
Segmentation, Index and Summarization of

Digital Video Content

Di Zhong

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Science

Columbia University

2001

i

ABSTRACT

Segmentation, Index and Summarization of Digital Video Content

Di Zhong

In this thesis, we propose and develop unique frameworks and methods for temporal

and spatial video segmentation as well as object based video representation, indexing and

retrieval at both the syntactic and the semantic level.

First we demonstrate a robust and real-time temporal scene cut detection system that

combines color, edge and motion features in both compressed and uncompressed

domains. Contrary to existing work, we considered comprehensive issues in practical

situations, such as gradual transition, lighting change and motion. The algorithms

perform very well for variant kinds of videos, including sports, sitcom, news, cartoon,

movie and home videos.

Then we present an automatic region segmentation system for content-based video

search. The system segments and tracks consistent regions through each video shot, and

then computes visual features of extracted regions to build visual libraries that support

region level search. A web-based video query system that has more than 3,000 video

shots has been built. The query system allows users to do spatial-temporal search of

video shots by drawing regions and specifying features. It is the first video search engine

that supports automatic extraction and object-level motion-based search.

Semantic object segmentation and tracking is then studied to produce high-level object

ii

representation and description. We introduce an integrated scheme for semantic object

segmentation and content-based object search. AMOS, a unique video object

segmentation system that combines low-level automatic region segmentation with user

inputs is developed. An object query model is developed to effectively combine local

region-level features and spatial-temporal structures. This system is very useful for

MPEG-4 and MPEG-7 applications.

At the end we present a real-time framework to build semantic-level structure and

event index of live sports videos. It utilized the segmentation and searching methods we

have developed to detect specific scenes and events. Also it integrates knowledge about

domain-specific video structures and generic machine learning algorithms. We show

applications of such techniques in high-level video retrieval and browsing systems in

specific domains such as sports videos. In addition, we demonstrate a summarization

scheme that provides users intuitive structures of video content and statistics of game

events and views.

iii

Contents

1. Introduction and Motivation 1

1.1 Digital Video Indexing and Retrieval 1

1.2 Overview of Existing Work 3

1.3 Problems Addressed 6

1.3.1 Temporal Scene Segmentation 7

1.3.2 Video Object Segmentation 8

1.3.3 Indexing and Summarization 9

1.4 Summary of Contributions 10

1.5 Outline of Thesis 11

2. Scene Change Detection Combining Multiple Visual Features 14

2.1 Overview 14

2.2 A New Schema Combining Multiple Visual Features 17

2.3 Feature Extraction in the MPEG Compressed Domain 20

2.4 Flashlights Detection 22

2.5 Scene Cut Detection 24

2.5.1 Combining Color and Motion Features Using Decision Tree 26

2.5.2 Direct Scene Cut Detection 27

2.5.3 Gradual Scene Cut Detection 31

2.5.4 Multi-Level Scene Cut Detection 33

2.6 Verification Using Complex Features 35

2.6.1 Camera Motion Detection 36

2.6.2 Lighting Change Detection 37

2.7 Results and Discussions 39

iv

3. Video Region Segmentation and Search 46

3.1 Introduction 46

3.1.1 Image Segmentation Techniques 48

3.1.2 Segmentation and Tracking of Video Regions 50

3.1.3 Region Based Spatial-Temporal Retrieval 53

3.2 Region Segmentation and Tracking Using Feature Fusion 54

3.2.1 Overview 54

3.2.2 Generation of Feature Maps 56

3.2.3 Region Segmentation and Tracking 58

3.2.4 Post Merging Process 63

3.2.5 Salient Region Selection 65

3.2.6 Experiment Results 66

3.3 Build of Visual Library 68

3.3.1 Observations of Segmentation Results 68

3.3.2 Visual Feature Extraction 70

3.4 Spatial-Temporal Search of Video Content 71

3.4.1 Feature Matching Metrics 71

3.4.2 Visual Query Model 73

3.4.3 Experiment Results 74

4. Semantic Video Object Segmentation and Search 78

4.1 Introduction 78

4.2 Active Video Object Segmentation 81

4.2.1 System Overview 83

4.2.2 Object Segmentation in Initial Frame 86

4.2.3 Object Tracking in Successive Frames 89

4.2.4 Segmentation Results and Performance Evaluation 94

4.3 Automatic Moving Object Detection 101

4.3.1 Oveerview 102

4.3.2 Iterative Motion Layer Detection 104

4.3.3 Moving Object Detection Using Temporal Constraints 107

v

4.3.3 Results and Discussion 109

4.4 Region Feature Based Video Object Search 112

4.4.1 Generating Salient Feature Regions 114

4.4.2 Building the Visual Feature Library 115

4.4.3 Region Based Object Query Model 118

4.4.4 Experimental System and Results 121

5. Structure Parsing and Event Detection for Sports Video 125

5.1 Introduction 125

5.2 Semantic Content in Sports Video 127

5.3 Real Time Video Analysis System 130

5.4 Structure Parsing 133

5.4.1 Color Based Adaptive Filtering 134

5.4.2 Segmentation Based Verification 136

5.4.3 Edge Based Verification 138

5.4.4 Experiments and Discussion 139

5.5 Event Detection 141

5.5.1 Player Tracking 141

5.5.2 Trajectory Analysis 143

5.6 A Summarization and Browsing Interface 145

5.7 Conclusion and Open Issues 148

6. Conclusion and Future Work 149

Reference 153

vi

List of Figures

1.1 Content based video indexing and retrieval process 2

1.2 Hierarchical abstraction of a news program 5

1.3 AA uunniiffiieedd oobbjjeecctt--bbaasseedd vviiddeeoo rreepprreesseennttaattiioonn 77

2.1 Comparison of direct scene cut and gradual 15

2.2 The scene cut detection schema that combines multiple visual features 19

2.3 The effect of flashlights on a scene (video shot by Prof. Shih-Fu Chang) 22

2.4 Typical intensity changes in a video sequence due to a flashlight 24

2.5 An example of decision tree 26

2.6 PA ratios used in I frame scene cut detection 28

2.7 Direct scene cut detection at I-type frames 29

2.8 Direct scene cut detection at P-type frames 30

2.9 Direct scene cut detection at B-type frames 31

2.10 The beginning and ending edges of a gradual scene change 32

2.11 The multi-level scene cut detection scheme 34

2.12 Panning detection based on histogram of motion vectors 36

2.13 An example of aperture change that generates two potential transitions 38

3.1 Automatic region tracking for content based video search 47

3.2 Edge detection results of an image 49

3.3 An example of region growing segmentation 50

3.4 The diagram of region segmentation and tracking 55

3.5 The motion projection and segmentation module 56

3.6 Region segmentation and projection at frame n 60

3.7 Affine model based region projection 62

3.8 Illustration of the inter-frame labeling process module 62

3.9 Sun and background sky are divided into multiple regions 63

vii

3.10 Region segmentation and tracking results of three testing sequences 67

3.11 More region segmentation results shown in random colors 69

3.12 The web interface of VideoQ 74

3.13 Four query examples used in precision-recall experiments 75

3.14 The average precision-recall curve over four query 76

3.15 Average number of queries needed to reach a video shot 77

4.1 Hierarchical representation of video objects 79

4.2 The architecture of AMOS system 84

4.3 Object segmentation in initial frame 86

4.4 Automatic semantic object tracking process 90

4.5 Region aggregation using projected objects 92

4.6 Object tracking results of five sequences after three user inputs 95

4.7 Average number of false pixels over 100 frames 96

4.8 Average number of missed pixels over 100 frames 97

4.9 Definition of boundary deviations 98

4.10 Maximum boundary deviations of the five tracked objects 98

4.11 Two-stage moving object detection 104

4.12 Iterative motion layer detection procedure 105

4.13 Neighoring motion vectors of point p 106

4.14 Background is detected based on spatial locations of these motion layers 109

4.15 Moving object detection and tracking results of five image sequences 110

4.16 Moving layer detection result at individual frames 112

4.17 Examples of the three spatial-temporal relationship graphs 117

4.18 The parallel object query model 118

4.19 Query Time Region Merging Process 119

4.20 User interface of the object query system 122

4.21 Examples of Video Object Search 124

5.1 The temporal structure of a typical tennis video 127

5.2 Scenes from four different tennis games 128

5.3 System architecture of the real time video analysis platform 131

5.4 The color based adaptive filtering process 134

viii

5.5 An example of automatic region segmentation and moving object detection 137

5.6 Edge detection within the court region 138

5.7 Local windows for hough-transform based line detection 139

5.8 Tennis player tracking within a serve scene 143

5.9 Detection of still and turning points in object trajectory 144

5.10 Summarization interface providing scene index to video 146

5.11 Browsing interface providing hierarchical structure 147

ix

List of Tables

2.1 Description of the 6 hours of videos in the experiment dataset 40

2.2 Detection results of all scene cuts for 8 different types of videos 42

2.3 Total missing number of direct scene cuts 42

2.4 Total missing number of gradual transitions 42

2.5 Two different reasons that cause false alarms 43

2.6 Flashlights detection results of home videos 43

5.1 Detection result for serve scenes 140

5.2 Trajectory analysis results for one hour tennis video 145

x

ACKNOWLEDGEMENTS

I would like to offer my profound gratitude towards my advisor, Prof. Shih-Fu Chang,

for his invaluable guidance and inspiration throughout the course of my research work.

Without his continuous encouragement and advice, I could never complete this thesis.

I would like to thank Professor Dimitris Anastassiou and Professor Alexandros

Eleftheriadis for their advice in the proposal of this work.

I thank all my colleagues in the ADVENT Lab, especially John Smith, Horace Meng,

Luois Wang, JaeBoem Lee, Bill Chen, Hari Sundaram and Raj Kumar, with whom I have

worked together for several years, for their precious suggestions, discussions and

friendship.

I express my sincere thanks to my wife and my parents for their love, understanding

and supports.

1

Chapter 1

Introduction and Motivation

1.1 Digital Video Indexing and Retrieval

Today with the progress in video compression and communication, we are able to put a

large amount of digital videos online. More and more media content providers are

delivering live or on-demand videos over the Internet. Home users are having high

bandwidth cable or DSL connections to view TV-quality videos. While the amount of

video data is rapidly increasing, multimedia applications are still very limited in content

management capabilities. There is a growing demand for new techniques that can enable

efficient processing, modeling and management of video contents.

A typical indexing and retrieval scenario of video content is shown in Figure 1.1.

First, input videos and images are segmented into temporal and/or spatial consistent units.

Visual features are then extracted from these segments to build indices and summaries.

And finally videos or images are browsed and retrieved based on these features and

structures.

Within this scenario, the content-based technique is one key component that provides

feature based similarity search of pictorial data. Recently, many studies have been

conducted in this area. Some examples include QBIC, PhotoBook, VisualSEEK, MARS

2

and VideoQ [79,85,99,81,21]. The objectives are to provide enhanced visual search

capability, and to automate the conventional annotation process of videos and images.

Figure 1.1 Content based video indexing and retrieval process

In addition to the feature index, another type of work aims at parsing and discovering

syntactic structure [129,116,104] and semantic events [83,59] in video programs using

domain knowledge and models. Results of such analysis can be used to generate semantic

level or structural summaries. These enable users to have access to arbitrary segment at

the detailed level based on intuitive and informative structures.

This thesis primarily presents our research work on automatic or semiautomatic

extraction and indexing of visual features and semantic content in video data.

Particularly, we have developed new tools and methods in handling the following unique

issues.

• Robust and real time scene cut detection

• Automatic region tracking and indexing for object based video search

• Active method for semantic object segmentation and search

Structure
& Event

Videos

Scene
Detection

Video
Shots

Video Objects

Motion Features
Still Features
Audio/Text …

Feature
Extraction

…

Index

Users

Feature Library

Search &
Browse

Summary

3

• Robust automatic moving object detection

• Structure parsing and event detection for structured videos

1.2 Overview of Existing Work

Images and videos are visual representations of information. During recent years,

methods have been developed for retrieval of images and videos based on their visual

features. Color, texture, shape, motion and spatial-temporal composition are the most

common visual features used in visual similarity match [79]. Two typical query

modalities include query by example and query by sketch [21]. A number of studies have

been conducted on still image retrieval. Progresses have been made in areas such as

feature extraction [20], similarity measurement, vector indexing [23,91] and semantic

learning [74]. Studies on content-based video retrieval have been limited to scene cut

detection, key frame extraction, grouping and browsing [69,122]. While image retrieval

techniques can be applied to video searching, unique features of video data demand

solutions to many new challenging issues.

Compared with still images, videos are dynamic data with the temporal dimensions.

Videos are presented continuously at certain rates. A TV-quality video has 25 to 30

frames per second. Besides, videos consume a huge amount of storage and bandwidth.

The size of a typical one-hour MPEG-1 video is more than 500M bytes.

The continuous characteristic and large data amount makes it further challenging to

process and manage videos. On the other hand, as more information, particularly

temporal and motion , is contained in videos, we have a better opportunity to analyze

visual content inside video. Furthermore, although videos are continuous media, the

content contained within a video program is hierarchical in nature. A movie video can be

4

divided into stories, shots, frames, as well as objects and actions. Efficient video retrieval

systems require complete indexing to all these units. Extraction of constituent objects and

discovery of underlying structures has been a vital but unsolved research topic. A brief

overview of existing approaches are given below.

As a fundamental step of video indexing, scene cut detection algorithms have been

widely studied to divide video streams into elemental units (i.e. shots). Low-level

features such as color, edge and motion have been proved to be appropriate for the

detection of temporal changes such as camera breaks and transitions [70,123]. Based on

temporal segmentation, video data can be efficiently represented in an abstracted or

summarized way. Many technologies have been developed to index segmented video

shots.

One common approach that has been used in many systems is to first select one or

more key frames (i.e. representative frames) for each video shot, and then use image

features such as color, shape and texture to index these key frames. How to choose and

organize key frames are the major issues here. Besides simple sampling methods,

advanced algorithms have been developed to use color variances, camera motions,

embedded texts and human faces [111] to select frames that convey the most significant

information of a video shot.

Using only key frames for indexing ignores motion information contained in video

shots. Moreover, as the videos are broken into individual shots, temporal relationships

and events among successive shots are not explored. To enable search for events and

actions, a number of methods have been proposed to include motion and temporal

information into video content models. In [14,23], symbolic descriptions are used to

5

represent temporal relationships (e.g., before, after, etc.) and to enable match and query

of such temporal structures. Motion estimation, spatial-temporal logics, object

segmentation and tracking are some key techniques that have been applied in such

modeling processes.

Visual features contain little semantic information, and in many circumstances, are

not convenient or sufficient for users to find desired videos. High-level abstractions and

summarizations, such as story, scene or action, allow users to search and browse videos

at a more effective and intuitive level. As shown in Figure 1.2, a news story from CNN is

broken down into a hierarchy of segments, stories and then individual shots [129]. This

hierarchical structure provides a multiple layer abstraction that can be used to help users

navigate through the long video program. In addition to detecting temporal structure,

efforts have also been made to extract semantic segments from video shots.

Figure 1.2 Hierarchical abstraction of a news program

6

In [122], a spatial structural model is used to detect anchorperson scenes. A long news

program is then broken into stories based on anchorperson scenes. In [117], the scene

transition graph is used to capture both the content and temporal flow of videos. It is

reported to be able to detect dialogues, actions and story units.

In general, unlike elementary video shots that can be defined according to low-level

features, high-level entities like story or scene are difficult to automatically extract based

on only low-level visual features. As observed in [117], to properly group or classify

video shots, more complicated domain models need to be built based on intermediate or

high-level representations, such as regions or objects. In recent studies, several emerging

video representation frameworks such as MPEG-4 and MPEG-7 have also adopted

similar object-oriented models [66,67].

In conclusion, while progress has been made in the area of video indexing and

summarization, many challenging issues remain to be solved. Thus, more advanced video

analyzing techniques are demanded to build effective and efficient video search systems.

1.3 Problems Addressed

As we have discussed previously, video indexing involves processes of segmentation,

analysis and abstraction of video content. Temporal segmentation breaks long video

streams into manageable units like shots (instead of individual frames). Spatial

segmentation extracts video objects contained in each video shot. These segments enable

us to analyze and model video content, and to build comprehensive multi-level structures

that users can efficiently search and browse, as shown below in Figure 1.3.

7

Figure 1.3 A unified object-based video representation synergying with MPEG-4 and MPEG-7 standards

Challenging issues exist in segmenting objects and building this object based

representations. In the following we will review major topics that will be addressed in

this thesis. They include temporal scene segmentation, video object segmentation, feature

indexing and semantic summarization.

1.3.1 Temporal Scene Segmentation

Although many progresses have been made in scene cut detection, existing systems still

lack the following capabilities: 1) detect gradual transitions reliably; 2) achieve real-time

(or faster than real-time) processing performance; and 3) to handle special situations such

as flashes or sudden lightening variances.

In building a real-time video parsing and summarization system, we developed a

scheme that combines color, edge and motion features in both compressed and un-

compressed domains using machine-learning techniques. In this scheme, we adopted a

semantic
data

Video

Shot

Object

Region . . .

.

. . .

Feature color, texture, shape …

motion, trajectory …

spatial, temporal structures

V

S S

O O O

R R

8

new model to detect gradual transitions by examining the characteristics of their

beginning and ending phases. We also successfully handled the issues of flashlights and

aperture changes. Our experiment results demonstrate real-time and accurate scene cut

detection performance.

1.3.2 Video Object Segmentation

Video objects are the most obvious information in video data, and are critical for human

visual perception. It is intuitive for users to describe or annotate a scene or event based

on objects. Recent researches on MPEG-4 have addressed the issue of object-based video

compression. It is envisioned to allow the access and manipulation of audio-visual

objects directly in the encoded video sequences. This provides a great potential for

interactive multimedia applications, such as object based video authoring, search and

edit. The emerging MPEG-7 standard, a multimedia content description interface, also

defines a description scheme that attaches content descriptors to video scenes and objects.

Both the MPEG-4 and MPEG-7 standards do not standardize the methods and tools to

extract objects or features [66]. As current videos are represented in the raw pixel format,

objects and the information they convey have to be extracted before the construction of

any object based content models. While both the MPEG-4 and MPEG-7 are becoming

international standards, tools for segmenting video objects and features are still missing.

Recently, generic and flexible segmentation algorithms have been studied in many

works. It has been shown that the human visual system does not compute boundaries

based on any particular set of attributes [36]. One problem with the current systems is

that typically only a fixed subset of features are utilized. Apart from some commonly

9

used features like color, edge and motion, spatial and temporal structures as well as

certain underlying rules that human beings use to identify objects are also very important.

Another problem is that without a good object model it is difficult to incorporate various

features into object segmentation process. Different features may give different

interpolations of objects. To meet these requirements, we developed a hierarchical model

for object representation and a segmentation and tracking scheme that effectively fuses

various visual features.

This scheme includes two related parts. We first developed an algorithm for automatic

segmentation and tracking of regions based on fusion of color, edge and motion.

Combined with a dominant region selection and global motion compensation process, we

show that the automatically extracted video regions can be used to successfully retrieve

video objects. Based on the first part, we then developed an active system for semantic

video object segmentation. A semantic object typically corresponds to real-world whole

body objects. Definitions of semantic objects are given by users or based on some

domain knowledge. It is modeled as a multi-level hierarchical structure and includes a set

of regions with associated spatial and visual features. An innovative grouping and

alignment method is developed to obtain semantic objects from automatically tracked

regions. Extraction of video objects at both region and semantic levels gives us rich

features at different levels and great flexibility for describing video content in different

applications.

1.3.3 Indexing and Summarization

The shot and object based video representation provides a flexible foundation for video

10

indexing and summarization. Existing video indexing techniques are mainly based on

visual features extracted from key frames. Video objects allow us to describe the content

more effectively. We can easily associate motions and activities with an object. By

identifying relationships between objects in different shots, we can also define temporal

events across the video shots. Detection of significant scenes, objects and their

characteristics enable us to summarize long videos into high-level concise abstractions.

In this thesis, we studied efficient video indexing and search methods that utilize a

rich set of visual features at both video object and region levels. A region based video

object query model is proposed to integrate global and localized features, as well as the

measurement of various spatial-temporal structures.

How to combine domain knowledge and visual features using machine learning

techniques to automatically extract syntactic and semantic structures is another important

issue addressed in this thesis. We demonstrate a real-time parsing system that

automatically identifies important scenes and game structures based on domain models

and the analysis of video segmentation results.

1.4 Summary of Contributions

The main contribution of this thesis in the field of content based video indexing and

summarization is summarized as follows.

1. A robust, real-time scene cut detection scheme which combines color, edge and

motion features in compressed and un-compressed domains using machine

learning techniques

2. New algorithms to detect gradual transitions, flashlights and aperture changes

11

3. Automatic video region segmentation and tracking based on the fusion of visual

features

4. Effective region aggregation and boundary alignment to track generic video

objects based on the tracking of underlying regions

5. An abundant set of visual features at both object and region levels, including

color, shape, texture, motion trajectory and temporal information

6. Effective integration of global and localized features, and the measurement of

various spatial-temporal structures (directional, topological, temporal) in a region

based video object query model

7. Automatic moving object detection using global region tracking information

8. Real-time system to extract important scenes and content structure based on the

analysis of video segmentation results

1.5 Outline of Thesis

In the rest of the thesis, we first study general video segmentation techniques (including

both temporal and spatial), as well as corresponding feature matching and retrieval

schema. We will then discuss how to utilize domain models to discover video structures

and summarize video content. The following chapters are organized as follows.

In Chapter 2, we present the shot detection algorithms. Existing work and open issues

are first reviewed. We then present a new scheme that combines color, edge and motion

features for real-time scene change detection. Machine learning techniques, especially

decision trees, are used to help us build decision rules. We also present our algorithms for

detecting gradual scene changes and some special situations such as flashlights and

12

aperture changes. Finally, experimental results are shown and discussed.

In Chapter 3, we present an object oriented video retrieval system using automatically

tracked video regions. We first introduce an automatic video region segmentation and

tracking system that fuses multiple visual features to achieve accurate and reliable

tracking results. Experimental results show that our system can track salient regions

properly over long video sequences. Then we discuss the construction of the visual

feature library, and present efficient techniques for spatial-temporal query based on the

automatically segmented video regions. Finally, some query experiments are discussed.

In Chapter 4, we present an integrated schema for semantic object segmentation and

similarity-based object search based on a multi-level video object model. Here, we use

the term “semantic object” to refer to whole-body objects in the image corresponding to

real-world physical objects, such as cars, people and houses. We first discuss AMOS, a

generic video object segmentation system which combines automatic region

segmentation with user input for defining and tracking semantic video objects. The

system expands the region segmentation techniques described in Chapter 3, and utilizes

an iterative region aggregation and boundary alignment process to generate and track

accurate semantic object boundaries. Also we discuss an automatic moving object

detection approach using global region tracking information. Combination of the region

and object-level representations and a rich set of features (color, texture, shape, motion,

and spatio-temporal relationships) constitute a very powerful multi-level object model.

Our experiments have shown great results and promise in developing advanced video

search tools for semantic video representations such as those defined in MPEG-4 and

MPEG-7.

13

In Chapter 5, we present a structural parsing and event detection system for domain

specific videos (e.g., sports). The system is built using a real-time streaming framework.

It utilizes the segmentation and searching methods we have developed in detecting

unique scenes and events. We show that our video segmentation and indexing techniques

can be easily integrated into high-level video retrieval and browsing systems in specific

domains such as sports videos. We demonstrate a summarization interface that provides

users overall structures of video content by showing the statistics of video shots and

important views.

Chapter 6 concludes the work presented in this thesis, and includes discussion of

potential applications and future work.

14

Chapter 2

Scene Change Detection Combining Multiple Visual
Features

2.1 Overview

Shot based indexing techniques have been widely used to organize video data. Scene

change detection is the most commonly used method to segment image sequences into

coherent units for video indexing. A shot is a sequence of contiguous frames that are

recorded from a camera. There is usually one continuous action within a shot, with no

major change of scene content. However, there are still many different changes in a

video (e.g. object motion, lighting change and camera motion), it is a nontrivial task to

accurately detect scene changes. Furthermore, the cinematic techniques used between

scenes, such as dissolves, fades and wipes, produce gradual scene changes that are harder

to detect.

Scene cut detection algorithms have been studied since the early 90’s. The basic

method is to measure the pixel difference frame-to-frame in terms of intensity or color

[126]. In [126], the number of changed pixels is counted and if the number exceeds a

certain percentage, a scene cut is detected. This method is not robust due to the camera

and object motions that can cause large pixel value differences.

Color histograms have been used to overcome the problem, as color distributions in

15

successive frames are not significantly affected by camera or object motions [121].

Assume iH is an N-bin color histogram extracted from frame i, the frame difference is

defined as :

∑
=

+−=
n

j
iii jHjHD

1
1)()((2.1)

If iD is larger than a given threshold, a scene cut is detected at the frame i+1. A more

efficient distance measure, 2χ -test, is proposed in [78], and shown to have better

performance in experiments compared to other measures. In the 2χ -test, the distance

between two color histograms iH and 1+iH is defined as:

∑
=

+
+

+







≠≠

−
=

n

j

ii
ii

ii

i

otherwise

jHorjHif
jHjH

jHjH

1

1
1

2
1

2

0

0)(0)(
))(),(max(

))()((
χ (2.2)

Although direct comparison of frame-to-frame color difference is good for direct

scene changes, gradual transitions such as fade-in, fade-out, dissolve and wipe cannot be

accurately detected in the same way.

Figure 2.1 Comparison of direct scene cut and gradual

Dissolve

Camera
Break

16

As shown in Figure 2.1, the frame-to-frame color differences within a gradual scene

change are much smaller than that of a direct scene cut. In the meanwhile, gradual

transitions last much longer (more than 1 second) compared to direct scene changes.

Because of the low difference values of gradual scene changes, a single threshold

cannot distinguish them from camera or object motions. To resolve this problem, a twin-

comparison algorithm is developed in [121]. This method requires two cutoff thresholds,

one higher threshold for direct changes and a lower one for gradual transitions. The

higher threshold is applied first. If there is no direct scene cut, the lower threshold is then

used to detect potential transitions. Once a candidate transition is detected, frame-to-

frame differences are accumulated for successive frames. If the accumulated distance is

larger than the higher threshold, a gradual transition is declared. Note that this is based on

the assumption that transitions last over a certain period, and frame-to-frame differences

within the transition period do not drop below the lower threshold. In [119], an edge-

based approach is proposed to detect direct scene cuts and gradual transitions at the same

time. It computes the percentages of edges that enter and exit between two frames. Shot

boundaries are detected when the percentage is over a given value. Dissolves and fades

are detected by comparing the enter and exit percentages.

