
Statistical Part-Based Models:
Theory and Applications in Image Similarity,

Object Detection and Region Labeling

Dong-Qing Zhang

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2005



c© 2005

Dong-Qing Zhang

All rights reserved



Abstract

Statistical Part-Based Models:

Theory and Applications in Image Similarity,

Object Detection and Region Labeling

Dong-Qing Zhang

The automatic analysis and indexing of visual content in unconstrained domain are impor-

tant and challenging problems for a variety of multimedia applications. Much of the prior

research work deals with the problems by modeling images and videos as feature vectors,

such as global histogram or block-based representation. Despite substantial research efforts

on analysis and indexing algorithms based on this representation, their performance remains

unsatisfactory.

This dissertation attempts to explore the problem from a different perspective through a

part-based representation, where images and videos are represented as a collection of parts

with their appearance and relational features. Such representation is partly motivated by the

human vision research showing that the human vision system adopts similar mechanism to

perceive images. Although part-based representation has been investigated for decades, most

of the prior work has been focused on ad hoc or deterministic approaches, which require

manual designs of the models and often have poor performance for real-world images or

videos due to their inability to model uncertainty and noise. The main focus of this thesis

instead is on incorporating statistical modeling and machine learning techniques into the

paradigm of part-based modeling so as to alleviate the burden of human manual design,



achieve the robustness to content variation and noise, and maximize the performance by

learning from examples.

We focus on the following three fundamental problems for visual content indexing and

analysis : measuring the similarity of images, detecting objects and learning object models,

and assigning semantic labels to the regions in images. We focus on a general graph-based

representation for images and objects, called Attributed Relational Graph (ARG). We explore

new statistical algorithms based upon this representation. Our main contributions include the

following: First, we introduce a new principled similarity measure for ARGs that is able to

learn the similarity from training data. We establish a theoretical framework for the similarity

calculation and learning. And we have applied the developed method to detection of near-

duplicate images. Second, we extend the ARG model and traditional Random Graph to a new

model called Random Attributed Relational Graph (Random ARG) to represent an object

model. We show how to achieve object detection through constructing Markov Random

Fields, mapping parameters and performing approximations using advanced inference and

learning algorithms. Third, we explore a higher-order relational model and efficient inference

algorithms for the region labeling problem, using video scene text detection as a test case.
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Chapter 1

Introduction

1.1 Motivation

Due to the popularity of digital cameras and camcorders, we have witnessed the dramatic

increase of visual content such as photos and videos in recent years. The increased use of

visual content has fostered new multimedia applications. For instance, flickr.com, a photo

sharing web site, allows registered users to share their photos and tag keywords to the photos

for categorization and browsing (Figure 1a). Photo blog is another popular application that

enables users to publish their photos and add annotations (Figure 1b). In video domains,

video streaming is becoming increasingly pervasive. Many major online media websites have

established their free news video services, such as CNN.com (Figure 1c). The emergence of

these applications call for the needs of managing vast amount of visual content in automatic

ways.

In contrast to the significant advancement of the multimedia applications. technologies

for automatic visual content analysis and indexing are still lacking. Until today, it remains

difficult for a computer to understand the content in a natural image. The understanding of
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(a) (b)

(c)

Figure 1.1. (a) flickr.com (b) photo blog (c) cnn free news videos

visual content in an image is considered so difficult that people has coined a phrase called

“semantic gap” to indicate the difficulty of translating the low-level features into high-level

semantics.

Most of the traditional techniques for analyzing and indexing content are based on the

classic pattern recognition theory [23]. This standard paradigm first represents an image or

a segment of video as a feature vector, which is then followed by a classification machine to

map the features (continuous or discrete variables) to semantic labels (symbolic variables).

Behind this paradigm is the rigorous mathematical framework for automatic learning and

decision. Research on automatic visual content analysis has been following this framework

for many years. The advancement of the research on machine learning and pattern recognition

has resulted in sophisticated statistical and learning algorithms. Indeed, we have seen that the

performance of image retrieval and semantic concept detection has significantly increased

due to the use of machine learning algorithms, such as Support Vector Machines (SVM),
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Boosting and Ensemble learning. There is no doubt that statistical and machine learning

algorithm will continue to play indispensable roles in visual content analysis systems. Yet,

despite the pervasive use of statistical methods with sophisticated optimization algorithms,

the performance of visual content analysis and indexing by computers is far behind what can

be done by their human counterparts.

Such discrepancy raises fundamental psychological and philosophical questions beyond

technical designs of recognition algorithms : how does human being perceive images ?

For decades, human vision researchers have been studying how human being perceives and

understands images [101][8]. The psychological studies indicate that there is a dramatic

difference of image understanding between human being and the standard paradigm men-

tioned above. It turns out that human image perception is goal-driven, active and partly

sequential[81]. The process can be roughly divided into two subsystems: pre-attentive sub-

systems and attentive subsystems. In the pre-attentive subsystem, human eyes try to detect

salient parts, such as corners, in the image. In the attentive subsystem, these detected parts

are grouped into meaningful high-level entities such as objects. Feedback from the attentive

subsystem could in turn assists the pre-attentive subsystem to locate the salient parts. Such

mechanism motivates the use of similar approaches in computer vision or image retrieval,

namely, decomposing images or objects into a collection of parts (visual primitives such as

regions or corners) and exploring part attributes and relations for analysis and retrieval.

Image analysis by parts is not a new idea, and has been widely adopted by the computer

vision researchers from its very beginning. For example, generalized cylinder is a part-based

model proposed by Marr [67] for describing three-dimensional objects. Marr proposed that a

three-dimensional object can be constituted by a set of generalized cylinders, whose parame-

ters characterize individual parts. Similar representations for two-dimensional objects have

also been developed. For instance, a well-known face recognition model called Elastic Bunch

Graph [106] represents a face as a set of parts with spatial relations. Despite the success of
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these methods in constrained domains, such as synthetic images or photos under controlled

laboratory conditions. It is difficult to apply them for real-world images or videos. The main

problem is that irrelevant contents and noise are ubiquitous in real-world images. As a result,

it is difficult to guarantee that parts relevant to the target object can be accurately detected and

features are precise to describe the detected parts. Taking the example of the Elastic Bunch

Graph model, it generally requires that the vertices of the graph be well registered to the cor-

ner points in the face. This could be achievable for the face images under good conditions, it

is rather difficult to realize if faces are embedded in complex scenes, or with mustache and

glasses.

On the other hand, if we look back at the pattern classification based methods, we will

find that, in many circumstances, they can often achieve satisfactory results in real-world

images or videos although their representations may be not optimal. One example is the

SVM-based face detection system [73]. The system exhaustively slides a search window

over image plane, extracts feature vectors within the windows and feeds them into SVM

for classification. Although the computation cost of the system is extraordinary high, its

performance has been shown to be satisfactory for face detection in natural images [73]. The

main reason for this robustness is that the SVM model is able to accommodate and learn face

variations from the training data, achieving high robustness to various conditions.

Based on the above analysis, a natural question is whether or not we can establish similar

statistical framework for the part-based models. Namely, extend the pattern classification

and machine learning methods to part-based representations. Compared with the traditional

feature vector based approaches, pattern classification and machine learning on part-based

representation or non-vector space models is a much less explored area. Currently, there is

no formal theoretical framework for non-vector space models. Therefore combining the part-

based model and statistical methods is not trivial. The non-triviality draws a clear boundary

between the traditional deterministic part-based models and the new ones with statistical
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Figure 1.2. Part-based modeling and analysis

modeling. We may call the previous part-based models as classic part-based models and the

new ones as statistical part-based models.

In order to make the following chapters more comprehensive, we first present a brief

overview about the part-based modeling in the following section.

1.2 Introduction to Part-based Modeling

The part-based modeling procedure usually contains three major components: part de-

tection, feature Extraction and part-based representation (Figure 1.2). Part detection locates

the salient visual primitives in an image, such as corners or local image patches. Feature ex-

traction is used to extract informative attributes for describing individual parts and inter-part

relationships. Part-based representation is used to organize the detected parts and their at-

tributes as an integrated entity, as an input to the part-based analysis subsystem, which could

be similarity computation, object detection etc.
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1.2.1 Part Detection in Images

Parts are elementary building blocks for part-based analysis. Here parts mean visual

primitives in an image. Parts can be corners detected by corner detection algorithm, regions

after color region segmentation, etc. The choice of specific part detector depends on charac-

teristics of the applications. For example, for image similarity, our experiments have shown

that corner point based representation results in better performance than region-based repre-

sentation.

Corner detection is also known as interest point detection. Although there are several

algorithms for corner detection, the principles behind those algorithms are very similar. The

most widely used corner detection algorithm may be the Harris corner detector [39], which

realizes corner detection by computing the second-order geometric features in a local image

patch. Another popular corner detection algorithm is the SUSAN corner detector [92], which

realize corner detection by calculating the second order spatial derivative around a pixel.

Region segmentation is intended to partition an image into a set of disjoint regions with

homogenous properties. Region segmentation has been an active research topic in computer

vision. Major algorithms include K-mean clustering based approach, Graph Cuts [88] and

mean-shift algorithm [16]. Compared with interest point detection, the main limitation of

region segmentation is its sensitivity to noise. Segmenting two images with the same visual

content may end up with totally different region segmentation schemes because of noise.

Furthermore, because the segmented regions are disjoint, the errors of region segmentation

often cannot be corrected in the later analysis stage.

Another type of region detection algorithm, called salient region detector, yields overlap-

ping regions rather than disjoint regions. The benefit of using overlapping region is to create

an overcomplete representation of an image, so that in the analysis stage, high-level knowl-

edge can be utilized to eliminate the irrelevant or noisy regions. A popular salient region
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(a) (b)

(c)

Figure 1.3. Examples of part detection. (a) corner (interest point) detection by the Harris
corner detector. (b) salient region detection by the Maximum Entropy Region detector (c)
region segmentation by the mean-shift algorithm

detector used in object detection is the maximum entropy region (MER) detector [54]. The

MER detector scans over the image. In each location (uniformly sampled on the image plane,

or at each pixel), the MER detector initialize a circle and increase the radius of the circle until

the entropy of the content within the region reaches maximum. Previous research work [30]

has shown that the MER detector performs very well in object detection.

Figure 1.3 shows examples of part detection using corner detection, region segmentation

and salient region detection.

1.2.2 Feature Extraction

After part detection, feature extraction is applied to extract the attributes of the parts.

Features can be spatial features such as the coordinates of the corner points or the centroid
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of the regions. They can be color features such as color histograms within the regions; They

can be texture features such as Gabor wavelet coefficients [22] or steerable filter coefficients

[31]. Recently, Lowe et al. [63] has proposed a new local descriptor that is extracted by Scale

Invariant Feature Transform (SIFT), which has been demonstrated as the most robust feature

against the common image transformations [69].

1.2.3 Part-based Representation

Part-based representation is intended to group the detected parts and their features all

together into an integrated entity as an input to the analysis system. Part-based representa-

tion represents an image as a collection of individual elements. Relationship among these

elements may or may not be modeled. If the relationship among parts are not modeled, the

representation is a bag-based representation. The bag-based representation has been widely

used in information retrieval, and computer vision. For example, bag-of-pixel model was pro-

posed in [51] for image representation, bag-of-keypoints was used in object detection [21].

If the relations among the parts are modeled, then it is a graph-based representation.

There are different types of graph-based representations. The simplest one is the struc-

tural graph model, where the attributes of parts are not taken into account. Such representa-

tion can be used for modeling aerial images, maps and trademarks [77]. However, the struc-

tural graph model has limited representation power for general image data, such as natural

images. Attributed Graph (AG) or Attributed Relational Graph (ARG) [42] is an augmented

graph model, in which vertices and edges are associated with discrete or real-valued feature

vectors to represent the properties of parts. Therefore, ARG can be used to represent general

image data. There are different types of ARGs. If the attributes are integers or symbols,

the model is called labeled graph. If there is no loop in the graph, the graph becomes At-

tributed Tree. Labeled graphs are important models for the research fields such as structural
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Figure 1.4. Examples of part-based representation. Color in the ARG indicates different
feature associated with the nodes

chemistry or structural biology. Compared with general Attributed Relational Graph, labeled

graphs also hold many special mathematical properties. Therefore they are also subjects of

research on combinatorics, such as analytic combinatorics [76]. For image applications, la-

beled graphs are less useful due to its limited representation power. Figure 1.4 illustrates

several examples of part-based representation.

There are two prominent distinctions between part-based representation and vector-based

representation. First, in vector-based representation, every feature vector has the same num-

ber of components, i.e. the same dimension. Second, the orders of those components are

fixed in vector-based representation. Part-based representation is more general than vector-

based representation. In part-based representation, the number of parts could vary across

different data, and there is no order associated with individual parts. These two distinctions

result in the problems of finding correspondences of parts and dealing with the removed or

inserted parts.

1.3 Major Problems Addressed and Contributions

This thesis exploits the statistical modeling and learning methods for part-based methods

for solving a few problems in visual content analysis and indexing. Specifically, we investi-
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gate the following interesting problems. First, we exploit the learnable similarity of images in

the context of part-based models. Second, we establish formal statistical models for describ-

ing the topological and attributive properties of a class of objects for object detection. Third,

we study the problem of assigning labels to segmented regions in images through higher-

order relation modeling. We elaborate each of these problems below and present a brief

overview of the past work and our main contributions. In each of the subsequent chapters,

we will provide more detailed review of the prior work.

1.3.1 Image Similarity

Measuring image similarity is a problem arising from many multimedia applications,

such as content-based image retrieval, visual data mining, etc. Image similarity itself can be

formulated in a straightforward way: given two images I1, I2, output a real-valued number

S(I1, I2) that measures their similarity. In the traditional content-based retrieval systems,

similarity is simply calculated from the feature vectors that represent images, for example the

inner product of two color histograms. Such similarity definition is simple, easy to compute

and often holds good mathematical properties favorable for efficient algorithm designs. Yet

this definition is far from optimal. For instance, two images with exactly identical color

histogram could contain totally different contents.

We suggest that a good similarity measure should be the one that is consistent with human

judgment. Namely, our proposed measure for image similarity should be motivated by the

Human Vision System.

Regarding learning of image similarity, there has been much work on similarity learning

based on vector-based presentation, for example [14][37]. It is difficult for these approaches

to achieve good similarity due to the limitation of the feature vector based representation

mentioned above.
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In comparison, part-based representation provides more comprehensive information

about the visual scene in an image. It cannot only capture the appearance features of an

image but also can characterize the relationship among parts. In the thesis, we establish a

learnable similarity framework for part-based representation. We focus on the most general

representation, i.e. Attributed Relational Graph (ARG). The similarity is defined as the prob-

ability ratio (a.k.a odds) of whether or not one ARG is transformed from the other. This

definition is partly inspired by the relevance model [79] used in information retrieval, where

document retrieval is realized by calculating the probability ratio of whether or not the query

is relevant to the document.

Transformation based similarity definition is not new, but most of the prior work is based

on computing the cost of transformation. Typical examples include string or graph edit dis-

tance [78], Earth Mover Distance (EMD) [80], etc. It is yet unknown how to establish formal

learning methods on top of these deterministic frameworks. On the other hand, probabilistic

methods for matching the vertices of ARGs are also not new. Bayesian methods have been

proposed and extended for matching structural or labeled graphs in previous papers [77][19].

However, although the Bayesian method is formal and principled for matching vertices, how

to define the similarity and aggregate the vertex-level similarity to the graph level remains a

problem. Moreover, without the definition of the graph-level similarity, learning parameters

often has to resort to vertex level annotations (vertex matching between two ARGs). Anno-

tating vertex correspondence is very time-consuming since typically the vertex number of an

ARG for representing an image ranges from 50 to 100.

One of the main contributions of this thesis is the development of a principled similarity

measure for ARGs. We show how this similarity measure relates to the partition functions of

the Markov Random Fields (MRFs) that is used for matching vertices. The log convexity of

the partition functions of MRFs leads to dual representations (a.k.a variational representation)
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of the partition functions, which are linear and tractable. The dual representation allows us

to develop a maximum likelihood estimation method for learning parameters.

The developed approach has been successfully applied to detection of Near-Duplicate

images in image databases. Image Near-Duplicate (IND) refers to two images that look

similar but have variation in content, such as object insertion and deletion, or change of

imaging conditions,such as lighting change, slight view point change, etc. Near Duplicate

images are abundant in Internet images and broadcast news videos. Detecting INDs are

useful for copyright violation identification and visual data mining. We compare the learning-

based method with the traditional energy minimization based method for ARG similarity

computation. The experimental results demonstrate that the learning-based method performs

far better than the traditional methods.

1.3.2 Object Detection

Object detection is a classic problem in computer vision. Here, the term “object detec-

tion” refers to a general problem that encompasses both object class detection (answering the

question if an image contain or not contain the specified object), and object recognition (an-

swering the question what the object is after it has been detected). Taking an example of face

detection and recognition, face detection is an object class detection problem, whereas face

recognition is an object recognition problem. Technically, the object class detection problem

is a binary classification problem, while the recognition problem is a multi-class classification

problem.

