used in (3.46) can still be used:

Rbudget = (B̂=B)R �Ro (4.23)

where Ro denotes overhead bits (for headers, motion vectors, etc.). In case the target

134

bit budget is not complete utilized (which happens almost always), leftover bits from

one iteration of the algorithm are carried over to the next. The problem of selecting

an appropriate bit budget in the general case of dynamically varying constraints is

a quite complex one, and also depends on the speci�cs of the implementation. In

this chapter we do not address this issue, focusing rather on the signal processing

problem of optimally performing the required rate conversion. This would be an

important issue for any implementation, however, and warrants further detailed

study.

In order to simplify the algorithm, we can also utilize a memoryless algorithm.

Here we ignore the accumulated error, and treat each picture as an intra one. In

other words, the de�nition of distortion is the one used for D instead of D̂. The

bene�ts of such an approach are discussed in the next section.

A very simple alternative approach that can serve as a lower bound in terms

of quality is a purely rate-based approach. Here we do not take into account the

distortion at all (either current or accumulated), and focus only on meeting the

prescribed rate constraints. The selection of the optimal breakpoint b�i for each

macroblock is selected depending on:

b�i = max
n
bi : Ri(bi) � Rbudgeti

o
(4.24)

where the bit budget Rbudgeti is set proportional to the original size Ri of the mac-

roblock:

Rbudgeti =
Ri

Rbudget=S
(4.25)

Note that the same optimization window as in the optimal and memoryless algo-

rithms has to be used, in order to compute Rbudgeti, hence ensuring fairness in the

comparison of the various approaches. As before, if the target bit budget is not met

135

exactly for a particular macroblock, leftover bits from one macroblock are carried

over to the next.

4.4.3 Performance Evaluation

As in the case of data partitioning, the only data needed to execute the optimal

algorithm for the intra-case are the values of the DCT coe�cients. Hence an im-

plementation needs only to be able to parse the input bitstream up to the point of

inverse quantization of DCT coe�cients. This represents a small percentage of the

complexity of a complete decoder, since the motion compensation and inverse DCT

transformation modules are not needed. Furthermore, the output bit generation

module is very simple, since the only modi�cation in the bitstream is the removal

of bits corresponding to run-lengths that are eliminated.

In the mixed-mode case, the algorithm becomes signi�cantly more complicated

due to the need to track the accumulated error ai. This involves a dual motion

compensation loop (as was shown in Section 3.5.1), as well as inverse and forward

DCT transform modules. The latter is necessary since motion compensation is

performed in the spatial domain. As a result, the complexity of the causally optimal

algorithm is between that of an encoder and a decoder.

Of concern in terms of the performance of the algorithm is the fact that the

iterative bisection operates in the convex hull of the R(D) curves. As we saw in the

case of data partitioning, points which lie above are not R(D) optimal, and hence

are not considered by the algorithm.

Figure 4-6 depicts the R(D) curves for an intra macroblock from \Flower Gar-

den", coded at 24 and 12 Mbps. This macroblock was purposely selected to show

that a quite erratic behavior can sometimes be present. For the 24 Mbps case, for

example, the convex hull is de�ned by just 6 points; all the rest are ignored. Com-

136

paring with Figure 3-9 (page 93), where the slice-based R(D) curve for the data

partitioning problem is depicted, we see that the latter is much more well-behaved

due to the averaging across the full slice. When we consider the mixed-mode cod-

ing case, the R(D) curves are much more well-behaved. An example is shown in

Figure 4-7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

100

200

300

400

500

600

Bits Per Pixel

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
Y

 o
nl

y)

24 Mbps

12 Mbps

Figure 4-6: R(D) curves for an intra macroblock from \Flower Garden", coded at
24 Mbps (x) and 12 Mbps (o).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

1200

Bits Per Pixel

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
Y

 o
nl

y)

Both A and E

E only

Figure 4-7: R(D) curves for the total (A and E) and current picture only (E)
shaping distortion for a macroblock from a P picture of \Flower Garden", coded at
4 Mbps and rate shaped at 3.2 Mbps.

137

Figure 4-8 shows the results of various rate shaping approaches on the \Flower

Garden" sequence, intra coded at 24 Mbps and rate shaped at 12 Mbps. The

optimization window is a full picture, and typically requires 10{12 iterations of the

bisection algorithm to obtain the optimal breakpoint con�guration. We observe that

the recoding approach outperforms the optimal rate shaping algorithm by about 4

dB on the average, which in turn outperforms the rate-based approach by about 2

dB. We should note that this behavior is not typical, and depends on the selection

of the original compression rate, as well as the rate shaping ratio (here 50%).

0 2 4 6 8 10 12 14 16 18 20
22

24

26

28

30

32

34

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

recoding

optimal

rate-based

Figure 4-8: Rate shaping of \Flower Garden" using the optimal, rate-based, and
recoding approaches. The source is coded at 24 Mbps and rate shaped at 12 Mbps.

Figure 4-9 shows the results of the various mixed-mode rate shaping algorithms

on the \Mobile" sequence, coded at 4 Mbps and rate shaped at 3.2 Mbps. The

optimization window is again a complete picture. Our �rst observation is that the

causally optimal algorithm outperforms recoding. In fact, as we can see in the

�gure, the recoding algorithm has a rapidly declining performance. This is because

of the initial state assumed by the encoder, which is the same one used for the

original compression at 4 Mbps. We purposely selected this situation to depict the

e�ects of using a general-purpose encoder that cannot be easily adapted to changing

138

conditions. After this initial quality drop, the encoder will eventually converge to a

quality around 29{30 dB. Hence the optimal algorithm turns out to be about 1 dB

better than recoding. Depending on the \intelligence" of the encoder, this di�erence

can be reduced even further.

0 5 10 15
24

25

26

27

28

29

30

31

32

Frame Number

P
S

N
R

 (
Y

 o
nl

y)
optimal

memoryless

recoding

rate-based

Figure 4-9: PSNR performance for rate shaping of \Mobile" using the (causally)
optimal, memoryless, rate-based, and recoding approaches. The source is originally
coded at 4 Mbps and rate shaped at 3.2 Mbps (I period 12, P period 3).

We also observe that the rate-based approach performs very poorly, about 5 dB

worse than the causally optimal one. Most important, however, is the behavior of

the memoryless algorithm. As we can see from the �gure, its performance is almost

indistinguishable from the optimal algorithm, with a di�erence of about 0.2 dB. This

level of di�erentiation is extremely hard, if not impossible, for a human observer

to detect. This reinforces the results of Chapter 3, where a similar behavior was

identi�ed, and can be explained using identical reasoning.

Figure 4-10 shows rate shaping results (average PSNR) for \Mobile" across a

spectrum of di�erent rates. We see that the causally optimal algorithm outperforms

recoding up to about 2.8 Mbps, after which the curves cross each other. This result

indicates that, if the rate reduction is not severe, selective transmission performs

139

better than requantization approaches. In other words, the penalty of dropping

high-frequency DCT coe�cients is not severe. When the reduction becomes too

high, then coe�cients very close to the DC have to be eliminated, hence rapidly

deteriorating quality. In this case it is better to requantize, so that a di�erent bit

distribution is created among the various DCT coe�cients. This result corrobo-

rates the similar behavior that has been observed in optimal thresholding of JPEG

images [73, 74].

We should note that the exact position of the crossover point depends on the

initial coding rate, as well as the sophistication of the encoder (or requantizer).

Better designs will push the intersection further to the right, thus narrowing the

window in which selective transmission performs better.

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
20

25

30

35

40

45

recoding

optimal

memoryless

rate-based

Bit Rate (Mbps)

P
S

N
R

 (
Y

 o
nl

y)

Figure 4-10: Average PSNR performance for rate shaping of \Mobile" using the
(causally) optimal, memoryless, rate-based, and recoding approaches, for various
target rates. The source is originally coded at 4 Mbps (I period 12, P period 3).

We also see from the �gure that the rate-based approach performs consistently

poor. As in the isolated example of Figure 4-8, however, we see that the memo-

ryless algorithm performs almost identically to the causally optimal one across the

whole range of the various target rates (the two curves can hardly be distinguished).

140

This con�rms that the near-optimality of the memoryless algorithm is a universal

property.