Scene cut detection often includes feature extraction and comparison for suucessive

pairs of successive frames. It is a time consuming process that cannot be done in real time

on a regular PC or workstation. As most digital videos are compressed in MPEG,

detecting scene changes directly in the compressed domain has been studied to

accomplish real time performance. In [69], statistics of motion vectors are used to detect

scene cut. For a P-frame, the ratio of the number of intra-coded blocks and the number of

17

inter-coded blocks is computed. For a B-frame, the ratio of the number of backward

motion vectors and the number of forward vector is computed. High ratio values indicate

shot changes at P- or B-frames. On the other hand, a low ratio on a B frame indicates that

there is a scene cut at its preceding I-frame (in transmission order).

In this chapter, we present a new scene cut detection scheme which combines multiple

visual features in both the compressed and uncompressed domains. The main

contribution of our work includes:

• An effective scheme to combine motion and color features in both the compressed

and uncompressed domains.

• New algorithms to detect gradual transitions, as well as flash lights, lighting

changes and camera motions.

• A multi-level scene change detection for browsing and correction.

• Demonstrated real time performance with high accuracy

• Extensive experiments on large amount of various types of videos

2.2 A New Scheme Combining Multiple Visual Features

Although abrupt shot boundaries have been well studied in existing works, robust

detection of gradual transitions is still a challenging issue. In [43], a comparison of many

existing scene cut detection algorithms is conducted. Around 90 percent accuracy is

reported for direct cut detection. For gradual scene changes, the accuracy is in the range

of 70 to 80 percent. While building a real-time video parsing and analysis framework that

can be applied to live videos, we also met some other challenging issues. First, the real-

time requirement usually conflicts with high detection accuracy. More complicated visual

18

features, which are used to obtain accurate scene cuts, can hardly be computed in real

time. Furthermore, lighting changes, e.g., flashlights that occur often in home videos,

raise another problem that causes false detection results.

To address these issues and further improve scene detection accuracy, we developed a

multi-statge scene cut detection scheme that combines motion, color and edge

information. Although various visual features and comparison methods have been

studied, it is agreed that no single feature works better in all situations [43]. How to

effectively combine visual features to obtain robust scene cuts is an open issue. We use

machine-learning techniques (i.e. decision tree) to find combined measure metrics and

thresholds. Compressed-domain features are applied before those in the un-compressed

domain in order to accomplish real-time performance. We also developed special

modules to detect flashlights and lighting changes.

The diagram of the schema is shown in Figure 2.2. An overview of the scheme is

given below. Detailed algorithms will be described in the following sections.

Compress domain features are first extracted. Motion statistics are computed from

different types of motion vectors in P or B frames. Color differences are extracted from

the DC images of I- or P- frames. It only requires partial decoding without inverse DCT

to extract these features, and thus the process is faster than real-time even on a regular

Pentium II 300 PC. The next module detects possible flashlights. It is based on the

comparison of the frame-to-frame color difference and the long term color difference. If

a flashlight is detected at a frame, no scene cut detection will be performed on this frame.

Otherwise, scene cut detection algorithms are applied.

19

Figure 2.2 The scene cut detection schema that combines multiple visual features

Because direct scene changes can be detected accurately, we first check if there is a

direct cut at the frame. If no cut is detected, we then check if there is a gradual transition

by detecting starting and ending edges of transitions. As gradual scene transitions are

opted to be confused with camera motions or aperture changes, when a potential gradual

transition is found, we first check camera motions based on motion vectors in the MPEG

compressed domain. If there is no camera motion, we extract edge and chrominance

features from de-compressed frames, and compute the differences to examine whether the

MPEG Video Sequence

Feature Extraction (MPEG domain):
- Motion Statistics
- Frame-to-frame color difference
- Long-term color difference

Flashlight Detection

Gradual Transition Detection

Aperture Change Detection

N

Direct Scene Change

No Scene Change

Y

Y N

Direct Scene Cut Detection

N

Feature Extraction (Pixel domain):
- Edge Difference
- Long-term chrominance

difference

N

N

Y

Gradual Transition

Camera Motion Detection

Y

Y

20

difference is caused by aperture changes. In case of aperture changes, scene structure and

chrominance are not affected as much as brightness. A gradual transition is declared only

if image edges or chrominance are significantly changed.

In the following sections, we will give a detailed explaination of the above modules

and algorithms in the order that they are applied.

2.3 Feature Extraction in the MPEG Compressed Domain

As digital video sequences are usually compressed for storage and transmission, it has

been proposed in some works to detect scene cuts directly in the compressed domain

without fully decoding the bitstream. Here we focus on the most popular MPEG-1 or

MPEG-2 compressed videos. We adopt the motion statistic features proposed in [69], and

define two more color statistic features that are also extracted in the DCT-based

compressed domain. As there are three different types of compressed frames [65],

different feature extraction methods are used.

MPEG video sequences are composed of three types of frames, i.e., I, P and B. An I-

frame is completely intra-coded without motion prediction. A P-frame is inter-coded

based on motion prediction errors from its past I- or P- frame. A B-frame is coded based

on bi-directional motion prediction from its past and later I- or P- frames. I- and P-

frames are also referred as anchor frames.

For an I-type frame, the frame-to-frame and long-term color differences are computed.

The color difference between two frames i and j is computed in the YUV space, and is

defined as follows.

)(*),(j
V

i
Vji

j
U

i
Uji

j
Y

i
Yji VVUUwYYjiD σσσσσσ −+−+−+−+−+−= (2.3)

21

where VUY ,, are the average Y, U and V values computed from the DC images of the

frame i and j; VUY σσσ ,, are the corresponding standard deviations of the Y, U and V

channels; w is the weight on chrominance channels U and V. The frame-to-frame color

difference is computed between the I-frame and its previous P-frame (Eq 2.4). Note that

the DC image of a P-frame is interpolated from its previous I- or P- frame based on the

forward motion vectors.

)1,()(−−=−− MiiDiD frametofram (2.4)

where M is the number of B-frames between a pair of successive anchor frames.

The long-term color difference is computed between the I-frame and its kth previous P

or I frame, which is :

)*)1(,()(kMiiDiD termlong +−=− (2.5)

where k>1 and is usually set to the range from 5 to 10, which corresponding to a 0.2

second to 0.4 second time interval for typical MPEG videos.

For a P-type frame, the computation of frame-to-frame and long-term color

differences is the same as an I-type frame. Color statistics are extracted from interpolated

DC images. In addition, the motion measure Rp is computed. Rp is the ratio of intra

coded blocks to forward motion vectors in the P-frame (detail can be found in [69]). Here

forward motion vectors in a P-frame refer to motion estimation from its former I or P

frame.

For a B-type frame, we only compute two motion-based measures, Rf and Rb. Rf is the

ratio between forward and backward motion vectors in the B-frame. Rb is the ratio

between backward and forward motion vectors in the B-frame (again, detail can be found

in [69]). Note that backward motion vectors in a B-frame refer to motion estimation from

22

its next anchor frame, while forward motion vectors refer to motion estimation from its

former anchor frame, all in the display order.

2.4 Flashlights Detection

Flashlights occur frequently in home videos (e.g. ceremonies) and news programs (e.g.

news conferences). They cause abrupt brightness changes of a scene and will be detected

as false scene changes if not handled properly. We apply a flash detection module before

the scene change detection process. If a flashlight is detected, the scene cut detection is

skipped for the flashing period. As we will demonstrate, when a scene cut happens at the

same time of a flashlight, our algorithm will not detect the flashlight and can still detect

the scene cut correctly.

Flashlights usually last less than 0.02 second. Thus for normal videos with 25 to 30

frames per second, one flashlight will affect at most one frame. An example of flashlights

is show in Figure 2.3. As we can see, the affected frame has a very high brightness.

Figure 2.3 The effect of flashlights on a scene (video shot by Prof. Shih-Fu Chang)

Based on our observation of home videos, a flashlight causes the following changes in

a. the frame before a flashlight b. the frame of a flashlight

23

a recorded video sequence. First, it may generate a bright frame. Note that because the

frame interval is longer than the time of flashlights, a flashlight does not always generate

the bright frame. Secondly, a flashlight often causes the aperture change of a video

camera, and generates a few dark frames in the sequence right after the flashlight. The

average intensities over the flashlight period in the above example are shown in Figure

2.4.

As shown in Figure 2.4, the intensity jumps to a high level at the frame where the

flashlight occurs. The intensity goes back to normal after a few frames (e.g., 4 to 8

frames) due to aperture change of video cameras. On the contrary, for a real scene cut,

the intensity (or color) distribution will not go back to the original level. Based on this

feature, we use the ratio of the frame-to-frame color difference and the long-term color

differences, to detect the flashes. The ratio is defined as follows.

)1,(/)1,()(−+−= iiDiiDiFr δ (2.6)

where i is the current frame, and δ is the average length of aperture change of a video

camera (e.g. 5). If the ratio)(iFr is higher than a given threshold (e.g. 2), a flashlight is

detected at the frame i. Obviously, if we use the long term color difference at frame δ+i

to detect flashlight at frame i, this will become a non-causal system. In actual

implementation, we need to introduce a latency not less than δ in the detection process.

Also, in order to determine the threshold value, we use a local window centered at the

frame being examined to adaptively set thresholds.

24

Figure 2.4 Typical intensity changes in a video sequence due to a flashlight

Note that the above flash detection algorithm only applies to I- and P- frames, as we

do not extract color features at B frames. However, a flashlight occurring at a B-type

frame (i.e. bi-direction projected frame) does not cause any problem in the scene cut

detection algorithm we adopted and modified in [69]. This is because a flashed frame is

almost equally different from its former and successive frames, and thus forward and

backward motion vectors are equally affected [65].

In occasions where a scene cut happens at or right after a flashlight, the flashlight will

not be detected because the long-term color difference is also large due to the scene cut.

As our goal is to detect actual scene cuts, misses of flashlights are acceptable.

Furthermore, as we will discuss in the next section, our algorithms are able to pick the

right scene cut position under this situation.

2.5 Scene Cut Detection

Given the color and motion measures of the frame-to-frame differences, the scene cuts

can be detected by identifying peak values of these measures. As scene changes in videos

Flashlight

Aperture
change

25

from different sources usually have different characteristics, it is hard to set a global

threshold that can detect peak values in different videos. Even within the same video

(e.g., a news program), different parts may have different levels of peak values. To solve

the problem, we use a local window to detect peak values. The size of the window is

usually 30 to 60 frames, and is centered at the frame that is being examined for scene

cuts.

Assume the size of window is 1*2 +δ , feature values for each frame are divided by

their corresponding average values over the window],[δδ +− ii . These new peak-to-

average ratios (PA) are defined as follows.

)1*2()(

)(
)(

+
=
∑
+

−=

δ
δ

δ

i

ik

T

kT

iT
iPA , where),,,(fbpframetoframe RRRDT −−∈ (2.7)

Note that because different frame types have different features, the sum in the above

equation is conducted only over the frames where the corresponding feature is available.

For an I frame, PA of frametoframeD −− is computed. For a P frame, PA’s of frametoframeD −− and

pR are computed. For a B frame, PA’s of bR and fR are computed.

Given all these PA ratios within a local window, it is not trivial to combine them in a

single decision process that detects scene cut on a given frame. One approach is to try

different combinations manually, and then compare their performances to find the most

appropriate model. Considering there are many thresholds involved in various

combinations, such manual selection process are complex and time-consuming. In this

work, we adopt a decision tree based learning process to find proper decision models and

approximated thresholds.

26

2.5.1 Combining Color and Motion Features Using Decision Tree

Decision tree is a popular, simple machine learning technique. It involves a tree in which

a non-leaf node is labeled with a feature. The branches at the non-leaf node correspond to

the possible values or ranges of the feature. As an example in Figure 2.5, the feature at

the top level is frame-to-frame color difference, the branches below the node are the

possible value ranges of the feature, e.g., more than 100 and less or equal 100. Leaf nodes

are labeled with a class, i.e. scene cut or no scene cut. Decision trees are used for

classifying instances - one starts at the root of the tree, then, taking appropriate branches

according to the feature at each branch node, and eventually comes to a leaf node. The

label on that leaf node is the class for that instance.

Figure 2.5 An example of decision tree

Similar to other machine learning techniques, feature selection is the key to success in

developing decision tree techniques. Simply putting all measures together without

identifying proper features will result in ineffective solutions. Based on the characteristics

of compressed data, we choose to build scene cut decision trees for I, P and B frames

separately. This is because different types of frames have different characteristics as well

<=3>3

<=100>100

Frame-to-Frame
Color Difference

Direct Scene Cut PA Ratio of
Color Difference

Direct Scene Cut No Scene Cut

27

as features. We expect that decision rules are different for different types of frames.

Furthermore, direct scene cuts and gradual transitions are also handled separately because

their detection models are different. Gradual transitions last longer than direct scene cuts,

and will be detected only based on color differences. Thus we need to build and train four

different decision trees: three for direct scene cut detection and one for gradual transition

detection.

Our training videos include baseball, news, sitcom and home videos. We manually

labeled each scene cut and its corresponding frame type. We use the public domain

induction tool OC1 (Oblique Classifier 1 [77]) to build our scene cut classifier. Oblique

decision tree methods are tuned especially for domains in which attributes are numeric.

After the training, we manually prune and merge deep level nodes in the output trees to

obtain simplified final decision models. These models are discussed in the following

sections, i.e., 2.5.2 to 2.5.4.

2.5.2 Direct Scene Cut Detection

Direct scene cuts are detected at all three types of frames. As we mentioned before,

detection of direct scene cuts is relatively easy. If we detect a peak difference within a

local window, it indicates a scene cut. Here we examine the PA ratios to find peak values.

The decision tree is trained to learn the order of the color and motion features to be

compared in the detection process.

For the kth frame, if it is an I frame, we use the following PA ratios :)(kPA
frametoframeD −−

,

)1(++
−−

MkPA
frametoframeD and)(jkPARb + where j=1…M. Here M is the number of B

frames between the I frame and its next P frame. Note here the frame numbers are in

28

transmission order. An example of M=2 is shown in Figure 2.6. Note here frame k+1

and k+2 are B frames displaying before the I frame (k), but being transmitted afterwards

due to the frame prediction procedure used in MPEG.

Figure 2.6 PA ratios used in I frame scene cut detection

In addition to)(kPA
frametoframeD −−

that is used to check if there is a peak at frame k,

)1(++
−−

MkPA
frametoframeD is checked to make sure that there is no peak value at frame

k+M+1 (as we can safely assume there is no two scene cuts with a few frames). This is

mainly to handle very fast camera motions that result in large frame differences in

consecutive frames (instead of only in one frame for regular direct scene cut).

)(jkPARb + is checked to see if the scene cut occurs at the frame k+j [69], which is

displayed before the frame k. This is because the frame k is compared with its former P

frame to obtain the frame-to-frame color difference, and will also have a peak difference

when a scene cut actually occurs at one of the B frames before it (in the display order).

The decision tree derived is shown in Figure 2.7.

The threshold TH to detect peak PA ratios of the frame-to-frame color difference is

about 5 to 6, which are obtained from the training process. The TH_Rb to detect peak PA

)3(+kPAT

k k+1 k+2 k+3k-1 k+4

I B B PB B

……

)(kPAT

)1(+kPAT)2(+kPAT

M=2

frametoframeDT −−=

bRT =

transmission order

29

ratios of bR is around 2 to 3. As discussed in [69], a large bR indicates that there is a

direct scene cut at the B frame. The optimal thresholds are slightly different for different

type of videos (e.g., baseball and home video). As we will discussed in the section 2.5.4,

in practice, a general multi-level schema can be used to enable users to easily correct

false alarms and misses.

Figure 2.7 Direct scene cut detection at I-type frames

If the kth frame is a P frame,)(kPARp is checked in addition to the features that are

checked for an I frame, including)(kPA
frametoframeD −−

,)1(++
−−

MkPA
frametoframeD and

)(jkPARb + where j=1…M. Its decision rules are summarized in Figure 2.8.

Similarly, a peak Rp or frametoframeD −− ratio indicates a potential direct scene cut. The

thresholds are TH_Rp and TH for motion and color respectively. In addition, if the two

relatively lower thresholds, TH_Rp1 and TH1 are both satisfied, a possible scene cut is

Any >= TH_Rb

< TH>= TH

>= TH< TH

)(kPA
frametoframeD −−

No Direct Cut
)1(++

−−
MkPA

frametoframeD

No Direct Cut

No Direct Cut

)(jkPA Rb +
j=1…M

All < TH_Rb

Direct Cut

30

also declared. This is because the DC image of a P frame is interpolated from its leading I

or P frame, and its computed frame-to-frame color difference may be smaller than the

actual difference. The same validation process is followed to make sure there is no peak

at the frame k+M+1, and there is no scene cuts at its following B frames. Here TH_Rp is

in the range of 15 to 25.

Figure 2.8 Direct scene cut detection at P-type frames

For a B-frame, we check RbPA and RfPA ratios at the frame k and its successive B

frames. As shown in Figure 2.9, assume L is the frame number of the last B frame before

the next anchor frame, the kth frame is a direct scene cut point if RbPA value of the frame

Any >= TH_Rb

< TH>= TH

Y

)1(++
−−

MkPA
frametoframeD

No Direct Cut

No Direct Cut

)(jkPA Rb +
j=1…M

All < TH_Rb

Direct Cut

No Direct Cut

N

THkPA
frametoframeD ≥

−−
)(

OR
RpTHkPARp _)(≥

OR 













≥

≥
−−

1_)(

1)(

RpTHkPA

THkPA

Rp

D frametoframe

31

k and all its following B-frames are larger that the given threshold TH_Rb . If the RfPA

values of the frame k and all its following B-frames are larger than the threshold TH_Rf,

its past I or P frame (in transmission order) is detected as a scene cut. This approach is an

enhanced version of what has been proposed in [69]. Instead of only examining one B-

frame, the new approach checks more B-frames to improve accuracy and robustness.

Figure 2.9 Direct scene cut detection at B-type frames

2.5.3 Gradual Transition Detection

If no direct scene change is detected, the algorithm checks for gradual transitions that

do not show high peak values in above modules. The widely used twin-comparison

algorithm is designed to track a transition assuming that frame-to-frame differences do

not drop below a threshold within the whole period. However, for long transitions in

some videos (e.g. sports or sitcom), differences may drop to a very low level for a few

frames within transitions. This will cause misses and/or falses in the twin-comparison

Any < TH_Rf

< TH_Rf

< TH_Rb

Any < TH_Rb All >= TH_Rb

>= TH_Rb

)(kPARb

No Direct Cut

No Direct Cut Direct Cut

)(kPARf

)(jPA Rb

j=k+1…L

)(jPA Rf

j=k+1…L

>= TH_Rf

All >= TH_Rf

Direct Cut

No Direct Cut

32

method. Other researches have developed algorithms to compute the intensity variance

and then detect parabolic curves to find dissolve or fade related transitions. Due to noise

and motion, it is hard to find desired parabolic shapes without introducing many false

alarms.

Using the learning method of decision tree, we find it is rather simple and robust to

detect the beginning and ending edges of transitions, which have the shape of up and

down steps respectively. An example transition is shown in Figure 2.10, b1-b6 and e1-e6

are PA ratios of frame-to-frame color differences computed at anchor frames (Eq 2.4).

Figure 2.10 The beginning and ending edges of a gradual scene change

Based on induction results from the decision tree learning, we use color differences at

six successive anchor frames to detect the beginning and ending steps (note that we do

not compute color measures at B-frames). The final decision rules are summarized as

follows.

• If b1, b2 and b3 are smaller than TH_G1, and b4, b5 and b6 are larger than

TH_G2, a beginning edge is detected at the frame of b4

• If e1, e2 and e3 are larger than TH_G2, and e4, e5 and e6 are smaller than

TH_G1, an ending edge is detected at the frame of e4

The above rules are inducted from MPEG-1 sequences with 30 frames per second and

two B-frames between each pair of anchor frames. Thus, in general, we need to examine

a window of about half second to properly detect steps. From our experiments, the

threshold TH_G1 is around 1.1 to 1.3; the threshold TH_G2 is from 0.7 to 0.8. As frame-

e1 e2 e3

e4 e5 e6

b4 b5

b1 b2 b3
…..

b6

33

to-frame variances always exist at the boundaries of a transition (which may not be true

within a transition), and are usually noticeable (i.e. large), our detection method can pick

beginning and ending edges with a high recall rate.

The remaining problem, which also exists in other scene cut detection algorithms, is

that fast camera or object motions may produce similar up and down steps, which will

cause false positives and therefore reduce precision. To alleviate the problem, we check

the distance between a pair of beginning and ending steps. In detail, when a ending step is

detected, the distance with the last beginning step, L, is computed, and

• If L>L1 and L<L2, then there is a transition. Otherwise there is no transition.

Here L1 is the minimum length of a transition (e.g. 10 frames or 0.3 second). L2 is the

maximum length of a transition (e.g. 60 frames or 2 seconds).

The length constraint removes most false alarms since up and down steps caused by

motions typically do not come up in pairs within short periods. One most likely false

situation is when there is a sudden camera motion and the motion also stops suddenly in a

short time. Slow camera motions usually do not create step-like changes. This is

acceptable in many applications because the above camera action quickly changes the

recording view and may be considered as a “true’ scene cut.

2.5.4 Multi-Level Scene Cut Detection

A scene cut detection with 100 percent accuracy is not realistic, even though we have

used various methods to help us choose effective decision models and threshold values

and consider many important issues. In practice, we have noticed that given a good

browsing interface (such as the one we will show in Chapter 5), it is easy for users to

34

identify and correct false alarms (assume there are a limit amount of errors). On the other

hand, it is hard to correct a missed scene cut without playing and watching the whole

video again. Adjusting some decision thresholds to lower values can minimize misses,

but it usually causes many false alarms.

To solve this problem, we adopt a multi-level scheme for exploring this tradeoff

situation. In this scheme, multiple sets of thresholds are used instead of just the optimized

threshold values. Scene cuts are detected at different levels. The multi-level schema is

shown in Figure 2.11.

Figure 2.11 The multi-level scene cut detection scheme

For each frame, the detection process goes from a higher level to a lower level when a

scene cut is not detected at the higher level. The process stops whenever a scene cut is

detected. Because obviously, scene cuts at one level are also scene cuts at the lower

Direct Scene Cut – Level 1

Direct Scene Cut – Level 2

Direct Scene Cut – Level n

Gradual Scene Cut – Level 1

Gradual Scene Cut – Level 2

Gradual Scene Cut – Level n

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

35

levels, the output of a scene cut includes the frame number as well as its detecting level.

In practice, because the direct scene cut detection is usually accurate, we only apply

more than one levels in the gradual scene cut detection stage. Gradual scene changes,

such as dissolve and fade, are likely to be confused with fast camera panning/zooming,

motion of large objects and light variance. A high threshold will miss scene transitions,

while a low threshold may produce too many false alarms. Our multi-level approach

generates a hierarchy of scene cuts. Users can quickly go through the hierarchy to see

positive and negative errors at different levels, and correct them.

2.6 Verification Using Complex Features

As we discussed before, the main problem in the scene cut detection is to distinguish

between real scene breaks (especially gradual transitions) and normal changes, such as

camera or object motions and lighting changes. Many features and methods have been

studied and are proven to improve the detection accuracy. However, most of these

approaches require more complicated feature extraction algorithms, such as motion

estimation and edge detection. Typically, these algorithms are computation intensive and

cannot be performed in real-time on a regular workstation or PC.

Here, we develop a verification mothod to increase detection accuracy without losing

the real-time performance. In this scheme, extraction and comparison of more detailed

visual features are applied only when a potential gradual transition is detected. Note that

this process can also be included in our multi-level scene cut detection scheme discussed

in the previous section. Complex models and features are applied only to the candidate

frames.

36

In the following sub-sections, we will present two methods for final verification -

camera motion detection and aperture change detection. Typically, these methods require

higher resolution and accuracy of extracted features.

2.6.1 Camera Motion Detection

In this work, we focus on the detection of camera panning operations. Compared to

object motion and camera zooming, panning operations usually produce much larger

visual content changes (e.g. color), and thus cause more false alarms. On the other hand,

panning can also be detected more reliably compared with other motion activities. The

method we utilized here looks for dominant direction of motion vectors as an indication

of the camera panning.

We first compute the histogram of eight motion directions for every P-frame based on

motion vectors that are available in the MPEG compressed domain (Figure 2.12). This

feature extraction process does not require much computation as the number of motion

vectors (i.e. macro blocks) is small (330 for a CIF size frame). The detection of panning

at P-frames is applied only when a potential gradual scene change is found.

Figure 2.12 Panning detection based on histogram of motion vectors

The algorithm to detect panning in a P-frame is given as follows.

m3

m8

m5

m7

m6

m2

m1

m4

m9 : number of intra coded macro-blocks
m0 : number of macro-blocks with zero motion

37

Let i be the direction with maximum number of motion vectors (1
to 8)

j be the direction with second most motion vectors (1 to 8)

if (mi>m9) and (mi>m0) and (mi/mj>2) then
panning

else
no panning

We find the dominant motion directions. If there are more motion vectors in the

dominant direction than the intra coded blocks as well as the blocks with zero motion, we

compare the dominant motion direction with the second dominant one. If the former

contains a lot more vectors than the later one does (e.g. twice, as we used in our

implementation), a panning is detected.

At the ending edge of a potential gradual transition, the above panning detection

method is applied to all the P-frames within the transition period. If pannings are detected

in P-frames more than a certain percentage (e.g. 50%), we treat this change as a panning

instead of a gradual transition.

Note that there are special edit operations in some movies or sports that result in effect

similar to the camera panning. One example is the wipe with a new scene coming in and

an old scene going out. In such cases, camera motion detection can be used as an optional

module when needed in specific domain.

2.6.2 Aperture Change Detection

Aperture changes of a video camera happen occasionally in movies, news programs, and

especially home videos. Aperture changes are usually caused by changes of lighting

condition. For example, when a camera is panned from a bright scene to a dark scene, the

aperture will gradually open wider to receive more light. This process causes image

38

intensity changes over a short period in the recorded video (Figure 2.13).

Figure 2.13 An example of aperture change that generates two potential transitions
(videos shot by Prof Shih-Fu Chang)

The example in Figure 2.13 causes two falsely gradual transitions, one from bright to

dark and the other from dark to bright. To solve this problem, we compare the

chrominance and edge features of an I-frame right after a transition (potential) with

features of an I-frame before the transition. If the differences are smaller than a threshold,

the transition is ignored.

Chrominance histograms and edge direction histograms are computed from the two

decoded I-frames. The reason to use I-frames is because an I-frame requires less

decoding computation and it does not depend on other frames. The chrominance

histogram is calculated in the HSV space using only H (hue) and S (saturation) values.

The luminance values are not compared as they are sensitive to lighting changes. We use

a 36-bin histogram that has 12 levels of H and 3 levels of S. The color difference is

computed using the L1 distance measure.