Research on object detection has evolved from simple template matching to very sophis-

ticated statistical methods in the past decades. Template matching [68] may be the earliest

exercise by computing the distance between the predetermined templates and the subimages

within an image. The poor performance of this approach implies that object detection needs
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better representation and modeling of noise rather than simple pixel level distance. Appear-

ance based methods are similar to template matching but include additional mechanism to

take into account content uncertainty and noise. Principle Component Analysis (PCA) [97]

was a classic example of appearance based method by applying techniques from linear alge-

bra. PCA consists of two components, learning and recognition. In learning, PCA discovers

the subspace of the image matrix, whose dimension in general is much smaller than that of the

original space. In recognition, PCA projects the incoming image onto the subspace and com-

pute the distance between the resulting vector and the template vectors. PCA is not merely a

dimension reduction technique. Its real advantage against template matching is the capability

of separating the signal part (the projected feature vector) and the noise (the remainder of

the projection). This leads to a more formal generative model called probabilistic PCA [95],

which explicitly formulate an image as the addition of an intrinsic image and a noise image.

Those two images are generated from certain probability density functions. The advantage

of the probabilistic PCA is its capability of modeling the noise more accurately. Beyond

the generative model, researchers also realized that for a classification problem, although

Bayesian decision based on generative models is optimal, it remains difficult to choose good

probability density functions and estimate the parameters accurately if the training data set

is small. Therefore, it is more favorable to directly optimize the classification performance

itself, rather than learn the density function indirectly. Linear Discriminant Analysis (LDA)

[27] and Support Vector Machines (SVMs) [73] are two of the discriminative algorithms that

are widely used in the context of appearance models.

Another category of object detection methods is the feature-based method [66][17] (here

”feature” means the component of an object. Therefore, its meaning is different from the

”feature” in feature-based representation) . This model is very close to the part-based ap-

proach. In feature-based methods, object recognition is realized by detecting the features

(such as eye corners in faces) and measuring their relations. For example, in face recogni-
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tion, feature-based approach finds the locations of the eyes, nose, and computes the distances

between those features as feature vectors. Feature-based approach can be considered the

precursor of the part-based models. The method have then evolved into more formal graph-

based representation. One of the extension is the well-known Elastic Bunch Graph (EBG)

model for face recognition. In EBG, vertices of the graph represent the parts of the face

and edges represent their relations. Gabor coefficients (also referred to as Gabor Jets) are

extracted to describe the local appearances of the parts. Matching between the graph and the

images are realized by energy minimization. Other similar ideas have been developed. For

example, pictorial structure represents an object as a star-like graph [29]. More recently, the

constellation model[102][30] has been proposed for object detection. Constellation model

differs from the graph-based models by modeling the spatial locations of the parts as a joint

Gaussian function. We will review these models in more details in Chapter 3.

Apart from above mentioned two methodologies. Another less used approach is the

shape-based method [57][6]. In this approach, the shape features are extracted from the

contour of an object and sent to classifiers for learning and recognition. The main problem

of shape-based approach is that the extracted contour needs to be accurate. However, this is

often difficult to achieve for objects in natural images.

Inspired by these previous work, we have developed a new method for object detection

called Random Attributed Relational Graph (Random ARG). The model extends the tradi-

tional Random Graph [25] by associating the vertices and edges of a graph with random

variables. The random variables thereby are used to characterize the variations of part ap-

pearances and relationships. Compared with the pictorial structural model, the advantage of

the Random ARG model is its ability to model the part occlusion statistics. Compared with

the constellation model, the Random ARG model has the capability of modeling a class of ob-

jects under different views. Furthermore, we show that the learning of Random ARG can be

achieved by a variational Expectation-Maximization algorithm. Our experiments show that
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the Random ARG model achieves comparable performance with the Constellation model for

detecting single-view objects, but uses much fewer learning iterations towards convergence.

In the thesis, we further extend the single Random ARG model to a mixture model to achieve

better accuracy for modeling multi-view objects.

1.3.3 Region Labeling

Region labeling refers to assigning semantic labels to regions that are extracted by region

segmentation algorithms.

Markov Random Field (MRF) [35][62] is a traditional approach to the region labeling

problem. However many of the previous approaches for region labeling only consider pair-

wise relationships (such as relative locations) between regions[70]. For most object cate-

gories, pairwise relationship is sufficient. However, for some object categories, such as visual

text, it is important to model higher-order relations. Visual text refers to text that is overlaid

on images or videos or embedded in image scenes. In images, characters in a text line usually

form a straight-line or smooth curve. The straight-line constraint is a higher-order relational

constraint that cannot be accommodated by pairwise MRFs. In this thesis, we transform the

high-order relational rules into a probabilistic model described by a higher-order MRF (MRF

with higher-order potential functions). The formulation reduces the text detection problem

to a probabilistic inference problem. We developed a Belief Propagation algorithm for the

higher-order MRF to realize efficient statistical inference. Regarding text detection in images

and videos, most of the prior work deal with the problems with ad hoc approaches, lacking a

systematic framework for learning parameters and performance optimization.
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1.4 Overview of the Thesis

In summary, the main contributions of this thesis are as follows:

1. A new learning-based algorithm for computing the similarity of Attributed Relational

Graphs and its application to measuring image similarity and detecting Image Near-

Duplicate.

2. The Random Attributed Relational Graph model with its learning method, and its ap-

plication to object detection and object model learning.

3. Region labeling by Higher-Order Markov Random Fields with a learning method based

on Higher-order Belief Propagation algorithm for higher-order MRFs, and application

to scene text detection in images and videos.

The remainder of the thesis is organized as follows:

Chapter 2: Learnable Image Similarity using Attributed Relational Graph

This chapter establishes a learning-based framework for computing the similarity of At-

tributed Relational Graphs, and its application to detecting Image Near-Duplicate in image

databases.

The chapter starts with the prior work on Attributed Relational Graph matching and

similarity. We then propose a general principle for measuring the similarity of data, called

similarity by statistical transformation. The key idea is to define the similarity as the prob-

ability ratio (odds) of whether or not one ARG is transformed from the other. We then

present the method of designing the transformation for ARG similarity. We show how to

map the transformation into a Markov Random Field (MRF) for calculating the probability

ratio. Importantly, we show that the probability ratio is related to the partition functions of
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the MRFs. The log convexity of the partition functions allows us to develop approximation

methods for the similarity calculation and maximum likelihood learning through varia-

tional approximation. Finally, we present the application of this method to detecting Image

Near-Duplicate from distributed sources. The performance of this method is compared with

previous methods for IND detection and the traditional method for ARG matching.

Chapter 3: Learning Random Attributed Graph for Part-based Object Detection

This chapter is the extension of the chapter 2. In chapter 2 we model a generative

process that transforms one ARG to the other. In this chapter, the generative process models

the generation of one ARG from a Random Attributed Relational Graph (Random ARG).

We start with the definition of the Random ARG model. Then we establish the Bayesian

decision framework through a generative model. Similar to the Chapter 2, we realize the

vertex matching and likelihood computation through rigorous design of Markov Random

Fields (MRFs). We exploit the properties of the MRFs and show that the probability ratio

of object detection relates to the partition functions of the MRFs, which leads to variational

inference and learning schemes. We also exploit the object model under different views by

incorporating a mixture model. The chapter ends with experiments to compare our proposed

methods with the Constellation model, which is considered as the state-of-the-art model.

Chapter 4: Image Region Labeling with Higher-order Statistical Relation Model

In this chapter, we deal with the problem of assigning segmented regions with labels

through higher-order relational model. Specifically, we are interested in the scene text de-

tection problem. Namely, we want to label a segmented region in the image scene either as

“text” or “non-text”. The problem is modeled as a probabilistic inference problem, where

we need to compute the marginal probability of the label assigning to each region given the

observations and labels of all other regions. This is a bit different from chapter 2 and 3,
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which deal with the problem of computing probability ratio, where probabilistic inference is

an implicit problem embedded in the variational approximation.

The chapter starts with the formation of Region Adjacency Graph, upon which a Markov

Random Field is defined to model the higher-order relations among the regions. We study the

efficient inference algorithm under the higher-order Markov Random Field (MRF) model.

The Belief Propagation (BP) algorithm is extended to the higher-order MRF using similar

derivations developed in [111], which views the BP algorithm as an optimization method

for solving the variational approximation problem. In experiments, we exploit the empirical

performance of the higher-order relational model by comparing it with the pairwise Markov

Random Field and demonstrates promising performance gain.

Chapter 5: Summary and Future Work

This chapter summarizes the results and contributions of the thesis. We discuss the main

limitations of the current work, and explore several possible directions that could lead to

future advances. We further mention the potential future applications or extensions beyond

computer vision.
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Chapter 2

Learnable Image Similarity using

Attributed Relational Graph

2.1 Introduction

In this chapter, we investigate a novel image similarity measure using the Attributed

Relational Graph (ARG) representation. We represent an image as an Attributed Relational

Graph (ARG), a mathematical model that extends the ordinary graph in graph theory by

attaching discrete or continuous feature vectors to the vertices and edges of the graph. Image

similarity therefore can be defined by the corresponding ARG similarity.

There are essentially two fundamental problems related to ARG models: matching ver-

tices and computing the similarity of two ARGs. The vertex matching problem has been

extensively investigated previously. However, relatively little attention has been paid to the

definition and computation of ARG similarity. Yet, the problem is important and challenging

for image/video indexing in unconstrained domain, such as news videos, where similarity is

often subjective and domain specific. It is therefore of great interest to develop a principled
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ARG similarity framework that is able to learn the similarity from training data provided

through subjective labeling.

This chapter presents a novel statistical similarity measure for ARGs that is able to learn

from training data. We define the similarity of two ARGs as the probability ratio (also known

as “odds” in statistics) of whether or not one ARG is transformed from the other. The trans-

formation then is reduced to a Markov Random Field which is defined on the association

graph between two ARGs. We shall prove that the probability ratio of the transformation

equals to a ratio of the partition functions of the MRFs. This important property then leads

to an approximation scheme, called variational approximation [48], to compute the proba-

bility ratio and learn the parameters of the transformation. More importantly, the proposed

learning scheme is able to learn the parameters in an unsupervised manner, meaning that

we only need to annotate whether or not two ARGs are similar without having to annotate

the vertex correspondence. The definition using probability ratio, the learning framework

and the matching algorithm are novel compared with the previous methods. We apply the

algorithm to detecting Image Near-Duplicate (IND), which is defined as two similar images

that often correspond to the same event and scene but involve changes of content and captur-

ing conditions, in a broadcast news video database. The experiment results have shown that

our proposed approach significantly outperforms prior approaches that are based on energy

minimization or image feature matching.

2.1.1 Related Work

Research on ARG matching can be dated back to the seminal work of Barrow [42], who

proposed the basic concept of modeling image scenes using relational structures. Since then,

the basic ideas have been extended. Researchers have been focusing on three major problems:
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similarity definition, vertex matching, and optimization method. We review related prior

work in the following.

Early work on ARG or graph similarity can be found in the structural pattern recognition

literature. Similarity in these papers was defined in an ad hoc manner. For instance, Shapiro

and Haralick [85] define similarity by counting consistent subgraphs of two graphs. The

similarity is then refined by Eshera and Fu [26], Sanfeliu and Fu [82] by extending the edit

distance of strings to graphs. Bunke et al. [40] then showed that the edit distance is related to

the size of the maximal common subgraph. Similarity defined by these approaches consider

mainly the about structural graph without accounting for attributes. In order to extend the

method to attributed graphs. Wilson and Hancock [77] proposed a similarity measure for

labeled graphs using the aggregated Hamming distance between the node labels together with

the size difference of the graphs. The idea is extended by Myers et al. [78] to combine the edit

distance with Wilson and Hancock’s Bayesian framework. Another method for computing

graph similarity is based on the information theoretic measure. For instance, Wong and You

[108] have tried to define an entropy measure for matching structural graphs. For ARGs,

Shi and Malik [87] has attempted to connect the ARG similarity with the eigenvalue of the

affinity matrix of the graph, where the two ARGs have to be of the same size. For general

ARGs associated with real-valued multi-variate features, ARG similarity is often defined by

the minimum value of the energy function used to associated with the vertex matching process

[42].

Vertex matching is another important problem, based on which the similarity can be com-

puted. There are two approaches to solving this problem: energy minimization and Bayesian

formulation. Energy minimization approaches reduce the vertex matching problem to a cost

optimization problem. For instance, in [42], the energy function is defined as the sum of

distance between the vertices in the two input graphs. Other formulations include linear pro-

gramming and integer programming[4][74],which are used in matching weighed graphs and
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shock graphs respectively. Another framework, Bayesian formulation, was first proposed by

Wilson and Hancock [77] and further refined by others in [19][78]. The idea is to cast the

graph matching problem as the maximization of the posterior probability of the vertex corre-

spondence, which is defined as a functional that maps the vetexes of one ARG to the other.

In [77], the probability calculation is realized by constructing a dictionary of super-clique

mapping and defining the probabilities for the entries. To overcome the complexity issues as-

sociated with the dictionary construction procedure, the method has been improved by Myers

et al. [78] using the edit distance concept. The framework was also extended to hierarchical

graphical structures in [105]. Markov Random Field method [61] can be considered as an-

other Bayesian formulation for ARG matching, which copes with the ARGs associated with

multi-variate features. The optimal vertex matching is realized by a Maximum A Posteriori

method, which is equivalent to minimizing an energy function.

Optimization is a central problem for vertex matching and similarity computation. The

optimization methods can be classified into two categories: discrete optimization and relaxed

continuous optimization. Discrete optimization attempts to directly minimize the energy

function by varying the vertex matching configurations. Examples include Simulated An-

nealing [41], Genetic Algorithm [20], and tabu search [104]. Although some of the methods

in this category guarantee to find the local minima, its computational cost is prohibitive for

practical applications. In comparison, relaxed continuous optimization is more computation-

ally favorable. The method relaxes the original equivalent integer programming problem to

a real-valued problem that can be solved by existing optimization techniques. For instance,

Pelillo et al. [74][75] find a solution that adopts the methods based on differential equations to

minimize the energy function. Almohamad and Duffuaa[4] used a linear programming based

approach. More recently, Schelleald and Schnorr [83] formulated the subgraph isomorphism

problem by semidefinite programming. Spectral method is another widely used method,

which reduces the optimization problem to finding eigen vectors. Thresholding the principal
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eigen vector yields an approximate solution for the integer programming problem. Examples

include methods proposed by Umeyama [98], Shapiro and Haralick[86], Carcassoni et al.

[12], and Scott et al. [84]. Another related relaxation method is iterative refinement based

approach, or Expectation-Maximization algorithms. This includes the methods proposed by

Gold and Rangarajan [36], Luo and Hancock[9] and Cross and Hancock [19].

Image similarity is a fundamental problem for image retrieval and search. There has been

substantial work on image similarity from the image retrieval community. Global feature

extraction and distance computation [119][7][90][14] are traditional methods for image re-

trieval. In order to achieve better representations of images, region-based image similarity is

another promising direction that has gained significant interests in recent years [91],[72],[15].

Among different representation methods for region-based image retrieval, Attributed Rela-

tional Graphs have been widely used for representing images by regions [77][61][87][58].

As image similarity is often a subjective measure and it is hard to define its computable

form manually, learning image similarity is often favorable for an image retrieval system.

Learning-based methods for vector-based representation have been extensively investigated

in [37][13]. However, there still lacks a systematic and principled method to learn the simi-

larity of images based on region-based or part-based representations.

Based on the review of the literature, we note that despite much work on ARG vertex

matching and similarity, there still lacks a principled similarity measure for general ARGs, in

which the vertices of ARGs are associated with real-valued and multivariate feature vectors.

Computing the similarity of such types of ARGs are useful for many problems, particularly

for images, videos, which are difficult to be represented as structural or labeled graphs. On the

other hand, the similarity of such ARGs are often subjective and domain-specific. Therefore,

it is important to develop a method to learn the similarity measure directly from training data

rather using measures handcrafted by researchers.
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2.1.2 Overview of the Proposed Method

The methods for ARG matching developed in this thesis is motivated by a practical prob-

lem called Image-Near-Duplicate (IND) detection, which aims at finding two similar images

that are often captured at the same scene/event but have slight difference in content and cap-

turing conditions. Whether or not two images are Near-Duplicate is often subjective, and even

confuses human judgers. Therefore it is highly desirable to have a learning-based approach

which learns the required parameters from the training data.

Our proposed approach first constructs a transformation that transforms the model ARG

(the first ARG) to the data ARG (the second ARG). The ARG similarity is then defined as

the probability ratio of whether or not the data graph is transformed from the model graph.

The idea is partly inspired by the relevance model [79] used in information retrieval, where

the probability ratio of whether or not a document is relevant to the query is taken for rank-

ing documents. To distinguish our approach from the Bayesian framework[77], we refer to

the proposed approach as stochastic ARG matching[115] in that the transformation can be

deemed as a stochastic process comprised of multiple actions. The main difference between

our method and the Bayesian method [77] is the Bayesian method focuses on the vertex

matching problem, while computing the ARG similarity by aggregation of vertex similarity

in an ad hoc manner. In contract, our approach focuses on the similarity problem while treat-

ing the vertex matching as an implicit problem. Such top-down approach allows us to learn

ARG similarity in an unsupervised manner, which has not been shown feasible by any prior

work using the Bayesian framework.

In order to calculate the probability ratio, we map the parameters of the transformation

to pairwise Markov Random Fields (MRFs). We show that the probability ratio of the trans-

formation is related to the partition functions of the MRFs. The partition function involves

the summation over all possible vertex matching schemes. The resulting similarity there-
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Figure 2.1. Attributed Relational Graph for Part-based Representation

fore takes into account the contributions from all possible matchings rather than only the one

with the maximum likelihood. The convexity of the log partition function allows us to use

variational methods to approximate the similarity and learn the parameters.

2.2 Similarity by Transformation

Attributed Relational Graph (ARG) generalizes the notion of “graph” by attaching multi-

variate feature vectors to the vertices and edges. The incorporation of attributes allows ARGs

to model not only the topological properties of real-world entities but also their attributive

properties. Formally, ARG is defined as follows.