The importance of this result is signi�cant. As we stated in the introduction to

this chapter, the viability of the concept of dynamic rate shaping relies heavily on

the capability of implementing it with simple algorithms. This result indicates that

this is indeed possible. Given that the complexity of the memoryless algorithm is

less than that of an encoder, and that real-time MPEG decoding is today possible

for low-resolution video, even purely software-based implementations of DRS should

soon be possible on general purpose microprocessors.

4.4.4 Clustering

Since a full resolution standard TV picture (704 � 480) may contain up to 3,960

macroblocks (for a 4:4:4 chroma format), the processing required within each iter-

ation in order to �nd the breakpoint value that minimizes Di(bi) + �Ri(bi) can be

signi�cant. Consequently, even for the memoryless algorithm, it is worth examining

approaches with which this complexity can be further reduced.

An attractive possibility is to use a clustering approach, in which a common

breakpoint value is selected for a set of macroblocks. The concept is depicted in

Figure 4-11. We refer to such algorithms as C(n), where n is the number of sequen-

tial macroblocks contained in each cluster. The causally optimal, memoryless, and

rate-based algorithms discussed in the previous section all fall under the C(1) cat-

egory, i.e., they obtain one breakpoint value per macroblock. We implicitly used a

clustering argument in Section 4.4.1.1, when we de�ned a common breakpoint value

for all blocks of a macroblock in order to avoid an ill-de�ned distortion metric.

Several di�erent algorithms can be obtained for the clustering approach by ap-

propriate modi�cation of the variables used in the causally optimal, memoryless,

141

picture

slice

macroblock

cluster

Figure 4-11: Clustering approach for the reduction of algorithmic complexity.

and rate-based algorithms. In particular, de�ne by Ck the set of macroblock belong-

ing to the k-th cluster. We can de�ne the cluster distortion DC
i (bi) (either with, or

without the accumulated error), as:

DC
i (bi) =

X
k2Ci

Dk(bi) (4.26)

where Dk(bi) denotes the distortion for an individual macroblock. Similarly, we can

de�ne the cluster rate as:

RC
i (bi) =

X
k2Ci

Rk(bi) (4.27)

where Rk(bi) denotes the rate of an individual macroblock. Using these de�nitions

for the rate and distortion, all previous algorithm can be applied directly.

Clearly, when Ck spans a complete slice, the problem becomes mathematically

142

equivalent with that of data partitioning. In the latter case, instead of eliminating

the truncated DCT coe�cients, we create a secondary bitstream (partition 1) in

which they are transmitted to the receiver. The mechanisms, however, with which

the optimal breakpoints are obtained in the two cases are identical. Thus data

partitioning can be considered a special case of dynamic rate shaping, where the

target bit rate is constant and the cluster is a complete slice.

0 5 10 15
25

26

27

28

29

30

31

32

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

optimal, C(1)

optimal

rate−based

memoryless

Figure 4-12: PSNR performance for clustered (C(44)) rate shaping of \Mobile"
using the (causally) optimal, memoryless, and rate-based approaches. The C(1)
optimal algorithm is also shown. The source is originally coded at 4 Mbps, and rate
shaped at 3.2 Mbps (I period 12, P period 3).

As one might expect, the reduction of degrees of freedom in the clustering ap-

proach can only degrade performance. Figure 4-12 depicts the results of the various

clustered rate shaping algorithms for the case where the cluster spans a complete

slice (C(44), for the particular resolution used, and given that the slices in this case

have the width of the picture). Also shown is the C(1) causally optimal algorithm.

We can see that all the curves have essentially shifted down by about 2.5{3 dB, with-

out modi�cation of their relative positioning. Note that this represents the worse

quality drop possible, since the largest reasonable (but not largest possible) cluster

143

size was used. Of course, the complexity was also signi�cantly reduced, since at each

iteration of the bisection algorithm we only have to compute optimal breakpoints

for just 30 clusters.

Intermediate cluster sizes can provide a better tradeo� between complexity and

performance. In particular, we expect that the C(4) and C(8) memoryless algo-

rithms are very good candidates for software-based implementation in today's gen-

eral purpose microprocessors.

4.5 Unconstrained Dynamic Rate Shaping

In the constrained dynamic rate shaping problem discussed in the previous section,

we considered the DRS problem with the added structural constraint that rate re-

duction would only occur by eliminating contiguous strings of DCT coe�cients at

the end of each of the blocks. In this section we lift this constraint, and allow our

algorithm to arbitrarily select DCT coe�cients for elimination from the bitstream.

This represents the most general case of the category of the selective transmission

DRS algorithms (see Figure 4-4, page 126), and will be called Unconstrained Dy-

namic Rate Shaping.

The di�erence between the two approaches is shown in Figure 4-13. In the

constrained case, the breakpoint b is de�ned as an integer indicating the run-length

position at which we start eliminating run-length codes. The range for breakpoint

values in this case is 1; : : : ; 64, where we assume that at least one DCT run-length

code will remain in each block (to avoid the complications of recoding the coded

block pattern and reexecuting the DC prediction loops when MPEG-2 is used). In

the unconstrained case the breakpoint becomes a binary vector b, indicating which

DCT coe�cients are kept and which are eliminated. In other words we have:

144

DCT Block

Constrained

DCT Block

Unconstrained

scalar breakpoint:
b=24

vector breakpoint:
b=[1, 1, 0,…, 0]T

Figure 4-13: The de�nition of breakpoint in the Constrained and Unconstrained
DRS algorithms.

145

b =
h
b0; b1; : : : ; bN�1

i
(4.28)

where N is the block size, and

bj =

8><
>:

0 if coe�cient run-length j is eliminated

1 otherwise
(4.29)

Note that typically the number of run-lengths is much less than N , even in intra

blocks.

4.5.1 Problem Formulation

In order to properly formulate the problem we need to explicitly express the rate

and distortion in eq. (4.4), which we repeat here for convenience:

min
B̂(t)�BT (t)

fky � ŷkg (4.30)

As in the case of the constrained problem, we proceed with an analysis of the

distortion starting from a single block. Using similar arguments to the constrained

case (the orthonormality of the DCT), we can easily show that if the block x is rate

shaped with the breakpoint vector b, then the distortion between the original block

and the modi�ed version x̂ can be expressed as:

kx� x̂k =
N�1X
i=0

biX(i)2 (4.31)

where bi denotes the logical complement of bi (the value 1 becomes 0, and vice

versa), and N is the length of the block.

Due to the independence of the individual blocks of a picture, the total shap-

146

ing distortion in (4.30) for the intra-only case can be expressed as the sum of the

distortions of the individual blocks. To avoid a perceptually meaningless distortion

measure, we will restrict the measurement of the distortion to luminance blocks

only. Consequently, in order to be able to meaningfully select breakpoint vec-

tors for chrominance blocks, we use the same breakpoint vector for all blocks of

a macroblock. With these considerations, we can de�ne the distortion Di(bi) of

macroblock i when the breakpoint vector bi is used as:

Di(bi) =
X
j2Y

N�1X
k=0

bkiX
i
j(k)

2
(4.32)

where Y denotes the set of block numbers of the luminance (Y) component of a

macroblock.

As in the constrained case, the total rate can be expressed as the sum of the

individual rates Ri(bi) used to encode each macroblock using breakpoint vector bi,

computed over all blocks of a macroblock:

Ri(bi) =
X

m2Y[U[V

Rm
i (bi) (4.33)

where Rm
i (b)i) denotes the rate for block m. Using (4.32) and (4.33) we can express

the minimization problem of (4.30) as follows:

minPM

i=1
Ri(bi)�BT (t)

(
MX
i=1

Di(bi)

)
(4.34)

The mixed-mode case analysis involves the consideration of error propagation

due to the recursive nature of the encoding process. As in the constrained DRS

case (Section 4.4.1.2), we only consider algorithms that take into account the error

accumulated up to the current picture, and not the one that will be propagated to

147

future pictures (causality). We can then show that the per-macroblock distortion

D̂i(bi) is given by:

D̂i(bi) =
X
j2Y

N�1X
k=0

n
Ai
j(k)

2
+ 2bkiA

i
j(I ij(k))Ei

j(k) + Ei
j(k)

2
o

(4.35)

where Ai
j(k) is the k-th DCT coe�cient (in zig-zag scanning order) of the j-th block

of the i-th macroblock, Ei
j(k) is the DCT coe�cient of the k-th run-length of the

same block, and I ij(k) is the mapping function between run-length and zig-zag scan

positions of the block. Eq. (4.34) with this more general de�nition of distortion

expresses the unconstrained DRS problem in the compressed domain.