∑
=

−=
36

1
21)()(

k
color kHkHD (2.8)

Edge histograms are counted at 16 equally divided directions by calculating the

gradient of each edge pixel. Here edge pixels are detected using Sober operator. For an

a. panning to dark scene b. statrt of aperture change c. the changed aperture

39

edge pixel (i,j), let dx=f(i)-f(i-1) and dy=f(j)-f(j-1), its gradient is arctan(dy/dx). The

distance between two edge histograms E1 and E2 is defined as follows.

∑
=

−=
16

1
21)()(

k
edge kEkED (2.9)

Given colorD and edgeD between two I-frames at the begin and end of a potential

transition, if they are both under given thresholds (e.g. around 0.5 in our implementation),

an aperture change is declared and the transition is ignored. This is based on the

consideration that edge and chrominance features are less affected by aperture changes.

For a real transition, these differences are expected to be larger. The other illumination

invariant features can also be used [107].

2.7 Results and Discussions

We developed a real-time scene cut detection system using the scheme described in

previous sections on a Pentium-III 600 PC. The PC has a FutureTel MPEG compression

card that can capture and compression live video feeds from VCR or cable. This system

allows us to test our scene change detection algorithms on a large amount and wide

variety of video sources.

In our experiments, we have used a total of around 5.5 hours videos from different

sources. As listed in Table 1, there are two half-hour baseball videos from ESPN and Fox

respectively. The two tennis videos are from games at two different places. Home videos

are obtained from two different personal owners. There are also half hour videos from

sitcom, news, cartoon, movie and trailer. Most of these videos contain commercials. They

are recorded to VHS tapes from TV broadcasting channels, and then digitized and

40

compressed to MPEG-1 streams at 30 frames per second and CIF resolution (i.e.,

352x240) using the FutureTel MPEG encoding card. The movie file is obtained from a

VCD and its original format is MPEG-1. The bit rates of these MPEG videos are from

1.2Mbps to 1.5 Mbps.

Table 2.1. Description of the 6 hours of videos in the experiment dataset

The baseball and tennis videos contain fast object and camera motions. In the

meanwhile, different scenes in a game have similar backgrounds as one game is played at

the same stadium or court. Home videos are usually very jerky. There are non-smooth

camera motions and unexpected aperture changes. Sitcom videos include many back and

forth camera angle switches. It is challenging to pure color based approaches because

many angle changes only slightly change the color distribution of a scene. News

programs have been widely studied. A news video often contains various scenes in

different stories. Cartoons are a special type of videos that are usually consisted of

computer-generated graphics. Here a scene cut means significant changes of graphical

objects within a scene. Commercials exist in all types of videos except the movie and

trailer. The half hour movie is extracted from a comedy that is originally recorded on a

VCD in MPEG-1 format. The trailer is a promotion video provided by Hot Shots & Cool

Video Type Number of Sequences Length

Baseball 2 (ESPN and Fox) 30x2 minutes

Tennis 2 (two different games) 30x2 minutes

Sitcom 1 (Senfield) 30 minutes

News 2 (CNN) 30 minutes

Cartoon 1 (animals) 30 minutes

Movie 1 (comedy) 30 minutes

trailer 1 (Hot Shots) 30 minutes

home video 2 (two different people) 30x2 minutes

41

Cuts Inc., a stock footage company. It contains a lot of short unrelated shorts that are

sampled from the company’s large video collections.

We manually identify the ground truth by using a MPEG player with frame accuracy.

In our experiments, the scene cut detection results are compared with the ground truth in

terms of precision and recall. Assume N is the ground truth number of scene cuts, M is

the number of missed cuts and F is the number of false alarms, the recall and precision

are defined as follows :

Recall =
N

MN −
(2.10)

Precision =
FMN

MN

+−
−

(2.11)

These two measures are both important. We certainly do not want to miss any critical

scene changes. On the other hand, too many false alarms will compromise the efficiency

of indexing and summarization. In practice, as we mentioned before, it is relatively easy

for users to manually identify false alarms and improve the precision. Thus in the training

stage when the thresholds are selected, we prefer lower threshold values, which tend to

give more scene cuts, if recalls are not significantly affected (e.g. reduced less than 5%).

We use two sets of thresholds in the experiments. One is for home videos (i.e.

amateur). The other one is for the rest of videos (i.e. professional). Amateur and

professional videos have very different characteristics. The former have jerky camera

motions compared to smooth camera motions in the professional one. On the other hand,

gradual transitions or editions in home videos are simpler and are not as many as those in

professional videos. The two sets of thresholds are chosen based on the consideration of

these characteristics. At the training stage, we use a small amount of video data (around 1

42

hour) digitized from sources (including news and home videos) that are different from the

above testing videos. Note in most of our detection modules, we do not compare absolute

value of a specific measure (e.g., frame to frame difference or motion vector percentage)

against a fixed threshold. Instead, we normalized these measures with the local window

average and use machine learning tools to automatically choose optimal thresholds. By

doing these, we were able to generalize the algorithms and make them applicable to

different type of videos.

The detailed experiment results are shown in the following tables (Table 2.2 to 2.6).

Table 2.2 Detection results of all scene cuts for 8 different types of videos

Table 2.3 Total missing number of direct scene cuts

Table 2.4 Total missing number of gradual transitions

Video # of scene cuts
(ground truth) # of false # of missed recall precision

baseball 891 74 37 96% 92%

tennis 622 50 39 94% 92%

sitcom 461 35 23 95% 93%

news 276 32 7 97% 89%

cartoon 313 42 5 98% 88%

movie 225 18 31 86% 92%

trailer 655 22 18 97% 97%

home video 184 65 9 95% 73%

TOTAL 3627 338 169 95% 91%

of direct cuts
(ground truth) # of missed Recall

3263 107 97%

of transitions
(ground truth) # of missed recall

364 62 83%

43

Table 2.5 Two different reasons that cause false alarms

Table 2.6 Flashlights detection results of home videos

For the baseball videos, we have good recall and precision results. Considering the

total length of baseball videos is about 60 minutes, there are about 1.2 false alarms per

minute (i.e. per 1800- frames), and about 1 miss every two minutes. Many false alarms

(~50%) come from close-up scenes when a person suddenly appears in front of the

camera, which totally changes a scene. The rest of false alarms are mainly from panning

and zooming when cameras are following player in the field. Most misses occurred at

gradual transitions that are inserted between games and replays. Similar precision and

recall results are obtained for tennis. Shots in tennis videos are longer (~ 1.5 times) than

those in baseball videos. Camera and object motions in long shots causes most falses, as

the large changes are more likely to happen in a long panning or zooming shot. Again,

the wiping of company logos as transitions between game and replays accounts for many

misses.

Our algorithms perform well on sitcom videos. Many direct scene changes in sitcoms

do not have large color differences when two successive shots are taken from the same

scene. Motion features are helpful in detecting such changes without bringing in too

many false alarms. The precision rate is relatively low for news videos (about 89%).

Most false positives are caused by camera motions during the field reporting segments.

Although news stories are taken by professionals, the recording situations in the field are

Total false # in
test videos

Camera or object
motion

Lighting or
Aperture Change

338 266 (79%) 72 (21%)

of flashlights
(ground truth) # of missed recall

64 18 72%

44

often not good, and thus we see some jerky camera motions. The recall rate is very high

for cartoon videos, while many computer-simulated camera and object motions tend to be

confused with scene changes. The detection results for the trailer video are very good

due to the fact that most scene changes are direct scene cuts between un-related video

shots. The movie sequence has a lower recall than precision. Dark scenes taken at night

account for many missing scene cuts. Also there are more advanced special effects and

edits being used in the movie. Note all the above results are obtained by using the same

set of threshold values.

Higher motion thresholds (TH-Rb, TH-Rf and TH-Rp) are used for home videos (about

25% higher) in order to tolerate jerky camera motions. As expected, we have a high

precision recall, but a low precision rate (72%). Our testing home videos have many long

shots (e.g., a few minutes long), in which the camera often changes from one view to

another several times. If we compute the number of false alarms over time, it is about 2

falses every minute. Typical camera operations that produce false scene cuts include 1)

fast moving from one angle to another; 2) zooming in too close to an object; and 3)

following a fast moving object.

As mentioned, direct scene cuts and gradual scene cuts have completely different

characteristics. It is appropriate to evaluate their performances separately. When we

count the number of missing scene cuts, we also label each change as either direct or

gradual. The final results are shown in Table 2.3 and 2.4 respectively. For direct scene

cuts, we achieved a very high 97% recall rate on average. The recall rate is 83% for

gradual scene changes. Our experiments show that to improve the later recall rate to 90%

introduces too many false alarms.

45

For false scene cuts, we classify them into two classes: motion-related and lighting-

related. The motion-related refers to both camera and object motions, which often occur

at the same time. The lighting-related includes real lighting changes as well as aperture

changes. As shown in Table 2.5, 80% false alarms are motion-related.

Detection of flashlights in one of our home videos is shown in Table 2.6. The recall

rate is 72%. Most misses, which result in false scene cuts, are caused by subsequent

aperture changes after flashlights (Figure 2.4). When these changes are longer than the

size our detection buffer window (about half second), the ratio Fr in Eq. 2.6 falls below

our threshold and causes miss detection of a flashlight. We can increase the length of

local window to improve flashlight detection accuracy.

In summary, we performed extensive tests on our scene cut detection scheme. It

achieves the best results for sports and sitcom videos. News and cartoons are slightly less

accurate, and the most challenging ones are home videos. This ranking is consistent with

the degree of irregularity of camera motions in different types of videos. It indicates that

motion is the main issue, and we need advanced methods that can capture motions more

accurately. Utilizing better motion estimation techniques and exploiting more complicate

features (e.g., region level features) are promising directions, although at the cost of

computational complexity.

46

Chapter 3

Video Region Segmentation and Search

3.1 Introduction

Temporal video segmentation using scene cut detection algorithms have been widely

applied in online video indexing and retrieval systems [6,126]. As long video sequences

are broken into elementary units (i.e. shots) of contiguous frames, compared to traditional

frame based fast forward and backward approaches, users can retrieve desired content

more efficiently. However, for most video contents, the temporal segmentation produced

by scene cut detection algorithms are still at a very low level. There are usually a large

number of shots in a one-hour video (e.g., ~ 1000). Furthermore, users often want to

browse and search videos at a higher semantic level. For a news program, it is more

helpful to divide videos into stories instead of elementary shots.

Some researches have been done to group video shots into logical scenes or stories

[118,129]. In [129], we used a hierarchical clustering method to organize video shots

according to their visual and motion features. In [126] and [53], anchor and commercial

shots are recognized to find news story boundaries. The transition graph is proposed in

[118] to simulate the content flow of a video sequence, and a temporal constrained

clustering algorithm is used to combine shots into “scenes”.

When many different models can be used to conduct semantic level temporal

47

segmentations for specific domains, extraction of meaningful intermediate or high level

features, such as regions or objects, from video data is a fundamental problem that needs

to be addressed in nearly all video indexing and summarization systems. As current

videos are represented only in raw pixels with color or brightness information, spatial

segmentation is a necessary step to support efficient feature extraction and analysis.

Recently, for the purpose of object based video representation and indexing, generic and

flexible segmentation algorithms are being studied by many researchers [47,28,40]. How

to achieve consistent segmentation results and how to build correct mapping between

image partitions at individual frames are two main issues to be addressed.

In this chapter, we will study an automatic video region segmentation method, and

demonstrate how it is applied in a content-based video retrieval system. The general

system flow is shown in Figure 3.1.

Figure 3.1 Automatic region tracking for content based video search

Here we will focus on the issues of region tracking and feature extraction. The issue of

semantic video object tracking and indexing will be addressed in chapter 5, and a high

level video structure parsing and event detection system for efficient video retrieval will

Videos

Scene Cut

Region
Tracking

Feature
Extraction

Library Query
Engine

User Interface

Users

48

be discussed in chapter 6. Following we give an overview of regions segmentation and

indexing techniques we will study in this chapter. Detailed descriptions will be given in

the rest sections.

3.1.1 Image Segmentation Techniques

Image segmentation is one of the most important steps for feature extraction and analysis.

The goal is to segment images into parts with homogeneous properties over space and

time, such as color, texture, motion, and spatial-temporal structures. This can be formally

defined as follows: if F is the set of all pixels in an image, and M() is the measure of

homogeneity of an area of connected pixels, then segmentation is a partition process

which divides F into a subsets of connected pixels nFFF ,...,, 21 such that

},...1{,)(nitrueFM i ∈∀= (3.1)

falseFFM ji =)(U if iF is adjacent to jF (3.2)

FF
n

i
i =

=
U

1

and φ=ji FF I if ji ≠ (3.3)

According to [37], image segmentation can be divided into at least two phases that

have different definitions of homogeneity. The first phase is a partial segmentation, in

which extracted regions with homogenous features do not correspond directly to semantic

objects. The second phase is a complete segmentation, which results in semantic objects

with their underlying regions. While partial segmentation can be achieved using some

general algorithms, it usually requires specific domain knowledge to obtain a complete

segmentation.

Basic image segmentation techniques can be generally classified into three categories,

which are thresholding, edge detection and region growing. Threshold-based

49

segmentation transforms an input image f into an output binary image g based on a given

threshold T as follows:





<
≥

=
Tjiffor

Tjiffor
jig

),(0

),(1
),((3.4)

where i and j are X and Y coordinates, g(i,j)=1 indicates the pixel (i,j) belongs to the

object, and g(i,j)=0 means it belongs to the background (or vice versa). T is a threshold

value in the selected feature space. Given multiple thresholds, we can also segment an

image into multiple objects.

Figure 3.2 Edge detection results of an image

Edge-based segmentation uses edge pixels to find object boundaries. Edges are high

frequency data that indicate discontinuities of color in an image. How to distinguish

between edges and noise (Figure 3.2) is the main concern of an edge detection algorithm.

A variety of methods have been proposed to properly trace object borders [82] or to

match desired shape models [57].

Due to the noisy nature of edge detection, it is hard to construct objects by finding

their borders. Region growing methods directly produce partitions based on given

homogeneity criteria (e.g, color, Figure 3.3). A bottom-up approach groups pixels into

regions as far as homogeneity measures are satisfied (Equation 3.1). On the contrary, a

50

top-down approach split images into regions until homogeneity measures are satisfied.

Combined split and merge approaches try to take advantages of both approaches.

Figure 3.3 An example of region growing segmentation (region are shown in random colors)

Advanced segmentation techniques have been developed in all three categories to

achieve better performances. Some well-known examples include watershed algorithms

that use mathematic morphology for region growing [94], active contour (or snake)

approaches that use energy minimizing splines [57], neural network methods that learn

context information from training data, and region clustering based on the fuzzy theory

[75].

3.1.2 Segmentation and Tracking of Video Regions

Although much work has been done in decomposing images into regions with uniform

features, we are still lacking robust techniques for segmenting video data in general video

sources, especially when relatively accurate region boundaries are needed. Moving

objects segmentation using the motion field or optical flow has been the main focus of

many researches. As motion fields are usually noisy for real-world scenes, direct

segmentation of them is erroneous and not stable. Model-based motion estimation and

segmentation methods are more robust. Recently, Wang and Adelson in [112] presented

51

an affine-clustering based algorithm. Motion layers are extracted from the original

motion field by iteratively estimating and refining affine models. In [8], instead of using

optical flow, Ayer and Sawhney proposed a method to estimate motion models and their

layer support simultaneously. The number of layers is decided by a formulation based on

a maximum likelihood estimation of mixture models and the minimum description length

encoding principle. In [73], Meyer and Bouthemy developed a pursuit algorithm to track

an object based on the multi-resolution estimation of the affine model from the motion

field within the object. In general, the above methods concentrate on segmenting moving

objects and cannot track static objects or objects with intermittent motions (e.g., people

crossing the street). Furthermore, due to the accuracy limitation of motion estimation,

motion segmentation may not give clear object boundaries.

Methods have also been proposed to track feature points or contour segments [31,52].

These methods generate good results when moving objects have strong and stable (over

time) localized features such as corners and edges. However, they are sensitive to object

deformation as well as object occlusion and image noise. To track non-rigid objects,

deformable models have been widely studied. Active contour (i.e., snakes) [57] is one of

the basic energy-minimizing elastic contour models. Given the energy function, an

elastic contour at the current frame can be moved and deformed iteratively to the best

position at the next frame using the snake algorithm. Such methods are able to generate

accurate object boundaries for relatively simple background. As snakes require very

accurate initialization (thus can handle only slow motion) and are sensitive to textured

image regions, many improvements [10,15] as well as new models such as MRF models

[58,109] are studied.

52

Despite these progresses, region segmentation remains a hard problem for video

analysis and understanding. One problem with many existing approaches is that

segmentation results are sensitive to noises and/or slight variances of features, especially

at places around segmentation boundaries. In region tracking, the problem may cause

different segmentations at successive frames. When video sequence is short, boundary

errors usually do not hurt overall tracking performance seriously. However, when a

region needs to be tracked over a long period, accumulated boundary errors are likely to

completely break the tracking process. To increase the stability of region segmentation,

fusion of various visual features in the segmentation process is an essential approach. As

an example, edge-based methods may produce accurate object boundaries but are

sensitive to noises. On the contrary, color based region growing methods are robust to

noises but usually results in over-segmented regions, and may not be able to generate

accurate boundaries (e.g., due to color blur). An efficient method to combine these two

features is highly desired to achieve more consistent segmentations.

Another problem is that the mapping between regions at successive frames is not

reliable when these regions are segmented independently. Because similar regions often

exist within even small local windows, minor segmentation differences and/or motion

estimation errors could cause region mismatches. To address this problem, an inter-frame

segmentation process needs to be developed to partition an intermediate frame

consistently with segmentation results of its preceding frame. This approach avoids the

non-reliable afterwards mapping between successive frames.

In this chapter, we will present an automatic video region segmentation and tracking

method based on the fusion of color, edge, motion and temporal features. This method

53

can track video regions stably over a long period, and is especially useful to build visual

index of a large video collection.

3.1.3 Region Based Spatial-Temporal Retrieval

While content-based video retrieval has been focused on shot segmentation and key

frame based search, some attempts have been made to index videos through object

tracking. In [62] and [54], block-based motion estimation methods are used to roughly

compute motion trajectories of moving objects. Moving objects are either manually

defined or extracted by grouping (i.e., clustering) blocks with similar moving vectors. In

[62], moving objects are represented and compared according to their moving directions.

In [54], a dynamic programming based method is applied to efficiently compare two

motion trajectories. An MPEG-domain moving object tracking method is presented in

[32], which directly uses macro-block displacements in P- and B-frames to track macro-

blocks.

In above researches, although authors tried to utilize motion information for video

indexing, as video objects were not well segmented and tracked by grouping motion

vectors, trajectory accuracy is rather limited. In this chapter, we demonstrate a spatial-

temporal indexing method using automatically tracked video regions. Region motion

trajectory is generated through a global motion estimation process. In addition, other

visual features such as color, texture and shape are also captured for each region. A query

model using filtering and validation, as proposed in [99], is applied to perform region

feature based video search.

54

3.2 Region Segmentation and Tracking Using Feature Fusion

We define an image region as a contiguous area of pixels with consistent features (e.g.,

color) in an image frame. It may correspond to part of a physical object, like a car, a

person, or a house. A video region is a sequence of instances of the tracked image region

in consecutive frames. The region segmentation and tracking process is applied within a

video shot to obtain video regions.

3.2.1 Overview

The segmentation and tracking of feature regions is based on the fusion of color, edge

and optical flow. Color is chosen as the major segmentation feature because of its

consistency under varying conditions, such as change in orientation, shift of view, partial

occlusion or change of shape. Compared with other features such as edge, shape and

motion, colors (or more precisely, mean colors) are more stable. Edge features are

complementary to color information: color captures low frequency information (means)

while edge captures high-frequency details (edges) of an image. Thus fusion of them

greatly improves segmentation results, especially region boundaries. Different from old

merge-and-split methods where the edge is applied after color-based region merge, we

propose a new method to fuse edge information directly in the color merging process.

Affine motion model is estimated for each region based on the computation of optical

flow. It is utilized to track color regions through a video shot.

The basic region segmentation and tracking procedure is shown in Figure 3.4.

Projection and segmentation is the major module in which different features are fused for

region segmentation and tracking. This module is described in Figure 3.5 and will be

55

further discussed in detail below. Optical flow of current frame n is derived from frame n

and n+1 in the motion estimation module using a hierarchical block matching method.

Different from simple block matching methods which estimate motion solely based on

minimum mean square errors, this technique yields reliable and homogeneous

displacement vector fields, which are close to the true displacements. Taken color

regions and optical flow generated from above two processes, a linear regression

algorithm is used to estimate the affine motion for each region. The affine transformation

is a good first-order approximation to a distant object undergoing 3D translation and

linear deformation. Affine motion parameters are further refined by using a log(D)-steps

region matching method in the six-dimensional affine space. Through above modules,

color regions with affine motion parameters are generated for frame n. Similarly, these

regions will be tracked in the segmentation process of frame n+1.

current frame n n+1n-1

video stream

Projection &
Segmentation

Motion
Estimation

Affine Motion Estimation

Motion Refine
(region match)

optical flowcolor regions

segmented
regions
(n-1)

segmented
regions

(n)

Figure 3.4 The diagram of region segmentation and tracking

A salient region selection module is applied at the final stage to automatically

associate regions with high-level semantic objects. Several criteria are adopted to group

Salient Region Selection

56

or identify major interesting regions. Sizes and durations are utilized to eliminate noisy

and unimportant regions: regions with both small size and small duration are eliminated

or merged with its neighbor regions. When object motion exists, affine motion models

are used to group adjacent regions with similar motions to obtain the moving object.

Label a non-edge pixel

R n-1
i

d(p n
k , R i

n-1
) < thresh

Merge adjoining regions i, j with minimum d(.),

p
n
k as if

d(R n
i , R

j
n) > threshUntil

MC(

R n-1
i

) covers pn
k

and

Quantization
LP filtering

frame n

ProjectionInterframe

Intraframe Segmentation

segmented

regions

(n-1)

Canny Edge
Detection

Edge Points Labeling
Assign edge pixels to their neighboring regions

with minimum d(.)

Figure 3.5 The motion projection and segmentation module

3.2.2 Generation of Feature Maps

The segmentation algorithm is developed based on three feature maps: color map, edge

map and motion field (i.e. optical flow). These maps are computed at each frame as

follows.

The color map is the major feature map in the following segmentation module. We

have developed a novel process to generate it. This process contains the following steps:

Optical
flow

frame
n-1

57

First, the original image is converted into CIE L*u*v* color space. It is well known that

perceptually non-uniform color spaces such as RGB are not suitable for color

segmentation, as distance measure in these spaces is not proportional to the perceptual

difference. L*u*v* is a perceptual uniform color space which divides color into one

luminance channel (L*) and two chrominance channels (u* and v*). The separation also

gives us the ability to put different weights on luminance and chrominance in distance

measurements. This is an important option that users can choose according to the

characteristics of given video shots. The color difference is thus given by the weighted

Euclidean distance in the three dimensional space, i.e.

2)*(2)*(2)*(vvwuuwLLws ∆+∆+∆=∆ (3.5)

where Lw , uw and vw are weights given by users. Our experiments show that it

generally generates better results to put higher weights on chrominance channels (e.g.,

two times higher than that of the luminance channel).

Then the L*u*v* image is smoothed to remove possible noise, as well as tiny detail,

for the purpose of region merging. This is done by an adaptive quantization and median

filtering process. Quantization is performed to produce homogeneous regions in which

pixels having similar colors are mapped into a single bin. To quantize an image to a

limited number of colors(e.g., 64 or 32 bins), the common fixed-level quantization

method cannot always preserve color information under variant situations. Thus, we use

a clustering-based (e.g., K-Means) method to analyze the input image and determine an

adaptive quantizor in the L*u*v* space. The above weighted Euclidean distance (Eq.

3.4) is used as the distance measure in the clustering process. After quantization, a

median filtering process is applied on each of the L*u*v* channels. The non-linear

58

median filtering eliminates image noises and emphasizes prominent color regions while

preserving salient image features like edges. It produces the final color map.

The edge map is a binary mask where edge pixels are set to 1 and non-edge-pixels are

set to 0. It is generated by applying the CANNY edge detection algorithm. The CANNY

edge detector performs 2-D Gaussian pre-smoothing on the image and then takes

directional derivatives in the horizontal and vertical directions. These derivatives are used

to calculate the gradient. Local gradient maximums are defined as candidate edge pixels.

This output is run through a two-level threshold synthesis process to produce the final

edge map. A simple algorithm is developed to automatically choose the two threshold

levels in the synthesis process based on the histogram of the edge gradient.

The motion field is generated by a hierarchical block-matching algorithm [13]. This

algorithm uses distinct sizes of measurement windows for block matching at different

grid resolutions, and thus is able to generate a homogeneous motion field that is closer to

the true motion than the usual block-based estimation algorithms. We adopted a 3-level

hierarchy as suggested in [13].

3.2.3 Region Segmentation and Tracking

For the first frame in the sequence, the system will go directly to intra-frame

segmentation. For intermediate frames, as a group of regions with image features and

motion information are available from frame n-1, an interframe projection algorithm is

used to track these regions. Conceptually, all existing regions at frame n-1 are first

projected into frame n according to their motion estimations (i.e. affine parameters). For

every pixel in frame n, if it is covered by a projected region and the color difference

59

(weighted Euclidean distance in L*u*v* space) between the pixel and the mean color of

the region is under a given threshold, it is labelled as the same region. When there are

more than one regions satisfy the above condition, the one with the smallest color

difference will be chosen. If no region satisfies the condition, the pixel will remain un-

labeled at this point.

The tracked regions together with un-labeled pixels (for the first frame, all pixels are

un-labeled) are further processed by an intraframe segmentation algorithm. New

uncovered regions will be detected in this process. An iterative clustering algorithm is

adopted: two adjoining regions with the smallest color distance are continuously merged

until the difference is larger than the given threshold.

In the following parts, we will discuss the segmentation process first, and then describe

the region projection and tracking in detail.

A. Segmentation

First, a color-based pixel labeling process is applied to the color map. Labeling is a

process where one label is assigned to a group of neighboring pixels with the same (or

very similar) color. The labeling process being used here is standard at the starting

frame, but different from the standard method for rest frames. We will discuss this “inter-

frame” labeling process in the sub-section B after we explain the region projection

process.

To prevent assigning one label to two regions with the same color but separated by

edge pixels, only non-edge pixels (i.e. pixels that are set to 0 in the edge mask) are

labeled in the process. Edge pixels remain un-labeled. This process generates an initial

group of regions (i.e. pixels with the same label) as well as their connection graph. Two

60

regions are linked as neighbors if pixels in one region have neighboring pixels (4-

connection) in another region. As edge-pixels are not labeled, two regions separated by

edge pixels are not linked as neighboring regions.