Definition 2.1. An Attributed Relational Graph (ARG) is defined as a triplet G = (V,E,A),

where V is the vertex set , E is the edge set, and A is the attribute set containing attribute yi

attached to each node ni ∈ V , and attribute yij attached to each edge ek = (ni, nj) ∈ E.

Figure 2.1 illustrates the use of ARG to represent an image. Note that while the ARG

shown is not fully connected, most of the previous work in computer vision assume that

the ARG is fully connected. This assumption is legitimate in that the connectivity of two
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vertices itself can considered as a binary attribute defined at edges. Therefore, without loss of

generality, we only focus on fully-connected ARGs throughout this chapter. Also notice that

although we only define the relational features up to the second order, higher-order relational

features can be easily incorporated by adding attributes defined over cliques.

Unlike the conventional feature vector based representation, where inner product or

normed distance can be used to measure the similarity, the definition of ARG similarity poses

two significant challenges. First, the correspondences of the vertices of the two ARGs are

unknown a priori, and the number of possible correspondences is exponential in the product

of the ARG sizes. Second, the two input ARGs could be of different sizes.

We propose a principle for similarity computation called similarity by transformation.

The approach is to design a transformation (could involve multiple actions) to transform the

model graph to the data graph, and then use the probability ratio of the transformation as

the similarity measure. The idea is related to the edit distance [26][82] used in the structural

graph matching and string matching, which measures the similarity by the cost of transfor-

mation (editing). In comparison, we extend the notion of cost to the likelihood of a stochastic

transformation. Conceptually, the likelihood function is related to the transformation cost,

with higher cost the less likelihood. We use probability ratio instead of positive probability

because decision based on the probability ratio is optimal in terms of Bayesian classification

theory. The use of probability ratio is consistent with the probability models [? ][79] used in

information retrieval.

We follow the previous papers [77] to use the following conventional notation in the

subsequent sections: Gm denotes model graph with N vertices, and Gd data graph with M

vertices. We consider two hypotheses of the transformation. H = 1 indicates that the data

graph Gd is transformed from the model graph Gm; H = 0 otherwise. The use of negative

hypothesis allows the algorithm to exploit the characteristic of negative training data. The
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similarity S(Gm, Gd) is defined as the following

S(Gm, Gd) =
p(H = 1|Gm, Gd)
p(H = 0|Gm, Gd)

(2.1)

By applying Bayes rule, we have the following

p(H = 1|Gm, Gd)
p(H = 0|Gm, Gd)

=
p(Gd|H = 1, Gm)p(H=1|Gm)

p(Gd|Gm)

p(Gd|H = 0, Gm)p(H=0|Gm)
p(Gd|Gm)

=
p(Gd|H = 1, Gm)p(H = 1|Gm)
p(Gd|H = 0, Gm)p(H = 0|Gm)

(2.2)

For some applications, we may need to use the distance between two ARGs instead of the

similarity, in which case we can take d(Gm, Gs) = 1
S(Gm,Gd) as the distance between Gd

and Gm. According to Eq.(2.2), it is apparent that such distance is positive and symmet-

ric. However, it is not necessary to satisfy the triangular inequality. For instance, consid-

ering two degenerated ARGs G1, G2, each of them only has one vertex and assume that

the similarity between them is zero. Then let us form the third ARG by a union operator

G3 = G1
⋃
G2. By the definition we should have S(G3, G1) > 0 and S(G3, G2) > 0,

therefore d(G3, G1) + d(G3, G2) < d(G1, G2), which violates the triangular inequality.

Therefore, it may be more appropriate to call the inverse similarity as divergence instead of

distance. However, this fact does not mean that the proposed similarity measure is invalid. In

general, the distance between two data points in a non-linear space is not necessary to satisfy

the triangular inequality, for instance, data points on a curved manifold.

We assume that we do not have prior bias on either hypotheses (i.e. p(H =

1|Gm)/p(H = 0|Gm) = 1). Therefore, we have

S(Gm, Gd) =
p(Gd|Gm, H = 1)
p(Gd|Gm, H = 0)

=
p(Gd|Gm, H = 1)
p(Gd|H = 0)

(2.3)

Here we assume that Gd is independent of Gm if Gd is not transformed from Gm. And

the term p(Gd|Gm, H = 1) characterizes the transformation from Gm to Gd, which will be

referred to as transformation likelihood.

Let Yi, Yij with i, j ≤ N denote the features of the model graph Gm defined at its nodes

and edges, and Yu, Yuv with u, v ≤ M denote the attributes of the data graph Gd. For the
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negative likelihood function p(Gd|H = 0), we assume that the the node and edge attributes

yu and yuv are independent, i.e.

p(Gd|H = 0) =
∏
u

p(yu|H = 0)
∏
uv

p(yuv|H = 0) =
∏
u

fB1(yu)
∏
uv

fB2(yuv) (2.4)

where fB1(·) is the pdf characterizing the appearance statistics of an arbitrary image part, and

fB2(·) is the pdf characterizing the part relations. Therefore, fB1(·) and fB2(·) with learned

parameters characterize the image statistics within certain domain (e.g. news video). In our

experiments, the parameters of fB1(·) and fB2(·) are learned from the negative training set.

For the transformation likelihood p(Gd|Gm, H = 1), it is difficult to factorize be-

cause the node correspondences between the two ARGs are unknown. Yet we can treat

the correspondence as missing variables, and marginalize over all possible correspondences.

To do this, we introduce another variable X to represent the correspondence. X consists

of a set of binary random variables xiu, with xiu = 1 if the node i in the model graph

corresponds to the node u in the data graph; xiu = 0 otherwise. Therefore, we have

X = {x11, ..., xiu, ..., xNM}. Furthermore, if we associate each xiu with a node, then all

of these nodes together with their inter-connections form a complete graph, called the asso-

ciation graph (Figure 2.2). And the nodes together with the binary random variables form

an undirected graphical model (a.k.a Markov Random Field(MRF)), whose joint probabil-

ity (called Gibbs distribution) can be designed by specifying the potential functions of the

MRF. By introducing X , we can achieve the following factorization for the transformation

likelihood

p(Gd|Gm, H = 1) =
∑
X

p(Gd|X,Gm, H = 1)p(X|Gm, H = 1) (2.5)

This factorization can be illustrated as a graphical model shown in figure 2.3. To specify

the two terms p(Gd|X,Gm, H = 1) and p(X|Gm, H = 1) in the factorization, we first need

to design the transformation.
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Figure 2.2. The association graph upon which the MRFs are defined.

2.2.1 Design of Transformation

The design of the transformation is largely dependent on specific applications. We focus

on the application of image matching, where each vertex of the ARG denotes one part (region,

interest point etc.) of the image. The content change in the two images usually involves the

additions and occlusions of objects, object movements and appearance changes, and other

variations such as lighting condition change. In summary, two types of variations could

be considered : First, we use topology change to model part occlusion and addition. For

simplicity, let’s first model part occlusion. We assume that the parts of the model graph

are occluded with probability 1 − r. In other word, r is the probability of the vertices of

the model graph being copied to the data graph. For brevity, we refer to r as vertex copy

probability. Second, we use attribute change at vertices and edges to model part appearance

change, part movement and other variations. For the attributive transformation, if the vertex

u in Gd corresponds to the vertex i in Gm, then we let the vertex attribute yu to be sampled

from a Gaussian pdf with mean yi and variance Σ1, denoted as f1(yu; yi). This means that

the node attribute in Gd is the copy of the attribute in Gm plus the distortion characterized by

the Gaussian pdf. In Near-Duplicate images, this distortion is caused by object movement,

part appearance change or other reasons. Likewise, the edge attribute yuv is sampled from
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Figure 2.3. The generative model for ARG matching

a Gaussian pdf with mean yij and variance Σ2, denoted as f2(yuv; yij). The transformation

characterizes the relative position changes between parts in two Near-Duplicate images.

The above defined transformation may be too simplistic for general image transforma-

tion. However, it is not difficult to incorporate more sophisticated transformation, such as

camera transforms, which has been investigated in [33][53] as an image generative model. In

our current system, the camera transform is not used because our experiments have shown

that camera transforms have little contribution to performance improvement.

2.3 Computing the Transformation Likelihood

We have specified the pdfs of the transformation as well as their parameters. Since the

computation of the transformation likelihood has to be conducted in the MRFs, we need to

map the parameters of the transformation to the MRFs.

2.3.1 Map the Parameters of Transformation to MRF

We have introduced the MRFs in the section 2.1.2. In the MRF, each node niu (note we

use double index to tag the nodes in MRF) encodes a possible vertex matching between the
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node i in the model graph and the node u in the data graph. In practice, the resulting MRF

is often very large (NM nodes). In order to reduce the computational cost, we can prune the

MRF by discarding the vertex niu if feature distance between the corresponding two nodes

i and u is too large. As a result, the node i in Gm is only allowed to match di number of

vertices in Gd, with di � M . We call the resulting MRF as pruned MRF. We will discuss

the performance degradation due to punning in the experiment section.

In the following, we will relate the transformation likelihood to the quantities defined in

the MRFs. Before that, let us map the pdfs and their parameters of the transformation to the

MRF.

The factorized transformation likelihood in Eq.(2.5) involves two terms, the prior

probability of correspondence p(X|Gm, H = 1) and the conditional density function

p(Gd|X,Gm, H = 1).

The prior probability of correspondence p(X|Gm, H = 1) is designed so as to serve two

purposes : enforce the one-to-one matching constraint (one node in the model graph can only

be matched to one node in the data graph) and encode the vertex copy probability. The MRF

is designed with the following Gibbs distribution

p(X|Gm, H = 1) =
1
Z

∏
iu,jv

ψiu,jv(xiu, xjv)
∏
iu

φiu(xiu)

where Z is a normalization constant, also called partition function. The 2-node potential

function ψiu,jv(xiu, xjv) is used to enforce the constraint, designed as

ψiu,jv(xiu = 1, xjv = 1) = 0, for i = j or u = v; (2.6)

ψiu,jv(xiu, xjv) = 1, otherwise

The first line of the above equations is the repulsive constraint used to enforce the one-to-one

correspondence. The explanation of this potential function is straitforward: if the one-to-one
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correspondence constraint is violated, the probability of correspondence will drop to zero.

The 1-node potential function is defined as

φiu(0) = 1, φiu(1) = z

where z is a real number related to the vertex copy probability. We set φiu(0) = 1 be-

cause it is not difficult to show that any φiu(1) and φiu(0) with the same ratio φiu(1)/φiu(0)

would result in the equivalent MRF distribution (with different partition functions). The par-

tition function Z of the MRF is one of the most important quantities of the Markov Random

Field. And it can be used to derive several important properties of MRF. In the above MRF,

Z is the function of M ,N and z. The following Lemma relates the vertex copy probability

to the MRF parameter z

Lemma 2.1. z and r are related by the following equation

r =
z

N

dlnZ
dz

(2.7)

which is true for both pruned and original MRFs.

This relationship is useful to derive the equations for learning r. It also turns out that

there is no closed form solution for directly learning z from training data. After r is obtained,

we need to map r back to z for MRF computation. We found that the closed form for mapping

is also unavailable. However, we can resort to the following approximation

Lemma 2.2. The log partition function of the original MRF satisfies the following inequality

lnZ(N ;M ; z)≤N ln
(
1 +Mz

)
(2.8)

For the pruned MRF, the log partition function satisfies the following inequality

lnZ(N ; d1, d2, ..., dN ; z)≤N ln
(
1 +maxi{di}z

)
(2.9)
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where di is the number of the vertices in the data graph that are possibly matched to the

vertex i in the model graph after pruning.

Therefore, using the upper bound as the relaxed version of the log partition function, we

can map r back to z using the following approximated relationship z ≈ r
(1−r)maxi{di} .

If both graphs are very large, the following proposition can be considered for approxi-

mation

Proposition 2.1. Let N ≤M . When N →∞, and M −N <∞ The log partition function

lnZ tends to

N
[
ln(z) + c

]
(2.10)

where c is a constant, which can be calculated as

c = lim
N→∞

1
N

log
[ N∑

i=1

(
N

i

)(
N

i

)
i!
]

The next step is to design the conditional density p(Gd|X,Gm, H = 1). If we assume

that node attributes and edge attributes are independently generated, then we have the follow-

ing factorization

p(Gd|Gm, X,H = 1) =
∏
u

p(yu|X,Gm, H = 1)
∏
uv

p(yuv|X,Gm, H = 1)

Furthermore, according to the design of the transformation, the feature of a node and edge in

the data graph should only depend on its matched node and edge in the model graph. And if

there is no node in the model graph matched to a node in the data graph, the feature of that

node should obey the background pdf, i.e. fB1(·), likewise for the edge features. Therefore,
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we should have the following identities

p(yu|x11 = 0, ..., xiu = 1, ..., xNM = 0, Gm, H = 1) = f1(yu; yi)

p(yuv|x11 = 0, ..., xiu = 1, xjv = 1, ..., xNM = 0, Gm, H = 1) = f2(yuv; yij)

p(yu|x1u = 0, ..., xiu = 0, ..., xNu = 0, Gm, H = 1) = fB1(yu)

p(yuv|x1u = 0, ..., xiu = 0, xjv = 0, ..., xNu = 0, Gm, H = 1) = fB2(yuv) (2.11)

Based on these setups, we can further reduce the probability ratio computation to a new

MRF model, as shown in the following theorem.

Theorem 2.1. The transformation probability ratio relates to the partition functions of the

MRFs by

S(Gm, Gd) =
p(H = 1|Gd, Gm)
p(H = 0|Gd, Gm)

=
Z ′

Z
(2.12)

where Z is the partition function of the Gibbs distribution p(X|Gm, H = 1). Z ′ is the

partition function of the Gibbs distribution that is equivalent to the posterior probability

p(X|Gd, Gm, H = 1), which has the following forms

p(X|Gd, Gm, H = 1) =
1
Z ′

∏
iu,jv

ςiu,jv(xiu, xjv)
∏
iu

ηiu(xiu)

where the one-node and two-node potential functions have the following form

ηiu(1) = zf1(yu; yi)/fB1(yu); ςiu,jv(1, 1) = ψiu,jv(1, 1)f2(yuv; yij)/fB2(yuv) (2.13)

all other values of the potential functions are set to 1 (e.g. ηiu(xiu = 0) = 1).

This theorem reduces the problem of computing the probability ratio to computing the

partition function Z and Z ′.
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2.3.2 Computing the Partition Functions

For the partition function Z, we can compute it using numerical methods in polynomial

time (Eq.(A.1) in Appendix A), or using Lemma 2.2 for approximation. For the partition

function Z ′, it is a summation over all possible matchings, whose number is exponential

in NM . Therefore, approximate methods have to be developed. Fortunately, computing

partition function Z ′ is a standard problem in machine learning. Since the partition function

Z ′ is log convex, it can be represented as a variational form, or in the form of Jensen’s

inequality as the following [111][100]:

lnZ ′≥
∑
iu,jv

∑
xiu,xjv

q̂(xiu, xjv) ln ςiu,jv(xiu, xjv) +
∑
iu

∑
xiu

q̂(xiu) ln ηiu(xiu) +H(q̂(X))

(2.14)

where q̂(xiu) and q̂(xiu, xjv) are the approximated one-node and two-node marginals of

p(X|Gm, Gd, H = 1), also known as beliefs. H(q̂(X)) is the entropy of q̂(X), which is

the approximated distribution of p(X|Gm, Gd, H = 1). Computing the entropy again is

intractable for the loopy graphical model (here the MRF is fully connected). Yet the entropy

H(q̂(X)) can be approximated using Bethe approximation [111], in the following form

H(q̂(X))≈−
∑
iu,jv

∑
xiu,xjv

q̂(xiu, xjv) ln q̂(xiu, xjv) +
∑
iu

(MN − 2)
∑
xiu

q̂(xiu) ln(q̂(xiu))

Note that the variational approximation becomes exact if the approximated marginal is

exact and the entropy function is correct.

2.3.3 Computing the Approximated Marginals

To realize likelihood calculation and learning, the key problem is to compute the ap-

proximated marginals, a procedure known as probabilistic inference. There are two major

approaches to calculating the approximated marginals: variational method and Monte Carlo
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method. Variational method maximizes the lower bound in Eq.(2.14) with respect to the mar-

ginals. An algorithm known as Loopy Belief Propagation (LBP)[111] can be thought of as

an approach to maximizing the lower bound through fixed point iteration[111] (called mes-

sage passing in AI terminology). The main advantage of LBP is its high efficiency for some

graphical models. In complete graphs, the LBP algorithm has complexity O
(
(N ×M)2

)
.

The modified message passing rules for complete graph are listed below

m
(t+1)
iu,jv (xjv) = k

∑
xiu

ςiu,jv(xiu, xjv)ηiu(xiu)M(t)
iu (xiu)/m(t)

jv,iu(xiu)

M(t+1)
iu (xiu) = exp

( ∑
kw|kw �=iu

ln(m(t+1)
kw,iu(xiu))

)

where miu,jv is the message passing from the node iu to jv, t is the iteration index, k is a

normalization constant to avoid overflow. After the message update terminates, the one node

and two node beliefs q̂(xi) and q̂(xiu, xjv) can be computed as following

q̂iu(xiu) = kηiu(xiu)Miu(xiu)

q̂(xiu, xjv) = kςiu,jv(xiu, xjv)ηiu(xiu)ηjv(xjv)Miu(xiu)Mjv(xjv)/
(
mjv,iu(xiu)(miu,jv(xjv)

)

where k is a normalization constant.