4.5.2 Optimal Breakpoint Vector Selection

The Lagrange multiplier approach (Section 4.4.2) can be used to transform (4.34)

into an unconstrained minimization problem:

min

(
MX
i=1

D̂i(bi) + �
MX
i=1

Ri(bi)

)
(4.36)

The bisection algorithm can then be used as an iterative algorithm that computes

the optimal value �� for �. Within each iteration, however, obtaining the optimum

breakpoint vector is no longer trivial. Due to the independent coding of individual

blocks, the problem can still be partitioned.

In particular, if we de�ne:

Li(�;bi)
def
= Di(bi) + �Ri(bi) (4.37)

we can write (4.36) as:

min

(
MX
i=1

Li(�;bi)

)
(4.38)

148

Hence within each iteration of the bisection, we can separately minimize Li(�;bi)

for each macroblock. In contrast with the data partitioning and constrained dy-

namic rate shaping cases, though, the breakpoint is no longer a scalar, but an

N -dimensional binary vector. Consequently, the worst-case number of possible solu-

tions grows from 64M to 264M . Considering thatM may possibly be in the thousands

(e.g., when the optimization window is a complete picture), a full-search approach

is impossible.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

Bits Per Pixel

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
Y

 o
nl

y)

Figure 4-14: R(D) \clouds" from a macroblock of \Mobile", coded at 4 Mbps. The
12 DCT coe�cients generate 4,096 di�erent breakpoint vector possibilities.

Figure 4-14 shows the R(D) plot for a macroblock from the \Mobile" sequence,

coded at 4 Mbps. We observe that the graph is no longer a curve, and it becomes

a \cloud". This particular macroblock had only 12 DCT run-length codes, and

hence the number of possible combinations (vector values) is \only" 4,096. Of

particular interest is that we, in fact, have two identical clouds, which are just

spatially shifted versions of each other. The reason is that there is a dominant DCT

coe�cient (DC), which in the left-most cloud is excluded, while in the right-most

it is included. Particularly important is the fact that the number of points who

are R(D)-optimal, i.e., de�ne the convex hull, is actually very small. In fact, from

149

the left-most cloud, just one point is included. The consequence of this behavior

is that the convergence speed of the bisection iteration for � is not a�ected by

the dimensionality of the breakpoint space. In our experiments, convergence was

achieved within 10{12 iterations, just as in the constrained DRS case.

DCT Block

C

B

A

Figure 4-15: Recursive nature of run-length code generation.

We now return to the problem of �nding the optimal breakpoint vector within

each iteration of the bisection algorithm. A signi�cant complication towards ob-

taining a solution is the recursive nature of the run-length code generation process.

Figure 4-15 illustrates the situation. Recall that a run-length code jointly indicates

the number of contiguous zero-valued DCT coe�cients and the value of the next

non-zero coe�cient.

Let us assume that we are processing a block, and are considering whether or

not to include the DCT coe�cient at point A by examining its contribution to the

macroblock rate and distortion. Since the run-length code that will represent A is

de�ned based on the previous non-zero DCT coe�cient, the precise rate to be used

150

for A depends on if the coe�cient at point B is included or not. In the former

case the run-length code is computed starting from point B, while in the latter it

is computed starting at point C. These two rates will be di�erent, hence giving two

di�erent contributions for Li(�;bi) of this macroblock. Note that the distortions in

both cases, however, are identical.

This recursive dependence of the DCT coe�cient run-length codes suggests that

a fast algorithm may be possible using dynamic programming [13, 15]. In the dy-

namic programming approach (pioneered by Bellman [13]), a complex multidimen-

sional decision process is broken into a series of successive steps; Bellman's principle

of optimality suggests that if the total decision is optimal, then each of the individ-

ual ones is also optimal. This allows us to map the complex problem into a much

simpler sequential decision process.

Such a dynamic programming algorithm has been used in [106, 73, 74] in the

context of optimal quantizer thresholding of JPEG images. The major di�erentiat-

ing factor here is the distortion measure, as in our case it involves the accumulated

distortion in the temporal dimension. An additional di�erence is that here we are

dealing with run-length codes, rather than DCT coe�cients; in that sense, the

process can be considered as iterative, temporally recursive thresholding. In the

following we briey describe the application of the algorithm in the context of DRS.

Let us consider a single macroblock and a given �. For notation simplicity, we

will drop all macroblock indices in the sequel. The algorithm starts from the DCT

coe�cient of the �rst run-length and, moving towards the end, examines the bene�t

of including each run-length. At initialization (or step 0), we then have an all-zero

breakpoint con�guration and an optimal (at step 0) Lagrangian distortion L�0 which

equals the maximum:

L�0 =
X
j2Y

N�1X
k=1

fAj(k) + Ej(k)g2 (4.39)

151

Note that the �rst run-length code is always included, as was explained in the

beginning of this section.

In succeeding steps, we consider the incremental cost reduction �Lij of going

from run-length n directly to m, skipping those inbetween:

�Lnm =
X
j2Y

n
�Aj(Ij(m)Ej(m) + Ej(m)2 + �Rj(n;m)

o
(4.40)

where Rj(n;m) is the number of bits needed to encode the run-length code of the

DCT coe�cient of the m-th run-length code when the run begins at the position of

run-length code n. Note that these values can be precomputed at the beginning of

the bisection algorithm, and thus be reused for all di�erent values of �.

The algorithm then proceeds to examine the following coe�cients, maintaining

the following internal variables: L�k indicates the minimum Lagrangian cost asso-

ciated with having k as the last run-length, Sk is the set of all candidate optimal

predecessor run-lengths for k, and k� denotes the optimal last run-length.

Optimal Breakpoint Selection Algorithm

Step 1: Find current optimal cost and predecessor

Set:

J�k := min
i2Sk�1

fL�i +�Likg (4.41)

If L�k � L�k� then k
� = k. Also set:

pred(k) = arg min
i2Sk�1

fL�i +�Likg (4.42)

This step �nds the optimal Lagrangian cost for this iteration, and marks the

run-length as the optimal last if the total cost is less than or equal to the currently

optimal one. It also stores the optimal predecessor run-length to k.

Step 2: Prune predecessor set

152

Set:

Sk = fkg [fiji 2 Sk�1 and L
�
i < L�kg (4.43)

This step only keeps as candidate optimal predecessors those run-lengths which

have less optimal Lagrangian cost that the current one. This step is responsible for

the fast operation of the algorithm [106], and is possible because of the monotonicity

property of the Hu�man run-length code tables used in both MPEG and JPEG: for

any given DCT coe�cient level, longer zero run-lengths correspond to codes that

have non-decreasing lengths. Thus if we consider a predecessor l to k with equal

or higher optimal Lagrangian cost from k, the cost of going to a future run-length

from either l or k will always be less than or equal if we do so from k (since the

run-length encoding for the longer path will take at least as many bits).

Step 3: Termination test

If all run-length codes have been processed, then stop. Otherwise set k := k+1

and go to Step 1.

At the end of the algorithm, we have the optimal last run-length k�, and we also

have the linked list pred(�) of optimal predecessors. Starting from k� and traversing

the list towards the �rst DCT run-length code, we obtain the optimal list of all

run-length codes whose DCT coe�cients are to be included in the rate shaped

bitstream.

4.5.3 Performance Evaluation

The complexity of the unconstrained DRS approach is dominated by the dynamic

programming algorithm, which is arguably quite complex to implement. The amount

of computation required depends heavily on the number of run-length codes, and

whether or not the second step of the dynamic programming algorithm can quickly

prune a large number of possible predecessors. Even though in practice this is typi-

153

cally the case, the fact that the algorithm is executed for every macroblock and for

every step of the bisection iteration represents a signi�cant concern.

The situation is accentuated in mixed-mode coding, where the additional over-

heads of dual loop motion compensation, and both forward and inverse DCT com-

putations are incurred. Although a memoryless approach eliminates these latter

tasks, it has only a small e�ect on the complexity of the dynamic programming

step. Finally, the unconstrained approach has the additional processing overhead

of having to generate new Hu�man run-length codes for the resulting breakpoint

con�gurations of each block, whereas the constrained algorithm merely performs

truncation.