The color merging is an interactive spatial-constrained color clustering process

(Figure 3.6). Color distances (Eq. 3.5) between every two connected regions are

computed. Two connected regions (e.g., i and j) are merged if the color distance between

them is (1) smaller than the given color threshold; and (2) the local minimal, (i.e. it is

smaller than all the other distances between these two regions and their neighbors). Once

a new region is generated from two adjoining regions, its mean color m is computed by

taking weighted average of the mean colors of the two old regions (21 ,mm),

21

2211
ss

scmscmcm
+

+
= , where },,{ *** vuLc ∈ (3.6)

where sizes of the two old regions are used as weights. The region connections are also

updated for all neighbors of the two old regions. The new region takes the label of the

larger one of the two merged regions. Then the two old regions are dropped.

Color Merging:

initial labels (regions)

1)d(i,j)<threshold

new regions?

final regions

N

Y
Feature Computation
(meancolor, size)

Update
Connection Graph

Label AssignmentDrop OldRegions

2)local minimum

Figure 3.6 Region segmentation and projection at frame n

61

The merging is iterated until color distances between every two connected regions are

above the color threshold. As edge pixels are not labeled, two regions separated by edge

pixels are not connected as neighbors. Thus, the growth of each region is naturally

stopped at its edge pixels. In the meanwhile, short or weak edges which are usually

inside one color region will not affect the region merging process. After the color

merging process, edge pixels are simply assigned to their neighboring regions with the

smallest color distances.

To ensure homogeneous motion, an optional motion-based segmentation using dense

optical flow is applied to the segmented color regions to check the uniformity of the

motion distribution. An iterative spatial constrained clustering process similar to that

discussed above is used to group pixels inside a color region according to their motion

vectors and the given motion threshold.

Finally, tiny regions (e.g., for CIF-size images or regions with less than 50 pixels) are

merged with their neighboring regions based again on the color distance. This is mainly

to simplify the segmentation result and to reduce the computation complexity.

B. Tracking

A linear regression algorithm is used to estimate the affine motion model (i.e., 8-

patameter egomotion model) for each segmented region based on the optical flow

computed from frame n-1 and frame n. As shown in Figure 3.7, all segmented regions

from the previous frame n-1 are first projected (virtually) onto the current frame n using

their individual affine motion models. Projected regions keep their labels in the former

frames. The projected regions may not cover the full frame, and holes are potential new

62

regions.

Figure 3.7 Affine model based region projection

As we mentioned before, an inter-frame labeling process is developed to obtain initial

segments at frame n (Figure 3.8).

X X X

X O

O: current pixel to be labeled
X: labeled neighboring pixels

projected regions

Figure 3.8 Illustration of the inter-frame labeling process

First, in the inter-frame labeling process (Figure 3.8), non-edge pixels are walked

through and labeled one by one from left to right and top to down. As in the common

labeling process, if a pixel has the same color as that of its labeled neighboring pixels, it

is assigned the label as its neighbors. When the color of a pixel is different from the

colors of its labeled neighboring pixels, its color is compared with all projected regions

FG FG

BG BG
segmented regions

at frame n-1

projected regions
at frame n

),(yx ′′),(yx

hole : new region

Egomotion Model:





















++++

++++
=

′
′

2
87654

8
2

7321

yaxyayaxaa

xyaxayaxaa

y

x

63

that cover its coordinate at the current frame. If its color distance to the closest region is

below the given color threshold, this pixel is "tracked", and assigned the label of the

closest projected region. Otherwise, a new label is generated and assigned to the pixel.

3.2.4 Post Merging Process

The above segmentation method sometimes generates over-segmented regions. An

example is shown in Figure 3.9. The brightness is high at the center and gradually goes

down to borders. As color is the feature used in the region growing process, and region

merging is based on averaged colors within each region, a region with gradual color

changes may be broken into multiple regions when accumulated changes are above the

given threshold.

Figure 3.9 Sun and background sky are divided into multiple regions due to gradual color changes

This problem can be solved in some different ways. For example, we can change the

difference measure in the merging process from using average color to using average

color around region boundaries. Here we present a post processing method based on the

edge map that we already extracted. Because this problem is caused by gradual color

changes, we can assume there is no edge between these wrongly segmented regions.

Therefore, by checking the edge pixels around region boundaries, we can merge two

64

neighboring regions that are not divided by enough edges.

Assume that region i and j both exist in N successive frames. Note that each region

has multiple instances at a number of successive frames.),(kk jiB is the number of

neighboring pixels between region i and j.),(kk jiE is the number of edge pixels along

the border between region i and j. The edge distance between region i and j is define as










=

>
=

0),(0

0),(
),(

),(

),(

kjkiBif

kjkiBif
kjkiB

kjkiE

jikC , where k=1,…,N (3.7)

Here 0),(=kjkiB means region i and j are not adjacent at frame k. Given a threshold T,

local decisions,),(jiDk ’s, are made at each frame to decide if two instances should be

merged.),(jiDk =1 means region i and j can be merged at frame k.





<
≥

=
TjiCif

TjiCif
jiD

k

k
k),(0

),(1
),(, where k=1,…,N (3.8)

The final global decision is made combining local decisions at individual instances.

Region i and j are merged if

P
N

jiD
N

k
k

>
∑

=1

),(

(3.9)

where P is the percentage of majority required for a merging (a typical value is 50%).

Note that when two regions are merged, their instances are merged at all corresponding

frames.

Here we discussed an edge-based merging method. Other visual features such as

texture and motion can also be used in this post processing process, and the process is not

limited to merging only. Splitting can also be an option when the automatic segmentation

65

process results in too few regions (e.g., only one region). We will study a motion based

grouping method in the next chapter for automatic moving object detection.

3.2.5 Salient Video Region Selection

The purpose of our automatic region segmentation and tracking system is to build a

feature library for content-based video retrieval. What we want to extract are dominant

regions that are able to represent the visual and motion information of semantic video

objects. For this reason, we do not want to include small or short regions that are usually

caused by noises or segmentation errors, and are not interesting to end users.

Furthermore, to include these random behaved small regions in the index will cause many

false returns to users’ queries.

To detect semantic video objects is certainly the best way to solve the above problem.

However, with our current technology, it is not realistic to find semantic objects in

general video sources, where there is no domain knowledge or object model. When

object motion exists, we can use motion information to find a moving object. As we will

discuss in the next chapter, this is also a complex and computation expensive process.

Here for the purpose to process large amount of general videos, we adopt a simple

solution by computing the volume of each video region.

Assume for a video region i, its duration is iN , its size at each instance is k
iS where

k=1,…,N. The volume of region i is then ∑
=

=
N

k

k
ii SV

1

. After computing volumes of all

video regions, we start to remove regions with the smallest volumes until :

1) the smallest volume is larger than a threshold,

66

or

2) the number of remaining region in a video shot is below a given value (e.g., 10).

3.2.6 Experiment Results

The region segmentation and tracking results of three testing sequences are given in

Figure 3.10. In each case, the top row shows original sequence. The second row shows

all extracted video regions. The bottom row shows a selected subset of automatically

segmented regions being tracked. Regions are shown with their representative (i.e.

average) colors. The first sequence (akiyo) contains an anchorperson with small motion

and strong color difference with background. The second sequence (foreman) contains

an object with relatively large motion and very similar brightness to background. In the

third sequence, a baseball player is running in the field. The scene contains fast object

and camera motion. In all three sequences, major regions are well segmented and tracked

through the whole sequence (40 frames are shown). Also the segmented regions have

very accurate boundaries.

The segmentation system was used to segment about 200 video shots, covering

variant kinds of contents, such as sports, nature, science and history. Experiments show

that our method is robust for the tracking of salient color regions through video shots

under different circumstances, such as multiple objects, fast/slow motion and region

covering/uncovering.

We have noticed that the key to track a region through a long sequence is the inter-

frame segmentation process using on region projection. It naturally links regions

segmented between two successive frames. On the contrary, if segmentations are fulfilled

67

(a) akiyo

(b) foreman

(c) baseball player

Figure 3.10 Region segmentation and tracking results of three testing sequences (at frame 1,10,20,30,40)

68

in each frame independently, it is not robust to match regions from different frames

unless for large regions with slow motions.

The combination of color and edge features allows us to achieve accurate region

boundaries. Different from old merge-and-split methods where the edge is applied after

color-based region merge, we use a new method to fuse edge map directly in the color

merging process. This approach is not sensitive to image noises and allows us to use

more aggressive merging thresholds in the region growing process to obtain large and

stable regions.

The region segmentation scheme we developed is a computation intensive approach.

On a regular Sun UltraSparc 5 workstation, it takes about 2-3 days to process a one-hour

video (CIF size, 30 fps). If fast processing speed is desired, down sampling at a certain

rate (spatially and/or temporally) reduces the processing time by the same rate. Our

experiments show that the segmentation algorithm works well for QCIF size video at 15

fps.

3.3 Build of Feature Library

For the aforementioned more than 200 video shots, we obtained more than 2000 salient

video regions. Visual features are automatically extracted from the video regions and

stored for subsequent queries.

3.3.1 Observations of Segmentation Results

Some segmentation results of sports videos are shown in Figure 3.11. People are the

main objects within these videos. These images give us a general idea of what regions are

69

automatically extracted. The results show that our algorithm can correctly identify salient

region such as body and face, while ignoring detailed features like eyes. The region

boundaries are accurate, which allows us to define shape features.

Figure 3.11 More region segmentation results shown in random colors

One un-desired characteristic is that one semantic object is usually divided into

multiple regions, due to the fact that a semantic object does not have homogenous visual

70

features. Thus it is important to store spatial positions or spatial structures of video

regions, so that users can search an object by specifying a set of regions with certain

spatial locations.

Background regions also raise a problem. They are usually large regions that cannot

be easily removed as noise regions. If background regions and object regions are stored

together without being distinguished, users will not always be able to form an effective

query. This is because certain features that are significant to objects, such as shape and

motion trajectory, may be meaningless to background regions. For a query including

these features, if it is matched against background regions, un-predictable results will be

returned. Therefore, it is critical to distinct between background and object regions, and

to search them differently in the query process.

3.3.2 Visual Feature Extraction

We compute and store the following visual features for each video region: color, texture,

shape, spatial location and motion trajectory. In the experiments, we used the mean (i.e.,

representative) color and the Tamura texture. For shape features, we use global descriptors

such as normalized area, aspect ratio, circularity and orientation. 2D-strings are used to

capture the spatial arrangement of feature regions. Motion trajectory is stored as a list of a

region’s coordinates at successive frames.

As we discussed before, we need to distinct background and object region for features

like shape, spatial location and motion trajectory. To obtain the trajectory of a region, we

again need to compensate camera motions from background regions. Here we use affine

motion models to identify background regions.

71

We first estimate the global affine model 0A from optical flow around frame borders.

For each region, its motion compensation error using 0A is computed. If the error is

smaller than a threshold, the region is declared as a background region. Using optical

flow in all background regions detected in the previous step, a new affine model 1A is

computed. Then all regions are classified again according to their motion compensation

error with 1A . This process is iterated until the global affine model converges.

The above iterative process only provides a local decision on one instance of a video

region. A majority counting procedure similar to the one described in 3.2.4 is utilized to

decide if a region belongs to background or objects. While local decisions at individual

frames are sensitive to motion estimation errors, global decision is quite robust at shot

level where a region is tracked.

3.4 Spatial-Temporal Search of Video Content

We will first discuss distance metrics used in matching different visual features, and then

present the search process. Finally, experimental results and analysis are provided.

3.4.1 Feature Matching Metrics

The distance metrics we employed for each feature is discussed as follows.

Color - The color of a query region is matched with the mean color of a target region

stored in the database using weighted Euclidean distance as follows:

222)(*4)(*4)(tqtqtqC vvuuLLD −+−+−= (3.10)

where q and t refer to the query and target respectively.

72

Texture – The Euclidean distance weighted along each dimension with corresponding

variance is defined as follows:

2

2

2

2

2

2)()()(

φβα σ

φφ

σ

ββ

σ

αα tqtqtq
TD

−
+

−
+

−
= (3.11)

where α , β and φ refers to coarseness, contrast and orientation respectively. 2
ασ , 2

βσ

and 2
φσ are the variances of corresponding features.

Aspect Ratio – The L1-distance is used.

tq RRRD −= (3.11)

Size – The distance is defined as a ratio between the sizes of query and target regions:

),max(

),min(
1

tAqA

tAqA

AD −= (3.12)

where qA and tA are normalized areas.

Trajectory – We compare two trajectories by uniformly sampling them at a fixed rate,

and then computing the average of Euclidean distances between each pair of sampling

positions.

∑
=

−+−=
N

i

i
t

i
q

i
t

i
q yyxx

NMD
1

22)()(
1 (3.13)

where N is the number of samples;),(qq yx and),(tt yx are coordinates along query and

target trajectories; and i’s are the sampling frames. Note that we divide the duration of

trajectories into three categories, i.e., long, medium and short. Users need to specify the

length of a query trajectory so it can be aligned with target trajectories. To provide partial

matching, we resort to the dynamic programming approach proposed in [62]. It provides

a fast searching method to match a short trajectory against a longer one.

73

3.4.2 Video Query Model

When a query only contains one region, the search process is to compute a total distance

of all the selected features and sort the total distances in ascend order. When users

provide multiple regions in a query, we use the same filtering and validation process that

is used in [99]. Each query region is searched independently first, and then results of

individual searches are "intersected" to produce the candidate video list, from which

spatial-temporal relationships among video objects are verified based on the above 2D-

string based techniques [23].

Generalization of 2D-strings to perform image region similarity matching has been

successfully realized in the VisualSEEk system [99]. It provides a framework for

searching for and comparing images by the spatial arrangement of automatically

segmented feature regions. Multiple regions can be queried either by their absolute or

relative locations. Its query strategy can be extended to spatial-temporal query of video

objects. Simply a sequence of 2D-strings can be used to represent significant changes of

spatial structures in a video shot. 2D-string based query can also be extended to 3D-

strings. Video objects maybe projected to x, y, and time dimensions to index their

absolute central position, 3-dimensional support, and relative relationships. More

sophisticated variations of 3D strings can be used to handle complex relationships such as

adjacent, contain, overlap. Combination of 2D strings and trajectory matching is another

possibility to explore spatial-temporal structures.

74

3.4.3 Experiment Results

In our experimental setup, there are 200 video shots, covering variant kinds of

contents, such as sports, nature, science and history. By applying the object segmentation

and tracking algorithm to the video shots, more than 2000 salient video regions are

generated and stored in our server. We build a web-based video search interface called

VideoQ, which allows users to form visual queries by drawing feature regions. The

interface of VideoQ system is shown in Figure 3.12.

Figure 3.12 The web interface of VideoQ

When a query is submitted to the server, our searching engine will find video shots

with similar objects and spatial-temporal structures in the database, and return the icons

75

of these shots to users. Users may then click on any icon to play a corresponding video

shot.

To evaluate the system, precision-recall metrics are computed based on some sample

queries. Before each sample query, we establish a ground truth by choosing a set of

relevant video shots from the database.

Recall =
databaseinrelevantall

returnsrelevant
(3.14)

Precision =
returnsall

returnsrelevant
(3.15)

Figure 3.13 Four query examples used in precision-recall experiments

Four sample queries were performed as shown in Figure 3.13. Example (a) and (b)

highlight motion, color and size. Query (c) uses motion and size. Query (d) highlights

motion in addition to size and motion.

The average precision-recall curve is calculated and plotted in Figure 3.14. In the

experiments, sample queries (a), (c) and (d) performed well, as their motion trajectories

are well-defined and not easily confused with camera motions. The query (b) did not

76

perform well because the global motion compensation has some unavoidable errors and

our database contains many videos with camera panning from right to left. As we can see

from the curve, to reach a high recall rate, we will have many false alarms. In a practical

system, this problem can be alleviated when visual features are used together with text

indices or classifications.

Figure 3.14 The average precision-recall curve over four query

Another test we have performed is to see how many queries does a user need to find a

desired video. Twenty target or “desired” video shots are randomly selected, and sample

queries are performed. The curve of query number versa query return size is shown in

Figure 3.15. A great number of queries are needed for small return size. On average for a

return size of 14, only two queries are needed to reach a video.

In summary, through VideoQ system, we have shown that our fully automatic region

segmentation and feature extraction method can be used to generate visual indices to

large amount of video data. It is shown that motion trajectory is the most useful feature in

Precision

Recall

77

searching video objects. This again proved that our region-tracking algorithm can follow

salient regions stably through a video shot.

Figure 3.15 Average number of queries needed to reach a video shot (accounting for successful classes
only)

We also noticed that most search errors (i.e., false alarms) come from noise regions

(e.g., background regions) and global motion compensation errors. The former one

introduces many unwanted candidates, and the later one gives us incorrect motion

trajectories. This leads us to a high segmentation level for semantic objects. As we will

discuss in the next chapter, despite of decades of research, grouping feature regions into

objects is still an open issue in computer vision. In general, we need to limit our system

to specific domains or sacrifice the degree of automation by asking for user inputs. Based

on the region segmentation techniques we have developed, we will show an active system

that can help users to effectively identify video objects.

of returns

of queries

78

Chapter 4

Semantic Video Object Segmentation and Search

4.1 Introduction

To meet the challenges of future multimedia applications, the newly established MPEG-4

standard has proposed an object-based framework for more efficient multimedia

representation. This representation enables unprecedented, flexible access and

manipulation functionalities of multimedia content. Similarly, the upcoming MPEG-7

standard, which aims to aims at offering a comprehensive set of audiovisual description

tools to enable the needed quality access to multimedia content, will also adopt an object-

oriented model to capture events and relations within a scene. In both standards, the

production of objects is out of the scopes and is left to content providers and researchers.

Thus, the success of object-based media representation and description depends largely

on semantic object segmentation.

As we discussed in Chapter 3, image and video object segmentation has been a

challenging task over decades. Although much work has been done in decomposing

images into regions with uniform features, we are still lacking robust techniques for

segmenting semantic video objects in general video sources. In this chapter, we will

79

address effective semantic object segmentation, representation and search methods in

general video sequences. We use "semantic object" to refer to video objects

corresponding to meaningful real-world objects, in contrast with lower-level regions,

which correspond to image areas with homogeneous features. In the rest of the chapter,

we use "semantic object" and "object" interchangeably.

Figure 4.1 Hierarchical representation of video objects

We proposed an integrated approach to address both video object segmentation and

content-based retrieval. In this approach, a semantic object is modeled as a set of regions

with corresponding spatial and visual features (Figure 4.1). This model directly links the

semantic object to its underlying feature regions. For segmentation, the region-based

method generates more accurate object boundaries and is also more robust in handling

various real-world situations, including complex objects, fast and/or intermittent motion,

complicated background, multiple moving objects and partial occlusion. For content-

based similarity search, underlying regions provide localized features as well as the

c
1

o
1

o
i

r
2

r1

......

............

......

color, texture, shape

motion, trajectory

spatial, temporal

Abstraction (Heuristics, Models)

Grouping (Visual features)

regions

objects

classes

features

r
j

a. video object model

video object

Foreground region

background region

b. an example object

80

spatial-temporal structure of a video object.

At the bottom level are primitive color regions. These regions are segmented according

to color, edge, motion and some other features. Automatic segmentation of

homogeneous feature regions has been studied in the last chapter. Various visual features

such as color, texture, shape, motion, life span and so on, are then extracted and stored

together with these regions for indexing, search and object extraction purposes.

Video objects are extracted at the second level by further grouping primitive regions

using different features, such as color, motion vector, spatial or temporal connectivity and

long term motion trends, as well as domain models or user inputs. When motion exists, it

usually provides a strong indication of entire objects and can be applied to extract moving

objects.

The top level includes links to conceptual abstraction of video objects. For example, a

group of video objects may be classified to moving human figure by identifying color

regions (skin tone), spatial relationships (geometrical symmetry in the human models),

and motion pattern of component regions. Usually, accuracy of automatic methods

decreases as the level goes up. Fully automatic mapping of video objects to semantic

concepts for unconstrained domains is still difficult. In order to solve this problem,

several general approaches are taken in recent works. First, some minimal level of user

input is used to label example video objects. The system then propagates the user-

assigned labels to other video objects in the repository based on visual similarity. The

second approach applied unsupervised or supervised clustering of video objects based on

their visual features and then tries to map the clusters to subjective concepts [117].

Finally, higher accuracy is achieved by constraining the systems to specific application

81

domains and thus benefit from the use of domain knowledge (e.g., news video, sports

video).

We propose the above hierarchical video object schema for content-based video

extraction and indexing. One challenging issue here is to maximize the extent of useful

information obtained from automatic image analysis tasks. This general schema can be

adapted to different specific domains efficiently and achieve higher performance.

In the following parts, we first present an active system that combines low-level

automatic region segmentation with active user inputs for defining and tracking semantic

video objects. After discussing the algorithms, extensive experiments and evaluation are

presented and analyzed. Then we present another region-based approach for automatic

moving object detection. In the last section, we will present a content-based searching

system that specifically addresses search and retrieval of semantic objects. We present

our work on feature extraction at multiple levels, construction of the visual feature

library, and an innovative searching framework for searching video objects.

4.2 Active Video Object Segmentation

Recently, with the demand for object segmentation in general videos and the

requirement of more accurate segmentation boundaries, region-based tracking algorithms,

which combine common image segmentation techniques with motion estimation

methods, have been reported in [33,48,120]. These methods explore more region features

and are more robust in handling real-world situations (e.g., occlusion) than those methods

using only feature points, segments or boundaries. In [33], Dubuisson and Jain presented

an approach to combine motion segmentation using image subtraction with static color

82

segmentation using the split-and-merge paradigm. Color segmentation regions are

examined against motion masks to form the final object mask based on certain

confidence measures. In [120], an algorithm is developed to match edge detection and

line approximation results with motion segmentation, and to determine the final object

boundary. In [48], Gu and Lee proposed a semantic object tracking system using

mathematical morphology and perspective motion. Their system uses a modified

morphological watershed procedure to segment uncertain areas between the interior and

exterior outlines. Flooding seeds are sampled on both interior and exterior outlines.

Regions growing from interior seeds define the segmented object boundary. In the first

frame, the interior outline is defined by users, and the exterior outline is obtained by

dilation of the interior one. For the subsequent frames, the interior and exterior outlines

are created by erosion and dilation of the motion-projected boundary from the previous

frame.

Satisfactory results from the aforementioned region-based work were reported for

certain type of video content, e.g., those with rigid objects and simple motions. However,

these techniques usually track a single contour or video object, ignoring complex

components and their associated motions within the object. In real-world video sources,

an object usually contains several parts with different motions (sometimes non-rigid and

with rapid changes). One single motion model is not adequate to track a semantic object.

Meanwhile, these techniques still use the motion field as the main feature for tracking

purposes. Static color or gray-level segmentation is fulfilled separately, and the fusion of

the two segmentation results is done only at the final stage using certain heuristic rules.

Due to the noisy nature of the motion field in real-world scenes, tracking results may also

83

be error prone. As there are no constraints being applied between motion and static

segmentation, when the two results are different from each other, it is hard to align them

to generate the final object mask. Furthermore, these techniques tend to ignore the

background content during the tracking process. This may cause problems in tracking

regions near the boundary of the object.

To solve the above problems for real-world video sources, we developed an active

system (AMOS) which uses an innovative method for combining low level automatic

region segmentation and tracking methods with an active method for defining and

tracking video objects at a higher level. A semantic object is modeled as a set of regions

with corresponding spatial and visual features. This model directly links the semantic

object to its underlying regions. It can handle various real-world situations, including

complex objects, fast or intermittent motion, complicated backgrounds, multiple moving

objects and partial occlusion.

4.2.1 System Overview

Our initial object definition comes from the user input, i.e. users identify semantic

objects in the starting frame by using tracing interfaces (e.g., mouse or optical pen).

Given an initial object boundary, the goal of our system is to construct a semantic object

model at the starting frame and then track the movement of the object in the subsequent

frames.

Generally, a semantic object does not correspond to simple partitions of an image

based on one or a few features like color, shape or motion. As the temporal and spatial

consistency of one or more visual features is the basic requirement of automatic object

84

segmentation and tracking methods, it is hard to track a semantic object directly at object

level for general video sequences. Decomposing and representing a semantic object in a

set of homogeneous feature regions which have temporal and spatial consistency is a

necessary step. In our system, the aforementioned hierarchical object model is applied: a

semantic object is created and tracked as a set of underlying regions which are

homogeneous in terms of color, edge and motion characteristics.

We developed an active system (AMOS) that effectively combines automatic region

segmentation methods with the active method for defining and tracking video objects at a

higher level (Figure 4.2). The system contains two stages: an initial object segmentation

stage where user input at the starting frame is used to create a semantic object with

underlying homogeneous regions; and an object tracking stage where homogeneous

regions and the object are tracked through the successive frames. Note that the

segmentation process is applied within individual video shots where there are no scene

cuts.

Region
Segmentation

Region
Tracking

Region
Aggregation

Motion
Projection

Object Definition
(User Input)

starting
frame

succeeding
frames

Homogeneous

Regions

(stage 1)

(stage 2)

Video
Object

Figure 4.2 The architecture of AMOS system

In the first stage, based on a rough object boundary given by users at the starting

frame, the semantic object is generated through a region segmentation and aggregation

85

process. An innovative region segmentation is applied within the slightly expanded

bounding box of the user-specified object. It effectively fuses color and edge features in

a region-growing process that produces homogeneous color regions with accurate

boundaries. Motion segmentation based on a dense motion field is used to further split

the color regions to extract homogeneous regions in both color and motion. Region

aggregation is based on the coverage of each region by the given object mask: regions

that are covered more than a certain percentage are grouped into the foreground object.

The final contour of the semantic object is computed from the aggregated foreground

regions. Both foreground region and background regions are stored and are tracked over

time in the successive frames.

Tracking at both the region and object levels is the main task in the second stage. As

shown in Figure 4.2, segmented regions from the previous frame are first projected to the

current frame using their individual affine motion models. An expanded bounding box

including all projected foreground regions is computed. Then the area inside the

bounding box is split to homogeneous color and motion regions following a region

tracking process. Unlike existing approaches, projected regions are not used directly as

the new segmentation, but as seeds in another color based region growing process to

track existing regions. Pixels that cannot be tracked from any old regions are labeled as

new regions. Thus the resulting homogeneous regions are tagged either foreground (i.e.

tracked from a foreground region), or background (i.e. tracked from a background

region), or new. They are then passed to an aggregation process and classified as either

foreground or background regions. Instead of the user input, the approximated object

boundary is computed from the projected foreground regions.