However, due to the particularity of the potential functions (Eq.(2.6)) used in our al-

gorithm, LBP messages often do not converge, but oscillate among multiple states. This

problem in the past was approached by using momentum-based approach [71], i.e. replacing

the messages that were sent at time t with a weighted average of the messages at time t and

t − 1. However, in our experiments, we observe that the momentum-based method fails to

learn correct parameters and result in incorrect vertex matching and similarity. To solve this

problem, we use a different approach. In our approach, we do not manipulate the passing

messages. Instead, we compare the lower bound values in Eq.(2.14) across message update

iterations and select the set of approximated marginals that results in the largest lower-bound.
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Specifically, let q̂(t)(xiu) and q̂(t)(xiu, xjv) be one-node and two-node marginals at iteration

t, and let q̂(t) =
{
q̂(t)(xiu), q̂(t)(xiu, xjv), 1≤i, j≤N, 1≤u, v≤M

}
, then the lower bound in

Eq.(2.14) is a functional of q̂(t) denoted as F(q̂(t)). In our approach, after several iterations

(5-15) of message passing, we let the final marginals be

q̂ = q̂(t̂), t̂ = argmaxtF(q̂(t))

This approach is consistent with the optimization view of the LBP algorithm proposed in

[111]. Namely, we shall select the messages resulting in the largest lower bound instead of

averaging them across iterations. Such approach results in satisfactory accuracy of vertex

matching and ARG similarity computation in our experiments.

Monte Carlo methods approximate the marginals by drawing samples from certain prob-

ability distribution and summing over the obtained samples. We use a special Monte Carlo

approach known as Gibbs Sampling (GS) [5]. GS is realized by iteratively sampling the state

of each node in the MRF from the conditional probability of the state given the states of

all other nodes in the MRF. Concretely, assuming that in the tth iteration we have obtained

the sample xt = {xt
1, x

t
2, ..., x

t
MN}, we draw the sample in the (t + 1)th iteration by using

following procedure:

Step 1. sample xt+1
1 from p(x1|xt

2, x
t
3, ..., x

t
MN )

Step 2. sample xt+1
2 from p(x2|xt+1

1 , xt
3, ..., x

t
MN )

...

Step MN . sample xt+1
MN from p(xMN |xt+1

1 , xt+1
2 , ..., xt+1

MN−1)

After sampling, the approximated marginal is computed by averaging the corresponding
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samples. For instance, let x1, x2, ..., xS be the S samples drawn by Gibbs Sampling. Then

q̂iu(xiu = 1) =
∑S

s=1 1(xs
iu)

S
(2.15)

where 1(xs
iu) is the indicator function with 1(xs

iu = 1) = 1 and 1(xs
iu = 0) = 0.

Apart from LBP and Monte Carlo methods, new algorithms for inference developed more

recently can also be used. For example, the semidefinite relaxation method developed in [100]

is a new approach for inference through convex optimization (specifically, log determinant

maximization as in [100]). In our experiments, we also implemented the semidefinite relax-

ation approach. However, the complexity of this approach is at least O
(
(N ×M)3

)
, which is

too high to be practical in our current application. Therefore, only the LBP and Monte Carlo

method are utilized in our current performance evaluation.

2.4 Learning the Transformation Parameters

Conventionally, for example in the previous MRF based approach[61], learning the pa-

rameters requires annotations at the vertex level. Namely, the annotators have to mark the

correspondences of the vertices in the model graph and data graph. This is a time-consuming

procedure since an ARG for image representation typically contains 30-100 vertices. In or-

der to reduce human supervision, it is necessary to develop an unsupervised approach, where

annotators only need to annotate whether two ARGs are similar or not.

Unsupervised learning is realized by maximizing the transformation likelihood with re-

spect to the parameters. However, directly maximizing the transformation likelihood is dif-

ficult due to the intractable summation in the partition function. Fortunately, we have shown

that the partition function has a variational representation, which has a tractable form and can

be used for maximization. Note that if the marginals in Eq.(2.14) is exact, maximizing the
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lower bound is equivalent to directly maximizing the transformation likelihood, regardless of

the accuracy of the entropy approximation.

Using the variational approximation, the parameter estimation is a process composed

of two iterative steps: (1) probabilistic inference to obtain the approximated marginals, and

(2) maximization of the lower bound with respect to the parameters. This is known as the

variational Expectation-Maximization (E-M) scheme described as follows:

E Step: Compute q̂(xiu) and q̂(xiu, xjv) using Loopy Belief Propagation or Gibbs Sampling.

M Step: Maximize the lower bound in Eq.(2.14) by varying parameters. This is realized by

differentiating the lower bound with respect to the parameters, resulting in the following

update equations

ξk
iu = q̂(xk

iu = 1); ξk
iu,jv = q̂(xk

iu = 1, xk
jv = 1)

Σ1 =
∑

k

∑
iu (yk

u − yk
i )(yk

u − yk
i )T ξk

iu∑
k

∑
iu ξ

k
iu

Σ11 =

∑
k

∑
iu,jv (yk

uv − yk
ij)(y

k
uv − yk

ij)
T ξk

iu,jv∑
k

∑
iu,jv ξ

k
iu,jv

(2.16)

where k is the index of the training ARG pairs.

For the vertex copy probability r, it can also be obtained by maximizing the transforma-

tion likelihood. Through Theorem 2.1, we have:

r̂ = argmaxr
Z ′(r)
Z(r)

p(O|H = 0) = argmaxr

[
ln

(
Z ′(r)

)− ln
(
Z(r)

)]
(2.17)

By differentiating the term inside the argmax operator and invoking Lemma 2.1, we get

r =
1
K

K∑
k=1

1
Nk

∑
iu

q̂(xk
iu = 1) (2.18)

where K is the number of the training instances, and Nk is the node number of the kth

model ARG.
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For the negative hypothesis, we need to learn the parameters µ0,Σ0,µ00 and Σ00. The

estimates of these parameters are the sample means of the corresponding feature vectors

according to the Maximimum Likelihood Estimation (MLE).

2.5 Application to Image Near-Duplicate Detection and Retrieval

We apply the proposed method to detecting and retrieving Image Near-Duplicates (IND)

in a news video database. Image Near-Duplicate is defined as two similar images that are

often captured from the same site/event, but with variations due to content changes, camera

parameter changes, and digitization conditions. Figure 2.4 shows several examples of IND in

a typical news video database.

IND detection problem is to determine whether or not a pair of images are near-duplicate.

Therefore, IND detection is a binary classification problem. On the other hand, IND retrieval

problem is similar to Content-Based Image Retrieval (CBIR). Given a query image, IND

retrieval finds the near-duplicate images to the query image. Therefore, the outcome of IND

retrieval is a rank list of images. And ideally the near-duplicate images would be at the top

of the rank list.

The transformation between one image to the other in IND usually cannot be accommo-

dated by linear transforms such as the affine transform. We represent each image as an ARG,

where each part of the visual scene corresponds to one vertex in the ARG. The parts in the

image are extracted using interest point detector (Harris corner detector [30]). The number

of feature points in an image ranges from 10-50. Local feature descriptors are then extracted

around the interest points to represent the appearances of the parts. Each descriptor consists

of eleven components: three for RGB colors (average RGB color in the 15x15 block), two
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Figure 2.4. Examples of Image Near-Duplicate

for spatial locations and six for Gabor filter coefficients. Edge relational features are spatial

coordinate difference. All ARGs are fully connected graphs.

IND detection therefore is realized by thresholding the ARG similarity, i.e. the probabil-

ity ratio. Varying the threshold, we can obtain different recall and precision performance.

2.5.1 Implementation Issues

From the approximate likelihood equations, it is noted that the probability ratio is not

invariant to the size of the input graphs. To reduce the sensitivity of the size variation, we use

the normalized probability ratio S(Gm, Gd)/(MN) instead of the original probability ratio

S(Gm, Gd).

Furthermore, in order to reduce the computational cost, we use the pruned MRF. The

pruning process is carried out by discarding the MRF nodes whose corresponding 1-node

potential function (i.e. ηiu(1) in the Eq.(2.13)) is less than a threshold, which can be deter-

mined empirically. The lower number of MRF nodes will result in lower computational cost
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but degraded detection accuracy. We will discuss the trade-off between MRF pruning and

performance degradation in the experiment.

Another method of saving computational cost is to reduce the Monte Carlo sample num-

ber. In general, Monte Carlo sample number has to be determined empirically. For general

ARGs, such as labeled ARGs, it may be necessary to use a large number of Monte Carlo

samples. However, for IND detection and retrieval, we found that the detection and retrieval

performance remains excellent even if we use a small number of samples. In our experiments,

we have found 40-100 samples are sufficient for achieving good results. Using a large num-

ber of samples does not gain significant performance improvement. However, in the learning

stage, we suggest to use more sample numbers so that the parameters can be more accurately

estimated.

In the learning stage, the vertex copy probability r is initialized as 0.9. And the para-

meters of the transformation are initialized by setting all ξk
iu and ξk

iu,jv to 1.0 and invoking

Eq.(2.16) to calculate the parameters. Such configuration is faster than random initialization.

In general, the learning process takes 6 to 10 iterations to converge.

2.5.2 Experiments

We conduct the IND detection experiments in a public news video database, known as

TREC-VID data set(year 2003)[1]. This data set is chosen because it is a widely adopted data

set for visual concept (object,scene,event) detection and video search. Furthermore, there are

abundant IND examples in the video database in that the same news story is often reported

in different times and across different channels and the corresponding video segments often

contain Image Near-Duplicates. Detecting INDs in news videos is useful for various applica-

tions, for example tracking news videos of the same topic across multiple channels [117].
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TREC-VID 2003 data set consists of broadcast news videos during the period from Jan-

uary 1998 to June 1998. The news programs are from two major US broadcast channels:

CNN and ABC. We browse through the keyframes (provided by TREC-VID) of the videos.

IND image pairs for positive data set are discovered manually using the news topic ground

truth from TDT2. TDT, known as Topic Detection and Tracking, is another benchmark data

set that contains the groundtruth labels of the news video topics in the TREC 2003 data set.

Video stories annotated with the same label are related to the same topic or event. Searching

IND frames within the video stories with the same topical label can dramatically reduce the

annotation time. Non-IND frames are randomly sampled from the keyframe data set.

The IND detection data set consists of 300 images (150 pairs) and 300 non-duplicate

images. The training set consists of 30 IND pairs and 60 non-duplicate images, which are

randomly extracted from the data set. The testing set contains the rest of the images, i.e. 120

IND pairs and 240 non-duplicate images. Therefore, there are 480×479/2− 120 = 114840

non-IND pairs.

The experiment is intended to evaluate the effectiveness of the learning-based ARG

matching algorithm for the IND detection problem. We compare the proposed method with

the energy minimization (MINE) based approach, as well as other methods based on global

or grid-based features, including grid-based color histogram (GCH), local edge descriptor

(LED), and global color histogram (COLOR). For energy minimization, we implemented a

randomized search algorithm that is able to approximately find the minimal energy of the

energy function, which is the sum of distance of the vertex and edge features [42][87]. The

overall computation time of MINE is a little bit longer than the ARG matching method. We

did not compare with other ARG matching methods, such as that in [77], because it is dif-

ficult to implement their algorithms and there is no publicly available implementation. For

the proposed graph matching algorithm, we have implemented two inference algorithms:
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Monte Carlo method (GRAPH-MC) and Loopy Belief Propagation (GRAPH-LBP). We used

40 sample points for GRAPH-MC. GRAPH-LBP is a bit faster than GRAPH-MC although

their performance are almost the same. For COLOR, we use the color histogram with 256

bins and HSV color space (16 bins for H, 4 bins for S, and 4 bins for V), which is a standard

configuration used in content-based image retrieval. For GCH, we use the standard block

partition used in image retrieval with 5 × 5 blocks. The histogram within each block has 32

bins (8 bins for H, 2 bins for S, 2 bins for V). For LED, we use the same method as that in

[38], in which LED has been shown to outperform all other approaches in Exact Duplicate

Detection (a problem similar to IND detection, except that there is no content variations of

the two duplicate images). The results are shown in Figure 2.5. Table 2.1 shows the average

precision of IND detection with different methods. The average precision measure is com-

puted by sampling multiple precision-recall points (50 samples) in the ROC curves and then

averaging the precision values.
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Figure 2.5. ROC curve of IND detection with different methods. (GRAPH-MC: the pro-
posed method with Monte Carlo inference, GRAPH-LBP: the proposed method with Loopy
Belief Propagation, GCH: Grid-based Color Histogram, COLOR: Color Histogram, MINE:
MINimum Energy by energy minimization, LED: Local Edge Descriptor)
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GRAPH-MC GRAPH-LBP GCH COLOR MINE LED

0.69 0.7 0.351 0.267 0.158 0.103

Table 2.1. Average precision of IND detection by different methods

In practical applications, we need to determine the threshold value for IND detection. The

threshold can be easily learned from training data or determined empirically. Figure 2.8-2.11

show example IND detection results while setting the threshold as 5.0. It can be observed that

misses occur (Figure 2.9) when there is large camera zooming. And false alarms may happen

(Figure 2.11) when the appearances and spatial structures of two images look similar. From

Figure 2.10, it can be observed that our method is able to correctly reject non-IND images

that may have similar color compositions.

The main limitation of our algorithm is its high computational cost. However the binary

representation of vertex correspondence allows us to aggressively prune the resulting MRF

so as to significantly save the computational cost. Figure 2.6 shows the IND detection per-

formance with different MRF node number threshold to indicate the trade-off between MRF

node number and the detection accuracy. Table 2.2 shows the average precision measure of

IND detection under different MRF node numbers. It can be observed from the ROC curve

and the average precision comparison that the degradation of accuracy is insignificant when

we reduce the MRF node number from 50 to 20, while considerably reducing the compu-

tational cost as the complexity of the LBP algorithm is O
(
NMRF )2

)
, where NMRF is the

node number of the MRF. However, the degradation becomes significant when we reduce the

MRF node number from 20 to 10. The trade-off curves indicate that the detection accuracy

is well-tolerant to the MRF node pruning. And the node pruning method is very effective for

reducing computation time. Currently, when the MRF node number is set to 50, the speed of

detection is about 10-20 image pairs per second.

To further speed up the algorithm, low cost algorithms such as GCH can be applied prior
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Figure 2.6. ROC curve of IND detection with different MRF node number (here, GCH is for
reference)

node=50 node=30 node=20 node=10 GCH

0.69 0.676 0.652 0.517 0.351

Table 2.2. Average precision of IND detection with different MRF node number

to the ARG matching algorithm to filter out the false alarms. In fact, in a large scale database,

this prefiltering procedure is often indispensable for realistic computation.

We also evaluated the IND retrieval performance. For each query image, in our test

data set, there is one and only one corresponding duplicate image in the resulting rank list.

Average rank of the corresponding IND in response to a query is a metric for evaluating how

well the retrieval algorithm performs. Average rank is computed by averaging the ranks of the

retrieved duplicated images. Specifically, if Ri is the position of the corresponding ground

truth duplicate image to the query image Ii, and we have Q duplicate pairs in the test set.

Then the average rank (AR) is simply calculated by

AR =
1

2Q

2Q∑
i=1

Ri

Ideally, if the retrieval algorithm is perfect, the average rank would be 1.
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Another evaluation method is to compute the empirical probability of retrieving duplicate

images within certain return size, then plot the probability-scope curve. This is to measure

the probability that the IND of a query image can be found in the top K returned results. Let

1(·) be an indicator function. Then the empirical probability P (K) with respect to the search

scope is calculated by

P (K) =
1

2Q

2Q∑
i=1

1(Ri ≤ K)

Figure 2.7 shows the retrieval curve corresponding to different methods. Table 2.3 lists the

Average Ranks of the different methods. The curves and Average Ranks indicate that the

proposed method significantly outperforms all other approaches. It is also interesting to note

that the minimum energy distance method (MINE) performs better than global or grid-based

visual features when K > 30. It can be observed that the MINE approach performs much

poorer than GCH and COLOR in IND detection, while it performs better in IND retrieval.

This discrepancy indicates that IND detection and retrieval are two different problems. IND

retrieval assumes that there is at least one duplicate image for the query image in the data

set. While IND detection has no such assumption, and needs to reject many negative pairs in

which both images do not have duplicate versions in the data set.

GRAPH-MC GRAPH-LBP GCH COLOR MINE LED

14.41 17.14 33.25 36.00 28.35 66.10

Table 2.3. Average ranks using different methods (The smaller the better. The perfect value
is 1.0

2.6 Summary

We have presented a learning-based framework for ARG vertex matching and similarity.

The framework allows the ARG similarity to be learned from training data in an unsupervised

manner without the need of annotating the vertex correspondence. We applied the approach
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Figure 2.7. The retrieval performance with different methods.(GRAPH-MC: the proposed
method with Monte Carlo inference, GRAPH-LBP: the proposed method with Loopy Belief
Propagation, GCH: Grid-based Color Histogram, COLOR: Color Histogram, MINE: MINi-
mum Energy by energy minimization, LED: Local Edge Descriptor)

to measuring image similarity and detecting Image-Near-Duplicate in a news video data-

base. The experiments have shown dramatic performance improvement over the traditional

energy minimization based methods and other visual feature based approaches. These results

confirm the advantage of the presented framework for computing ARG similarity and IND

detection.
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S = 10.5

S = 6.11 S = 9.2

S = 9.1 S = 8.12

S = 6.31 S = 6.5

S = 15.3

Figure 2.8. Correctly detected IND image pairs. The numbers shown below images are
similarity values

S = 1.49 S = 1.62

S = 2.2 S = 1.52

Figure 2.9. Missed IND image pairs
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S = 2.33 S = 2.32

S = 3.12 S = 2.98

Figure 2.10. Correctly rejected non-IND image pairs

S = 5.3 S = 6.11

S = 5.64 S = 6.27

Figure 2.11. Non-IND image pairs that are falsely detected as IND pairs
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Chapter 3

Learning Random Attributed

Relational Graph for Part-based

Object Detection

3.1 Introduction

This chapter deals with the object detection problem. Although object detection has been

studied for decades, we specifically focus on the problem of generic object detection based

on machine learning methods.