0 5 10 15
28.5

29

29.5

30

30.5

31

31.5

32

32.5

33

Frame Number

P
S

N
R

 (
Y

 o
nl

y)

optimal

constrained optimal

memoryless

Figure 4-16: PSNR performance for rate shaping of \Mobile" using the uncon-
strained optimal and memoryless algorithms, as well as the constrained optimal
algorithm. The source is originally coded at 4 Mbps and rate shaped at 3.2 Mbps
(I period 12, P period 3).

As a result, the unconstrained DRS scheme is mostly useful as a benchmark

of optimal behavior for faster algorithms (recall that the unconstrained algorithm

is optimal among all those of the selective transmission category). Figure 4-16

depicts the results of applying the unconstrained optimal algorithm on the \Mobile"

sequence, coded at 4 Mbps and rate shaped at 3.2 Mbps. We also show the results of

154

the memoryless version of the algorithm, as well as those of the constrained optimal

algorithm. Note how close the memoryless algorithm tracks the performance of the

optimal one, as in the constrained rate shaping case.

We observe that, as expected, the unconstrained algorithm outperforms the con-

strained one. The di�erence though is very small, in this case just about 0.5 dB

on the average. This is a quite important and perhaps surprising result, since it

indicates that the constrained approach produces results which are extremely close

to optimal. This includes the memoryless unconstrained algorithm, which as we

have seen is very simple to implement.

The reason for this behavior is the structure of the DCT coe�cient zig-zag

scanning pattern: it provides a quite successful ordering of the DCT coe�cients

according to their importance. In other words, most of the time the unconstrained

algorithm removes DCT run-length codes at the end of the blocks and following a

zig-zag scanning order, with very few discontinuities. The decisions taken, then, by

the constrained and unconstrained schemes vary very slightly, leading to a corre-

spondingly small di�erence in terms of decoded video quality.

4.6 Applications

Although the concept of dynamic rate shaping was presented in Section 4.1 primarily

from the point of view of an interface between a compressed video source and the

network transport, the idea of modifying the rate of compressed video can have

several other applications. Some examples are briey described below.

4.6.1 Transcoding and Codec Interoperability

The existence of multiple di�erent standards for video compression naturally raises

the issue of their interoperability. As use of digital video content �nds more wide-

155

spread use, it is expected that in several cases users will need to be able to con-

vert material from one format to another. An additional reason for transcoding is

that the various standards were designed for di�erent applications. For example,

MPEG-1 [4] addresses digital video for storage media (e.g., CD-ROM), MPEG-

1 [6] addresses primarily broadcast TV applications, whereas H.261 [3] is targeting

videoconferencing applications over low bit rate lines.

Most of the recent standards share a common algorithmic foundation in their

design: use of motion compensation, and use of block-based transform coding. This

makes it possible to design relatively simple transcoding algorithms, since the task

involves primarily generation of new headers etc. As the new bitstream is con-

structed according to the target standard, one cannot guarantee (or even predict)

its exact rate behavior. When rate constraints are imposed by the application in

which the resultant bitstream will be utilized, rate shaping can be used as a �lter-

ing stage to provide compliance. Although in some cases the rate mismatch may be

small, it still can be su�cient to generate disturbing errors at a decoder (e.g., due

to bu�er overows).

A similar example is interoperability between codecs of the same standard. Im-

plementation considerations in actual systems result in decoders with various di�er-

ent performance capabilities. Typically, systems hosted on general purpose comput-

ers are limited by the sustainable speed of the shared data bus. Dedicated systems,

on the other hand, can achieve signi�cantly higher rates. Hence rate shaping can

also be used in this case to reduce the rate to appropriate levels.

4.6.2 Trick Modes

The term \trick modes" refers the capability of a video playback system to perform

fast forward and reverse operations. Although in the analog domain the operation

156

is relatively straightforward, the digital domain represents several challenges [123].

Let us consider the case of an MPEG-2 bitstream. In order to perform fast

forward or fast reverse, one will rely on either the I pictures, or a combination

of I and P pictures, depending on the desired playback speed and the sequence

structure employed in the bitstream (note that typically this structure is not known

in advance). During the trick mode operation, the playback system will simply

skip over any pictures that do not require decoding, and submit to the decoder

only those that construct the fast forward/reverse sequence. This operation can be

performed quite easily, since pictures can be very easily located from their associated

�xed-length start codes.

When the individual pictures are merged to form the new trick mode bitstream,

any rate constraints that the original bitstream may had satis�ed will no longer be

met. Since the decoder will always have a rate constraint, this can cause data loss

across the communication path. Even with extensive bu�ering, disregarding the

bitstream's rate will result in a variable playback rate which can be very annoying

to viewers. In other words, frame rate continuity is preferable to spatial quality

continuity across frames. Rate shaping can be used in this case, to properly modify

the trick mode bitstream.

4.6.3 Communication in Heterogeneous Networks

Finally, another case where the DRS concept can be used is communication in

heterogeneous networks. An interesting example is multipoint communication with

both wired and wireless (e.g., mobile) hosts. The bandwidth of wireless channels

is typically an order of magnitude less than that of wired ones, in the order of few

Mbps. It is also time varying, due to multipath distortion phenomena.

Let us consider the case of a multi-point videoconference with three participants,

157

one of which is using a wireless channels. Due to the capacity mismatch between

the di�erent channels, the brute-force approach in providing viable communication

would be to limit the transmission rate to that of the least capable participant. This

will severely degrade the quality for the wired participants, in order to accommodate

the wireless one.

A better alternative would be to use a rate shaping processor at the base station

of the wireless user, in order to �lter the video tra�c originating from the wired

participants. This way, the latter would be able to fully utilize the bandwidth

available to them, and still not exclude the wireless participant from the session.

If the wireless channel capacity is too low to be handled by rate shaping, one can

combine scalable coding techniques and DRS to achieve much larger rate reductions.

A more detailed description of how DRS can be used in a networking architecture

providing scalable ows can be found in [12].

4.7 Concluding Remarks

The novel concept of Dynamic Rate Shaping was introduced as a general mech-

anism for modifying the bit rate of motion-compensated, transform coded digital

video (including MPEG-1, MPEG-2, H.261, and JPEG). One of its primary applica-

tions is as an adaptation mechanism between compressed video rate characteristics

and network transport service capabilities, where it can provide universal interoper-

ability between VBR and CBR codecs and both guaranteed-service and best-e�ort

networks. Other applications include transcoding, trick mode operation, as well as

communication in heterogeneous network environments (including mobile systems).

DRS attempts to eliminate the system-level barriers posed by the current dominance

of CBR and VBR compressed video, by providing a continuum of alternatives be-

tween the two.

158

We have provided an analysis of DRS in an operational rate-distortion context.

We have derived a family of di�erent algorithms, classi�ed in two broad categories:

requantization-based, and selective transmission-based. Although the focus was on

the latter category, comparative examination of the two was provided using recoding.

The major contributions of this chapter can be summarized as follows:

1. We have derived an optimal algorithm for the problem of constrained rate

shaping using Lagrange multipliers, and have shown that it outperforms re-

coding across a wide range of target rates. The constraint mandates that only

contiguous strings of DCT coe�cients at the end of each block can be elim-

inated. The algorithm was shown to have a complexity between an encoder

and a decoder.

2. We have shown that a memoryless constrained algorithm (optimal for the

intra-only case) performs almost identically to the optimal one, and hence is

an excellent candidate for actual implementation since its complexity is less

than a decoder's.

3. In order to reduce the computational complexity, the clustering approach was

introduced for both the optimal and the memoryless constrained algorithms.

Due to the tradeo� between complexity and quality, two levels of clustering

(4 and 8) were identi�ed as possible candidates for software-based implemen-

tation.

4. We have shown that clustered rate shaping is essentially identical to data

partitioning when the cluster spans a whole picture slice. Although in data

partitioning two output bitstreams are generated, the mathematical problems

are identical. Hence data partitioning can be considered as a special case of

rate shaping.

159

5. We have derived an optimal algorithm for the problem of unconstrained rate

shaping, where selection of DCT coe�cients for elimination can be arbitrary.