86

Our experimental results and extensive performance evaluation have shown very good

results. A detailed explanation of the two stages is given in the following two sections.

4.2.2 Object Segmentation in Initial Frame

The system diagram of semantic object segmentation at the starting frame is shown in

Figure 4.3. It consists of four major processes as follows:

Object Definition
(user input)

frame n

frame n+1

Edge Detection

Quantization &
Median Filtering

Motion Estimation

S
E

G
M

E
N

T
A

T
IO

N

Region Merge

Label Edge Pixels

Motion Split

Simplification

Color Labeling

Region Aggregation

edge map

color map

motion field

Output Object
and Regions

Figure 4.3 Object segmentation in initial frame

1) Object Definition and Threshold Specification

First, the user identifies a semantic object by using tracing interfaces (e.g., mouse).

The input is a polygon whose vertices and edges are roughly along the desired object

boundary. To correct user-input errors, a snake algorithm [57] is used to align the user-

specified polygon to the actual object boundary (i.e. edges). The snake algorithm is

based on minimizing an energy function associated with edge pixels. Users may also

choose to skip the snake module if the initial outline is satisfactory. The final object

boundary will be obtained in the subsequent region segmentation and aggregation

process.

After the object definition, users can specify a set of parameters to start the tracking

87

process. These parameters include a color-merging threshold, weights on the three color

channels, a motion merging threshold, and a tracking buffer size. Usually users may just

rely on the default values for these parameters. Determination of these parameters will

be explained in more detail in the following sections. These parameters can be optimized

based on the characteristic of a given video shot and experimental results. For example,

for a video shot where foreground objects have similar luminance with background

regions, users may put a lower weight on the luminance channel. Users can start the

tracking process for a few frames with the default thresholds which are automatically

generated by the system, and then adjust the thresholds based on the segmentation and

tracking results. The segmentation results are not sensitive to slight changes of parameter

values. However, optimization may be used to reduce the computation complexity. Our

system also allows a user to stop the tracking process at any frame, modify the object

boundary that is being tracked, then restart the tracking process from the modified frame.

Given the initial object boundary from users (or the snake module), an expanded (~15

pixels) bounding box surrounding the arbitrarily shaped object is computed. All the

following segmentation procedures are performed inside this bounding box to reduce

computation complexity.

2) Generation of Feature Maps

Within the bounding box, the three feature maps, edge map, color map and motion

field are created from the original images. We take the same approaches described in

3.2.2.

88

3) Region Segmentation

The segmentation algorithm is developed based on the three feature maps: color map,

edge map and motion field. Departing from old merge-and-split methods where the edge

is applied after color-based region merge, we propose a new method to fuse edge

information directly in the color merging process. Detailed description is given in the

section 3.2.3. In the previous region tracking process, the goal is to track salient regions

reliably through an image sequence. Here what we want to robustly track are video

objects, and it is not necessary to trace regions over a long period. Therefore, we use a set

of relatively low thresholds, which produce more detailed regions, to get better object

boundaries.

4) Region Aggregation

The region aggregation module takes homogeneous regions from the segmentation and

the initial object boundary from the snake (or user input directly). Aggregation in the

starting frame is relatively simple compared with that for the subsequent frames, as all

regions are newly generated (not tracked) and the initial outline is usually not far from

the real object boundary. A region is classified as foreground if more than a certain

percentage (e.g., 90%) of the region is included by the initial object boundary. On the

other hand, if less than a certain percentage (e.g., 30%) of a region is covered, it is

considered as background. Regions between the low and high thresholds are split into

foreground and background regions according to the intersection with the initial object

mask.

Finally, affine motion parameters of all individual regions, including both foreground

89

and background, are estimated using a multivariate linear regression process over the

dense optical flow inside each region. In our system, a 2-D affine model with 8

parameters is used. It is a good first-order approximation to a distant object undergoing

3-D translation, rotation and linear deformation.

















++++

++++
=









′
′

2
87654

8
2

7321
yaxyayaxaa

xyaxayaxaa

y

x
(4.1)

where []yx, and []'' , yx are the original and transformed coordinates respectively, 1a to

8a are 8 affine transformation parameters. These affine models will be used to track the

regions and object in the future frames, as we will discuss in the next section.

4.2.3 Object Tracking in Successive Frames

Given the object with homogeneous regions constructed in the starting frame, tracking

in both the region and object levels is the main task in the successive frames. The

objective of the tracking process is to avoid losing foreground regions and also avoid

including false background regions. In our system, this task is accomplished through the

following steps. First, an inter-frame segmentation process is used to segment a frame

into homogeneous regions. Unlike at the starting frame where all regions are tagged as

new, these regions are classified in the inter-frame segmentation process as either

foreground, or background or new according to their relationship with the existing

foreground and background regions in the previous frame. Then, in the region

aggregation process, the estimated (projected) object boundary is used to group these

tagged regions into the object and background. For regions around the object boundary

with the tag "new", their visual features are also examined to decide whether they belong

90

to the object or not.

1) Region Projection

As shown in Figure 4.4, segmented regions from the previous frame, including both

foreground and background, are first projected onto the current frame (virtually) using

their individual affine motion models. Projected regions keep their labels and original

classifications. For video shots with static or homogeneous background (i.e. only one

moving object), users can choose not to project background regions to save time. An

expanded bounding box of all projected foreground regions is computed. Similar to the

process in the first frame, all the following segmentation and aggregation processes are

only applied to the area inside the bounding box.

Object and Regions
(previous frame)

Motion Projection

TR
A

C
K

IN
G

Inter-frame Merge

Label Edge Pixels

Motion Split

Simplification

Inter-frame Labeling

Region Aggregation
(Iterative)

edge map

color map

motion field

Object and Regions
(current frame)

Current
Frame

Figure 4.4 Automatic semantic object tracking process

2) Generation of Feature Maps

Generation of the three feature maps (color, edge and motion) utilizes the same

methods as we described in the previous section. The only difference is that in the

quantization step, the existing color palette computed at the starting frame is directly used

91

to quantize the current frame. Using a consistent quantization palette enhances the color

consistency of segmented regions between successive frames, and thus improves the

performance of region tracking. As object tracking is limited to single video shots, in

which there is no abrupt scene change, using one color palette is generally valid.

Certainly, a new quantization palette can be automatically generated when a large

quantization error is encountered.

3) Region Tracking

In the tracking module, based on the projected foreground and background regions,

three feature maps are fused to track existing regions and segment the current frame. The

inter-frame labeling process is described in section 3.2.3. Note the difference here is that

regions are classified as foreground, background or new.

The subsequent color merge, edge labeling, motion split and small region elimination

processes are similar to those at the initial frame with some additional constraints.

Foreground or background regions tracked from the previous frame are only allowed to

be merged with regions of the same class or new regions, but merging between a

foreground region and a background region is forbidden. New regions can be merged

with each other or merged with foreground/background regions. When a new region is

merged with a tracked region, the merged result inherits its label and classification from

the tracked region. In motion segmentation, split regions remain in their original classes.

After this inter-frame tracking process, we obtain a list of regions temporarily tagged as

either foreground, background, or new. They are then passed to an iterative region

aggregation process.

92

4) Region Aggregation and Object Composition

As shown in Figure 4.5, region aggregation module includes two inputs: the

homogeneous region and the estimated object boundary. The object boundary is

estimated from projected foreground regions. Foreground regions from the previous

frame are projected independently of one another and the combination of projected

regions forms the mask of the estimated object. The mask is refined with a

morphological closing operation (i.e. dilation followed by erosion) with a size of several

pixels in order to close tiny holes and smooth boundaries. To tolerate motion estimation

errors, which are common for general video sources, the resulting mask is further dilated

for the tracking buffer size, which is specified by users at the beginning of tracking.

Generally a larger buffer size is required for objects with fast motion or abrupt shape

change.

Iterative

(FG, BG or NEW)

Morphological
Closing

Projected
Foreground

Video
Object

Regions

Object
Mask

Segmented Regions
of Currenct Frame

Region Aggregation

Figure 4.5 Region aggregation using projected objects

The region aggregation module implements an iterative region grouping and boundary

alignment algorithm based on some distance measures between a region and the projected

object mask. Currently we defined three distance metrics as follows.

r

Objr
rD

ojectPr

1)(
I

= (4.2)

93

)2,1()2,1(2 rrEdgerrD = (4.3)

21
3)2,1(rr MVMVrrD −= (4.4)

where)(1 rD is the intersection ratio of region r with the projected object mask ojectObj Pr .

)2,1(2 rrD is the number of edge pixels between region r1 and r2.)2,1(3 rrD is the

Euclidean distance between the mean motion vectors 1rMV and 2rMV of region r1 and

r2 respectively.

The basic algorithm is described as follows. For every segmented region, if the region

is tagged as background, keep it as background without checking any distance measures.

If it is a foreground or new region, we compute the intersection ratio)(1 rD . If a

foreground region is covered by the object mask by more than certain percentage (e.g.,

80%), it is kept as foreground; otherwise, it is intersected with the object mask and split

into one foreground region and one new region.

For a new region, if its 1D is larger than certain percentage (e.g.,80%), it is grouped

into the object as foreground; if the intersection ratio is very small (e.g., less than 30%), it

is kept as new. Otherwise, visual similarity (including 2D and 3D) between this region

and its neighbors is examined. The region is grouped into the object as foreground if the

region is separated from background regions by more edge pixels than foreground

regions (or this region is not connected to any background regions), and its closest

neighbor according to the motion feature (e.g., mean motion vector) is a foreground

region.

The above aggregation and boundary alignment process is iterated multiple times

(e.g., 2 or 3) to handle possible motion projection errors, especially for fast motion. Also

94

we use a relatively lower ratio (80%) here to include a foreground or new region. At the

end of the last iteration, all remaining new regions are classified into background regions.

Finally, affine models of all regions, including both foreground and background, are

estimated by a linear regression process over the optical flow. As described before, these

affine models are used to project regions onto the future frame in the motion projection

module.

4.2.4. Segmentation Results and Performance Evaluation

The AMOS system has shown very good segmentation and tracking results on general

video sources. As shown in Figure 4.6, five different types of video sequences are used

to do subjective and objective evaluation of our system. The first sequence (akiyo)

contains an anchorperson with small motion and strong color difference with background.

The second sequence (foreman) contains an object with relatively large motion and very

similar brightness to background. In the third sequence, the skater has many different

fast motion parts (i.e. body, arms and legs). The characteristic of the fourth sequence is

that the shape of the flying bird changes abruptly from frame to frame. In the last

sequence, a plane is flying away from the camera. 100 successive frames are used for

each sequence in the experiments. The last three sequences are decoded from MPEG-1

videos.

95

Figure 4.6 Object tracking results of five sequences after three user inputs
(from left to right, frame #1, 25, 50, 75, 100)

After the first user input at the starting frame, more user inputs are applied at

subsequent frames where the largest tracking errors occur or start to occur to refine the

tracking results. Notice that the effort required to correct boundary errors (i.e. subsequent

inputs) is much less than the initial object definition. As we will discuss below, major

tracking errors come from uncovered background or foreground regions, as such errors

usually propagate to the subsequent frames Figure 4.6 shows object tracking results of

the five testing sequence after 3 user inputs, which gave us acceptable results for all five

sequences. For subjective evaluation, segmented objects are superimposed onto gray

background with random noise and played in real time for users to see whether there are

observable errors. To remove boundary jitter (i.e. high frequency noise), a temporal

median filtering process (with a radius of 2 frames) is applied to the binary object masks

96

before they are composed with the background with random noise. For the akiyo

sequence, there are no noticeable errors after only one input at the starting frame. For the

foreman, bird and plane sequences, three user inputs give us outputs without noticeable

errors. The skater sequence, which has fast and complex motion, requires 4 user inputs to

remove noticeable errors. These subjective evaluations are confirmed and further

explained in detail in the following objective evaluation experiments (Figures 4.7 –4.10).

Akiyo (37224 pixels)

Foreman (35821)

Skator (22633)

Bird (4564)

Plane (13010)

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

of frames with user inputs

of

 fa
ls

e
pi

xe
ls

 p
er

 fr
am

e

Figure 4.7 Average number of false pixels over 100 frames (numbers in the legends are sizes)

In the objective evaluation, we manually extracted semantic objects in each frame

over 100 successive frames (with the help of the snake algorithm), and considered these

as the ground truth. We then computed the average numbers of missing pixels, false

pixels and maximum boundary deviations between the ground truth and the segmentation

results. The performance results are shown with different numbers of user inputs in

Figures 4.7,4.8 and 4.10 respectively. Here the first user input is the object outlining at

the starting frame; and the following inputs are boundary adjustments that users made to

correct tracking errors. The legends show the average size (number of pixels) of each

97

object. We could plot normalized curves for missing and false pixels (e.g., normalize the

size or perimeter of an object), but each method has different drawbacks. As we will

show, the maximum boundary deviation curves provide size invariant evaluation results.

Akiyo (37224 pixels)

Foreman (35821)

Skator (22633)

Bird (4564)

Plane (13010)

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

of frames with user inputs

of

 m
is

se
d

pi
xe

ls
 p

er
 fr

am
e

Figure 4.8 Average number of missed pixels over 100 frames (numbers in the legends are sizes)

Numbers of missing and false pixels are simply computed by comparing a segmented

object mask with its related ground truth. While there are different ways to define the

boundary deviation, we define the deviation for a missing pixel, as the distance between

this pixel and its nearest foreground pixel in the segmented object mask; and for a false

pixel, as the distance between this pixel and its nearest foreground pixel in the ground

truth mask (Figure 4.9).

)(min)(qppdev
q

miss −= and segObjq ∈ (4.5)

)(min)(qppdev
q

false −= and trueObjq ∈ (4.6)

where p and q are coordinates of corresponding pixels. segObj and trueObj are the

segmented object mask and the ground truth mask respectively. The maximum boundary

98

deviation is the maximum value of the deviations of all missing or false pixels.

)))((max)),((maxmax(max pdevpdevdev false

falsep

miss

missp ∈∈
= (4.7)

where miss and false refer to the sets of missing and false pixels respectively.

a. missing pixels

ground truth

segmentation

deviation

b. false pixels

ground truth

segmentation

deviation

Figure 4.9 Definition of boundary deviations

Akiyo (37224 pixels)

Foreman (35821)

Skator (22633)

Bird (4564)

Plane (13010)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

of frames with user inputs

m
ax

im
um

 d
ev

ia
tio

n
pe

r
fr

am
e

Figure 4.10 Maximum boundary deviations of the five tracked objects (averaged over 100 frames)

Main tracking errors are usually caused by new or uncovered background or

foreground regions. This is clearly reflected in Figure 4.10, where the maximum

deviations are around 40 pixels when a large region is missed or falsely included. As

shown in the plots, such errors are corrected after 2 or 3 user inputs. The remaining

errors may be considered an accuracy limitation of our segmentation and tracking

algorithm. The number of false and missing pixels can be reduced from 30 to 200 pixels

99

depending on the object size. The maximum deviation curves show that these missing

and false pixels are less than 5 pixels away from the ground truth. Considering inherent

errors caused by boundary blur (especially for the MPEG-1 sequences with fast motion)

and manual segmentation, our system generates very good tracking results.

The Akiyo sequence only requires one user input to obtain very good tracking result

over 100 frames. Missing and false pixels are mainly around the hair, which is not

clearly separated from background by color or by edge. Additional user inputs bring very

small improvement. The bird sequence contains a small, fast-moving object. The abrupt

shape change between successive frames causes the missing of part of the wings in some

frames. These errors are corrected after 2-3 more user inputs. For the plane sequence,

after the first input, most false pixels come from a black strip at the left frame border.

Part of the strip is merged into the plane in some successive frames. This error is easily

corrected after 1-2 more user inputs.

The foreman and skater sequences have relatively large errors at the first user input,

due to complex object motion. Missing pixels are mainly caused by the emerging of new

foreground regions around the frame border (e.g., the left shoulder in the foreman

sequence). These new regions connect with old object regions only by a few pixels when

they first appear and they also abruptly change the shape of object. Thus they are

classified as background regions during the tracking process. False pixels are included

mainly because of uncovered background regions enclosed by the object. In the skater

sequence shown in Figure 4.6, frame 50 has a background region included in the object.

The background region is uncovered when the two legs move apart. As it is enclosed by

the object and the frame border and thus not connected to any exist background regions,

100

the new background region is falsely classified as foreground. The above two types of

errors can be corrected by one user input at the frame where the error starts to happen.

Restarting the tracking process after the correction will correct errors in the successive

frames. For the foreman and skater sequence, the numbers of missing and false pixels

drop rapidly after the first 2 user inputs. And after this, maximum boundary deviations

are generally within 10 pixels.

The computational complexity and speed of the AMOS system are not currently our

main focus. Generally the segmentation speed depends on the object size and the

complexity of the scene. For a typical object like akiyo in CIF size images, it takes

around 20 seconds per frame on a SUN UltraSparc-2 workstation. Note this is based on a

pure JAVA implementation of all segmentation and tracking processes in the system

without speed optimization. Also this includes all the computation processes described in

the system architecture. Optimization may be performed to determine critical processes

and ignore non-critical processes to reduce computations. Parallel processing can greatly

improve the speed of our system. As one can see, the computations of three feature

maps, which are the most computation intensive parts of the system, can easily be done in

parallel. The main region segmentation and tracking algorithm can also have parallel

implementation, as region merging is accomplished by examining local minimums.

In summary, our extensive experiments and evaluation have shown that the AMOS

system can be effectively used to segment generic video objects with accurate

boundaries. The system fuses the color, edge and motion information in its region

segmentation, and utilizes an iterative region aggregation and boundary alignment

process to generate and track accurate object boundaries. As a semi-automatic system, it

101

also allows users to easily correct tracking errors. We have been using this system to

extract more than 100 video objects, and building a video object database for many

object-based video applications such as MPEG-4 compression, content-based retrieval

(which we will discussed in the next part of this paper), and network transmission.

4.3 Automatic Moving Object Segmentation

The AMOS system is a general tool developed for interactive semantic object

segmentation. It can be used in offline application where object-based compression and

indexing is needed. In the case when real-time processing is required, user inputs are not

feasible or very limited. Typical examples include broadcast sports or news programs. If

we want to parse and summarize these videos in real time, automatic object extraction

methods need to be developed. In chapter 3, we have presented an automatic video region

tracking system. Given domain specific models, these regions can be grouped into high-

level objects.

In this section, we will look at a rather general constraint, which is the motion of

objects. Using this constraint, objects in a scene are classified into foreground and

background according to their motion characteristics. Moving objects (after global

motion compensation) are defined as foreground objects, which are the targets we want to

extract. Static regions (e.g., ground) and objects (e.g., a still car) are both considered as

background. In addition, we also assume background regions are more likely around the

corners and borders, while foreground regions are likely in the middle of a scene.

102

4.3.1 Overview

The 2D motion observed in an image sequence is caused by 3D motions of : 1) objects,

and 2) camera. When there is no camera motion, we can easily find moving objects by

grouping all moving regions together. However, except some special cases (e.g.,

surveillance videos), common TV programs and home videos usually contain camera

motions. In these situations, to detect moving objects, we firstly need to compensate

motions caused by camera operations.

As pointed out in [2], the camera induced image motion depends on the ego-motion

parameters (i.e., rotation, zoom and translation) of the camera and the depth of each point

in the scene. In general, it is an inherently ambiguous problem to estimate all these

physical parameters. Existing camera motion detection approaches can be generally

divided into two classes: 2D algorithms that assume the scene can be approximated by a

flat surface, and 3D algorithms that work well only when significant depth variations are

preserved in the scene. It has been noticed that in 2D scenes when the depth variations

are not significant, the 3D algorithms are not robust or reliable. On the contrary, 2D

algorithms using a 2D global parametric model (e.g., affine model) cannot handle 3D

scenes where there are multiple moving layers.

In ordinary videos we see in our daily life (e.g., those used in our experiments), as

depth information is not well preserved, 2D algorithms are used more widely than 3D

algorithms. When the scene is far from the camera and/or the camera only conducts

rotation and zoom, a single affine motion model can be used to model and compensate

the camera-induced motion. However, when the scene is close to the camera and the

camera is translating, multiple moving planar surfaces may be produced in the image

103

sequence. In general videos, the above two scenarios can both exist in one video shot

with gradual transitions between them. To manage this problem, many approaches have

been proposed to use multiple 2D parametric models to capture multiple motion layers.

In [113], affine motion parameters are first estimated from the optical flow by linear

regression, and then spatio-temporal segmentation is obtained by a clustering in the affine

parametric space. In [16], a dominant motion is first estimated by means of a merge

procedure. Then motion vectors that can be well represented by this dominant motion

model are identified and excluded, and affine parameters are estimated from remaining

blocks. This procedure is repeated until all motion layers are detected. Similar approaches

are also reported in [76]. These methods rely only on motion information in grouping

image pixels or blocks into motion layers, and thus usually result in inaccurate

segmentation on motion boundaries. As there is a strong dependence between motion

estimation and layer segmentation, bad segmentation results will reduce the accuracy of

motion estimation. Another problem is that the object tracking is not really addressed

here. It is assumed that moving objects detected at individual frames automatically form

the temporal object track. In real-world scenes, objects and camera usually do not have

uniform temporal motion. Captured image sequence will show obvious object motion in

some frames, but slight or even no motions in other frames. This introduces inconsistent

detection results in individual frames.

To overcome these problems, applying our region segmentation and tracking

algorithms proposed in chapter 3, we developed a two-stage moving objects detection

method. This method uses regions with accurate boundaries to effectively improve

motion estimation results. Furthermore, we explore the temporal constraint in a video

104

shot to achieve more reliable object detection results. The two general stages of our

algorithm is shown in Figure 4.11.

Figure 4.11 Two-stage moving object detection based on region segmentation and tracking results

In the first stage, we apply an iterative motion layer detection process based on the

estimation and merging of affine motion models. Each iteration generates one motion

layer. The difference with existing methods is that motion models are estimated from

spatially segmented color regions instead of just pixels or blocks. In the second stage,

temporal constraints are applied to detect moving objects in spatial and temporal space.

Layers in individual frames are linked together based on characteristics of their

underlying regions. One or more layers will be declared as motion objects according to

certain spatio-temporal consistency rules.

4.3.2 Iterative Motion Layer Detection

The iterative layer detection is applied to each individual frame as shown in Figure 4.12.

First, non-background regions1 are merged into motion layers according their affine

models. Because different regions that belong to the same motion layer may have

different estimated parameters due to inaccuracy in the initial dense motion field, a

simple clustering approach in the affine parametric space usually does not work well. To

solve this problem, we use the following distance measure to compare two neighboring

1 All regions are non-background regions in the first iteration.

(1) Iterative motion
layer detection in
individual frames

(2) Object refinement
using sptio-temporal
constraints at shot level

Video
regions

Moving
objects

105

regions iR and jR .

Figure 4.12 Iterative motion layer detection procedure

)),(),,(min(),(ijji MRMCErrMRMCErrjiD = (4.8)

where iM and jM are the affine motion models of region iR and jR respectively.

),(MRMCErr is the motion compensation error of region R under motion model M .

A region i is merged with its closest neighbor if their distance is below a given threshold

TH_AFF.

)),((min),(
_),(0

_),(1
),(jiDkiDwhere

AFFTHkiD

AFFTHkiD
kiMerge

j
=





≥
<

= (4.9)

where j refers to all neighboring regions of region i.

After regions are merged into motion layers, we try to identify one background layer in

each iteration1. This is based on the assumption that a foreground layer must have

discontinued motion fields around its outer boundaries. Boundaries of a layer are

Motion based
region merge

Detect
background layer

Video
regions

Foreground
layers

N

Detect & exclude
background regions

Y

Solid: layer boundary

Dash: region boundary within a layer

foreground
layers

background
layer

106

consisted of pixels that have at least one neighboring pixel not belonging to the layer.

Outer boundary is the outmost closed curve that contains the whole layer. Assume

1b ,…, nb are the n points along the outer boundary of a layer l1, we define the following

energy function to measure its boundary discontinuity.

∑
=

−−−−==
bn

bp
l pppppppppGandpG

n
E

1
54637281),,,max()()(

1
(4.10)

where 1p ,…, 8p are motion vectors of the 8 neighbors of point p, as shown in Figure

4.13.

Figure 4.13 Neighoring motion vectors of point p

A layer l is detected as a potential background layer only when lE is smaller than a

threshold (e.g., 0.4). If no background layer is detected, the algorithm stops and all

remaining regions belong to foreground layers. When there are more than one possible

background layers, the largest one is chosen as the background, and its affine motion

model is used to compensate non-background regions. Those regions with small

compensation errors are classified as background, and excluded from the next iteration of

layer merging and detection. After multiple iterations, multiple background layers and

multiple foreground layers may be produced.

1 A background layer may be broken into disjoint pieces, and detected in several iterations.

1p 2p 3p

4p 5pp

6p 7p 8p

107

4.3.3 Moving Object Detection Using Temporal Constraints

The foreground layers detected at individual frames are not reliable due to: 1) noisy

nature of the motion field and inaccurate motion models; and more importantly, 2) a

moving object may have noticeable motions in some frames where it can be easily

detected, but small motions in other frames where it may be mistakenly treated as

background. A global decision through an entire shot is necessary to remove noises and

achieve reliable results.

To apply temporal constraints, we first link foreground layers (i.e., to track them) in

individual frames according to their underlying regions. A foreground layer m
iL in frame

m is linked with a layer n
jL in frame n, if the following condition is satisfied:

)(max
,

n
l

m
k

lk

n
j

m
i LLLL II = (4.11)

where }{ mframeinlayersforegroundk ∈ and }{ nframeinlayersforegroundl ∈ .

The intersection of two layers is defined as the common regions they both contain. In

addition, we also define the link as a conductive relationship, which means if layer A and

B, B and C are linked respectively, then A and C are also linked. This ensures that each

local motion layer belongs to one and only one temporal layer.

The above linking or tracking process results in a number of groups of foreground

layers. We will refer these groups as temporal layers below. We use some spatio-

temporal constraints to validate these temporal layers. The first one is the duration of a

temporal layer. As dominant moving objects are usually followed by the camera, layers

with short duration are likely to be background regions, and thus are dropped. Secondly,

1 Boundary points along the frame borders are not included.

108

the frame-to-frame changes of center coordinates and sizes of a temporal layer are

examined. If there are large and abrupt changes, the temporal layer is not a valid tracking

and will not be detected as a foreground object.

Finally, a morphological open and close procedure is applied at individual frames to

remove small isolated regions and to fill holes within a moving layer.

In summary, our method is designed to automatically detect and track salient moving

objects. By using temporal constraint, we can robustly and accurately segment moving

objects over a long period. Our method can also handle objects with discontinuous

motions (i.e., moving in some frames and still in other frames). There are some

challenging issues that are not addressed in our approaches.