The generic or learning-based object detection paradigm recognizes objects in images

by learning statistical object models from a corpus of training data. Among many solutions,

the part-based approach represents the object model as a collection of parts with constituent

attributes and inter-part relationships. Recently, combination of advanced machine learning
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techniques with the part-based model has shown great promise in accurate detection of a

broad class of objects.

Although there has been much prior work on part-based object detection by automatic

learning, there still lacks a general and formal statistical framework that is able to handle the

issues of part occlusion, uncertainty of part matching, and multi-view object variations. We

present our new model for part-based object detection, called Random Attributed Relational

Graph (Random ARG) model. Under the Random ARG framework, an object or image,

represented as Attributed Relational Graph (ARG), is considered as an instance generated

from the Random ARG. We show how to compute the generation likelihood by constructing

Markov Random Fields (MRF) and how to handle part occlusion by designing the MRFs. Im-

portantly, we show that the object detection likelihood ratio is related to the partition functions

of the MRFs. And the log convexity of the partition functions allows us to use variational

approximations to approximate the likelihood and develop a variational E-M scheme to learn

the model. This makes the object model learning more accurate and faster in convergence.

We further extend the single Random ARG model to a mixture model to represent multi-view

objects more accurately.

3.2 Literature Review and Our Contributions

Part-based model is a classic paradigm for object detection. The earliest part-based model

may be Marr’s generalized cylinder model [67] for 3D object representation. Earlier research

on part-based object detection has been focused on deterministic approaches or Bayesian ap-

proaches with energy minimization. Examples include Elastic Bunch Graph for face recog-

nition [106], pictorial structure for locating object parts [29] and finding the correspondence

between the parts in image and model by Markov Random Field [61].
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Statistical and learning methods for part-based object detection becomes popular only

recently. The main differences between the learning-based object detection and traditional

object detection paradigm include the following : (1) learning-based methods focus on gen-

eral objects instead of specific object such as face. (2) The focus of the learning-based object

detection is on the statistical modeling of object classes and the associated learning methods.

There are two categories of methods for part-based object detection with learning: gen-

erative approaches and discriminative approaches.

Generative approaches are based on the Bayesian classification theory, and compute the

likelihood of the object under different object classes (for example “bike” and “background”).

Likelihood ratio is generally used to determine whether or not an image contains the object.

Generative approaches learn the positive and negative classes separately.

One of the well-known generative models is the constellation model, which is proposed

and extended in [30][102]. The Constellation model models the appearance variations of

object parts by Principle Component Analysis (PCA) and Gaussian probability density func-

tions (pdf s), and relations among parts as a global joint Gaussian pdf. Unsupervised learning

of the object model has been developed using a E-M like algorithm. Such unsupervised meth-

ods do not need the annotation of parts and the locations of objects). In order to increase the

generalization capability and alleviate the overfitting problem, Bayesian learning algorithm

has been incorporated into the model in [59]. The limitation of the constellation model is

its global modeling of the part constellation. This potentially limits its power of modeling

multi-view objects. Mixture model could be a solution to the multi-view object detection

problem in which each component cover one view of the object. However, this solution will

significantly increase the computational cost of the system.

Another type of generative model, pictorial structure, models an object as a graph-like

entity (typically star-graph) in which nodes represent object parts and edges represent the



54

relations among parts. Learning pictorial structure is realized by estimating the parameters of

the Gaussian density functions using the annotated parts in the training images. The pictorial

structure originally was used to locate object parts. But recently, it has been extended to

deal with the object detection problem. The star-graph structure has also been extended to

more general K-fan graphs [18]. Yet, the method is still limited in several aspects, including

lacking the capability of unsupervised learning and modeling part occlusion. The lack of part

occlusion modeling potentially limits its applications in multi-view object detection, as for

objects under different views, some parts are not visible. The main advantage of the pictorial

structure model against the constellation model is that part relations are modeled locally by

the edges of the graph instead of as a joint Gaussian. Furthermore, translations of the objects

can be implicitly handled by relative coordinates, while in the constellation model, centroid

calibration has to be performed in order to achieve translation invariance.

Another category of object detection methods is the discriminative method. Unlike gen-

erative models that model the statistics and variations of the objects in an object class, dis-

criminative approaches directly model the decision boundary between two object classes.

This in theory would result in better detection performance than that using generative mod-

els since some of the assumptions in generative models may be inaccurate, for example the

Gaussian pdf assumption. Currently, the most widely used discriminative model is the boost-

ing method. Viola and Jones first propose boosting for face detection in [99]. Their method

achieves excellent performance with real-time speed. Boosting then is extended to general

object class detection by Opelt et al.[2]. The basic idea of boosting-based object detection

is to let each part in the model a weak classifier. The decision from individual weak clas-

sifiers is computed by thresholding the distance between the part features in the model and

part features in the image. The main advantage of boosting is its ability to learn and detect

multi-view objects. The drawback is is inability to model the relations among parts.
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More recently, there have been research efforts to combine the generative and discrim-

inative approaches in an attempt to obtain the advantages of the two methods. For exam-

ple, Holub and Perona [46] has developed Fisher kernels for the constellation model. The

fisher kernel allows object detection and learning to be conducted using Support Vector Ma-

chine (SVM), a widely used discriminative classifier. Bar-Hillel et al. [45][44] has presented

a boosting-based learning method for their generative model, which is similar to the con-

stellation model. Combing discriminative and generative classifiers has been also explored

[49][52] in the machine learning community, and been shown to be more advantageous than

using the generative models alone.

We have been focusing on generative models for object detection because generative

modeling offers a principled framework for incorporating human knowledge and physics-

based information. Our model basically follows the pictorial structure, while we enhance it

with the modeling of the topological variations of the graph. When the topological variations

are taken into account, the new model resembles the conventional random graph [25], in

which the existence of an edge connecting two nodes is determined by sampling a binomial

random variable (indicating whether the link is present). The random graph can be further

augmented by attaching general random variables to its nodes and edges rather than only the

connectivity random variables. This ends up with a random graph with associated random

attributes, which is called Random Attributed Relational Graph (Random ARG). The Ran-

dom ARG model has the advantages of the constellation model: part occlusion modeling and

unsupervised learning, but with enhancement in modeling of the part occlusion and more

accurate learning algorithm by variational E-M. On the other hand, Random ARG holds the

advantages of the pictorial structure model : modeling the relations among parts locally and

handling the translation invariance implicitly. Such unique features make it possible to model

variations of multi-view objects.
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In the Random ARG model, we model an object instance as an ARG, with nodes in

the ARG representing the parts in the object. An image containing the object is an instance

generated from the Random ARG plus some patches generated from the background model,

resulting in an ARG representation. In order to realize likelihood computation, we reduce the

computation to a MRF model and we show that there is an elegant mathematical relationship

between the object detection likelihood ratio and the partition functions of the MRF. This

discovery enables the use of variational inference methods, such as Loopy Belief Propagation

or Belief Optimization, to estimate the part matching probability and learn the parameters by

variational E-M.

We compare our proposed Random ARG model with the constellation model developed

in [30], which also provides a publicly available benchmark data set . Our approach achieves

a significant improvement in learning convergence speed (measured by the number of itera-

tions and the total learning time) with comparable detection accuracy. The learning speed is

improved by more than two times if we use a combined scheme of Gibbs Sampling and Belief

Optimization, and more than five times if we use Loopy Belief Propagation. The improved

efficiency is important in practical applications, as it allows us to rapidly deploy the method

to learning general object classes as well as detection of objects with view variations.

We extend the Random ARG model to a Mixture of Random ARG (MOR) model to

capture the structural and appearance variations of the objects with different views of the

same object class. Through a semi-supervised learning scheme, the MOR model is shown

to improve the detection performance against the single Random ARG model for detecting

objects with continuous view variations in a data set consisting of images downloaded from

the web. The data set constructed by us can be used as a public benchmark for multi-view

object detection.
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Figure 3.1. A generative process that generates the part-based representation of an image

3.3 The Random Attributed Relational Graph Model

The representation method used by us follows the previous work in [42][62][24], where

an object instance or image is represented as an Attributed Relational Graph [42], formally

defined as

Definition 3.1. An Attributed Relational Graph(ARG) is defined as a triplet O = (V,E, Y ),

where V is the vertex set,E is the edge set, and Y is the attribute set that contains attribute yu

attached to each node nu ∈ V , and attribute yuv attached to each edge ew = (nu, nv) ∈ E.

For an object instance, a node in the ARG corresponds to one part in the object. attributes

yu and yuv represent the appearances of the parts and relations among the parts. For an object

model, we use a graph based representation similar to the ARG but attach random variables to

the nodes and edges of the graph, formally defined as a Random Attributed Relational Graph

Definition 3.2. A Random Attributed Relational Graph (Random ARG) is defined as a

quadruple R = (V,E,A, T ), where V is the vertex set, E is the edge set, A is a set of

random variables consisting of Ai attached to the node ni ∈ V with pdf fi(.), and Aij at-

tached to the edge ek = (ni, nj) ∈ E with pdf fij(.). T is a set of binary random variables,

with Ti attached to each node (modeling the presense/absence of nodes).

fi(.) is used to capture the statistics of the part appearance. fij(.) is used to capture
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the statistics of the part relation. Ti is used to handle part occlusion. ri = p(Ti = 1) is

referred to as the occurrence probability of the part i in the object model. An ARG hence

can be considered as an instance generated from Random ARG by multiple steps: first draw

samples from {Ti} to determine the topology of the ARG, then draw samples from Ai and

Aij to obtain the attributes of the ARG and thus the appearance of the object instance. In our

current system, both Random ARG and ARG are fully connected. However, in more general

cases, we can also accommodate edge connection variations by attaching binary random

variables Tij to the edges, where Tij = 1 indicates that there is an edge connecting the node

i and node j, Tij = 0 otherwise.

3.3.1 Bayesian Classification under Random ARG Framework

Conventionally, object detection is formulated as a binary classification problem with

two hypotheses: H = 1 indicates that the image contains the target object (e.g. bike), H =

0 otherwise. Let O denote the ARG representation of the input image. Object detection

problem therefore is reduced to the following likelihood ratio test

p(O|H = 1)
p(O|H = 0)

>
p(H = 0)
p(H = 1)

= λ (3.1)

Where λ is used to adjust the precision and recall performance. The main problem is thus

to compute the positive likelihood p(O|H = 1) and the negative likelihood p(O|H = 0).

p(O|H = 0) is the likelihood assuming the image is a background image without the target

object. Due to the diversity of the background images, we adopt a simple decomposable i.i.d.

model for the background parts. We factorize the negative likelihood as

p(O|H = 0) =
∏
u

p(yu|H = 0)
∏
uv

p(yuv|H = 0) =
∏
u

f−B1
(yu)

∏
uv

f−B2
(yuv) (3.2)

where f−B1
(·) and f−B2

(·) are pdf s to capture the statistics of the appearance and relations of

the parts in the background images, referred to as background pdf s. The minus superscript
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Figure 3.2. ARG, Random ARG and the Association Graph. Circles in the image are detected
parts

indicates that the parameters of the pdf s are learned from the negative data set. To compute

the positive likelihood p(O|H = 1), we assume that an image is generated by the following

generative process (Figure 3.1): an ARG is first generated from the Random ARG, additional

patches, whose attributes are sampled from the background pdfs, are independently added

to form the final part-based representation O of the image. In order to compute the positive

likelihood, we further introduce a variable X to denote the correspondences between parts in

the ARG O and parts in the Random ARG R. Treating X as a hidden variable, we have

p(O|H = 1) =
∑
X

p(O|X,H = 1)p(X|H = 1) (3.3)

Where X consists of a set of binary variables, with xiu = 1 if the part i in the object model

corresponds to the part u in the image, xiu = 0 otherwise. If we assign each xiu a node,

then these nodes form an Association Graph as shown in Figure 3.2. The Association Graph

can be used to define an undirected graphical model (Markov Random Field) for computing

the positive likelihood in Eq. (3.3). In the rest of the paper, iu therefore is used to denote

the index of the nodes in the Association Graph. A notable difference between our method

and the previous methods [30][61] is that we use a binary random representation for the

part correspondence. Such representation is important as it allows us to prune the MRF by

discarding nodes associated with a pair of dissimilar parts to speed up part matching, and

readily apply efficient inference techniques such as Belief Optimization[100][103].
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3.3.2 Mapping the Random ARG parameters to the Association Graph MRF

The factorization in Eq. (3.3) requires computing two components p(X|H = 1) and

p(O|X,H = 1). This section describes how to map the Random ARG parameters to these

two terms as well as construct MRFs to compute the likelihood ratio.

The computational method developed in this section is similar to that in the chapter 2.

The main difference is that we model the transformation between two ARGs in chapter 2,

but in this chapter we model the “object model” itself instead of the transformation. In the

Random ARG model each vertex is associated with a set of parameters, while in the similarity

framework, there is only one set of parameters to specify the transformation. Consequently,

the learning algorithms for these two problems are distinct.

First, p(X|H = 1), the prior probability of the correspondence, is designed so as to

satisfy the one-to-one part matching constraint, namely,one part in the object model can only

be matched to one part in the image, vice versa. Furthermore, p(X|H = 1) is also used to

encode the occurrence probability ri. To achieve these, p(X|H = 1) is designed as a binary

pairwise MRF with the following Gibbs distribution

p(X|H = 1) =
1
Z

∏
iu,jv

ψiu,jv(xiu, xjv)
∏
iu

φiu(xiu) (3.4)

Where Z is the normalization constant, a.k.a the partition function. ψiu,jv(xiu, xjv) is the

two-node potential function defined as

ψiu,jv(1, 1) = ε, for i = j or u = v; ψiu,jv(xiu, xjv) = 1, otherwise (3.5)

where ε is set to 0 (for Gibbs Sampling) or a small positive number (for Loopy Belief Propa-

gation). Therefore, if the part matching violates one-to-one constraint, the prior probability

would drop to zero (or near zero). φiu(xiu) is the one-node potential function. Adjusting

φiu(xiu) affects the distribution p(X|H = 1), therefore it is related to the occurrence proba-

bility ri. By designing φiu(xiu) to different values, we will result in different ri. For any iu,
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we have two parameters to specify for φiu(.), namely φiu(1) and φiu(0). Yet, it is not difficult

to show that for any iu, different φiu(1) and φiu(0) with the same ratio φiu(1)/φiu(0) would

result in the same distribution p(X|H = 1) (but different partition function Z). Therefore,

we can just let φiu(0) = 1 and φiu(0) = zi. Note here that zi only has the single indice i.

meaning the potential function for the correspondence variable between part i in the model

and part u in the image does not depend on the index u. Such design is for simplicity and the

following relationship between zi and ri.

Lemma 3.1. ri and zi is related by the following equation:

ri = zi
∂lnZ
∂zi

where Z is the partition function defined in Eq. (3.4).

The above lemma leads to a simple formula to learn the occurrence probability ri (section

2.4). However, lemma 1 still does not provide a closed-form solution for computing zi given

ri. We resort to an approximate solution, through the following lemma.

Lemma 3.2. The log partition function satisfy the inequality

lnZ≤
N∑

i=1

ln(1 +Mzi)

and the equality holds when N/M tends to zero (N and M are the numbers of parts in the

object model and image respectively). For the pruned MRF, the upper bound is changed to

lnZ≤
N∑

i=1

ln(1 + dizi)

where di is the number of the nodes in the ARG that could possibly correspond to the node i

in the Random ARG after pruning the Association Graph.
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Since the closed form solution for mapping ri to zi is unavailable, we use the upper

bound as an approximation. Consequently, combining lemmas 3.1 and 3.2 we can obtain the

following relationship for the pruned MRF. zi = ri/((1− ri)di).

The next step is to derive the conditional density p(O|X,H = 1). Assuming that yu and

yuv are independent given the correspondence, we have

p(O|X,H = 1) =
∏
uv

p(yuv|x1u, x1v, ..., xNu, xNv, H = 1)
∏
u

p(yu|x1u, ..., xNu, H = 1)

Furthermore, yu and yuv should only depends on the Random ARG nodes that are matched

to u and v. Thus

p(yu|x11 = 0, ..., xiu = 1, ..., xNM = 0, H = 1) = fi(yu)

p(yuv|x11 = 0, ..., xiu = 1, xjv = 1, ..., xNM = 0, H = 1) = fij(yuv) (3.6)

Also, if there is no node in the Random ARG matched to u, then yu,yuv should be sampled

from the background pdfs, i.e.

p(yu|x11 = 0, xiu = 0, ..., xNM = 0, H = 1) = f+
B1

(yu)

p(yuv|x11 = 0, xiu = 0, ..., xNM = 0, H = 1) = f+
B2

(yuv) (3.7)

where f+
B1

(·) and f+
B2

(·) is the background pdf trained from the positive data set. Note that

here we use two sets of background pdfs to capture the difference of the background statistics

in the positive data set and that in the negative data set.