The algorithm was based again on the Lagrange multipliers approach and the

bisection algorithm. A fast algorithm based on dynamic programming had

to be used, however, in order to obtain optimal con�gurations for breakpoint

vectors. We showed that the quality improvement of the unconstrained ap-

proach is marginally better than that of the constrained one, even though

the complexity of the former scheme is signi�cantly higher. This favors the

constrained algorithm, and particularly its memoryless version, for actual im-

plementations.

A most interesting result, from a practical point of view, is the performance of

the constrained memoryless algorithm vs. the unconstrained optimal one, especially

in view of their di�erence in complexity. As we have mentioned in the introduction

of this chapter, the implementation complexity of DRS is a key component of its

viability in real multimedia systems. In order to be of most use, it must ideally

be implementable using a purely software-based approach. In Section 4.4.4 we saw

that, by using the clustering approach, su�cient reduction in complexity can be

achieved for the memoryless algorithm in order to make this possible. The penalty

in performance will be small (yet perceptible), in the order of 1 dB compared to the

optimal result.

160

Chapter 5

Conclusions

We have introduced the concept of Dynamic Rate Shaping (DRS), a technique to

adapt the rate of compressed video bitstreams (e.g., MPEG-1, MPEG-2, H.261,

JPEG) to dynamically varying rate constraints by operating directly in the com-

pressed signal domain. This capability of post-encoding rate control has been shown

to be critical for multimedia communication systems, due to the unavoidable incom-

patibilities between the design of general-purpose codecs and networks. DRS can

guarantee universal interoperability between the two, even when the quality of ser-

vice guarantees provided by the network are time-varying. There are other domains

in which DRS can be utilized, including transcoding and codec interoperability, trick

modes, as well as communication in heterogeneous networks.

We have shown that the concept evolves quite naturally by considering �rst

the operation of an actual multimedia communications testbed|Xphone|that we

have developed. Due to the very challenging communication environment in which

Xphone is based upon (best-e�ort operating system and network), maintaining ac-

ceptable quality requires that the system is capable of quickly adapting to changing

network conditions.

For that purpose, an adaptive rate control scheme was developed, which ensures

su�ciently high frame rates by trading o� spatial quality. To mitigate the adverse

161

e�ects of jitter to the end-to-end delay of videoconferencing sessions, silence detec-

tion was used to transform the audio signal to a \bursty" one that can more easily

be transported by CSMA/CD (Ethernet) internetworks. Finally, in order to provide

accurate audio-video synchronization, a scalable synchronization algorithm was de-

veloped that bounds the synchronization misadjustment by the frame period. All

these are examples of algorithms that adapt di�erent parts of a multimedia system

to the behavior accepted by others.

A natural extension of this approach was followed for the video signal, in the

form of data partitioning. This process, �rst introduced in the MPEG-2 standard,

segments a compressed bitstream into two layers or partitions. The one contain-

ing the most important information is transported with reliability, while the other

one uses a less robust \channel". This can achieve improved average quality at

the receiver, since critical information is guaranteed to be received. Channel relia-

bility, when not directly supported by the network, can be emulated by increased

forward error correction. We have posed the problem of optimal data partitioning

in an operational rate-distortion context, and discussed several optimal and fast

algorithms.

By eliminating the second partition, and allowing the bit rate to be variable,

we naturally arrive at the idea of dynamic rate shaping (DRS). DRS provides an

interface between the encoder and the network, with which the encoder's output

can be perfectly matched to the network's quality of service characteristics. This

helps to avoid wasting network resources (when quality of service guarantees can be

provided), or avoids information loss that can lead to severe quality impairments.

DRS bridges the gap between constant and variable bit rate video, providing

a continuum of possibilities between the two. It frees the network designer from

the need to derive accurate and universally applicable models for video tra�c and,

162

more importantly, it opens up the design options for e�cient and scalable admission

control algorithms. Following the analysis of data partitioning, the optimal DRS

problem was posed in an operational rate-distortion context, and a family of algo-

rithms was identi�ed. Not surprisingly, we also showed that data partitioning is a

special case of DRS, and more speci�cally \clustered constrained" DRS.

A key result was the discovery of very simple DRS algorithms that perform

very closely to the optimal ones. The consequences of this simplicity is that even

software-based real-time implementations are possible in modern general purpose

microprocessors. This can greatly facilitate the incorporation of DRS into actual

multimedia communication systems.

A number of issues can be raised from the results of this thesis, warranting

further investigation. An interesting question is the examination of the dynamics

of rate shaping in real communication environments. The constraints presented to

the DRS processor essentially form a closed-loop feedback control system, whose

behavior should be carefully characterized. The fact that DRS can be applied to

an arbitrary time scale (i.e., with an arbitrary optimization window), guarantees

that, whatever the dynamics of the network, DRS can be applied in a stable man-

ner. Closely related to that is the transformation of rate constraints to optimization

window bit budgets, since it depends on the speci�cs of the particular communi-

cation architecture. Optimal architectures for DRS processors are also of interest,

particularly using software-based implementations. Finally, joint requantization and

selective transmission approaches (\Generalized" DRS) are worth exploring, partic-

ularly for very large rate conversion ratios.

A more deeply rooted question is whether or not one can construct video coding

algorithms that are inherently amenable to rate shaping. Clearly all coding schemes

can be subjected to DRS, as long as we can associate a distortion and rate with each

163

of the bitstream components. Whether or not DRS will result in acceptable quality,

however, depends on the structure of the encoding scheme. A good example of a

representation in which rate shaping is extremely simple, is the decimal numbering

system: assuming our source is a real number, its coded representation could be one

that utilizes only the �rst decimal digits. If rate shaping is required, then we can

simply truncate the representation to fewer digits with no processing whatsoever; the

new representation is guaranteed to be optimal under a squared error criterion. We

should note, however, that supporting such functionality can potentially degrade the

coding performance of the algorithm, since the design space becomes constrained.

164

References

[1] Encoding Parameters of Digital Television for Studios. ITU-R (formerly

CCIR) Recommendation 601. 1982.

[2] B-ISDN Recommendations, CCITT COM XVIII-R 23-E. February 1990.

[3] Video Codec for Audio Visual Services at p � 64 kbits/s. ITU-T (formerly
CCITT) Recommendation H.261, CDM XV-R 37-E. August 1990.

[4] Information Technology { Coding of Moving Pictures and Associated Audio
for Digital Storage Media at up to About 1,5 Mbit/s, ISO/IEC 11172-2 Inter-
national Standard (MPEG-1). 1993.

[5] Information Technology { Digital Compression and Coding of Continuous-
Tone Still Image`s, ISO/IEC 10918 International Standard (JPEG). 1994.

[6] Information Technology { Generic Coding of Moving Pictures and Associated
Audio, ITU-T Draft Recommendation H.262, ISO/IEC 13818 Draft Interna-

tional Standard (MPEG-2). 1994.

[7] A. S. Acampora and M. J. Karol. An Overview of Lightwave Packet Networks.

IEEE Network Magazine, 3(1):29{41, January 1989.

[8] L. Aguilar, J. J. Garcia-Luna-Aceves, D. Moran, E. J. Craighill, and R. Brun-
gardt. Architecture for a Multimedia Teleconferencing System. In Proceedings,

ACM SIGCOMM '86 Symposium, pages 126{136, August 1986.

[9] Sudhir R. Ahuja and J. Robert Ensor. Coordination and Control of Mul-

timedia Conferencing. IEEE Communications Magazine, 30(5):38{43, May
1992.

[10] Scienti�c American. Special Issue: Communications, Computers and Net-
works. September 1991.

[11] P. H. Ang, P. A. Ruetz, and D. Auld. Video Compression Makes Big Gains.
IEEE Spectrum, pages 16{19, October 1991.

165

[12] C. Aurrecoechea, A. Campbell, A. Eleftheriadis, and H. Hadama. Meeting

End-to-End QoS Challenges for Adaptive Digital Video Flows. In Proceedings,
6th IFIP International Conference on High Performance Networking (HPN-
95), Palma de Mallorca, Spain, September 1995 (to appear).

[13] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[14] T. Berger. Rate Distortion Theory. Prentice Hall, Englewood Cli�s, New
Jersey, 1971.