For example, the temporal occlusion is not considered here. When one moving object

is first moving, then occluded by another object or background, and later appear as a

separate moving object again, it will be treated as a new moving object. However, we

can use region based object matching to detect reoccurrence of the same object after

occlusion. Another case is that because small regions cannot be tracked reliably over a

long period, the algorithm is not suitable to segment small moving objects (e.g., less than

500 pixels). On the other hand, large foreground objects with uniform motion may cause

background regions to be wrongly detected as foreground (as shown in Figure 4.14). In

this case, background regions only spatially connect with foreground objects. Therefore,

the criteria based on motion discontinuity in boundary pixels cannot distinguish the

background from foreground. We handle this issue based on the assumption that

background regions are more likely to be located around the corners and borders. In

Figure 4.14, while no background regions are detected in the above iterative process, the

109

region that has maximum number of pixels along frame borders is declared as the initial

background.

Figure 4.14 When background layers connect only to a large foreground layer, background is detected
based on spatial locations of these motion layers

Since our algorithm does not require consistent motion model for a moving object1,

multiple moving objects will be declared as one single object if they are spatially

connected in some frames within a shot. To handle this potential issue, our algorithm can

be modified to include object-matching techniques (e.g., region-based matching method

that will be discussed in Section 4.4), as well as rules to split one merged motion layer

into multiple moving objects.

4.3.4 Results and Discussion

The object detection results of 5 sequences are presented in Figure 4.15. In Figure 4.15,

each row we first show the image of frame #1, and then show the moving object tracking

results at frame #1, #10, #20 and #30. They all have depth variance and camera motion

(i.e. following the moving objects) in the scenes, resulting in multiple motion layers. The

first sequence contains a skater running towards the camera. The ice field has a gradual

1 One moving object may contains multiple parts with different motions.

Background
layer

Foreground
layer

110

depth change from near to far. In the second sequence, a person is working away from the

camera in an office. Cubic walls exit at different depths. The third sequence is a bird-

eye’s view of a soccer player running in the field. Sequence 4 contains three background

layers, which are the ground, wall and crowd. The last sequence contains the sky, the

stage and the jumping skier. Note that regions within segmented objects are shown in

random colors to demonstrate region segmentation results. One region being tracked at

different frames is shown with the same color.

(1)

(2)

(3)

(4)

(5)

Figure 4.15 Moving object detection and tracking results of five image sequences
(detected objects are show at frame #1, #10,#20,#30)

111

The gradual depth change in the sequence 1 does not cause much problem as the

ground is merged into one large region in the first color based region segmentation stage.

In sequence 2, the cubic walls are tracked as separated regions. Although these regions

are classified as foreground objects in some frames, their temporal durations are short1

and thus are considered as background. In the third sequence, both the player and the

grass field have gradual depth variances. Similar to the first sequence, color

segmentations are proven to be useful in handling such situations. Another player at the

left-upper corner exists for a short period and is not detected as a target object. All the

above three sequences show good tracking results. Some small background regions are

falsely included in the sequence 4. These regions are mainly from the connecting parts of

two background regions, and usually have inaccurate motion fields. Some foreground

pixels are missed in (5) is because small isolated regions are removed in the final

morphological operations.

To show the temporal consistency constraints greatly improve moving object

detection results, we present some intermediate detection results in Figure 4.16a (final

detection results are shown in Figure 4.16b for comparison). It contains local motion

layers detected at two frames (frame 1 and 10) in the sequence (1). As we can see, some

foreground regions are merged into background because they have estimated motion

models similar to that of background at these particular frames. By applying temporal

constraint over an entire shot, we are able to recover missing foreground regions.

In summary, we demonstrated that long-term region based moving object detection

approach is more robust and reliable compared to existing approaches that only uses local

motion information (e.g., frame-to-frame motion field). In chapter 5, we will show an

1 The camera lens is moving forward to follow the person

112

application system using this technique for real-time detection and tracking of tennis

players.

(a) local detection result at individual frames

(b) final detection results

Figure 4.16 Moving layer detection result at individual frames

4.4 Region Feature Based Video Object Search

In the last chapter, we introduced the VideoQ system that is built upon our automatic

video region segmentation and feature extraction algorithms. The system supports sketch

based visual queries in which users can define one or more query objects with various

visual features. Although VideoQ supports localized feature matching, it mainly uses

low-level uniform feature regions. These regions do not necessarily correspond to

meaningful real-world objects. While it has the advantage of being fully automatic,

further efforts have to be made to support high-level semantic queries.

113

Semantic video objects introduce one more description level in the visual feature

library of VideoQ. One might suppose that similarity matching of video objects is

similar to matching of multiple regions with spatial-temporal relationships. However,

several new critical issues emerge. First, underlying regions of a video object are tightly

connected with each other, and thus similarity matching of the spatial-temporal structure

become more important and should be performed more precisely. There are also

important visual features that are unique in the object level, such as the temporal

variances of size and orientation, repeated appearances at the different times. Finally, the

spatial-temporal information of video objects available in MPEG-4 (i.e., BIFS) can be

used to support high-level content-based search with multiple objects.

Here as the first step, we would like to address the problem of similarity matching of

video objects using localized visual features. Based on the hierarchical object model and

the segmentation framework in the AMOS system, we extend the VideoQ system to

develop a new content-based search system for semantic objects. It utilizes an abundant

set of visual features at both the object and region levels, including color, shape, texture,

motion trajectory and temporal information. We also developed an effective integration

of global and localized feature matching, as well as the measurement of various spatial-

temporal structures (directional, topological, temporal).

Similar to the VideoQ system, there are three steps to build the video object indexing

and search system. The first step is to a salient region extraction process within video

objects. In the second step, visual features at both the object and region level are then

extracted. This process builds a visual feature library for segmented video objects.

Finally, an object searching model is developed, which effectively searches the visual

114

feature library, combines global and local features and examines the spatial-temporal

structures of video objects.

4.4.1. Generating Salient Feature Regions

As we discussed before, salient feature regions are desired for the content based

searching purpose. Although in the AMOS system, the underlying regions of video

objects are created and tracked during the object segmentation process, these regions are

usually small and short (see 4.2.2). Extra efforts (e.g., grouping) are required to create

salient feature regions that can facilitate efficient object retrieval. For simplicity, here we

apply the salient region segmentation algorithms (refer chapter 3) to do a second pass

region tracking inside object masks. This is based on the consideration that the second

pass salient region tracking process is relatively simple and fast. Furthermore, as an

added benefit, the second-pass region tracking process can be used to help users refine

previously segmented objects, as we will discuss next.

Although the above automatic region segmentation and tracking process can generate

satisfactory salient regions, sometimes users may still want to define higher level regions

which are not uniform in terms of visual features. An optional user interactive process is

provided to further merge or eliminate tracked regions. Users can click on two

neighboring regions at any frame, and ask the system to merge them in all the frames

where these two regions have been tracked. In general, this allows flexible user control

to create desirable region segmentation within the video object. This control of each

individual tracked region also allows users to refine object masks by dropping a falsely

included background region, which provides another way for users to correct uncovered

115

background regions in AMOS. Instead of stopping the object tracking process to correct

errors, users can drop such background regions after the second-pass region tracking.

After the above salient region segmentation process, each segmented region is stored

as a list of masks (approximated using polygons) with its starting and ending frame

number in a video sequence. Video objects are stored in the same way. All these data

will be used for the following feature extraction process.

4.4.2 Building the Visual Feature Library

A large set of visual features of video objects and their underlying regions are

computed and stored for the subsequent queries. In the following, we will describe these

features and show how they are computed at both the object and region levels. Note that

to preserve temporal variations, ideally all feature data can be computed at every frame of

an object or a region. However, this is unrealistic and also unnecessary for the purpose of

searching. Thus currently we compute frame-by-frame values for only certain important

features that are needed for critical temporal structured analysis. Other features are

computed only at the starting frame where an object or region appears. Another approach

to capturing temporal information is to store feature data at fixed sampled frames or at

frames where feature differences exceed certain thresholds.

• Temporal Position - starting and ending frames of a video object or region in a video

sequence. This information is available from the tracking processes.

• Motion Trajectory - the motion compensated centers of a video object or region at all

of its successive frames. At each frame, a global motion model of camera (affine

116

model) is estimated from background pixels (pixels outside the object mask) and used

to compensate the position of the object or region.

• Color - the representative color (in CIE L*u*v* space) of a region. It is passed from

the region segmentation process. The overall color histogram is extracted as the color

feature of an object.

• Texture - Tamura model of objects and regions, including three measures:

coarseness, contrast and orientation.

• Shape (global) - global shape descriptors are computed for a video object and its

regions at a number of sampling frames. Currently four descriptors are included:

normalized area, aspect ratio, circularity, and orientation.

• Shape (local) - boundary polygon of a video object. This feature is not computed for

regions.

• Shape Variance - currently the system detects the size change (increase/decrease) and

rotation (left/right) of video objects and regions. They are both two-dimensional

feature vectors with 4 possible values (0,0), (1,0), (0,1) and (1,1), where 1 in the first

dimension stands for increase or left, and 1 in the second dimension stands for

decrease or right.

• Spatial Connection graph - each region has a list of neighboring regions. This feature

is generated during the region tracking process.

Besides the above features, more importantly, we also propose some structure features

that capture the spatial and temporal relationship among feature regions. These features

are pre-computed and stored so that they can be quickly accessed and examined in the

similarity matching process.

117

There are several different ways to compare spatial structure, such as 2D-Strings [23]

and spatial-temporal logical [14]. We choose a relatively fast and simple algorithm, the

spatial-orientation graph, which represents spatial relationships between a set of regions

as edges in a weighted graph [49]. This graph can be easily constructed by computing

the orientation of each edge between the centers of a pair of query regions, and stored as

a n*(n-1)/2-dimension feature vector, where n is the number of query regions (Figure

4.17a). As the spatial-orientation graph cannot handle the contain relationship, we extend

it with a topological graph (Figure 4.17b), which defines the contain relation between

each pair of regions with three possible values: contains(1), is-contained(-1) or not

containing each other(0). Similarly, the temporal graph (Figure 4.17c) defines whether

one region starts before(1), after(-1) or at the same time(0) with another region. Note

here for simplicity we only define the temporal order according to the first appearing time

(or starting time) of each region. By taking the ending time, a more complicated

temporal relation graph can also be generated. As shown in Figure 4.17, feature data of

the two graphs are also represented as n*(n-1)/2-dimension vectors.

a. Spatial Orientation

A

B
C

t1
t2

t3

Feature vector: [t1,t2,t3]

t1: angle of AB
t2: angle of AC
t3: angle of BC

b. Topological Graph

A

B
C

-1
0

1

Feature vector: [-1,0,1]
A is containedbyB
A,C donot contain eachother
B contains C

c. Temporal Graph

B
C

-1
0

1

Feature vector: [-1,0,1]
A startsafter B
A andC start at the same time
B starts before C

A

Region Ordering List :

(A,B,C)

Figure 4.17 Examples of the three spatial-temporal relationship graphs

118

4.4.3 Region based Object Query Model

Given a query object (composition of a set of query regions), there are generally two

searching approaches. One is to directly match query object against objects in the

database. One example is the R-Tree based search methods is used in [86]. However, R-

tree is not suitable for indexing of a large set of high-dimension features.

The other searching approach is to first find a matching region list for each query

region based on visual features, and then "join" these region lists to find the best matched

video objects by combining visual and structure similarity metrics. This approach is used

in our earlier work, VisualSEEK [99]. In [63], Li and Smith further proposed a querying

scheme that divides a composite query into a sequential of representation of sub-queries.

A fast dynamic programming method is then used to retrieve the best matches for a

composite object. However, sequentialization of a large set of visual and structure

features is difficult. Here we use a parallel query and join scheme which supports partial

matches. The object-searching diagram is shown in Figure 4.18.

Query Object * Region Search Join & Validation Retrieved Objects

* : Visual Features
- Object level
- Region level

Structure Features
- Topological
- Orientation
- Temporal Order

Region Merge

Figure 4.18 The parallel object query model

Given a query object with N regions, the object searching process consists of three

stages. The first stage, region search, is to find a candidate region list from the database

for each query region. The second stage, region merge, is to merge regions from a same

video object into a large "virtual region". The final stage, join & validation, is to join the

119

candidate region lists to produce the object candidate list and to compute the final global

distance measure. The detailed procedure is given as follows:

1) For every query region, find a candidate region list based on the weighted sum

(according to the weights given by users) of distance measures of different visual

features1 (e.g., shape or trajectory). Only regions with distances smaller than a threshold

are added to a candidate list. Here the threshold is a pre-set value used to empirically

control the number or percentage of objects the query system will return. For example, a

threshold 0.3 indicates that users want to retrieve around 30 percent of video objects in

the database1. The threshold can be set to a large value to ensure completeness, or a small

value to improve speed.

Candidate region list R i (for que ry region)
(sorted in an inc reasing orde r to ditance m easue)

r1 (d1, object A)
r2 (d2, object B)
r3 (d3, object C)
r4 (d4, object B)
. ..

object B
r2

r4

r2 and r4 are

m erging

virtual r egion

v
Com pute fea ture distance,

, between v and

spatially connec ted

r1 (d1, object A)

r2 (d2, object B)
r3 (d3, object C)
r4 (d4, object B)

.. .

v (dv, object B)

if

r2 and r4 be long
to the sam e object

objec t B

q
i

q
id

v

d
v

d 2<

Figure 4.19 Query Time Region Merging Process

2) Sort regions in each candidate region list by their ObjectID’s2, and perform query time

region merge. As users don’t know exactly which segmented regions are included in the

database, query regions may not match regions in the database on some visual features,

1 Individual feature distances are normalized to [0,1]

120

e.g., size and shape. Furthermore, due to the nature of automatic region segmentation

process (i.e., consistency of certain visual features), segmented regions are sometime

smaller than query ones. To alleviate this problem and improve searching accuracy, we

also develop a novel query time region merging process (Figure 4.19). For each

candidate region list, the query system will try to merge regions from a same video object

into a large "virtual region" if 1) they spatially connected with each other (the region

connection graph); 2) the merged region is closer to the query region (feature distance).

When a "virtual region" is generated, it is added to the current candidate region list for

the following validation processes.

3) Perform join (outer join) of the region lists on ObjectID to create a candidate object

list. Each candidate object in turn contains a list of regions. A "NULL" region is used

when :

• a region list doesn’t contains regions with the ObjectID of a being-joined object

• a region appears (i.e. matched) more than once in a being-joined object

4) Compute the distance between the query object and each object in the candidate object

list as follows:

)(
3

)(
2

)(
1

),(
0

otempqtempSDw

otopoqtopoSDw
i osogqsogSDw

i
r

i
qFDwD

++

+∑ +++=

(4.12)

where iq is the ith query region. ir is the ith region in a candidate object. FD(.) is the

feature distance between a region and its corresponding query region. If ir is NULL,

1 Assume the feature vectors in the database have normal distribution in feature spaces
2 Each video object or region has a unique ObjectID or RegionID.

121

maximum distance (i.e., 1) is assigned. qsog (spatial orientation), qtopo (topological

relationship) and qtemp (temporal relationship) are structure features of the query object.

osog , osog and osog are retrieved from database using indices on ObjectID, RegionID

and temporal positions. When there is a NULL region (due to the above join process), the

corresponding dimension of the retrieved feature vector will have a NULL value. SD(.) is

the L1-distance and a penalty of maximum difference is assigned to any dimension with a

NULL value.

5) Sort the candidate object list according to the above distance measure D and return the

result.

4.4.4 Experimental System and Results

A prototype system has been developed to demonstrate and evaluate our proposed

visual similarity searching method which integrates matching of localized feature

matching and spatial-temporal structures. We created a semantic video object database

with 104 video objects from different types, including people, sports, animal, flowers and

transportation. About 500 salient regions and their visual features are extracted and stored

in the database.

Figure 4.20 shows the system’s user interface. On the left panel, users can browse a

video object database (arbitrarily shaped objects) and view the subsequent query results.

To compose a visual query on the right canvas, users can draw regions from scratch or

load underlying regions of an example video object from the database. Once a set of

regions have been created on the canvas, users can assign and change their visual

attributes to form a query object. These attributes include size, shape, spatial positions,

122

color, texture, motion trajectories, temporal position and temporal shape changes (e.g., a

growing or rotating region). The global features of the query object, such as size, shape,

spatial position, can be easily derived from the drawn regions. Motion trajectory and

temporal shape change of a video object need to be specified separately. As users may

want to search video objects without specifying any local region or only specify a subset

of regions, the system also allows users to specifically define one area as the global

object boundary that has its own size and shape.

Figure 4.20 User interface of the object query system

With all these properties, users can create a query object with specific visual features

and spatial-temporal structures, and then choose a set of weights to start the search

123

process. These weights define how important different region features and object

features are in the similarity matching functions. Users also have the option of specifying

matches of spatial and/or temporal structures in the query. For object shape matching,

users can choose to use either global descriptors or local descriptors (e.g. polygon

matching [73]).

Our query experiments have shown encouraging results. The matching of structure

features has been proved to be critical in finding objects with multiple parts and special

relationships (e.g. human body). Four query examples are shown in Figure 4.21. In the

first example (Figure 4.21a), we are trying to find flowers by specifying two regions with

color, shape and spatial relationship. Higher weight is put on the shape feature. Our

experiments show that the shape matching of the stem part plays a key role in

successfully finding flowers. In the second example (Figure 4.21b), we define a more

complex query object, which has four parts with specific spatial relationship. While

color and shape features are important in finding similar feature regions for each part, the

matching of spatial structure eliminates false candidates and brings correct objects to the

top of the return list. Figure 4.21c shows an example of partial matching. Users draw a

face with two eyes. In the feature library, small regions like eyes are usually not

extracted. Using the outer join and partial match method, we are able to find similar

faces including those do not have extracted eye regions (results except the first one

shown in Figure 4.21c). Figure 4.21d shows an example of trajectory matching. The

retrieved objects are moving to the left-bottom direction on the screen.

124

Figure 4.21 Examples of Video Object Search

(a) flowers

(b) body

(c) face

(d) motion

125

Chapter 5

Structure Parsing and Event Detection for Sports Video

5.1 Introduction

For video indexing, typically videos are first processed to obtain constituent objects and

features. These extracted entities provide an intermediate content model to effectively

describe videos. In earlier chapters, we have studied temporal segmentation that

generates elementary video shots, and spatial-temporal segmentation that extracts video

regions and objects. We also developed feature matching algorithms and query methods

to support visual similarity search. These works provide very useful tools for accessing

online digital videos.

However, the objects and features we have extracted so far contain little information

at the semantic level. To solve this problem, we can explore the knowledge and

constraints in specific domain and apply domain-specific rules and/or certain machine

learning techniques. In this chapter, we present an event detection and structure parsing

system for sports videos. This system is built on top of segmentation and search

techniques we have presented in prior chapters. We also demonstrate a summarization

and browsing interface that allows users to easily access content structure and event

index of video data.

126

Combining domain knowledge and automatically extracted low-level features have

been seen in some works on news and movie videos. In [123], an edge model is used to

match anchorperson views in specific news programs. The story structure is then

reconstructued by finding anchorperson views as well as commercials. In [50], logical

story units (LSU’s) are extracted from movies according to global temporal consistency.

The consistency is based on the assumption that an event is related to a specific location

and to certain characters.

In this chapter, we will present a structure analysis framework for sports video using

domain models. Compared with other types of videos, sports videos have different

characteristics. A sports game usually occurs in one specific playground, contains

abundant motion information and has well-defined content structures. Event detection in

basketball and tennis videos has been studied in [96] and [102] respectively, but without

attempts to reconstructing high-level structures. We will further discuss these two in later

sections.

In this chapter, we present a real-time structure parsing and event detection system for

sports videos. Compared to existing work, our solution has the following unique

features.

• A general framework for video structure discovery and event detection.

• Combination of domain-specific knowledge and generic machine learning techniques.

• Multi-stage scene detection algorithms using our unique moving object segmentation

and feature extraction methods.

• Real time processing performance by exploring redundancy in the compressed video

streams.

127

• Higher accuracy demonstrated in specific sports domains such as tennis and baseball.

In the rest of this chapter, we will present our real-time prototype systems that

automatically analyzes sports videos using tennis video as an example, and demonstrate

experimental results in tennis and baseball videos.

5.2 Semantic Content in Sports Video

Sports video is a major part in most broadcasting TV programs, and has a large number

of audience. Compared to other videos such as news and movies, sports videos have well-

defined content structure and domain rules.

Figure 5.1 The temporal structure of a typical tennis video

First, sports videos are structured. A long sports game is often divided into a few

segments. Each segment may again contain some sub-segments. Furthermore, there are a

fixed number of cameras in the field that result in unique scenes during each segment.

Entire Tennis Video

Set

Game

……

……

……

……

Serve

Elementary Shots

Commercials

128

For example, in football, a game contains two halves, and each half has two quarters.

Within each quarter, there are many plays, and each play starts with the formation in

which players line up on two sides of the ball. A tennis game is divided first into sets,

then games and serves (Figure 5.1). Usually when a serve starts, the scene is switched to

court views (Figure 5.2). In addition, for TV broadcastings, there are commercials or

other special information (e.g., score board, player’s name) inserted between segments.

The above characteristics of specific domains provide opportunities for developing

new algorithms and tools to parse video structures, and to reconstruct some kinds of build

table-of-contents for sports video indexing. As the structure is fixed given a type of

sports, domain models can be used to greatly improve detection accuracy. The resulting

systems and tools will enable users to have access any arbitrary segment at the desired

level based on the intuitive and informative structure.

Figure 5.2 Scenes from four different tennis games

129

Another property of sports videos is that there are many special events in the video

that are interesting to most audience. Typical examples include touch-downs in football,

shots in basketball, home-runs in baseball, aces in tennis and so on. Within one sports, an

event usually has similar visual-audio attributes that do not vary greatly from game to

game. Baseball games are played in grass fields, and when there is a home-run, the

camera will quickly follow the ball across the field and there will be loud screams from

the audience. Tennis courts typically have uniform ground colors and white court lines,

and within a serve, the camera is typically placed at shots from the top-rear position (e.g.,

a few scenes from different games are shown in Figure 5.2). These characteristics allow

us to adopt some domain-specific rules and apply machine-learning techniques using

automatically segmented objects and features to detect interesting events. Hence, given a

sports video, we can identify some important events that are interesting to most audience,

and automatically or semi-automatically build an index to all the occurrences of these

events. Similar to the keyword index in a book, this event index enables viewers to

access desired scenes much more intuitively and efficiently compared to traditional fast

forward and backward search.

A few works have been conducted to analyze sports videos. In [96], a basketball

annotation system is presented. Using prior knowledge of basketball games, the system

detects wide-angle shots versus close-up shots. Camera motions are further analyzed

within wide-angle shots and used to detect possible fast break, steal and probable shots.

When users want to retrieve one type of event (e.g., fast break), only sequences satisfying

corresponding motion criteria are shown. Tennis videos are studied in [102]. The

approach is based on the extraction of a model for the tennis court-lines from videos. A

130

player tracking algorithms is developed to track players, and then a reasoning module is

used to map low-level positional information to high-level tennis play events.

The issue addressed in above researches is to detect certain events using low-level

features such as motion and position. The well-defined temporal structures were not

explored. Another challenging problem that has not been well addressed is the real time

constraint. Sports video broadcasting is mostly live, and interests of audience go down

greatly after the results are known. The real-time capability in generating event indices is

critical in practical applications for sports videos.

In this chapter, we present a general framework to parse temporal structure of live

broadcasted sports videos. In the proposed approach, analyzing rules are first built

through a training phase. In the operation phase, these rules are updated to adapt to new

data in live inputs and used to select candidate scenes. Scene verification approaches

using our segmentation techniques are then applied to reduce false positives. Within the

detected scenes, we will also show innovative event detection tools using segmentation

techniques we have developed in previous chapters.

5.3 Real Time Video Analysis System

We briefly describe the system architecture of the real time sports video analysis

platform. Details about how segmentation and feature extraction algorithms are adapted

to meet the real-time requirement will be included in later sections where structure

parsing and event detection are discussed.

131

Figure 5.3 System architecture of the real time video analysis platform

The system is built on a personal computer with Microsoft Window NT 4.0. Real-time

performance is reached on a Pentium-III 600 dual CPU machine. The system allows users

to build digital video database taking regular analog video sources such as TV broadcast,

cable, VCR, or video camera. As shown in Figure 5.3, the dashed arrows indicate real-

time flow of video data. Some main function modules are as follows.

• Capture and Compression – An MPEG compression card is used to capture and

compress video and audio signals. Text decoder card can be added to obtain closed

caption signal.

• Scene Cut Detection – The scene cut detection scheme presented in chapter 2 is

used. It detects scene cuts first in MPEG compressed domain with partial decoding.

For gradual scene changes, chrominance and edge features are compared in the un-

compressed domain. To achieve real-time performance, we only decompress and

analyze I-frames. The output scene cut positions and representative frames (e.g., the

first I-frame after a scene cut) are stored in the video database.

Online
Users

Video DB:
- videos
- indices
- structure

Capture/
Compression

Live
Video

Video
Streaming

Scene Cut

Annotation
Retrieve

Object
Segmentation

Semantic
Detection
(Compres

Editing

132

• Object Segmentation and Feature Extraction – Object segmentation and feature

extraction are the most time-consuming processes, and cannot be applied to all

frames. To spot important scenes, representative frames are always examined first.

When a potential candidate is located, segmentations and more detailed features are

computed and used in the subsequent semantic detection module. Thus, although the

mission of this module is to extract visual features, it requires a semantic filtering

component. The component depends on domain knowledge and should use only

simple features that can be quickly computed, such as global color histograms.

• Semantic Detection – The detection tasks can be classified into two categories: one

is to parse the structure information; another is to find interesting events. The

detection process can also be divided into 1) local, which is applied to individual

frames; 2) temporal, which is applied to one or more videos shots. The former one

usually precedes the later one. All detected results are stored into the video database

to construct structure table or event index.

• Video Streaming –Videos are delivered to users in real-time together with structure

parsing and event detection results. The semantic and event information can be used

to filter the video content and send a personalized version of the video to each

individual user.

• Annotation, Editing – These are usually post processing with manual interactions.

However, they may be applied in real time too. For example, when certain events or

objects are detected, additional information such as hyperlinks or highlights can be

immediately inserted or overlaid to the original streams. It is also possible to cut

133

and/or replace some portions of broadcasted videos in real time (as in advertisement

insertion).

• Retrieve – With our real-time analysis system, a live video can be searched right

after, or even during the broadcasting time.

In summary, our scene analysis algorithms work as modules along a streaming

pipeline. Such a stream-line architecture is important in applications that may need real-

time performance or application specific customization.