Combining all these elements together, we would end up with another MRF (to be

described in theorem 3.1). It is important and interesting to note that the likelihood ratio

for object detection is actually related to the partition functions of the MRFs through the

following relationship.
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Theorem 3.1. The likelihood ratio is related to the partition functions of MRFs as the fol-

lowing

p(O|H = 1)
p(O|H = 0)

= σ
Z ′

Z
(3.8)

where Z is the partition function of the Gibbs distribution p(X|H = 1). Z ′ is the partition

function of the Gibbs distribution of a new MRF, which happens to be the posterior probability

of correspondence p(X|O,H = 1), with the following form

p(X|O,H = 1) =
1
Z ′

∏
iu,jv

ςiu,jv(xiu, xjv)
∏
iu

ηiu(xiu) (3.9)

where the one-node and two-node potential functions have the following forms

ηiu(1) = zifi(yu)/f+
B1

(yu); ςiu,jv(1, 1) = ψiu,jv(1, 1)fij(yuv)/f+
B2

(yuv) (3.10)

all other values of the potential functions are set to 1 (e.g. ηiu(xiu = 0) = 1). σ is a

correction term

σ =
∏
u

f+
B1

(yu)/f−B1
(yu)

∏
uv

f+
B2

(yuv)/f−B2
(yuv)

3.3.3 Computing the Partition Functions

Theorem 3.1 reduces the likelihood ratio calculation to the computation of the partition

functions. For the partition function Z, it has a closed form(See Appendix B.1) and can be

computed in a polynomial time or using the lemma 2.2 for approximation. The main diffi-

culty is to compute the partition function Z ′, which involves a summation over all possible

correspondences, whose size is exponential in MN . Fortunately, computing the partition

function of the MRF has been studied in statistical physics and machine learning [100]. It

turns out that, due to its convexity, lnZ ′ can be written as a dual function, a.k.a. variational

representation, or in the form of the Jensen’s inequality [111].

lnZ ′≥
∑

(iu,jv)

q̂(xiu, xjv) ln ςiu,jv(xiu, xjv) +
∑
(iu)

q̂(xiu) ln ηiu(xiu) +H(q̂(X)) (3.11)
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Where q̂(xiu) and q̂(xiu, xjv) are known as one-node and two-node beliefs, which are the

approximated marginal of the Gibbs distribution p(X|O,H = 1). H(q̂(X)) is the approxi-

mated entropy, which can be approximated by Bethe approximation[111], as below

H(q̂(X))≈−
∑
iu,jv

∑
xiu,xjv

q̂(xiu, xjv) ln q̂(xiu, xjv) +
∑
iu

(MN − 2)
∑
xiu

q̂(xiu) ln(q̂(xiu))

Apart from Bethe approximation, it is also possible to use more accurate approximations,

such as semidefinite relaxation in [100].

The RHS in the Eq. (3.11) serves two purposes, for variational learning and for ap-

proximating lnZ ′. In both cases, we have to calculate the approximated marginal q̂(xiu) and

q̂(xiu, xjv). There are two options to approximate it, optimization-based approach and Monte

Carlo method. The former maximizes the lower bound with respect to the approximated mar-

ginal. For example, Loopy Belief Propagation (LBP) is an approach to maximizing the lower

bound through fixed point equations[111]. However, we found that, LBP message passing

often does not converge using the potential functions in Eq.(3.10). Nonetheless, we found

that if we select the marginal that corresponds to the larger lower bound in Eq.(3.11) across

update iterations, we can achieve satisfactory inference results and reasonably accurate object

models.

Another methodology, Monte Carlo sampling[5] , approximates the marginal by drawing

samples and summing over the obtained samples. Gibbs Sampling, a type of Monte Carlo

method, is used in our system due to its efficiency. In order to reduce the variances of the

approximated two-node beliefs, we propose a new method to combine the Gibbs Sampling

with the Belief Optimization developed in [103], which proves that there is a closed-form

solution (through Bethe approximation) for computing the two-node beliefs given the one-

node beliefs and the two-node potential functions (Lemma 3.1 in [103]). We refer to this

approach as Gibbs Sampling plus Belief Optimization (GS+BO).
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3.3.4 Learning Random Attributed Relational Graph

We use Gaussian models for all the pdfs associated with the Random ARG and the

background model . Therefore, we need to learn the corresponding Gaussian parameters

µi,Σi,µij ,Σij ;µ+
B1

,Σ+
B1

,µ+
B2

,Σ+
B2

;µ−B1
,Σ−

B1
,µ−B2

,Σ−
B2

. and the occurrence probability ri.

Learning the Random ARG is realized by Maximum Likelihood Estimation (MLE). Di-

rectly maximizing the positive likelihood with respect to the parameters is intractable, in-

stead we maximize the lower bound of the positive likelihood through Eq.(3.11), resulting

in a method known as Variable Expectation-Maximization (Variational E-M). Variational

E-Step: Perform GS+BO scheme or Loopy Belief Propagation to obtain the one-node and

two-node beliefs.

M-Step: Maximize the overall log-likelihood with respect to the parameters

L =
K∑

k=1

ln p(Ok|H = 1) (3.12)

where K is the number of the positive training instances. Since direct maximization is in-

tractable, we use the lower bound approximation in Eq.(3.11), resulting in the following

equations for computing the parameters

ξk
iu = q̂(xk

iu = 1), ξk
iu,jv = q̂(xk

iu = 1, xk
jv = 1); ξ̄k

iu = 1− ξk
iu, ξ̄k

iu,jv = 1− ξk
iu,jv

µi =
∑

k

∑
u ξ

k
iuy

k
u∑

k

∑
u ξ

k
iu

Σi =
∑

k

∑
u ξ

k
iu(yk

u − µi)(yk
u − µi)T∑

k

∑
u ξ

k
iu

µij =

∑
k

∑
uv ξ

k
iu,jvy

k
uv∑

k

∑
uv ξ

k
iu,jv

Σij =

∑
k

∑
uv ξ

k
iu,jv(y

k
uv − µij)(yk

uv − µij)T∑
k

∑
uv ξ

k
iu,jv

µ+
B1

=
∑

k

∑
u ξ̄

k
iuy

k
u∑

k

∑
u ξ̄

k
iu

Σ+
B1

=
∑

k

∑
u ξ̄

k
iu(yk

u − µi)(yk
u − µi)T∑

k

∑
u ξ̄

k
iu

µ+
B2

=

∑
k

∑
uv ξ̄

k
iu,jvy

k
uv∑

k

∑
uv ξ̄

k
iu,jv

Σ+
B2

=

∑
k

∑
uv ξ̄

k
iu,jv(y

k
uv − µij)(yk

uv − µij)T∑
k

∑
uv ξ̄

k
iu,jv

(3.13)

The occurrence probability ri is derived from Lemma 3.1 using maximum likelihood estima-

tion.Using the lower bound approximation in Eq.(3.11), we have the approximated overall
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Figure 3.3. Spanning tree approximation, realized by first constructing a weighted graph
(having the same topology as the Random ARG) with the weight wij = |Σij | in the edge
el = (ni, nj), then invoking the conventional minimum spanning tree(MST) algorithm, such
as Kruskal’s algorithm. Here |Σij | is the determinant of the covariance matrix of fij(.) (the
pdf of the relational feature in the Random ARG) associated with the edge el = (ni, nj).

log-likelihood

L ≈
K∑

k=1

∑
iu

q̂(xk
iu = 1)lnzi −KlnZ(N ;M ; z1, z2, ..., zN ) + α (3.14)

where α is a term independent on the occurrence probability r1, r2, ..., rN . To minimize the

approximated likelihood with respect to zi, we compute the derivative of the Eq.(3.14), and

equates it to zero

∂

∂zi

[ K∑
k=1

∑
iu

q̂(xk
iu = 1)lnzi

]
−K ∂

∂zi
lnZ(N ;M ; z1, z2, ..., zN )

=
K∑

k=1

∑
iu

q̂(xk
iu = 1)

1
zi
−Kri

zi
= 0 (3.15)

We used Lemma 3.1 in the last step. Since zi 	= 0, the above equation leads to the equation

for estimating ri

ri =
1
K

∑
k

∑
u

q̂(xk
iu = 1) (3.16)

For the background parameters µ−B1
,Σ−

B1
,µ−B2

,Σ−
B2

, the maximum likelihood estimation re-

sults in the sample mean and covariance matrix of the part attributes and relations of the

images in the negative data set.
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3.3.5 Spanning Tree Approximation for Spatial Relational Features

Our approaches described so far assume the relational features yij are independent. How-

ever, this may not be true in general. For example, if we let yij be coordinate differences,

they are no longer independent. This can be easily seen by considering three edges of a tri-

angle formed by any three parts. The coordinate difference of the third edge is determined

by the other two edges. The independence assumption therefore is not accurate. To deal with

this problem, we prune the fully-connected Random ARG into a tree by the spanning tree

approximation algorithm, which discards the edges that have high determinant values in their

covariance matrix of the Gaussian functions (Figure 3.3). This assumes that high determinant

values of the covariance matrix indicate the spatial relation has large variation and thus is less

salient.

In our experiments, we actually found a combined use of fully-connected Random ARG

and the pruned spanning tree is most beneficial in terms of the learning speed and model ac-

curacy. Specifically, we use a two-stage procedure: the fully-connected Random ARG is used

to learn an initial model, which then is used to initialize the model in the 2nd-phase iterative

learning process based on the pruned tree model. In the detection phase, only spanning-tree

approximation is used.

3.4 Extension to Multi-view Mixture Model

The above described model assumes the training object instances have consistent single

views. In order to capture the characteristic of an object class with view variations. We

develop a Mixture of Random ARG (MOR) model, which allows the components in the

MOR to capture the characteristic of the objects with different views.
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LetRt denotes the Random ARG to represent a distinct view t. The object model thereby

is represented as 
 = {Rt} along with the mixture coefficients p(Rt|
). The positive likeli-

hood then becomes

p(O|H = 1) =
∑

t

p(O|Rt)p(Rt|
)

The maximum likelihood learning scheme to learn the mixture coefficients and the Gaussian

pdf parameters therefore is similar to that of the Gaussian Mixture Model (GMM), consisting

of the following E-M updates

E-step: Compute the assignment probability

ζt
k = p(Rt|Ok,
) =

p(Ok|Rt)p(Rt|
)∑
t p(Ok|Rt)p(Rt|
)

(3.17)

M-step: Compute the mixture coefficients

p(Rt|
) =
1
N

∑
k

ζt
k (3.18)

and update the Gaussian parameters for each component t(We omit the index t except for ζt
k

for brevity):

ξk
iu = q̂(xk

iu = 1), ξk
iu,jv = q̂(xk

iu = 1, xk
jv = 1); ξ̄k

iu = 1− ξk
iu, ξ̄k

iu,jv = 1− ξk
iu,jv
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The above equations are supposed to automatically discover the views of the training object

instances through Eq.(3.17). However, our experiments show that directly using the E-M

updates often results in inaccurate parameters of Random ARG components. This is because
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in the initial stage of learning, the parameters of each Random ARG component is often in-

accurate, leading to inaccurate assignment probabilities (i.e. inaccurate view assignment).

To overcome this problem, we can use a semi-supervised approach. First, the parameters

of the Random ARG components are initially learned using view annotation data (view la-

bels associated to the training images by annotators). Mathematically, this can be realized

by fixing the assignment probabilities using the view labels during the E-M updates. For

instance, if an instance k is annotated as view t, then we let ζt
k = 1. After the initial learning

process converges, we use the view update equation in Eq.(3.17) to continue the E-M itera-

tions to refine the initially learned parameters. Such a two-stage procedure ensures that the

parameters of a Random ARG component can be learned from the object instances with the

view corresponding to the correct Random ARG component in the beginning of the learning

process.

3.5 Experiments

We compare the performance of our system with the system using the constellation model

presented in [30]. We use the same data set, which consists of four object classes - motor-

bikes, cars, faces, and airplanes, and a common background class. Each of the classes and

the background class is randomly partitioned into training and testing sets of equal sizes.

All images are resized to have a width of 256 pixels and converted to gray-scale images.

Image patches are detected by Kadir’s Salient Region Detector[54] with the same parameter

across all four classes. Twenty patches with top saliency values are extracted for each image.

Each extracted patch is normalized to the same size of 25 × 25 pixels and converted to a

15-dimensional PCA coefficient vectors, where PCA parameters are trained from the image

patches in the positive data set. Overall, the feature vector at each node of the ARG is of 18

dimensions: two for spatial coordinates, fifteen for PCA coefficients, and one for the scale
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Figure 3.4. The Random ARG learned from the “motorbike” images.

feature, which is an output from the part detector to indicate the scale of the extracted part.

Feature vectors at the edges are the coordinate differences.

To keep the model size consistent with that in [30], we set the number of nodes in Random

ARG to be six, which gives a good balance between detection accuracy and efficiency. The

maximum size of the Association Graph therefore is 120 (6x20). But for efficiency, the

Association Graph is pruned to 40 nodes based on the pruning criteria described in Section

2.1. In the learning process, we tried both inference schemes, i.e. GS+BO and LBP. But,

in detection we only use GS+BO scheme because it is found to be more accurate. In LBP

learning, relational features are not used because it is empirically found to result in lower

performance. In GS+BO scheme, the sampling number is set to be proportional to the state

space dimension, namely α · 2 · 40 (α is set to 40 empirically). The occurrence probability

ri is computed only after the learning process converges because during the initial stages

of learning, ri is so small that it affects the convergence speed and final model accuracy.

Besides, we also explore different ways of applying the background models in detection. We

found a slight performance improvement by replacing B+ with B− in the detection step(Eq.

(3.8)). Such an approach is adopted in our final implementation. Figure 3.4 shows the learned

part-based model for object class “motorbike” and the image patches matched to each node.

Table 1(next page) lists the object detection accuracy, measured by equal error rate (definition

is in[30]), and the learning efficiency.
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Dataset GS+BO LBP Oxford

Motorbikes 91.2% 88.9% 92.5%
Faces 94.7% 92.4% 96.4%
Airplanes 90.5% 90.1% 90.2%
Cars(rear) 92.6%∗ 93.4% 90.3%

Dataset GS+BO LBP Oxford

Motorbikes 23i/18h 28i/6h 24-36h
Faces 16i/8h 20i/4h
Airplanes 16i/16 h 18i/8h 40-100i
Cars(rear) 16i/14h 20i/8h

Table 3.1. Object detection performance and learning time of different methods (xi/yh means
x iterations and y hours). * Background images are road images the same as [30].

The most significant performance impact by our method is the improvement in learning

speed - two times faster than the well-known method [30] if we use GS+BO for learning; five

times speedup if we use LBP learning. Even with the large speedup, our method still achieves

very high accuracy, close to those reported in [30]. The slightly lower performance for the

face class may be because we extracted image patches in the lower resolution images. We

found that small parts such as eyes cannot be precisely located in the images with a width of

256 pixels only. We decided to detect patches from low-resolution images because the patch

detection technique from [54] is slow (about one minute for one original face image). The

improved learning speed allows us to rapidly learn object models in new domains or develop

more complex models for challenging cases.

For multi-view object detection, we have built up our own data sets using google and

altavista search engines (Figure 3.5). The data sets contain two object classes: “cars” and

“motorbikes”. Each data set consists of 420 images. The objects in the data sets have contin-

uous view changes, different styles and background clutters. The variations of the objects in

the images roughly reflects the variations of the objects in web images, so that we can assess

the performance of our algorithm for classifying and searching the web images. Before learn-
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(a) Cars

(b) Motorbikes

Figure 3.5. The multi-view objects for learning and testing

ing and detection, the images first undergo the same preprocessing procedures as the case of

the single view detection. To save the computation cost, we only use two mixture components

in the Mixture of Random ARG model. The performances using different learning schemes

are listed below.

dataset sing manu auto relax

Cars 74.5% 73.5% 76.2% 76.3%
MotorBikes 80.3% 81.8% 82.4% 83.7%

Table 3.2. Multi-view object detection performance

The baseline approach is the single Random ARG detection (”sing”), namely we use one

Random ARG to cover all variations including view changes. Three different multi-view
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learning methods are tested against the baseline approach. In learning based on automatic

view discovery (“auto”), Eq.(3.17) is used to update the assignment probability (i.e. the view

probability) in each E-M iteration. In learning based on manual view assignment(“manu”),

update through Eq.(3.17) is not used in E-M. In stead, the assignment probability is computed

from the view annotation data and fixed throughout the learning procedure. In learning by

combining view annotation and view discovery (“relax”), we first learn each component Ran-

dom ARG model using view annotations. The automatic view discovery is then followed to

refine the parameters. The view annotation procedure is realized by letting annotators inspect

the images and assign a view label to each image. Here, because we only have two compo-

nents, each image is assigned with either “side view” or “front view”. Although there are

objects with “rear view”, they are very rare. Besides, we do not distinguish the orientations

of the objects in “side view”.

From the experiments, it is observed that the “manu” mode performs worse than the

“auto” and “relax” mode. This is because the continuous view variations in the data set

makes the view annotations inaccurate. Overall, the “relax” model performs best. This is

consistent with our theoretical analysis: learning based on view annotation ensures the com-

ponent Random ARGs can be learned correctly, and the following refinement by automatic

view discovery optimizes the parameters of the component Random ARGs as well as view

assignments which could be inaccurate by manual annotations.

3.6 Summary

We have presented a new statistical part-based model, called Random ARG, for object

representation and detection. We solve the part matching problem through the formulation

of an Association Graph that characterizes the correspondences between the parts in the im-
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age and nodes in the object model. We prove an important mathematical property relating

the likelihood ratio for object detection and the partition functions of the MRFs defined on

the Association Graph. Such discovery allows us to apply efficient inference methods such

as Gibbs Sampling and Loopy Belief Propagation to achieve significant performance gain.