[15] D. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice Hall, Englewood Cli�s, New Jersey, 1987.

[16] M. C. Buchanan and P. T. Zellweger. Scheduling Multimedia Documents
Using Temporal Constraints. In Proceedings, 3rd International Workshop on
Network and Operating System Support for Digital Audio and Video, pages
223{235, November 1992.

[17] A. Campbell, D. Hutchinson, and C. Aurrecoechea. A Dynamic QoS Manage-

ment Scheme for Adaptive Hierarchically Coded Flows. In Proceedings, 5th
International Workshop on Network and Operating System Support for Digital
Audio and Video, pages 107{118, April 1995.

[18] S. Casner, C. Lynn Jr., P. Park, K. Schroder, and C. Topolcic. Experimental
Internet Stream Protocol, Version 2. RFC 1190, USC/Information Sciences
Institute, 1989.

[19] S.-F. Chang, D. Anastassiou, A. Eleftheriadis, J. Meng, S. Paek, S. Pejhan,
and J. R. Smith. Development of Advanced Image/Video Servers in a Video

on Deman Testbed. In Proceedings, IEEE Visual Signal Processing and Com-
munications Workshop, New Brunswick, New Jersey, September 1994.

[20] S.-F. Chang and A. Eleftheriadis. Error Accumulation of Repetitive Image
Coding. In Proceedings, IEEE International Symposium on Circuits and Sys-
tems, pages 3.201{3.204, London, England, May{June 1994.

[21] S.-F. Chang, A. Eleftheriadis, and D. Anastassiou. Development of Columbia's
Video on Demand Testbed. Image Communication Journal, Special Issue on

Video on Demand and Interactive Television, 1995 (to appear).

[22] C.-F. Chen and K. K. Pang. Hybrid Coders with Motion Compensation.

Multidimensional Systems and Signal Processing, 3:241{266, 1992.

166

[23] C.-F. Chen and K. K. Pang. The Optimal Transform of Motion-Compensated

Frame Di�erence Images in a Hybrid Coder. IEEE Trans. on Circuits and
Systems{II: Analog and Digital Signal Processing, 40(6):393{397, June 1993.

[24] N. K. Cheung. The Infrastructure for Gigabit Networks. IEEE Communica-
tions Magazine, pages 60{68, April 1992.

[25] D. D. Clark, M. L. Lambert, and L. Zhang. NETBLT: A Bulk Data Transfer
Protocol. RFC 998, 1987.

[26] D. D. Clark, M. L. Lambert, and L. Zhang. NETBLT: A High Throughput
Transport Protocol. In Proceedings, ACM SIGCOMM '87 Workshop, pages
353{359, August 1987.

[27] D. D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications
in an Integrated Services Packet Network. In Proceedings, ACM SIGCOMM
'92, pages 14{26, August 1992.

[28] D. D. Clark and D. L. Tennenhouse. Architectural Considerations for a New

Generation of Protocols. In Proceedings, ACM SIGCOMM '90 Symposium,
pages 200{208, September 1990.

[29] T. Cover and J. Thomas. Elements of Information Theory. John Wiley &
Sons, New York, New York, 1991.

[30] L. F. R. da Costa Carmo, P de Saqui-Sannes, and J.-P. Courtiat. Basic
Synchronization Concepts in Multimedia Systems. In Proceedings, 3rd In-
ternational Workshop on Network and Operating System Support for Digital
Audio and Video, pages 85{96, November 1992.

[31] R. B. Dannenberg, T. Neuendor�er, J. M. Newcomer, and D. Rubine. Tactus:
Toolkit-Level Support for Synchronized Interactive Multimedia. In Proceed-

ings, 3rd International Workshop on Network and Operating System Support
for Digital Audio and Video, pages 264{275, November 1992.

[32] S. Deering. Host Extensions for IP Multicasting. RFC 1112, Standford Uni-
versity, 1989.

[33] S. Deering and B. Hinden. Internet Protocol, Version 6 (IPv6) Speci�cation.
IETF IPng Working Group Draft, March 1995.

[34] S. E. Deering. Multicast Routing in Internetworks and Extended LANs. In
Proceedings, ACM SIGCOMM '88 Symposium, pages 55{64, August 1988.

167

[35] W. A. Doeringer, D. Dykeman, M. Kaiserswerth, B. W. Meister, H. Rudin,

and R. Williamson. A Survey of Light-Weight Transport Protocols for High-
Speed Networks. IEEE Transactions on Communications, 38(11):2025{2039,
November 1990.

[36] G. Drapeau and H. Green�eld. MAEstro - A Distributed Multimedia Author-
ing Environment. In Proceedings, Summer 1991 USENIX Conference, pages
315{328, 1991.

[37] P. Druschel, M. B. Abbott, M. Pagels, and L. Peterson. Analysis of I/O Sub-
system Design for MultimediaWorkstations. In Proceedings, 3rd International

Workshop on Network and Operating System Support for Digital Audio and
Video, pages 251{263, November 1992.

[38] A. Eleftheriadis and D. Anastassiou. Optimal Data Partitioning of MPEG-2
Coded Video. In Proceedings, 1st IEEE International Conference on Image
Processing, pages I.273{I.277, Austin, Texas, November 1994.

[39] A. Eleftheriadis and D. Anastassiou. Meeting Arbitrary QoS Constraints Us-
ing Dynamic Rate Shaping of Coded Digital Video. In Proceedings, 5th In-

ternational Workshop on Network and Operating System Support for Digital
Audio and Video, pages 95{106, Durham, New Hampshire, April 1995.

[40] A. Eleftheriadis and D. Anastassiou. Constrained and General Dynamic Rate
Shaping of Compressed Digital Video. In Proceedings, 2nd IEEE International
Conference on Image Processing, Washington, DC, October 1995 (to appear).

[41] A. Eleftheriadis and A. Jacquin. Model-Assisted Coding of Videotelecon-
ferencing Sequences at Low Bit Rates. In Proceedings, IEEE International
Symposium on Circuits and Systems, pages 3.177{3.180, London, England,

May{June 1994.

[42] A. Eleftheriadis and A. Jacquin. Automatic Face Location Detection and

Tracking for Model-Assisted Coding of Video Teleconferencing Sequences at
Low Bit Rates. Image Communication Journal, 1995 (to appear).

[43] A. Eleftheriadis and A. Jacquin. Automatic Face Location Detection for
Model-Assisted Rate Control in H.261-Compatible Coding of Video. Image
Communication Journal, Special Issue on Very Low Bit Rate Video Coding,

1995 (to appear).

[44] A. Eleftheriadis and A. Jacquin. Low Bit Rate Model-Assisted H.261-

Compatible Coding of Video. In Proceedings, 2nd IEEE International Con-
ference on Image Processing, Washington, DC, October 1995 (to appear).

168

[45] A. Eleftheriadis, S. Pejhan, and D. Anastassiou. Algorithms and Performance

Evaluation of the Xphone MultimediaCommunication System. In Proceedings,
ACM Multimedia 93 Conference, pages 311{320, August 1993.

[46] A. Eleftheriadis, S. Pejhan, and D. Anastassiou. Multicast Group Address

Management and Connection Control for Multi-Party Applications. Technical
Report CU/CTR/TR 351{93{31, Center for Telecommunications Research,
Columbia University, November 1993.

[47] A. Eleftheriadis, S. Pejhan, and D. Anastassiou. Architecture and Algorithms
of the Xphone Multimedia Communication System. ACM/Springer Verlag
Multimedia Systems Journal, 2(2):89{100, August 1994.

[48] A. Eleftheriadis, S. Pejhan, and D. Anastassiou. Multicast Address Manage-
ment and Connection Control for Multi-Party Applications. In Proceedings,

IEEE Infocom '95 Conference, pages 386{393, Boston, Massachusetts, April
1995.

[49] A. Erramilli and R. P. Singh. A Reliable and E�cient Multicast Protocol

for Broadband Broadcast Networks. In Proceedings, ACM SIGCOMM '87
Workshop, pages 343{352, August 1987.

[50] H. Everett. Generalized Lagrange Multiplier Method for Solving Problems of
Optimum Allocation of Resources. Operations Research, 11:399{417, 1963.

[51] D. C. Feldmeier. Multiplexing Issues in Communication System Design. In

Proceedings, ACM SIGCOMM '90 Symposium, pages 209{219, September
1990.