The above real-time parsing and indexing system has a lot of applications. It can be

used to create large searchable video archives. It can also be used in web-casting of sports

programs in which game outlines and scene highlights can be rapidly developed on web

sites. The system can also be combined with existing sports annotation software, which

allow reporters to annotate and log a game in real time. In interactive applications,

interactive user interface with virtual-reality like environments can be enhanced with

simultaneous displays of graphics and synchronized video clips.

5.4 Structure Parsing

Given the structure model of a game, we need to detect visual cues that indicate the

beginning and/or ending of each section or sub-section. Some common features occurring

between top-level sections are commercials, embedded texts and special logos. Many

methods have been proposed for commercial and text detection [64,95]. Here we will

study the detection of basic units within a game, such as serves in tennis. These units

usually start with a special scene. Simple color based approaches have been suggested

[102]. Based on our experiments to be described later, this type of approaches can only

134

reach about 80 percent accuracy. Furthermore, as color information varies from game to

game, adaptive methods need to be exploited to handle such variation. In our real-time

framework, we first use a fast adaptive color filtering method to select possible

candidates, then apply more complicated features to verify them against domain specific

rules or models. In the following we present the system using serves in tennis as an

example.

5.4.1 Color Based Adaptive Filtering

Color based filtering is applied to key frames of video shots. It contains two stages as

shown in Figure 5.4, the training stage and then the operation stage.

Figure 5.4 The color based adaptive filtering process

First, the filtering models are built through a clustering based training process. The

training data should contain enough games so that a new game will be similar to some in

the training set. Assume ih , i=1…,N are color histograms of all serve scenes in the

training set. A k-means clustering is used to generate K models (i.e., clusters),

1M ,…, KM , such that,

Videos from
different games

Color Models

Clustering

Test Video

Model Selection

Serve Scene
Filtering

1 2

135

ji Mh ∈ , if)),((min),(
1

ki
k

K

ji MhDMhD
=

= (5.1)

where),(ki MhD is the distance between ih and the mean vector of kM , i.e.

∑
∈

=
ki Mh

i
k

k h
M

H
1

and kM is the number of training scenes being classified into the

model kM . This means that for each module kM , kH is used as its the representative

feature vector.

When a new game coming in, proper models need to be chosen to spot serve scenes.

This raises a typical egg-and-chicken problem, as we need to know serve scenes to select

a correct model. To solve the problem, we detect the first L serve scenes using all models,

1M ,…, KM . That is to say, all models are used in the filtering process. If one scene is

close enough to any model, the scene will be passed through to subsequent verification

processes (Eq 5.2).

ji Mh ∈' , if)),((min),('

1

'
ki

k

K

ji MhDMhD
=

= and THMhD ji <),(' (5.2)

where '
ih is the color histogram of the ith shot in the new video, and TH is a given

filtering threshold to accept shots with enough color similarity. Shot i is detected as a

serve scene if the segmentation based verification, which will be described in 5.4.2, is

also successful, and we mark this serve as being founded by model jM (i.e., classify the

scene into the model jM). If the verification fails, '
ih is removed from the set of jM .

After L serve scenes are detected, we find the model oM , which leads to the search for

the model with the most serve scenes.

)(max
1

k
k

K

o MM
=

= (5.3)

136

where kM is the number of incoming scenes being classified into the model kM . In

the filtering process for subsequent shots, model oM and a few of its most close

neighboring models are applied in a same way as define in Eq 5.2.

5.4.2 Segmentation Based Verification

Color histograms are global features that can be computed faster than real time. However,

using only color the detection accuracy is less than 80%. Many close-up scenes of

playgrounds and replay scenes are likely to be detected as false positives.

To improve detection accuracy, the salient feature region extraction and moving

object detection we proposed in chapter 3 and section 4.3 can be utilized here to produce

localized spatial-temporal features. Compared with global features, such as color

histograms, spatial-temporal features are more reliable and invariant to detect given scene

models. Especially in sports videos, special scenes are often made of several objects at

fixed locations. The similarity matching scheme of visual and structure features we

studied in previous chapters can also be easily adapted here for model verification.

To verify serve scenes, the moving object detection algorithm (section 4.3) is applied.

To achieve real-time performance, segmentation is performed on the down-sampled

images of the key frame (which is chosen to be an I-frame) and its successive P-frame.

The down-sampling rate used in our experiment is 4, both horizontally and vertically,

which results in images with size 88x60. Motion fields are estimated using the

hierarchical approach as proposed in [13]. An example of segmentation and detection

results is shown in Figure 5.5.

Figure 5.5 (b) shows the region segmentation result. The court is segmented out as one

137

large region, while the player closer to the camera is also extracted. The court lines are

not preserved due to the down-sampling. Black areas shown in (b) are tiny regions being

dropped at the end of segmentation process. Figure 5.5 (c) shows the moving object

detection result. In this example, the result is quite satisfactory, and only the desired

player is detected. Sometimes a few background regions may also be detected as

foreground moving object. We will address this issue in section 5.5 when discussing the

player tracking algorithm. Here for verification purpose, as we will describe below, the

important thing is not to miss the player.

Figure 5.5 An example of automatic region segmentation and moving object detection

Following rules are applied in scene verification. First, there must be a large region

(e.g. larger than two-thirds of the frame size) with consistent color (or intensity for

simplicity). This large region corresponds to the tennis court. The uniformity of a region

is measured by the intensity variance of all pixels within the region (Eq 5.4).

2

1

)]()([
1

)(pIpI
N

pVar
N

i
i∑

=

−= (5.4)

where N is the number of pixels within a region p.)(ipI is the intensity of pixel I and

)(pI is the average intensity of region p. If Var(p) is less than a given threshold, the size

of region p is examined to decide if it corresponds to the tennis court.

a. original key frame b. region segmentation c. moving object detection

138

Secondly, the size and position of player are examined. The condition is satisfied if a

moving object with proper size is detected within the lower half part of the previously

detected large “court” region. In a downsized 88x60 image, the size of a player is usually

between 50 to 200 pixels. As our detection method is applied at the beginning of a serve,

and players are always at the bottom line to start a server, the position of a detected

player has to be within the lower half part of the court.

5.4.3 Edge Based Verification

One unique characteristic of serving scenes in tennis game is that there are horizontal and

vertical court lines. Ideally if a camera shots straightforward from top-rear point of the

court and all court lines are captured (Figure 5.2), rules for a complete court can be used

to verify serve scenes with high precision. However, in a real scene, due to the camera

panning and zooming, or object occlusion, usually not all court lines are viewable. Trying

to match a full court will result in a low recall rate of serve scenes.

Since we already go through color based filtering and region based verification

processes, relatively loosen constraints are enforced on court lines. An example of edge

detection using the 5x5 Sobel operator is given in Figure 5.6.

Figure 5.6 Edge detection within the court region

139

Note that the edge detection is performed on a down-sampled (usually by 2) image

and inside the detected court region. Hough transforms are conducted in four local

windows to detection straight lines (Figure 5.7). Windows 1 and 2 are used to detect

vertical court lines, while windows 3 and 4 are used to detect horizontal lines. It greatly

increases the accuracy in detecting straight lines to use local windows instead of a whole

frame. As shown in the figure, each pair of windows roughly cover a little bit more than

half of a frame, and are positioned somewhat close to the bottom border. This is based

on the observation of the usual position of court lines within court views.

Figure 5.7 Local windows for hough-transform based line detection

The verifying condition is that there are at least two vertical court lines and two

horizontal court lines being detected. Note these lines have to be apart from each other

for a certain distance, as noises and errors in edge detection and Hough transform may

produce duplicated lines. This is based on the assumption that despite of camera panning,

there is at least one side of the court, which has two vertical lines, being captured in the

video. On the other hand, camera zooming will always keep two of three horizontal lines,

i.e., the bottom line, middle court line and net line, in the view.

5.4.4 Experiments and Discussion

We applied the above filter and verification scheme to tennis and baseball videos, with

1 2
3

4
1

140

different color models and verification rules respectively. Our experiment results on a

one-hour tennis and a one-hour baseball video is shown in Table 5.1. Our scheme shows

very good performance on both videos. The overall recall and precision rates are about

95%.

Table 5.1 Detection results for serve and pitch scenes
Ground truth # of Miss # of False

Tennis (serve) 89 7 2
Baseball (pitch) 93 3 4

This result is very good compared to approaches using only colors. Based on our

experiments, previously proposed approaches using color histogram filtering can only

achieve about 80% precision rate in order to obtain near 100% recall. No serve scenes

should be dropped in the first filtering stage (i.e., recall rate is maximized), thus a low

filtering threshold is used. Furthermore, despite of using advanced segmentation and

feature extraction, our proposed scene detection and verification process is performed in

real time.

One thing to point out here is that the color models used in the first filtering stage

include clusters extracted from the first 10 minutes of the testing video as well as some

videos from some other games (from different channels or games). As different games

may have different color distributions, in real applications, we need to have a fairly

comprehensive color models extracted from different games in order to properly process

new incoming games. While this is a critical issue for color only approaches, our

approach is quite flexible in handling such situations. Considering there are only limited

types of play fields, we can lower our filtering threshold to allow more false alarms in the

first stage, and rely on the feature based verification process to improve precision rate.

141

5.5 Event Detection

In parsing the game structures, we have presented a scene detection approach using

spatial-temporal features. In this section, focus will be on detecting and summarizing

what happened in an interesting scene. Especially, we will adapt our moving object

detection algorithm to track a tennis player in real-time, and analyze his or her trajectory

to obtain certain play facts.

5.5.1 Player Tracking

In chapter 4, we presented an automatic moving object detection method that contains

two stages: an iterative motion layer detection step being performed at individual frames;

and a temporal detection process combining multiple local results within an entire shot.

Here we adapt this approach to track tennis players within court view in real time.

Currently we focus on the player who is close to the camera. The player at the opposite

side is smaller and not always in the view. It is harder to track small regions in real time

because we need to down-sample spatially to reduce computation complexity.

The local motion layer detection process is similar to what we previously explained in

5.4.2 (Figure 5.6), down-sampled I- and P-frames are segmented and compared to extract

motion layers. The reason to skip B-frames is because bi-direction predicted frames

require more computation to decode. To ensure real-time performance, only one pair of

anchor frames are processed every half second. For a MPEG stream with a GOP size of

15 frames, the I-frame and its immediate following P-frame are used. Motion layer

detection is not performed in later P frames in the GOP. This change requires a different

temporal detection process to detection moving objects. The process is described as

142

follows.

As half second is a rather large gap for the estimation of motion fields, motion-based

region projection and tracking from I frame to another I frame are not reliable, especially

when a scene contains fast motion. Thus, a different process is required to match moving

layers detected at individual I-frames. We use the following temporal filtering process to

select and match objects that are detected at I frames.

Assume k
iO is the kth object (k=1,…,K) at the ith I-frame in a video shot, k

ip
r , k

ic
v

and

k
is are the center position, mean color and size of the object respectively. We define the

distance between k
iO and another object at jth I-frame, l

jO , as weighted sum of spatial,

color and size differences.

l
j

k
is

l
j

k
ic

l
j

k
ip

l
j

k
i sswccwppwOOD −+−+−= vvvv

),((5.5)

where pw , cw and sw are weights on spatial, color and size differences respectively. If

),(l
j

k
i OOD is smaller than a given threshold, O_TH, objects k

iO and l
jO match with each

other. We then define the match between an object with its neighboring I-frame δ+i as

follows,



 <∃

=+ ++

otherwise

THOOODO
iOF

l
i

k
i

l
ik

i

_),(,

0

1
),(δδδ (5.6)

where n,...,1±=δ . Let ∑
±=

+=
n

k
i

k
i iOFM

,...,1

),(
δ

δ be the total number of frames that have

matches of object k
iO (k=1,…,K) within the period δ−i to δ+i , we select the object

with maximum k
iM . This means that if)(max

,...,1

k
i

Kk

r
i MM

=
= , the rth object is kept at the ith

I-frame. The other objects are dropped. The above process can be considered as a general

143

temporal median filtering operation.

After the above selection, we obtain the trajectory of the lower player by sequentially

taking the center coordinates of the selected moving objects at all I-frames. There are

some issues that need some discussion here. First, if no object is found in a frame, linear

interpolation is used to fill the missing point. When there are more than one objects being

selected at a frame (in the situation when more than one objects have the same maximum

number), the one that is spatially close to its precedent is used. In addition, for speed

reason, instead of using affine model to compensate camera motion, here we use the

detected net lines to roughly align different instances.

Experimental tracking results of one sever scene is shown in Figure 5.8.

Figure 5.8 Tennis player tracking within a serve scene (results are shown on 8 I-frames with a 15-frame
interval)

The first row shows down sampled frames. The second row contains final player

tracking results. The body of the player is well tracked and detected. Successful tracking

of tennis players provides a foundation for high-level semantic analysis. Compared with

the tracking algorithm in [102], which computes residual errors to find moving objects

and then searches players in pre-defined windows, our approach provides more accurate

as well as real time performance.

5.5.2 Trajectory Analysis

The extracted trajectory is analyzed to obtain play information. Presently, we focus on

144

two aspects. The first one is the position of a player. As players usually play at bottom

lines, we want to find cases when a player moves to the net zone. The second one is to

estimate the number of strikes a player conducted within a serve. Users who want to learn

stroke skills or play strategies may be interested in serves with more strikes.

Given a trajectory containing K coordinates, kp
v

(k=1,…,K), at K successive I-frames,

we first detect “still points” and “turning points”. kp
v

is a still point if,

THpppp kkkk <−− +−),min(11

vvvv

(5.7)

where TH is a pre-defined threshold. Furthermore, two consecutive still points are

merged into one. If point kp
v

is not a still point, the angle at the point is examined. kp
v

is

a turning point if

o
kkkk pppp 90),(11 <∠ +− (5.8)

An example of object trajectory is shown in Figure 5.9. After detecting still and

turning points, we use them to judge the player’s positions. If there is a position close to

the net line (vertically), the serve is classified as net-zone play. The estimated number of

strokes is the sum of the numbers of turning and still points.

Figure 5.9 Detection of still and turning points in object trajectory

Experiment results of the above one-hour video are given in Table 5.2. In the video,

the ground truth includes 12 serves with net play within about 90 serve scenes (see Table

still point

turning point

145

5.1), and totally 221 strokes in all serves. Most net plays are correctly detected. False

detection of net plays is mainly caused by incorrect extraction of player trajectories or

court lines. Stroke detection has a precision rate about 72%. Beside the reason of

incorrect player tracking, some errors are caused by limitations of our estimation model.

First, at the end of a serve, a player may or may not strike the ball in his or her last

movement. Many serve scenes also show players walking in the field after the play. In

addition, a sever scene sometimes contain two serves if the first serve failed. These may

cause problems since currently we detect strokes based on the movement information of

the player. To solve these issues, more detailed analysis of motion such as speed,

direction, repeating patterns in combination with audio analysis (e.g., hitting sound) will

be very useful.

Table 5.2 Trajectory analysis results for one hour tennis video
of Net Plays # of Strokes

Ground Truth 12 221
Correct Detection 11 216
False Detection 7 81

5.6 A Summarization and Browsing Interface

As we have observed, video data contain large amount of visual and semantic

information. Even after content indices are generated, how to show these indices in a

limited display is still a challenging issue. In this section, we present a system for video

browsing and summarization using the structure parsing and event detection results

presented in this thesis. The system has two unique access methods for users to find

desired video shots.

146

(a) (b)

Figure 5.10 Summarization interface providing scene index to video

First, the system provides a summarization interface (Figure 5.10a). It shows the

statistics of video shots, such as number of long, intermediate and short shots. It also

shows the number of some common kinds of scenes in a specific domain. For instance, in

tennis, there are serve, net-zone play, commercial and etc.). Seeing these summaries,

users may follow up with more specific request by choosing a category (e.g., serve). As

shown in Figure 5.10b, from here users can directly go to any interesting scenes.

The second interface combines the sequential temporal order and the hierarchical

structure among all video shots within a video. As shown in Figure 5.11, the structure

tree is in the left window. In this example, games are listed at the top level. There are

commercial breaks between games. Under each game, there are many serves. Each serve

contains the serving shots and a few follow-up shots.

In the video shown in Figure 5.11, the first game includes 16 serves. Each serve

segment is labeled with the length of the segment, type of play in this serve and the

147

approximate number of strokes in a serve. For example, a label “(L) S B 4” means long

segment, server, base-line play and approximately 4 strokes.

Figure 5.11 Browsing interface providing hierarchical structure

All these elements are organized as nodes in a tree. This allows users to navigate from

more abstracted top levels to detailed levels. When users click on any nodes, the

corresponding key frame will be shown in the right window, and users can start to play

the video at the corresponding moment.

Game 1

Game 2

Commercial

Serve 1, base-line play, 2 strokes

Serve 2

Key Frame

148

5.7 Conclusion and Open Issues

In this chapter, we presented a general framework for structure parsing and high-level

event detection for sports videos, using tennis as an example. We have also tested this

performance in baseball videos. It combines domain-specific knowledge with

automatically segmented objects and features using generic machine learning techniques.

Real time processing performance is achieved by exploring redundancy in the

compressed video streams. Our experiments have demonstrated high accuracy in specific

sports domains such as tennis and baseball.

Under the framework we have developed, there are many more issues that can be

studied to produce a comprehensive summary of sports videos. For tennis videos, we can

include audio information to detect the number of strokes within each serve more

accurately. Score boards are common in all broadcasted sports programs. By detecting

these text boxes and recognizing scores, we can understand the status of a game. For

example, in a baseball game, we will be able to know when there is a new player entering

the field. We can also exam object and/or camera motion at or around special scenes

(e.g., serve in tennis, pitch view in baseball) to understand if any interesting events

happen. In baseball, when a batter hits the ball, the camera will usually follow the flying

ball or the running players.

By analyzing structures and detecting interesting events in videos, we will able to

provide efficient browsing, searching and summarization functions to users, possibly in

real time for live contents. We can also generate short highlights of important portions

within a long game.

149

Chapter 6

Conclusion and Future Work

In this thesis, we present our work on segmentation, feature extraction, index and

summarization of digital video content. A unified object-based video representation

model is proposed and applied to build efficient video indexing and search systems. Our

work addressed the following five basic issues involved in typical video indexing

scenarios.

• The first one is temporal segmentation (i.e., scene cut detection), which breaks

video streams into temporally consistent units.

• The second is spatial-temporal segmentation that extracts and tracks objects

contained in videos.

• The third one is to define and compute effective features of extracted objects.

• The fourth one is to build an indexing and retrieval schema that supports good

feature based matching.

• Finally, domain knowledge and production rules should be included and linked to

low-level features to index high level events and structures in videos.

Following the natural processing flow of digital video content, we first demonstrated a

robust and real-time scene cut detection schema that combines color, edge and motion

150

features on both compressed and uncompressed domains. The decision tree based

learning method is used to build detection rules. We developed a new approach to find

gradual transitions by examining their starting and ending edges. Special situations such

as flashlights and aperture changes are studied. Our extensive experiments show that the

algorithms perform well for different kinds of videos, including sports, sitcom, news,

cartoon, movie and home videos.

Then we presented an automatic region segmentation system for content-based video

search. The system segments and tracks spatial consistent regions through each video

shot. It then computes visual features of extracted regions to build visual libraries that

support region-based search for video shots. To track salient regions reliably through

video shots, we developed new intra-frame and inter-frame segmentation methods using

fusion of color, edge and motion features. A web-based video query system that has more

than 3,000 video shots is built. Both visual and motion features are computed and stored.

The query system allows users to do spatial-temporal search of video shots by drawing

regions and specifying features. Promising results are observed in both segmentation and

query experiments.

Based on the robust region segmentation and tracking techniques we have developed,

semantic object segmentation and tracking is studied to support higher-level object-based

video representation and description. We introduced an integrated schema for semantic

object segmentation and content-based object search using the region-based video object

model. A semi-automatic video object segmentation system, AMOS, which combines

low level automatic region segmentation with user inputs, is developed to define and

track semantic video objects. The system utilizes an iterative region aggregation and

151

boundary alignment process to generate and track objects. Our experiments show that our

approach can accomplish fairly accurate object boundaries. Besides we also presented a

fully automatic moving object detection method using global temporal consistency of

tracked objects. Using the region-based video object model, an object query model,

which effectively combines local region-level features and spatial-temporal structures, is

then presented. Our experiments have shown promising results and great promise in

developing advanced video search tools for semantic video representations. Such tools

are critical in emerging applications and standards such as MPEG-4 and MPEG-7.

Finally, we present a real-time framework to reconstruct high-level structures and

event index for live sports videos using domain specific models. We explore the

production rules and regular transition structures in sports videos. This system utilized

the segmentation and searching modules we have developed in earlier chapters to find

unique scenes and events. We show that our video segmentation and indexing techniques

can be effectively integrated into high-level video retrieval and browsing systems in

specific domains such as sports videos. Good experiment results are demonstrated on

tennis and baseball videos. Our system also includes new summarization tools and

interface that allow users to comprehend the video structures and event statistics

efficiently. Such components can be used to develop other functionalities such as

semantic compression, content-based streaming and so on.

In conclusion, we have proposed and developed various models and methods for

segmenting, indexing, searching and summarizing videos at low levels as well as

semantic levels. One key concept in our works is the object-based representation. Recent

MPEG-4 and MPEG-7 standards both utilize an object based content encoding and

152

description scheme. Our works in this thesis have shown promising results and huge

potential in this direction.

Unlike old standards where a scene is represented as a composition of pixels, MPEG-

4 adopts the concept in which the scene is represented as a composition of objects. The

ongoing MPEG-7 standard also tries to describe video content in terms of objects and

features. With these new standards, segmentation based video analysis and indexing tools

are gaining more and more interest. As a freely distributed software, our AMOS system

has been distributed to dozens of researchers and companies.

The methods and algorithms presented in this thesis are quite general. For different

practical applications, we expect these algorithms to be improved by introducing domain

models and knowledge. A smart MPEG-4 video camera for video conferencing would

use the head-and-shoulder model to improve object segmentation/tracking accuracy and

speed. A surveillance video indexing system would focus on detecting, tracking and

summarization of moving objects with static backgrounds. For other unique specific

domains, as we demonstrated for sports videos, semantic structures and events should be

defined and extracted to support efficient browsing, searching, and summarization at the

semantic level.

149

Chapter 6

Conclusion and Future Work

In this thesis, we present our work on segmentation, feature extraction, index and

summarization of digital video content. A unified object-based video representation

model is proposed and applied to build efficient video indexing and search systems. Our

work addressed the following five basic issues involved in typical video indexing

scenarios.

• The first one is temporal segmentation (i.e., scene cut detection), which breaks

video streams into temporally consistent units.

• The second is spatial-temporal segmentation that extracts and tracks objects

contained in videos.

• The third one is to define and compute effective features of extracted objects.

• The fourth one is to build an indexing and retrieval schema that supports good

feature based matching.

• Finally, domain knowledge and production rules should be included and linked to

low-level features to index high level events and structures in videos.

Following the natural processing flow of digital video content, we first demonstrated a

robust and real-time scene cut detection schema that combines color, edge and motion

150

features on both compressed and uncompressed domains. The decision tree based

learning method is used to build detection rules. We developed a new approach to find

gradual transitions by examining their starting and ending edges. Special situations such

as flashlights and aperture changes are studied. Our extensive experiments show that the

algorithms perform well for different kinds of videos, including sports, sitcom, news,

cartoon, movie and home videos.

Then we presented an automatic region segmentation system for content-based video

search. The system segments and tracks spatial consistent regions through each video

shot. It then computes visual features of extracted regions to build visual libraries that

support region-based search for video shots. To track salient regions reliably through

video shots, we developed new intra-frame and inter-frame segmentation methods using

fusion of color, edge and motion features. A web-based video query system that has more

than 3,000 video shots is built. Both visual and motion features are computed and stored.

The query system allows users to do spatial-temporal search of video shots by drawing

regions and specifying features. Promising results are observed in both segmentation and

query experiments.

Based on the robust region segmentation and tracking techniques we have developed,

semantic object segmentation and tracking is studied to support higher-level object-based

video representation and description. We introduced an integrated schema for semantic

object segmentation and content-based object search using the region-based video object

model. A semi-automatic video object segmentation system, AMOS, which combines

low level automatic region segmentation with user inputs, is developed to define and

track semantic video objects. The system utilizes an iterative region aggregation and

151

boundary alignment process to generate and track objects. Our experiments show that our

approach can accomplish fairly accurate object boundaries. Besides we also presented a

fully automatic moving object detection method using global temporal consistency of

tracked objects. Using the region-based video object model, an object query model,

which effectively combines local region-level features and spatial-temporal structures, is

then presented. Our experiments have shown promising results and great promise in

developing advanced video search tools for semantic video representations. Such tools

are critical in emerging applications and standards such as MPEG-4 and MPEG-7.

Finally, we present a real-time framework to reconstruct high-level structures and

event index for live sports videos using domain specific models. We explore the

production rules and regular transition structures in sports videos. This system utilized

the segmentation and searching modules we have developed in earlier chapters to find

unique scenes and events. We show that our video segmentation and indexing techniques

can be effectively integrated into high-level video retrieval and browsing systems in

specific domains such as sports videos. Good experiment results are demonstrated on

tennis and baseball videos. Our system also includes new summarization tools and

interface that allow users to comprehend the video structures and event statistics

efficiently. Such components can be used to develop other functionalities such as

semantic compression, content-based streaming and so on.

In conclusion, we have proposed and developed various models and methods for

segmenting, indexing, searching and summarizing videos at low levels as well as

semantic levels. One key concept in our works is the object-based representation. Recent

MPEG-4 and MPEG-7 standards both utilize an object based content encoding and

152

description scheme. Our works in this thesis have shown promising results and huge

potential in this direction.

Unlike old standards where a scene is represented as a composition of pixels, MPEG-

4 adopts the concept in which the scene is represented as a composition of objects. The

ongoing MPEG-7 standard also tries to describe video content in terms of objects and

features. With these new standards, segmentation based video analysis and indexing tools

are gaining more and more interest. As a freely distributed software, our AMOS system

has been distributed to dozens of researchers and companies.

The methods and algorithms presented in this thesis are quite general. For different

practical applications, we expect these algorithms to be improved by introducing domain

models and knowledge. A smart MPEG-4 video camera for video conferencing would

use the head-and-shoulder model to improve object segmentation/tracking accuracy and

speed. A surveillance video indexing system would focus on detecting, tracking and

summarization of moving objects with static backgrounds. For other unique specific

domains, as we demonstrated for sports videos, semantic structures and events should be

defined and extracted to support efficient browsing, searching, and summarization at the

semantic level.

153

References

1. E. H. Adelson and J. R. Bergen, “Spatio-temporal Energy Models for the Perception
of Motion”, Journal of the Optical Society of America A 2 (2), pp. 284-299, 1985.