We further extend the single Random ARG model to a mixture model for multi-view ob-

ject detection, which improves the detection accuracy achieved by the single Random ARG

model.
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Chapter 4

Image Region Labeling with a

Higher-order Statistical Relational

Model

4.1 Introduction

In this chapter, we deal with the region labeling problem using probabilistic methods.

Region labeling refers to assigning semantic labels to the regions generated by region seg-

mentation algorithms. The aim is to locate objects or interpret the visual scene in an image.

More specifically, we deal with the visual text detection problem. Visual text is text

in images or videos that is overlaid during the editing process (overlay text) or embedded

during the visual scene (scene text, e.g. the road sign). We treat the text detection problem

as a region labeling problem by first segmenting an image into regions and then assigning
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a binary label(text or non-text) to each region. We focus on scene text detection because

overlay text detection is a relatively easy problem.

Scene text detection in natural 3-D scenes is an important but challenging problem. Scene

text provides semantic information about the scene in an image or events in a video segment.

Therefore, the detected and recognized scene text can be used as informative features for

search and retrieval. Figure 4.1 shows several examples of scene text, illustrating the varia-

tions of the shape, lighting and color of the scene text in real-world images.

4.2 Prior Work and Our Contributions

There have been much prior work on text detection, but most of them use ad hoc rules,

lacking a systematic framework. Such approaches are difficult to generalize and achieve

robust performance. They can be classified as texture based [60][3], region based [50][89],

or hybrid [34][118][96]. Spatial layout analysis is also used in some of the systems in a rule

based setting.

Text lines or words can be modeled as multi-part objects, where characters are discon-

nected parts. There has been some prior work on parts-based object detection and motion

analysis. For example, in [11][30], a part constellation model is proposed to detect multi-

part object with supervised and unsupervised learning. Spatial relations of parts are modeled

using covariance matrix. In [29], objects are modeled as trees. Detecting objects is realized

by matching model trees and input pictures. In [93], human motion detection is realized by

a parts-based approach, where the parts modeling is limited to triangulated decomposable

graphs. In [47], a parts-based approach is proposed to detect human body. Boosting is ap-

plied to combine weak classifiers corresponding to different body part assemblies. In [113],
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Figure 4.1. Examples of scene text in images

a graph partitioning approach is developed to group individual parts into objects. However,

no probabilistic structure is presented to support systematic learning.

Markov Random Field (MRF) is an undirected graphical model, having widespread ap-

plications in computer vision. MRF with pairwise potential and belief propagation has been

applied in many low-level vision applications [32] and high-level applications [70]. How-

ever, in order to detect multi-part objects, pairwise potential is often inadequate since it only

captures two-node constraints. For example, in the text detection task, the pairwise potential

cannot capture the unique spatial relationship that every three characters should be aligned

on a straight line or a smooth curve. Another limitation of the previous pairwise MRF model

[32] is that the state potential function does not incorporate the observed features. This makes

it difficult to model the parts relations for general applications. For example, if we need to

enforce that the “land” region should locate below the “sky” region in a natural image, the

coordinate difference of the two regions is necessary to be taken into account.

In this chapter [116], we propose a parts-based object detection system via learning a

high-order MRF model. The methodology is applied to detect scene text in images. The

problem is formulated as calculating the beliefs (the marginalized probability) at nodes that

correspond to automatically segmented regions. In order to realize efficient probabilistic
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inference, a variational method similar to Bethe approximation [111] is developed, which is

converted into higher-order belief propagation equations. Supervised learning of this high-

order MRF model is realized by maximum likelihood estimation.

Compared with prior systems, the proposed statistical framework incorporates higher-

order constraints and takes advantage of the efficient inference algorithms. The proposed

higher-order MRF model is also unique in that it uses potential functions considering inter-

part relational attribute.

In the experiments, the higher-order MRF model is evaluated against the pairwise MRF

model using a set of public benchmark images. The experiments show a substantial perfor-

mance improvement accredited to the adoption of the higher-order statistical model. More-

over, the results also show that the presented method is extraordinarily robust even for text

in severely cluttered background or with significant geometric variations. These evidences

confirm the advantage of the higher-order MRF model for parts-based detection of scene text

and probably broader categories of objects.

4.3 Region adjacency graph formation

Region adjacency graph (RAG) is used to model the properties of parts and parts rela-

tions. In this model, each node represents a segmented region, and each edge represents the

likely relations between two regions. Region detection is realized by a mean-shift segmenta-

tion algorithm [16].

The edges between nodes are established according to the spatial positions of the regions.

An edge is established only if the minimum distance between two regions is less than a

predetermined threshold. The value of the minimum distance threshold (MDT) should allow

three consecutive characters form a three-clique (i.e. triangle). Larger MDT would yield
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Figure 4.2. Region segmentation and adjacency graph.

denser graph and more cliques, resulting in more computation cost. The optimal selection of

MDT remains an unsolved issue for future exploitation. A straightforward method is to use a

multi-pass detection procedure, in which a small MDT is started and subsequently increased

until text is detected.

Nested regions, such as a bounding box and its encompassed characters, would not be

connected by edges, in order to prevent unnecessary computation. Moreover, the regions that

touch image boundaries are assumed to be background. They are therefore eliminated to save

computation resources. One example of RAG is shown in the Figure 4.2.

4.4 Formulating text detection using MRF

Based on a RAG, the corresponding Markov Random Field (MRF) is constructed by

attaching each node i a state random variable Xi taking value from a label set. In text de-

tection, the label set consists of two labels: “text” (Xi = 1) or “non-text” (Xi = 0). The

observed features include one-node features yi extracted from each region i, and three-node

features yijk extracted from every three connected regions (or a three-clique in RAG). Text

detection therefore can be modeled as the probabilistic inference problem given all obser-
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vation features. The overall relations can be modeled as a joint probability p(x, y), with

x = {xi|1 ≤ i ≤ N} and y = {yi, yijk|1 ≤ i, j, k ≤ N} where N is the region number.

Text detection is therefore the problem of computing the marginal (or belief)

p(xi|y) =
∑
x\xi

p(x, y)/p(y) (4.1)

Labeling a region as text or non-text is realized by likelihood ratio rest of the two opposite

hypotheses (xi = 1,text;xi = 0,non-text):

p(xi = 1|y)
p(xi = 0|y) =

p(xi = 1, y)
p(xi = 0, y)

≥ λ (4.2)

where λ is a threshold, which can be adjusted to vary the precision and recall rate.

4.4.1 Pairwise MRF

Pairwise MRF has been applied in a variety of low-level vision applications [32]. The

joint probability of a pairwise MRF can be written as

p(x, y) =
1
Z

∏
ij

ψij(xi, yj)
∏

i

φi(xi, yi) (4.3)

where Z is the normalization constant, ψij(xi, yj) is the state comparability function,

φi(xi, yi) captures the compatibility between the state and observation. The marginal proba-

bility of MRF can be calculated by Belief Propagation[111].

For multi-part object detection in cluttered background, one needs to identify the parts

and group them into assemblies by accommodating the relations of the parts. This requires

identifying structures in the adjacency graph, not only verifying the compatibility between

two nodes. For example, in text detection, we need to verify if three regions are aligned on

a straight line approximately. These constraints cannot be addressed by pairwise potentials

and require functions involving more than two nodes.
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4.4.2 Higher-Order MRF with belief propagation

To overcome the limitation of the pairwise MRF, we attempt to utilize MRF model with

higher-order potentials while retaining the computational efficiency of the belief propagation

algorithm.

We adopt a unique generative model accommodating higher-order constraints, as visual-

ized in Figure 4.3(Left), in which the observation features are not only defined at node but

also three-cliques. Here we omit two-node potentials in order to simplify the computation

and due to the fact that two-node constraints can be also incorporated in the three-node po-

tentials if the graph is dense. It is not difficult to show that this model can be factorized as

following:

p(x, y) =
1
Z

∏
ijk

ψijk(xi, xj , xk)p(yijk|xi, xj , xk)
∏

i

p(yi|xi) (4.4)

Where yi is the observation feature vector at node ni. yijkis the clique-level relational

feature, which is extracted from the entire set of nodes in the clique and is used to characterize

the attribute relations of the three nodes in the same clique. Examples of clique features may

include the relations of locations, shapes, and symmetry among the nodes. The higher-order

potentials and clique features allow this model perform local pattern matching and evolve

towards higher-scale hidden structures. The potential function containing the clique features

is crucial for multi-part relationship modeling. ψijk(xi, xj , xk) is the potential imposing prior

constraint,and p(yijk|xi, xj , xk),p(yi|xi) is the probability density functions at three-cliques

and nodes respectively. Here we implicitly assume that the observation features yijk,yi are

independent.

By combining the prior constraints and emission probabilities, this model is equivalent to

the following MRF with inhomogeneous potentials (potential functions that vary wrt different
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sites):

p(x, y) =
1
Z

∏
ijk

ψ′
ijk(xi, xj , xk, yijk)φ′i(xi, yi) (4.5)

where ψ′
ijk(xi, xj , xk, yijk) and φ′i(xi, yi) are the inhomogeneous potential functions.

In the rest of the chapter, we use shorthand ψijk(xi, xj , xk) and φi(xi) for

ψ′
ijk(xi, xj , xk, yijk) and φ′i(xi, yi) to simplify notations.

It has been shown that the belief propagation (BP) in pairwise MRF is equivalent to the

Bethe approximation [111], a type of variational approximation. For higher-order MRF, we

can use a similar variational approximation to obtain a higher-order version of the belief

propagation. The detailed derivation is described in the Appendix. We could also obtain

the same result by using Kikuchi approximation developed in [112][111], which is a more

accurate method for probabilistic inference.

The message passing rule for higher-order BP is as following (also illustrated in Figure

4.3(Right))

mjki(xi)←−λ
∑
xj

∑
xk

φj(xj)φk(xk)ψijk(xi, xj , xk)

∏
(l,n)∈Np(k)\(i,j)

mlnk(xk)
∏

(l,n)∈Np(j)\(i,k)

mlnj(xj) (4.6)
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Figure 4.3. (Left) MRF with higher-order potential, node features, and clique-level relational
features (Right) The message passing of the high-order belief propagation
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where λ is a normalization factor so that the message computation will not cause arith-

metic overflow or underflow. Np(i) is the node pair set in which every node pair forms a

three-clique with the node i. Once the messages converge, the beliefs are computed using

bi(xi) = kφi(xi)
∏

(j,k)∈Np(i)

mjki(xi) (4.7)

Where k is a normalization factor. Messages are uniformly initialized as a constant, typically

1.

Besides using the proposed higher-order BP, an alternative approach is to reduce the

higher-order MRF to a pairwise MRF by clustering nodes and inserting additional nodes

[114]. This process needs careful redesign of the potential functions and has to introduce

extra delta-function-like potential functions, which may cause unstable message updates. It

is therefore more straightforward to use the above higher-order version of belief propagation

to perform inference.

Intuitively, the higher-order BP rules perform local pattern matching (by three-node po-

tential with clique-level relational features) and pass around the evidences to the neighboring

nodes to enhance or diminish the beliefs. To show this, Figure 4.4 shows the inference results

from inputs with different numbers of characters. The brightness of each node (correspond-

ing to a character) shown in the figure represents the belief of being “text” object. We note

that more characters result in higher beliefs of the individual characters due to the interactions

of the nodes.

Because the region adjacency graph is automatically generated, the topology of the graph

is often loopy. Thus, in theory, the convergence of the BP cannot be guaranteed. However,

our experiments on actual images so far have not observed significant divergences of message

updates. This is probably due to the appropriate designs of the potential functions, or because

the magnitudes of oscillations are too small to be observed.
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Figure 4.4. The reinforcement of the beliefs as the number of characters increases

4.5 Design of the Potential Functions

In order to effectively detect text, we need to carefully design the potential functions

and emission probabilities in Eq. (4.4). The prior potentials are discrete probability mass

functions. For emission probabilities, we have to adopt parametric probability density

functions so that the model can be properly learned. In our system, we assume that the

p(yijk|xi, xj , xk),p(yi|xi) both have the form of Gaussian function or mixture of Gaussians.

In the following, we describe a few features for one-node and 3-node potential functions.

Note the functions are general and other features can be added when useful, not only limited

to the set we currently include in the implementation.

4.5.1 The one-node potential

In our current implementation, only aspect ratio is used as the feature for one-node po-

tential. The distribution of the aspect ratio is modeled as Gaussian functions. There are two

Gaussian pdf s: one for state 0 and another one for state 1, denoted as G0(yi) = N (µ0,Σ0)

and G1(yi) = N (µ1,Σ1) respectively.

This model is accurate in the absence of segmentation errors. However, in many cases,

multiple character regions may be merged due to poor region segmentation. To accommodate
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Figure 4.5. Examples of higher-order features

the mixed types of regions (single character regions and merged regions), we can use mixture

of Gaussians to model the distribution.

4.5.2 The three-node potential

Three-node potential functions are used to enforce the spatial and visual relationship

constraints on the cliques. The clique feature vector is extracted from every three-clique, the

component of this vector is described as follows.

a) Minimum Angle

The feature is defined as the sinusoid of the minimum angle of the three-clique, i.e.:

yijk(1) = sin(minmθm),m = 1, 2, 3.

where θm is one of the angles of the three-clique (illustrated in Figure 4.5). For a text line, the

minimum angle should be close to 0. For text on a non-planar surface, the angle is assumed

to be small (e.g., text on a cylindrical surface). Note that the statistical modeling approach

allows for soft deviation from a fixed value, and thus non-planar text with small angles can

also be detected.

b) Consistency of the region inter-distance

For most scene text in an image, the difference of the character inter-distance is approxi-
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mately the same. The feature is defined as ,

yijk(2) = ‖v1‖ − ‖v2‖

where v1,v2 are the two laterals with the maximum angle in the triangle (illustrated in Figure

4.5).

c) Maximum color distance

The feature is defined as the maximum pairwise color distance of the three regions. The use

of this feature is based on the fact that the text regions in a text line have near uniform color

distribution. The color distance is defined in the HSV space. For greyscale images, we can

replace the color distance with the intensity difference although it may not be as robust as

using color.

d) Height consistency of the character

The constraint enforces that the heights of the three character regions are approximately the

same. The height divergence ratio is defined as

yijk(4) = (hmax − hmin)/hmin

where hmin and hmax are the minimum and maximum height of the three regions. English

characters usually are written with fixed discrete levels of height. Thus a mixture of Gaussian

model would be adequate.

4.6 Learning the Higher-Order MRF

Learning the Higher-Order MRF is realized by the maximum likelihood estimation. Sup-

pose M images are used in training. We want to estimate the optimal parameter set θ̂ to
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maximize the likelihood of the whole set of images.

θ̂ = argmaxθ

M∑
m=1

lnp(xm, ym|θ) (4.8)

xm,ym is the state vector and observation feature vector in the mth image, where xm is

labelled by annotators. According to Eq.(4.4), the joint log likelihood of x,y in one image

can be factorized as

lnp(x, y) =
∑
ijk

lnψ(xi, xj , xk|θx) + (4.9)

∑
ijk

lnp(yijk|xi, xj , xk, θy3) +
∑

i

lnp(yi|xi, θy1)− lnZ

Where θx is the parameter for the state prior probability mass function. θy3 is the parameter

of the probability density function for the three-clique relational feature. θy1 is for the one-

node observation density. Since these three functions have independent parameters, and the

partition function Z is independent on θy3,θy1 due to full factorization, the learning process

can be carried out separately for each term. The maximum likelihood estimates of θy3,θy1 are

obtained by simply calculating the mean and variance (or covariance matrix) of the Gaussian

functions using labeled data. θx is the parameter for the prior distribution. Currently the prior

distribution is assumed to be uniform.

The features presented in Section 4.5 require the potential functions of each clique invari-

ant to permutation of label assignments of the states in the same clique. For a three-clique,

there are 8 different configurations, but due to the permutation invariance, there are only

4 different configurations (xi, xj , xk) = (111),(xi, xj , xk) = (110),(xi, xj , xk) = (100),

(xi, xj , xk) = (000). As an example, (xi, xj , xk) = (111) means all three nodes in the

clique are text regions. Correspondingly, we have Gaussian pdf s:
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Figure 4.6. (Left) The miss in detecting multiple text lines due to cross-text-line (CTL)
cliques. (Right) the results after potential function modification.

G111(yijk) = p(yijk|xi = 1, xj = 1, xk = 1) = N (µ111,Σ111)

G110(yijk) = p(yijk|xi = 1, xj = 1, xk = 0) = N (µ110,Σ110)

G100(yijk) = p(yijk|xi = 1, xj = 0, xk = 0) = N (µ100,Σ100)

G000(yijk) = p(yijk|xi = 0, xj = 0, xk = 0) = N (µ000,Σ000)

4.7 Modification of the potential functions for multiple text lines

The above detection algorithm works well when the image only contains single text

line or the text lines are apart far away. However, if two or more text lines are close to

one another, the algorithm will miss one or more text lines, as shown in the Figure 4.6.

Such miss of detection is due to the negative constraint produced by the cross-text-line

cliques (marked as dashed red lines in the Figure 4.6(Left)). In this case, the value of

G110(yijk),G100(yijk),G000(yijk) may be much larger than G111(yijk) for a cross-text-line

clique. The one-dimensional illustration of this situation is shown in the Figure 4.7, where the

red (blue) curve indicates the potential function trained from “text”-“text”-“non-text” (text-

text-text) cliques. Consequently, assigning the “non-text” label to one of the nodes in the
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Figure 4.7. The potential functions and the modified version of G111(yijk)

cross-text-line three-clique will yield higher overall likelihood (as shown in the dashed line).