[52] D. C. Feldmeier. A Framework of Architectural Concepts for High Speed Com-
munications Systems. IEEE Journal on Selected Areas in Communications,
11(3), March 1993.

[53] D. C. Feldmeier. An Overview of the TP++ Transport Protocol Project.
In Ahmed Tantawy, editor, High Performance Communication. Kluwer Aca-
demic Publishers, 1993.

[54] D. Ferrari and D. C. Verma. A Scheme for Real-Time Channel Establishment
in Wide-Area Networks. IEEE Journal on Selected Areas in Communications,
8(3):368{379, April 1990.

[55] T. Fisher. Real-Time Scheduling Support in Ultrix 4.2 for Multimedia Comm-
munication. In Proceedings, 3rd International Workshop on Network and Op-

erating System Support for Digital Audio and Video, pages 282{288, November
1992.

169

[56] ATM Forum. ATM User-Network Interface Speci�cation, Version 3.0. Pren-

tice Hall, Englewood Cli�s, New Jersey, 1993.

[57] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.

Kluwer Academic Publishers, Boston, Massachusetts, 1992.

[58] C. A. Gonzales and E. Viscito. Motion Video Adaptive Quantization in the

Transform Domain. IEEE Transactions on Circuits and Systems for Video
Technology, 1(4):374{378, December 1991.

[59] I. W. Habib and T. N. Saadawi. Multimedia Tra�c Characteristics in Broad-
band Networks. IEEE Communications Magazine, 30(7):48{54, July 1992.

[60] R. G. Herrtwich and L. Delgrossi. Beyond ST-II: Ful�lling the Requirements
of Multimedia Communication. In Proceedings, 3rd International Workshop
on Network and Operating System Support for Digital Audio and Video, pages
23{29, November 1992.

[61] D. Heyman, A. Tabatabai, and T. V. Lakshman. Statistical Analysis and Sim-

ulation Study of Video Teleconference Tra�c in ATM Networks. IEEE Trans-
actions on Circuits and Systems for Video Technology, 2(1):49{59, March
1992.

[62] Editor J. F. Koegel Buford. Multimedia Systems. ACM Press SIGGRAPH
Series. Addison-Wesley, New York, New York, 1994.

[63] S. Jacobs, A. Eleftheriadis, and D. Anastassiou. Silence Detection in Mul-
timedia Networks. Technical Report CU/CTR/TR 407{95{13, Center for
Telecommunications Research, Columbia University, May 1995.

[64] A. Jacquin and A. Eleftheriadis. Automatic Face Location Detection for
Model-Assisted Rate Control in H.261 Compatible Coding of Video. In Pro-

ceedings, International Workshop on Automatic Face and Gesture Recognition,
Zurich, Switzerland, June 1995 (to appear).

[65] N. Jain, M. Schwartz, and T. R. Bashkow. Transport Protocol Processing at
GBPS Rates. In Proceedings, ACM SIGCOMM '90 Symposium, pages 188{
199, September 1990.

[66] S. Jamin, S. Shenker, L. Zhang, and D. D. Clark. An Admission Control
Algorithm for Predictive Real-Time Service. In Proceedings, 3rd International

Workshop on Network and Operating System Support for Digital Audio and
Video, pages 308{315, November 1992.

170

[67] N. S. Jayant and P. Noll. Digital Coding of Waveforms: Principles and Ap-

plications to Speech and Video. Prentice Hall, Englewood Cli�s, New Jersey,
1984.

[68] K. Je�ay, D. L. Stone, and F. D. Smith. Transport and Display Mechanisms
for Multimedia Conferencing Across Packet-Switched Networks. Computer
Networks and ISDN Systems, 26(10):1281{1304, July 1994.

[69] K. Je�ay, D. L. Stone, T. Talley, and F. D. Smith. Adaptive, Best-E�ort
Delivery of Digital Audio and Video Across Packet-Switched Networks. In
Proceedings, 3rd International Workshop on Network and Operating System

Support for Digital Audio and Video, pages 1{12, November 1992.

[70] J.Postel. Internet Protocol. RFC 791, USC/Information Sciences Institute,

1981.

[71] J.Postel. Transmission Control Protocol. RFC 793, USC/Information Sciences

Institute, 1981.

[72] Ronald K. Jurgen. Digital Video. IEEE Spectrum, pages 24{30, March 1992.

[73] K. Ramchandran and M. Vetterli. Rate-distortion optimal fast thresholding

with complete JPEG/MPEG decoder compatibility. In Proceedings, Picture
Coding Symposium '93, March 1993.

[74] K. Ramchandran and M. Vetterli. Rate-distortion optimal fast thresholding
with complete JPEG/MPEG decoder compatibility. IEEE Transactions on
Image Processing, Special Issue on Video Sequence Compression, 3(5):700{
704, September 1994.

[75] H. Kanakia, P. P. Mishra, and A. Reibman. An Adaptive Congestion Con-
trol Scheme for Real-Time Packet Video Transport. In Proceedings, ACM

SIGCOMM '94 Conference, pages 20{31, September 1993.

[76] L. Kleinrock. The Latency/Bandwidth Tradeo� in Gigabit Networks. IEEE
Communications Magazine, 30(4):36{40, April 1992.

[77] F. Kretz and F. Colaitis. Standardizing Hypermedia Information Objects.
IEEE Communications Magazine, 30(5):60{70, May 1992.

[78] A. A. Lazar, G. Paci�ci, and D. E. Pendarakis. Modeling Video Sources for
Real Time Scheduling. ACM/Springer Verlag Multimedia Systems Journal,
1(6):253{266, April 1994.

171

[79] D. Lee, B. Melamed, A. R. Reibman, and B. Sengupta. TES Modeling

for Analysis of a Video Multiplexer. Performance Evaluation, pages 21{34,
November 1992.

[80] J. Le�er, M. K. McKusick, M. J. Karels, and J. S. Quarterman. The Design
and Implementation of the 4.3 BSD UNIX Operating System. Addison-Wesley,
1989.

[81] Didier LeGall. MPEG: A Video Compression Standard for Multimedia Ap-
plications. Communications of the ACM, 34(4):46{58, April 1991.

[82] D. W. Lin, M.-H. Wang, and J.-J. Chen. Optimal Delayed Coding of Video Se-
quences Subject to a Bu�er Size Constraint. In Proceedings, SPIE Visual Com-
munications and Image Processing Conference, Cambridge, Massachusetts,

November 1993.

[83] Ming Liou. Overview of the p � 64 kbit/s Video Coding Standard. Commu-

nications of the ACM, 34(4):59{63, April 1991.

[84] T. D. C. Little and A. Ghafoor. Synchronization and Storage Models for
Multimedia Objects. IEEE Journal on Selected Areas in Communications,
8(3):413{427, April 1990.

[85] B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. Robbins. Performance
Models of Statistical Multiplexing in Packet Video Communications. IEEE
Transactions on Communications, pages 834{844, July 1988.

[86] D. L. Mills. On the Accuracy and Stability of Clocks Synchronized by the
Network Time Protocol in the Internet System. Computer Communications

Review, 20(1):65{75, January 1990.

[87] D. L. Mills. Internet Time Synchronization: The Network Protocol. IEEE

Transactions on Communications, 39(10):1482{1493, October 1991.

[88] M. Moran and R. Gusella. System Support for E�cient Dynamically Con�g-
urable Multi-Party Interactive Multimedia Applications. In Proceedings, 3rd
International Workshop on Network and Operating System Support for Digital
Audio and Video, pages 133{146, November 1992.

[89] D. G. Morrison, M. E. Nilsson, and M. Ghanbari. Reduction of the Bit-Rate
of Compressed Video While in its Coded Form. In Proceedings, Packet Video

Workshop '94, pages D17.1{D17.4, 1994.

172

[90] R. Needham and A. Nakamura. An Approach to Real-Time Scheduling but

is it Really a Problem for Multimedia ? In Proceedings, 3rd International
Workshop on Network and Operating System Support for Digital Audio and
Video, pages 30{37, November 1992.

[91] A. N. Netravali and B. G. Haskell. Digital Pictures: Representation, Com-
pression, and Standards (2nd ed.). Plenum Press, New York, New York, 1995.