2. G. Adiv, “Inherent ambiguities in recovering 3D motion and structure from a noisy
flow field”, IEEE Trans. On Pattern Analysis and Machine Intelligence, 11:447-489,
May 1989.

3. Gulrukh Ahanger, Dan Benson, and T.D.C.Little, "Video Query Formulation",
Storage and Retrieval for Images and Video Databases II, IS&T/SPIE Symposium on
Electronic Imaging Science & Technology, San Jose, CA, Feb 1995.

4. Edoardo Ardizzone, Mohand-Said Hacid: A Semantic Modeling Approach for Video
Retrieval by Content. IEEE International Conference on Multimedia Computing and
Systems, ICMCS 1999, 7-11 June, 1999, Florence, Italy, Proceedings, Volume II.
IEEE Computer Society, 1999 ,Vol. 2 1999: 158-162.

5. F. Arman, A. Hsu, and M.-Y. Chiu, “Feature Management for Large Video
Databases”, Proc. IS&T/SPIE Conf. on Storage and Retrieval for Image and Video
Databases, San Jose, CA, 1993, pp. 2-12.

6. F. Arman, R.Depommier, A.Hsu, and M-Y.Chiu, "Content-Based Browsing of Video
Sequences", Proceedings of ACM international Conference on Multimedia '94, Oct
15-20, San Francisco, CA, USA.

7. Y. Alp Aslandogan and Clenment T. Yu, “Techniques and systems for image and
video retrieval”, IEEE Transactions on Knowledge and Data Engineering, Vol. 11,
No. 1, January/February 1999

8. A. Ayer, and H. S. Sawhney, "Layered Representation of Motion Video Using Robust
Maximum-Likelihood Estimation of Mixture Models and MDL Encoding", Proc.Fifth
Int'l Conf Computer Vision, 1995.

9. J.L. Barron, D.J. Fleet, and S.S. Beauchemin, “Performance of optical flow
techniques”, International Journal of Computer Vision, vol. 12, 1994, 43-77.

10. A.Bascle, P.Bouthemy, R.Deriche and F. Meyer, "Tracking complex primitives in
image sequence", Proc. 12th International. Conference on Pattern Recognition, 1994.

11. J.R.Bergen, P.Anandan, K.J.Hanna and R.Hingorani, "Hierarchical model-based
motion estimation", ECCV-92. pp237-252, Santa Margarita Ligure, May 1992.

154

12. J. Ross Beveridge, Joey Griffith, Ralf R. Kohler, Allen R. Hanson and Edward M.
Riseman, “Segmenting images using localized histograms and region merging”,
International Journal of Computer Vision, 2, 311-347, 1989.

13. M. Bierling, "Displacement Estimation by Hierarchical Block Matching", SPIE Vol
1001, Visual Communication & Image Processing, 1988.

14. A.D. Bimbo, E. Vicario and D. Zingoni, "Symbolic description and visual querying
of image sequences using spatio-temporal logic", IEEE Transactions on Knowledge
and Data Engineering, Vol 7, No. 4, August, 1995.

15. A.Blake, R. Curwen and A. Zisserman, "A framework for spatiotemporal control in
the tracking of visual contours", International Journal of Computer Vision, 11(2):127-
145, 1993.

16. Georgi D. Borshukov, Gozde Bozdagi, Yucel Altunbasak and A. Murat Telalp,
“Motion segmentation by multistage affine classification”, IEEE transaction on image
processing, Vol 6, No 11, Nov 1997.

17. P. Bouthemy and E. Framcois, “Motion segmentaion and qualitative dynamic scene
analysis from an image sequence”, Int. Journal of Computer Vision, vol. 10, no. 2,
pp157-182, 1993.

18. Charles S. Carman and Michael B.Merickel, "Supervising ISODATA with an
Information Theoretic Stopping Rule", Pattern Recognition , Vol 23, No 1/2 pp.185-
197, 1990.

19. Hyun Sung Chang, Sanghoon Sull and Sang Uk Lee, “Efficient Video Indexing
Scheme for Content-Based Retrieval”, IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 9, No.8. Dec 1999.

20. Shih-Fu Chang and John R. Smith, "Extracting Multi-dimensional Signal Features for
Content-Based Visual Query," SPIE Symposium on Visual Communications and
Image Processing, May 1995.

21. S.-F. Chang, W. Chen, H. Meng, H. Sundaram, and D. Zhong, "VideoQ: An
Automated Content-Based Video Search System Using Visual Cues", ACM 5th
Multimedia Conference, Seattle, WA, Nov. 1997.

22. S. K. Chang and A. Hsu, "Image information systems: Where do we go from here?,"
IEEE Trans. on Knowledge and Data Engineering, Vol. 4, No. 5 (October 1992), pp.
431-442.

23. S.-K. Chang, Q. Y. Shi, and C. Y. Yan, "Iconic indexing by 2-D strings", IEEE Trans.
Pattern Anal. Machine Intell., 9(3):413-428, May 1987.

24. J. G. Choi, Y.-K. Lim, M. H. Lee, G. Bang, J. Yoo, "Automatic segmentation based
on spatio-temporal information", ISO IEC JTC1/SC29/W11 MPEG95/M1284, Sept
1996.

25. J.-G. Choi, Y.-K. Lim, M.H. Lee, G. Bang, J. Yoo, "Automatic segmentation based
on spatio-temporal information", ISO IEC JTC1/SC29/W11 MPEG95/M1284, Sept

155

1996.

26. C.-T. Chu, D. Anastassiou and S.-F. Chang, "Hybrid Object-Based/Block-Based
Coding in Video Compression at Very Low Bitrate", J. of Image Communication-
Signal Processing, Special Issue on MPEG-4, 1997.

27. Tat-Seng Chua and Li-Qun Ruan, “A Video Retrieval and Sequencing System”,
ACM Transactions on Information Systems, Vol 13, No. 4, pp373-407, Oct. 1995.

28. S.Colonnese, A. Neri, G.Russo and P.Talone, "Moving objects versus still
background classification: a spatial temporal segmentation tool for MPEG-4",
ISO/IEC JTC1/SC29/WG11 MPEG96/571.

29. Csinger, A., Booth, K. S., & Poole, D. A. “Reasoning about video: Knowledge-based
transcription and presentation”, Proceedings of the 27th Annual Hawaii International
Conference and System Sciences (pp. 599-608). Maui, Hawaii, 1994.

30. Serhan Dagtas, Wasfi AL-Khatib, “Models for Motion-Based Video Indexing and
Retrieval”, IEEE Transactions on Image Processing, Vol. 9 No.1, Jan 2000.

31. R. Deriche and Olivier Faugeras, "Tracking line segments", Image and Vision
Computing, 8(4):261-270, 1990.

32. N.Dimitrova and F.Golshani,,"Rx for Semantic Video Database Retrieval,", Proc.
ACM Multimedia'94, pp.219-226, San Francisco, Oct 1994.

33. M.P. Dubuisson and Anil K. Jain, "Contour Extraction of Moving Objects in
Complex Outdoor Scenes", International Journal of Computer Vision, Vol. 14, pp.
83-105, 1995.

34. C.Faloutsos, R Barber, M. Flickner, J. Hafner, W. Niblack, D. Peetkovic and W.
Equitz, "Efficient and Effective Querying by Image Content", Journal of Intelligent
Information Systems(1994), p231-262.

35. Andras Farago, Tanas Linder, and Gabor Lugosi "Fast Nearest-Neighbor Search in
Dissimilarity Spaces", IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 15, No.9, Sep 1993.

36. Martin A. Fischler and Oscar Firschein, "Readings in Computer Vision", Morgan
Kaufmann Oublishers, Inc,, Los Altos, CA (1987).

37. K. S. Fu and J.K. Mui, “A survey on image segmentation”, Pattern Recognition 13, 3-
16 (1981)

38. John M. Gauch, Susan Gauch, Sylvain Bouix, Xiaolan Zhu, “Real Time Video Scene
Detection and Classification.”, Information Processing and Management 35(3): 381-
400 (1999)

39. R. Geman and D.Geman, "Stochastic relaxation, Gibbs distributions and the Bayesian
Restoration of Images", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol
PAMI-6, No. 11, pp. 721-741, 1984

40. P. Gerken, M.Wollborn and S.Schultz, "An object-based layered codec as proposal

156

for MPEG-4 scalability and compression tests - technical description", ISO/IEC
JTC1/SC29/WG11 MPEG95/359.

41. Y. Gong, H. J. Zhang and T. C. Chua, "An Image Database System with Content
Capturing and Fast Image Indexing Abilities", Proc. IEEE International Conference
on Multimedia Computing and Systems, Boston, 14-19 May, 1994, pp.121-130.

42. William I Grosky and Zhaowei Jiang, "Hierarchical Approach to Feature Indexing",
Image and Vision Computing Vol.12 , Jun 1994

43. Ullas Gargi, Rangachar Kasturi, and Susan H. Strayer, “Performance Characterization
of Video-Shot-Change Detection Methods”, IEEE Transactions on Circuits and
System for Video Technology,Vol 10, No. 1 Feb 2000

44. James Griffioen, Rajiv Mehrotra and Rajendra Yavatkar, “An Object-Oriented Model
for Image Information Representation”, CIKM 1993, Proceedings of the Second
International Conference on Information and Knowledge Management, Washington,
DC, USA, November 1-5,

45. W. I. Grosky, “Multimedia Information Systems”, IEEE Multimedia, Spring, 1994,
pp12-24.

46. J.J De Gruijter and A.B. McBRATNEY, "A Modified Fuzzy K-Means Method for
Predictive Classification", Classification and Related Methods of Data Analysis,1988

47. Chuang Gu, T. Ebrahimi, M. Kunt, "Morphological Moving Object Segmentation and
Tracking for Content-based Video Coding", Multimedia Communication and Video
Coding, Plenum Press, New York, 1996

48. Chuang Gu and Ming-Chieh. Lee "Semantic Video Object Segmentation and
Tracking Using Mathematical Morphology and Perspective Motion Model", ICIP'97,
October 26-29, 1997 Santa Barbara, CA.

49. V.N. Gudivada and V.V. Raghavan, "Design and Evaluation of Algorithms for Image
Retrieval by Spatial Similarity", ACM Transaction on Information Systems,
Vol.13,No,2,April 1995, pp.115-144.

50. A. Hanjalic, R.L. Lagendijk, J. Biemond: Automated High-Level Movie Segmentation
for Advanced Video Retrieval Systems, IEEE Transactions on Circuits and Systems
for Video Technology, Vol.9, No.4, June 1999

51. S.Horowitz and T. Pavlidis, "Picture Segmentation by a directed split-and-merge
procedure", Proc. 2nd Intl. Joint Conf. on Pattern Recognition, pp. 424-433, 1974

52. V.S.Hwang, "Tracking feature points in time-varying images using an opportunistic
selection approach", Pattern Recognition, 22(3):247-256, 1989

53. Qian Huang, Zhu Liu, Aaron Rosenberg, “Automated Semantic Structure
Reconstruction and Representation Generation for Broadcast News”, IS&T/SPIE
Conference on Storage and Retrieval for Image and Video Database VII, San Jose,
California, Jan 1999.

157

54. Mikihiro Ioka and Masato Kurokawa "A Method for Retrieving Sequences of Images
on the basis of Motion Analysis", SPIE Vol. 1662 Image Storage and Retrieval
Systems (1992)/35

55. D.-S. Jang, G.-Y. KIM and H.I. CHOI, "Model-based Tracking of Moving Object",
Pattern Recognition, Vol 30, No 6, pp999-1008, 1997

56. Anilk Jain, Richard C Dubes, “Algorithms for Clustering Data”, Englewood Cliffs,
NJ : Prentice Hall, 1988

57. M. Kass, A. Witkin and D. Terzopoulos, "Snakes: Active contour models",
International Journal of Computer Vision, pp 321-331, 1988.

58. B.Kervrann and F. Heitz, "A hierarchical framework for the segmentation of
deformable objects in image sequences", Proc. IEEE Conference on Computer Vision
and Pattern Recognition, Seattle, pp. 724-728, 1994

59. Milind R. Naphade, Igor Kozintsev, Thomas S. Huang and Kannan Ramchandran, “A
Factor Graph Framework for Semantic Indexing and Retrieval in Video”, IEEE
Workshop on Content-based Access of Image and Video Libraries (CBAIVL-2000),
Hilton Head, South Carolina USA, June, 2000

60. David A. Langan, James W. Modestino and Jun Zhang, "Cluster Validation for
Unsupervised Stochastic Model-Based Image Segmentation", IEEE Transactions on
Image Processing, Vol 7, No. 2, Feb, 1998

61. Denis Lee, Ron Barber, Wayne Niblack, Myron Flickner, Jim Hafner, and Dragutin
Petkovic ,"Query By Image Content Using Multiple Objects and Multiple Features:
User Interface Issues", Proceedings of 1st Intelnational Conf. on Image Processing
(ICIP), Vol II, Nov. 1994

62. Suh-Yin Lee and Huan-Ming Kao, "Video Indexing - An Approach Based on Moving
Object and Track", SPIE Vol 1908 (1993)/25

63. C.-S. Li, J.R. Smith, L. Bergman and V. Castelli, "Sequential Processing for Content-
based Retrieval of Composite Objects", SPIE Storage&Retrieval of Image/Video DB,
1998.

64. Rainer Lienhart, Christoph Kuhmunch and Wolfgang Effelsberg, “On the Detection
and Recogonition of Television Commercials”, Proc. of IEEE International
Conference on Multimedia Computing and Systems, June, 1997, Ottawa, Canada

65. ISO/IEC 13818 –2 Committee Draft (MPEG-2)

66. "Description of MPEG-4", ISO/IEC JTC1/SC29/WG11 N1410, MPEG document
N1410 Oct. 1996.

67. “Introduction to MPEG-7 (version 1.0)”, ISO/IEC JTC1/SC29/WG11 N3545,
Beijing, July 2000

68. Rainer Lienhart, Silvia Pfeiffer, and Wolfgang Effelsberg, “Video Abstracting”,
Communications of The ACM December 1997/Vol. 40, No.12

158

69. J. Meng, Y. Juan and S.-F. Chang, "Scene Change Detection in a MPEG Compressed
Video Sequence, " SPIE Symposium on Electronic Imaging: Science & Technology-
Digital Video Compression: Algorithms and Technologies, SPIE vol. 2419, San Jose,
Feb. 1995.

70. J. Meng and S.-F. Chang, "Tools for Compressed-Domain Video Indexing and
Editing", SPIE Conference on Storage and Retrieval for Image and Video Database,
San Jose, Feb. 1996.

71. J. Meng and S.-F. Chang, "CVEPS: A Compressed Video Editing and Parsing
System," ACM Multimedia Conference, Boston, MA, Nov. 1996.

72. Rajiv Mehrotra and James E. Gary, "Similar-Shape Retrieval In Shape Data
Management", IEEE Computer, Vol. 28, No. 9, September 1995.

73. Francois G. Meyer and Patrick Bouthemy, "Region based tracking using Affine
Motion Models in Logn Image Sequences", CVGIP: Image Understanding, Vol. 60,
No. 2, Spet, pp. 119-140, 1994

74. T.P. Minka and R. W. Picard, "Interactive Learning using a Society of Models", MIT
Media Lab Perceptual Computing TR #349, 1996.

75. A. Moghaddamzadeh and N. Bourbakis, “A Fuzzy Region Growing Approach for
Segmentation of Color Images”, Pattern Recognition, Vol 30, No 6 , pp 867-881,1997

76. F. Moscheni, F.Dufaux and M.Kunt, “A new two-stage global/local motion
estimation based on a background/foreground segmentation”, IEEE Proc ICASSP’95,
Detroit, MI, May 1995

77. S.K. Murthy, S. Kasif, and S. Salzberg, “A System for Induction of Oblique Decision
Trees”, Journal of Artificial Intelligence Research 2:1 (1994), 1-32.

78. Akio Nagasaka and Yuzuru Tanaka,"Automatic Video Indexing and Full-Video
Search for Object Appearances", Visual Database Systems II, Elsevier Science
Publishers B.V.1992

79. W. Niblack, et, al, “The QBIC Project: Querying Images by Content Using Color,
Texture and Shape”, Proc. IS&T/SPIE. on Storage and Retrieval for Image and Video
Databases I, San Jose, CA, Februrary 1993.

80. B.C. O'Connor, “Selecting Key Frames of Moving Image Documents: A Digital
Environment for Analysis and Navigation”, Microcomputers for Information
Management, 8(2), pp. 119-133, 1991.

81. Michael Ortega, Yong Rui, Kaushik Chakrabarti, Sharad Mehrotra and Thomas
Huang, "Supporting Similarity Queries in MARS", ACM Multimedia '97, Seattle,
WA, Nov. 1997.

82. Nikhil R. Pal and Sankar K. Pal, "A review on Image Segmentation Techniques",
Pattern Recognition, Vol 26, No. 9, pp1277-1294, 1993

83. Seungyup Paek and Shih-Fu Chang, "The Case for Image Classification Systems

159

Based on Probabilistic Reasoning", IEEE International Conference on Multimedia
and Expo. July 30 - August 2, 2000. New York City, NY, USA.

84. Soo-Chang Pei and Yu-Zuong Chou, “Efficient MPEG Compressed Video Analysis
Using Macroblock Type Information”, IEEE Transactions on Multimedia, Vol. 1, No.
4 Dec 1999

85. A.P. Pentland, R. W. Picard and S. Scarloff, “Photobook: tools for content-based
manipulation of image database”, Proc. IS&T/SPIE. on Storage and Retrieval for
Image and Video Databases II, San Jose, CA, 1994, pp.34-47.

86. E.G.M. Petrakis and C. Faloutsos, "Similarity Searching in Large Image Database",
TR# 3388, Dept. of Computer Science, University of Maryland.

87. Pfeiffer, S.; Lienhart, R.; Fischer, S.; Effelsberg, W. “Abstracting Digital Movies
Automatically”, Technical Report at the University of Mannheim, April 1996

88. R. Polana and R.C. Nelson, "Recognition of motion from temporal texture",
Proceedings CVPR '92 (IEEE Computer Society Conference on Computer Vision and
Pattern Recognition), Champaign, IL, June 15-18, 1992 (IEEE Computer Society
Press), 129-134.

89. R.W.Picard and T.Kabir, “Finding Similar Patterns in Large Image Databases”, Proc.
IEEE conference on Acoustics, Speech and Signal Processing, Minneapolis, MN,
April 1993.

90. R. W.Picard, T. Kabir and F. Liu "Real-time Recognition with the entire Broads
Texture Database", CVPR, 1993.

91. L. A. Rowe, J. S. Boreczky, and C. A. Eads, “Indexes for User Access to Large Video
Databases”, Proc. IS&T/SPIE Conf. on Storage and Retrieval for Image and Video
Databases II, San Jose, CA, 1994, pp. 150-161.

92. E. Saber, A.M. Takalp, & G. Bozdagi, "Fusion of Color and Edge Information for
Improved Segmentation and Edge Linking," in IEEE ICASSP'96, Atlanta, GA, May
1996.

93. Hiroaki Sakamoto, Hideharu Suzuzi, and Akira Uemori, "Flexible Montage Retrieval
for Image Data", Storage&R for I&V Databases II , SPIE Vol.2185/25

94. Philippe Salembier and Montse Pardas, "Hierarchical Morphological Segmentation
for Image Sequence Coding", IEEE Transactions on Image Processing Vol 3, No. 5,
Sept 1994

95. Toshio Sato, Takeo Kanade, Ellen K. Hughes, Michael A.Smith, “Video OCR for
Digital News Archives”, Proc. Of the 1998 International Workshop on Content-based
Access of Image and Video Database, January 3, 1998 Bombay, INDIA

96. Drew D.Saur, Yap-Pen Tan etc. “Automated Analysis and Annotation of basketball
Video”, Proceedings of SPIE's Electronic Imaging conference on Storage and
Retrieval for Image and Video Databases V, Feb 1997.

160

97. J.C.Scholtes, "Unsupervised Learning and the Information Retrieval Problem",
IJCNN, Vol 1, 1991, pp95-100

98. Eero P.Simoncelli, Edward H. Adelson, David J. Heeger "Probability Distributions of
Optical Flow", Proc. Conf. Comput .Vis. Patt. Recog. Maui, pp 310-315

99. J.R. Smith and S.-F. Chang, "VisualSEEk: a fully automated content-based image
query system", ACM Multimedia 96, Boston, MA, Nov 20 1996.

100. J. R. Smith and S.-F. Chang, "Searching for Images and Videos on the World-
Wide Web," IEEE Multimedia Magazine, 1996.

101. M. Stricker and M. Orengo, “Similarity of Color Images”, Proc. IS&T/SPIE.
Conf. on Storage and Retrieval for Image and Video Databases, San Jose, CA, 1993.

102. G. Sudhir, John C.M. Lee and Anil K. Jain, “Automatic Classification of Tennis
Video for High-level Content-based Retrieval”, Proc. Of the 1998 International
Workshop on Content-based Access of Image and Video Database, January 3, 1998
Bombay, INDIA

103. H. Sundaram and S.F. Chang, "Efficient Video Sequence Retrieval in Large
Repositories," Proc. SPIE Storage and Retrieval for Image and Video Databases VII,
San Jose CA, Jan 23-29 1999.

104. H. Sundaram and S.F. Chang, “Determining Computable Scenes in Films and
their Structures using Audio Visual Memory Models”, ACM Multimedia 2000, Oct
30 - Nov 3, Los Angeles, CA.

105. C.Swanberg, C.-F. Shu, and R. Jain, “Knowledge Guided Parsing in Video
Databases”, Proc. IS&T/SPIE Conf. on Storage and Retrieval for Image and Video
Databases, San Jose, CA, 1993.

106. Mark Tabb and Narendra Ahuja, "Multiscale Image Segmentation by Integrated
Edge and Region Detection", IEEE Transactions on Image Processing, Vol 6, No. 5,
May 1997

107. Daniel Toth, Til Aach, and Volker Metzler, “Illumination-Invariant Change
Detection”, Proceedings of the 4th IEEE Southwest Symposium on Image Analysis
and Interpretation, Austin Texas, Apr 2000

108. Alain Tremeau and Nathalie Borel, "A Region Growing and Merging Algorithm
to Color Segmentation", Pattern Recognition, Vol 30, No. 7, pp 1191-1203, 1997

109. N.Ueda and K. Mase, "Tracking moving contours using energy minimizing elastic
contour models", Computer Vision-ECCV'92, Vol 588, pp453-457, Springer-Verlag,
1992.

110. Luc Vincent and Pierre Soille, "Watersheds in Digital Spaces: An efficient
Algorithm Based on Immersion Simulations", IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol 13, No. 6, June, 1991.

111. H. Wang and S.-F. Chang, “Automatic Face Region Detection in MPEG Video

161

Sequences”, SPIE's Photonics China '96 - Electronic Imaging and Multimedia
Systems, Beijing, China, November 1996.

112. J.Y.A. Wang and E. H. Adelson, "Representing Moving Images with Layers",
IEEE Transactions on Image Processing, Vol 3, No. 5, Sept 1994.

113. J.Y.A Wang and E. H. Adelson, “Spatio-temporal segmentation of video data”,
SPIE Proc Image and Video Processing II, Vol 2182, San Jose, CA, Feb 1994.

114. Y. Weiss and Edward. H. Adelson, "Perceptually organized EM: A framework for
motion segmentation that combines information about form and motion", MIT media
Lab Perceptual Computing TR. #315.

115. J. K. Wu and A. D. Narasimhalu, "Identifying Faces Using Multiple Retrievals",
IEEE Multimedia, Summer, 1994, pp27-38.

116. Boon-Lock Yeo and Bede Liu, “On the extraction of DC Sequence From MPEG
Compressed Video”, International Conference on Image Processing, Washington,
D.C., USA, Oct. 1995

117. M.M. Yeung, B.L. Yeo and B. Liu, "Extracting Story Units from Long Programs
for Video Browsing and Navigation", International Conference on Multimedia
Computing and Systems, June 1996.

118. Minerva M. Yeung, Boon-Lock Yeo, Wayne Wolf and Bede Liu, “Video
Browsing using Clustering and Scence Transitions on Compressed Sequences”,
Multimedia Computing and Networking, San Jose, Feb. 1995.

119. Ramin Zabih, Justin Miller, Kevin Mai, ”A Feature-Based Algorithm for
Detecting and Classifying Scene Breaks”, ACM Multimedia, 1995. pp189-200.

120. Kui Zhang, Miroslaw Bober and Josef Kittler, "Motion Based Image
Segmentation for Video Coding", Proceedings of the International Conference on
Image Processing, Washington (ICIP'95) Los Alamitos, CA, USA, pp.476-479, 1995.

121. H. J. Zhang and S. W. Smoliar, “Developing Power Tools for Video Indexing and
Retrieval”, Proc. IS&T/SPIE. on Storage and Retrieval for Image and Video
Databases II, San Jose, CA, 1994, pp.140-149.

122. HongJiang Zhang, Yihong Gong, etc. "Automatic Parsing of News Video", Proc.
IEEE Int'l Conf. Multimedia Computing and Systems, IEEE Computer Society Press,
Los Alamitos, Calif.,1994.

123. H. J. Zhang et al., “Automatic Parsing and Indexing of News Video”, Multimedia
Systems, 2 (6), pp. 256-266, 1995.

124. H. J. Zhang, S. W. Smoliar, and J. H. Wu, “Content-Based Video Browsing
Tools”, Proc. IS&T/SPIE Conf. on Multimedia Computing and Networking 1995,
San Jose, CA, 1995.

125. H. J. Zhang and D. Zhong, "A scheme for visual feature based image indexing",
Proc. IS&T/SPIE Conf. on Storage and Retrieval for Image and Video Databases III,

162

February 1995, San Jose, pp. 36-46.

126. H.J.Zhang, C.Y.Low, S.W.Smoliar and J.H.Wu "Video Parsing, Retrieval and
Browsing: An Intergrated and Content-Based Solution", Proc.ACM Multimedia'95,
San Francisco, Nov 5-9, 1995.

127. Di Zhong and S.-F.Chang, "Video Object Model and Segmentation for Content-
Based Video Indexing", ISCAS'97, HongKong, June 9-12, 1997.

128. Di Zhong and S.-F.Chang, "Spatio-Temporal Video Search Using the Object
Based Video Representation", ICIP'97, October 26-29, 1997 Santa Barbara, CA.

129. Di Zhong, H. J. Zhang and S.-F.Chang, "Clustering methods for video browsing
and annotation", Storage & Retrieval for Still Image and Video Databases IV,
IS&T/SPIE's Electronic Imaging: Science & Technology, Feb. 96.

130. Di Zhong and Shih-Fu Chang, "AMOS - An Active MPEG-4 Video Object
Segmentation System", ICIP-98, Chicago, Oct. 1998.