[92] A. N. Netravali, W. D. Roome, and K. Sabnani. Design and Implementation
of a High-Speed Transport Protocol. IEEE Transactions on Communications,
38(11):2010{2023, November 1990.

[93] P. Newman. Tra�c Management for ATM Local Area Networks. IEEE Com-
munications Magazine, 32(8):44{50, August 1994.

[94] C. Nikolaou. An Architecture for Real-Time Multimedia Communication Sys-
tems. IEEE Journal on Selected Areas in Communications, 8(3):391{400,

April 1990.

[95] J. D. Northcutt, G. A. Wall, J. G. Hanko, and E. M. Kuerner. A High
Resolution Video Workstation. Image Communication, 4(4-5), August 1992.

[96] A. Ortega, K. Ramchandran, and M. Vetterli. Optimal Bu�er-Contrained
Source Quantization and Fast Approximations. In Proceedings, IEEE Intl.
Symposium on Circuits and Systems, ISCAS '92, San Diego, May 1992.

[97] A. Papoulis. Signal Analysis. McGraw-Hill, New York, New York, 1977.

[98] A. Papoulis. Probability, Random Variables, and Stochastic Processes, (3rd
ed.). McGraw-Hill, New York, New York, 1991.

[99] J. C. Pasquale, G. C. Polyzos, E. W. Anderson, and V. P. Kompella. The
Multimedia Multicast Channel. In Proceedings, 3rd International Workshop
on Network and Operating System Support for Digital Audio and Video, pages

185{196, November 1992.

[100] S. Pejhan, A. Eleftheriadis, and D. Anastassiou. Multiparty multimedia com-

munication systems. In Proceedings, Iranian Conference on Electrical Engi-
neering, Tehran, Iran, May 1994.

[101] S. Pejhan, A. Eleftheriadis, and D. Anastassiou. Distributed Multicast Ad-
dress Management in the Global Internet. IEEE Journal on Selected Areas in
Communications, Special Issue on Internetworking, 1995 (to appear).

173

[102] W. Pennebaker and J. Mitchell. The JPEG Still Image Data Compression

Standard. Van Nostrand Reinhold, New York, New York, 1993.

[103] T. F. La Porta and M. Schwartz. Architectures, Features, and Implementation

of High-Speed Transport Protocols. IEEE Network Magazine, 5(5):14{22, May
1991.

[104] A. Puri and R. Aravind. Motion-Compensated Video Coding with Adaptive
Perceptual Quantization. IEEE Transactions on Circuits and Systems for
Video Technology, 1(2):210{221, June 1991.

[105] S. Ramanathan and P. V. Rangan. Continuous Media Synchronization in
Distributed Multimedia Systems. In Proceedings, 3rd International Workshop
on Network and Operating System Support for Digital Audio and Video, pages

289{296, November 1992.

[106] K. Ramchandran. Joint Optimization Techniques in Image and Video Coding

with Applications to Multiresolution Digital Broadcase. PhD thesis, Columbia
University, New York, New York, 1993.

[107] P. V. Rangan, H. M. Vin, and S. Ramanathan. Designing an On-Demand
Multimedia Service. IEEE Communications Magazine, 30(7):56{64, July 1992.

[108] K. R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages,
Applications. Academic Press, San Diego, California, 1990.

[109] A. Reibman. DCT-Based Embedded Coding of Packet Video. Image Com-
munication, 3:231{237, 1991.

[110] A. R. Reibman and A. Berger. Tra�c Descriptors for VBR Video Teleconfer-
encing over ATM Networks. In Proceedings, Globecom '92 Conference, pages
1135{1139, December 1992.

[111] K. Rothermel and G. Dermler. Synchronization in Joint-Viewing Environ-

ments. In Proceedings, 3rd International Workshop on Network and Operating
System Support for Digital Audio and Video, pages 97{109, November 1992.

[112] E. M. Schooler. The Impact of Scaling on a Multimedia Connection Architec-
ture. In Proceedings, 3rd International Workshop on Network and Operating
System Support for Digital Audio and Video, pages 302{307, November 1992.

[113] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. IETF Audio-Video Transport Working
Group Draft, March 1995.

174

[114] W. Stallings. ISDN and Broadband ISDN. Macmillan Publishing Company,

New York, 1992.

[115] R. Steinmetz. Synchronization Properties in Multimedia Systems. IEEE Jour-

nal on Selected Areas in Communications, 8(3):401{412, April 1990.

[116] W. R. Stevens. UNIX Network Programming. Prentice Hall, Englewood Cli�s,
New Jersey, 1990.

[117] J. Sutherland and L. Litteral. Residential Video Services. IEEE Communica-
tions Magazine, 30(7):36{41, July 1992.

[118] H. Vin and P. V. Rangan. Admission Control Algorithms for Multimedia On-
Demand Servers. In Proceedings, 3rd International Workshop on Network and
Operating System Support for Digital Audio and Video, pages 50{62, Novem-

ber 1992.

[119] G. Vonderweidt, J. Robinson, C. Toulson, J. Mastronardi, E. Rubinov, and
B. Prasada. AMultipoint Communication Service for Interactive Applications.
IEEE Transactions on Communications, 39(12):1875{1885, December 1991.

[120] G. A. Wall, J. G. Hanko, and J. D. Northcutt. Bus Bandwidth Management
in a High Resolution Video Workstation. In Proceedings, 3rd International

Workshop on Network and Operating System Support for Digital Audio and
Video, pages 236{248, November 1992.

[121] Gregory K. Wallace. The JPEG Still Picture Compression Standard. Com-
munications of the ACM, 34(4):30{44, April 1991.

[122] F. M. Wang, R. Mokry, T. H. Chiang, A. Eleftheriadis, and D. Anastassiou.
Compatible Coding of Digital Interlaced HDTV Using Prediction of the Even
Fields from the Odd Fields. In Proceedings, Fourth International Workshop

on HDTV and Beyond, Torino, Italy, September 1991. This paper is reprinted
in the book \Signal Processing of HDTV", III, H. Yasuda and L. Chiariglione,
Eds., Elsevier, 1992.

[123] J. Watkinson. The Art of Digital Video. Focal Press, Oxford, England, 1990.

[124] R. W.Watson. IPC-Interface and End-to-End Protocols, volume 107 of Lecture
Notes in Computer Science, chapter 7, pages 140{174. Springer Verlag, 1981.

[125] L. Wei, F.-C. Liaw, D. Estrin, A. Romanow, and T. Lyon. Analysis of a
Resequencer Model for Multicast over ATM Networks. In Proceedings, 3rd

International Workshop on Network and Operating System Support for Digital
Audio and Video, pages 197{208, November 1992.

175

[126] Y. Shoham and A. Gersho. E�cient bit allocation for an arbitrary set of

quantizers. IEEE Transactions on Acoustics, Speech, and Signal Processing,
36(9):1445{1453, 1988.

[127] J. Yee and P. Varaiya. An Analytical Model for Real-Time Multimedia Disk
Scheduling. In Proceedings, 3rd International Workshop on Network and Op-
erating System Support for Digital Audio and Video, pages 276{281, November
1992.

[128] M. Yong, Q.-F. Zhu, and V. Eyuboglu. VBR Transport of CBR-Encoded
Video over ATM Networks. In Proceedings, Packet Video Workshop '94, pages

D18.1{D18.4, 1994.

[129] P. S. Yu, M.-S. Chen, and D. D. Kandlur. Design and Analysis of a Grouped

Sweeping Scheme for Multimedia Storage Management. In Proceedings, 3rd
International Workshop on Network and Operating System Support for Digital
Audio and Video, pages 38{49, November 1992.

[130] H. Zhang and T. Fisher. Preliminary Measurement of the RMTP/RTIP. In
Proceedings, 3rd International Workshop on Network and Operating System

Support for Digital Audio and Video, pages 173{184, November 1992.

[131] H. Zhang and S. Keshav. Comparison of Rate-Based Service Disciplines. In

Proceedings, ACM SIGCOMM '91 Conference, pages 113{121, 1991.

[132] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A

New Resource ReSerVation Protocol. IEEE Network Magazine, pages 8{18,
September 1993.

[133] M. Zitterbart. High-Speed Transport Components. IEEE Network Magazine,
5(1):54{63, January 1991.