One way to fix this problem is to modify the G111(yijk) potential function such that it only

has positive constraint effect within the desired feature range by the following operator

G′
111(yijk) = sup{G110(yijk), G100(yijk), G000(yijk)}

The resulting function is shown in Figure 4.7. Therefore if the three-node fea-

ture is far from the mean of the Gaussian, it no longer gives higher value for

G110(yijk),G100(yijk),G000(yijk) compared with G111(yijk). This modification shows

very significant improvement in the experiments while it does not significantly impact the

non-text regions. Figure 4.6(Right) shows the results by using the modified potentials. One

potential drawback of the above modification is that it may raise the belief of the non-text

region and thus increase false alarms. However, if the text line has enough characters, the

likelihood ratio test with higher threshold will correctly reject those non-text regions. An-

other problem is that some singleton regions disconnected with any other region may exist

in image. No three-node potential constraint is imposed on these nodes. Consequently, the

beliefs are totally determined by the one-node potential function, which is often inaccurate.
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To handle this problem, we can let the one-node potential only give negative constraint to

non-text region if the features are quite different from the learned Gaussian mean. Thus, the

one-node potential is modified using:

G′
1(yi) = sup{G1(yi), G0(yi))}

4.8 Experiments and results

To evaluate the proposed approach, we evaluate the performance using a public dataset

used in the scene text detection competition in ICDAR 2003 [64]. The dataset contains 20

images with different natural conditions, for example, outdoor/indoor, background clutter,

geometric variations, lighting variation, etc. All are colored images in the RGB format..

The resolution of these images is very high with a typical size 1280x960. To reduce the

computation cost, we resize these images to about 640x480. This test set is limited since

only images containing text are included. In order to evaluate the capability of the system in

rejecting false regions in the cluttered images, another ten images with cluttered background

but without text are added to the data set.

A cross-validation procedure is used to test the algorithm: the data is divided into two

subsets, each of which alternates as training and testing set in a two fold cross-validation

process. In the learning stage, each image first segmented by the mean-shift algorithm, and

the segmented regions are manually labeled as text or non-text. Cross-text-line cliques are

excluded from training to avoid confusion. We measure the precision and recall of the text

region detection. Recall is the percentage of the ground truth text regions that are detected,

while precision is the percentage of the correct text regions in the detected regions. The

accuracy is measured at the character level.

We use the MRF model with pairwise potential as the baseline for comparison. The
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Figure 4.8. Precision recall curve, (Left) The comparison of ROC curve by using conven-
tional pairwise MRF (dashed blue) and proposed method (red). (Right) The ROC curve of
detection in set 1(green) set 2(blue) and average(red).

relational features are added into the pairwise model. It uses two features in the two-node

potential - the color difference and height consistency. The one-node potential is the same

as that used in the proposed higher-order MRF. The potentials are learned from labeled data.

Inference is realized by standard belief propagation. A precision-recall curve (ROC curve) is

generated by varying the threshold of the likelihood ratio, as shown in Eq.(4.2).

The performance comparison is shown in Figure 4.8(Left), which indicates that the

higher-order MRF model significantly outperforms MRF with pairwise potential. Note inter-

estingly there seems to be a turning point at 0.85/0.85 as precision/recall. The performance

variance when using the cross-validation process is shown in Figure 4.8(Right), showing that

the proposed method is stable over different training/testing partitions. Unfortunately, to the

best of our knowledge, there is no public-domain performance data over the same benchmark

set that we can compare.

Note that these results have not included the text regions missed in the automatic seg-

mentation process. The miss rate of region detection is about 0.33. This makes the optimal

recall (including segmentation and detection) about 0.67. The region detection miss is mainly
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Figure 4.9. Example results from the higher-order MRF model (Brightness of nodes repre-
sents the probability as “text”)

due to the small text size. The inference computation speed excluding segmentation varies

from 0.5 second to 30 second per image on a Pentium III 800MHz PC depending on the

number of the cliques. The average inference speed is 2.77 second per image. The speed of

segmentation and region formation is about 0.2 second to 5 second per image, depending on

the image size and the content complexity of the image. The speed is improvable, since no

code optimization and look-up-table is used currently.

Figure 4.9 shows some detection results by the proposed higher-order MRF model. The

results show that the method is very robust to background clutteredness and geometric varia-

tions, and is able to detect text on curved as well as planar surfaces. Detecting text on curved

surfaces is hard to achieve by conventional systems using fixed rules, where hard constraints

are usually used. Our system achieves improved performance in this aspect by using soft

constraints captured by the statistical method. Furthermore, the issue of character merging is

successfully handled if the merged regions remain on the same planar or curve surfaces. To

compare with MRF with pairwise potential, Figure 4.10 shows its output, which illustrates

that without using the higher-order constraints, the pairwise MRF is very vulnerable to the

clutter.
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Figure 4.10. Output from the pairwise MRF model (brightness of nodes represents the prob-
ability as “text”)

4.9 Summary

We have presented a statistical method to detect text on planar or non-planar surface with

limited angles in natural 3D scenes. We propose a MRF model with higher-order potential

and incorporate intra-part relational features at the clique level. The proposed method is

systematic, learnable, and robust to the background clutters and geometric variations. The

system can be readily modified for the general multi-part object detection, for instance human

body detection.
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Chapter 5

Conclusion and Future work

This chapter summarizes the contributions of the thesis, discusses the limitations of the

developed methods, and presents thoughts about future potential applications.

5.1 Summary of Contributions

The thesis explores the use of statistical methods for part-based modeling and learning.

We have addressed three major problems arising from visual content analysis and indexing:

image similarity measurement,object detection and region labeling.

For image similarity, our proposed method is motivated by human perception models and

machine learning approaches. We propose a general framework for measuring the similarity

of the data that are difficult to be represented as feature vectors. Specifically, we define the

similarity as the probability ratio of whether or not one image is transformed from another.

This framework is not only applicable to graph similarity, but also to other types of data. One

example is the similarity of contours that are detected by active contour [56] algorithms or

related methods. Like the case for graphs, it is also difficult to define the similarity between



95

two contours. However, the proposed principle can be applied to compute the probability ra-

tio of deforming one contour to another and learn the similarity to maximize the performance

of retrieval or detection.

For Attributed Relational Graphs (ARG), the thesis has shown how to model the trans-

formation between two ARGs. Especially, we show how to reduce the transformation to the

specification of Markov Random Fields, which are defined on top of the association graph be-

tween two input ARGs. This work therefore extends the previous work on using association

graph for Graph Isomorphism [43], which is concerned with matching vertices of structural

graphs. More importantly, we show that there is an elegant relationship between the trans-

formation probability ratio and the partition functions of the MRF. The log convexity of the

partition function allows us to explore the approximation algorithms developed in convex op-

timization [10] and machine learning. For instance, we can use semidefinite relaxation [100]

to approximate the similarity, which can be shown as an extension of the conventional semi-

definite programming based approach for the graph isomorphism problem. The connection

between the probability ratio and the partition functions also allows us to utilize maximum

likelihood learning via the variational E-M algorithm. The benefit in practice is that the

vertex-level annotation is no longer necessary in the learning stage.

For object detection, we have developed a new model called Random Attributed Rela-

tional Graph, which extends the conventional Random Graph that can only model the topo-

logical variations. In addition, the Random Attributed Relational Graph model is more gen-

eral than the prior work on part-based object detection, such as the constellation model or pic-

torial structure, as our approach models part occlusion more accurately and provides a more

effective learning scheme. For inference and learning, we have shown that the object detec-

tion likelihood ratio is related to the partition functions of the Markov Random Field (MRF).

This make it possible to use variational Expectation-Maximization (E-M) in the learning pro-
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cedure, instead of the E-M like algorithm used in the constellation model. We show how to

model the occlusion of the individual parts via the design of the prior Markov Random Field.

We also extend the single Random Attributed Relational Graph model to a mixture model

in order to detect multi-view object class more accurately. We have shown that although it

is intuitive to use mixture model to represent multi-view object class, the computation cost

and scarcity of training examples make this approach less attractive as anticipated. The low

performance difference of using multi-view mixture model and the single Random Attributed

Relational Graph model indicates that Random ARG alone can be used to model multi-view

object classes.

For the region labeling problem, we explore the higher-order statistical relational model

for the scene text detection problem. In order to realize efficient statistical inference, we

extend the original Belief Propagation algorithm to a high-order version for the higher-order

Markov Random Field. The derivation of the higher-order Belief Propagation is based on the

duality between Belief Propagation and variational approximation discovered in [111].

5.2 Future work

In this section, we discuss the limitations of the developed method and present ideas

about potential solutions. We also discuss the future applications of our developed methods

beyond computer vision.

5.2.1 Limitations and Possible Solutions

The main limitation of our model is its high computation complexity. This problem is

especially acute if the size of the ARGs or the number of the images in a database is large.
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Here, we only focus on ARG similarity and Random Attributed Relational Graph, since

for the region labeling problem, the LBP algorithm is often very efficient. For the ARG

matching or Random ARG matching problem, the complexity is similar to that of the tra-

ditional graph matching problem as in the most general case we have to exhaustively try

every matching scheme. This makes the computational complexity of our algorithms quite

high. Fortunately, the Monte Carlo algorithm provides a scalable scheme for the trade-off

of the performance and computation. For the case of the image similarity problem, in the

experiments, we have observed that we can achieve very good performance even if we use

only very few Monte Carlo samples. Furthermore, we can consider the following options for

decreasing the complexity.

First, for the ARG similarity in the image database applications, we can use prefiltering

schemes to first eliminate the less similarity image pairs using low-level features, such as

color histogram, prior to ARG similarity computation. This prefiltering scheme is often very

effective, since highly similar image pairs in an image database are usually scarce. And the

data size after the prefiltering step is often small.

Second, it is possible to develop a hierarchical scheme for ARG similarity computation.

This is realized by clustering the nodes of the ARG into super-nodes. Each super-node rep-

resents one vertex cluster. This approach can significantly reduce the vertex number of an

ARG so as to reduce the overall computational cost. Similar ideas have been adopted in

[105]. However, it is still unclear how the clustering process would affect the overall perfor-

mance. It is also not straightforward to aggregate attributes at the nodes to the super-nodes.

Third, if the vertices of the graphs are associated with high-dimensional vectors, it is

possible to use dimension reduction techniques to reduce the dimension of feature vectors

so that the computation of the potential functions in the MRFs could be conducted more
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efficiently. One of possible choices of dimension reduction is geometric hashing [107], which

has been widely used in prior work on image similarity.

Apart from the speed problem, another problem is the optimality of the classification.

The methods developed so far are generative models. Generative models are optimal in the

Bayesian classification framework under the assumption that we can accurately model the

distribution of each class and we have sufficient training data for learning the model. In

reality, both conditions are difficult to satisfy. Therefore, it would be important to extend

the generative framework to incorporate discriminative approaches so that we can directly

optimize the detection accuracy instead of maximizing the positive and negative likelihood

separately.

5.2.2 Other Applications

Although we have mostly tested the proposed techniques in computer vision applications,

they are generally applicable to many problems related to data analysis and data mining.

Attributed Relational Graph or Attributed Graph is a general model for representing re-

lational data. For example, in Computed Aided Design(CAD), the design diagrams can be

modeled as Attributed Relational Graphs. Matching and computing similarity of design di-

agrams are useful for searching engineering data. Another application is in structural chem-

istry and biology. Chemical compound database is widely used in structural chemistry and

drug design. Searching chemical compounds in chemical databases is usually the first step in

drug design. Designers need to find chemical compound having certain topological structure

or certain substructure. This can be formulated as an ARG matching and similarity prob-

lem, where the vertices of the ARGs represent the atoms in chemical compounds and edges

represent the bonds among atoms. In computational biology, ARG can be used to model

3-D protein structures. Each vertex of ARG can be used to model one amino acid of the
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protein. The edges of ARG can be used to model the spatial and topological relationship

among amino acids. Here, the topological relationship basically is the connectivity between

two amino acid.

Since Random Attributed Relational Graph is an extension to the Attributed Relational

Graph, it can be applied to many problems related to ARGs, particularly data mining prob-

lems. Learning Random Attributed Relational Graph basically can be considered a data min-

ing method that extracts common structures from relational data. However, different from the

traditional data mining or graph mining approaches, the Random Attributed Relational Graph

model provides another dimension for exploration : the statistical properties of the discov-

ered structures, which convey more information than the deterministic structures discovered

through the traditional graph mining methods [94]. Graph mining and graph-based learning

has recently gained significant attention in machine learning and data mining domains, e.g.,

chemical compound mining [109][110], graph kernels [65][55], etc. The Random Attributed

Relational Graph model potentially could be extended to develop new approaches for graph

mining and graph learning problems.
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[83] C. Schellewald and C. Schnöhrr. Subgraph matching with semidefinite programming.
Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA’03), Palermo, Italy,
May 14-16 2003.

[84] G.L. Scott and H. C. Longuet-Higgins. An algorithm for associating the features of 2
images. Proc. Royal Soc. London Series B, 244(1309):21–26, 1991.



106

[85] L.G. Shapiro and R.M. Haralick. A metric for comparing relational descriptions. IEEE
Trans. PAMI, 7(1):90–94, Jan.1985.

[86] L.S. Shapiro and R.M. Haralick. Feature-based correspondence - an eigenvector ap-
proach. Image and Vision Computing, 10:283, 1992.

[87] J. Shi and J. Malik. Self inducing relational distance and its application to image
segmentation. Lecture Notes in Computer Science, 1406:528, 1998.

[88] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[89] J.C. Shim, C. Dorai, and R. Bolle. Automatic text extraction from video for content-
based annotation and retrieval. In Proc. 14th International Conference on Pattern
Recognition,vol. 1, pages 618–620, Brisbane, Australia,August 1998.

[90] J. R. Smith and S.-F. Chang. Visualseek: A fully automated content-based image query
system. In ACM Multimedia, pages 87–98, 1996.

[91] J. R. Smith and C.-S. Li. Image classification and querying using composite region
templates. Journal of Computer Vision and Image Understanding, 1999.

[92] S.M. Smith and J.M. Brady. Susan - a new approach to low level image processing. In
International Journal of Computer Vision, volume 23, pages 45–78, May 1997.

[93] Y. Song, X. Feng, and P. Perona. Towards detection of human motion. In Proc. IEEE
Conf. Computer Vision and Pattern Recognition,Vol I, pages 810–817, Hilton Head
Island, South Carolina, June 2000.

[94] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson Addison
Wesley, May, 2005.

[95] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. In
Journal of the Royal Statistical Society, Series B, volume 61(3), pages 611–622, 1999.

[96] B.L. Tseng, C.-Y. Lin, and D.-Q. Zhang. Improved text overlay detection in videos
using a fusion-based classifier. In IEEE Conference of Multimedia and Expo (ICME),
2003.

[97] M. Turk and A. Pentland. Face recognition using eigenfaces. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 586–C591.

[98] S. Umeyama. An eigen decomposition approach to weighted graph matching prob-
lems. IEEE Trans. PAMI, 10:31–42, 1976.

[99] P. Viola and M. Jones. Robust real-time object detection. International Journal of
Computer Vision - to appear, 2002.



107

[100] M. J. Wainwright and M. I. Jordan. Semidefinite methods for approximate inference on
graphs with cycles. In UC Berkeley CS Division technical report UCB/CSD-03-1226,
2003.

[101] A. B. Watson. Digital images and human vision. Cambridge MA: MIT Press, 1993.

[102] M. Weber, M. Welling, and P. Perona. Towards automatic discovery of object cate-
gories. In Proceedings of the IEEE Computer Vision and Pattern Recognition Confer-
ence (CVPR), pages 101–109. IEEE, 2000.

[103] M. Welling and Y. W. Teh. Belief optimization for binary networks: A stable alterna-
tive to loopy belief propagation. In Uncertainty of Artificial Intelligence, 2001, Seattle,
Washington.

[104] M.L. Williams, R.C. Wilson, and E.R. Hancock. Deterministic search for relational
graph matching. Pattern Recognition, 32(7):1255–1271, 1999.

[105] R.C. Wilson and E.R. Hancock. Graph matching with hierarchical discrete relaxation.
Pattern Recognition Letter, 20(10):1041–1052, October 1999.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Lemma 2.1

Proof. By enumerating the admissible configurations, we have

Z(N ;M ; z) =
N∑

i=0

(
M

i

)
i!
(
N

i

)
zi (A.1)

Its derivative is

dZ

dz
=
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By enuneration, the vertex copy probability r can be written as

r =
zM

∑N−1
i=0
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N−1
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i!zi

Z
=

z
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dZ

Zdz
=
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d(lnZ)
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(A.2)

For the pruned MRF, the term
(
M
i

)
i! = M(M − 1)(M − 2)... would be changed to d1(d2 −

V1)(d3−V2)..., where V1, V2, ... are the terms resulted from the invalid configurations. Using

similar proof sequence, we will obtain the same conclusion.
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A.2 Proof of Lemma 2.2

Proof.

Z(N ;M ; z) =
N∑

i=0

(
M

i

)
i!
(
N

i

)
zi =

N∑
i=0

M(M − 1)...(M − i+ 1)
(
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zi (A.3)

≤
N∑

i=0

M i

(
N

i

)
zi =

N∑
i=0

(
N

i

)
(Mz)i = (1 +Mz)N

In the last step of the proof, we used the binomial theorem. Therefore, we have

lnZ(N ;M ; z)≤N ln(1 +Mz) (A.4)

For the pruned MRF, the term
(
M
i

)
i! = M(M − 1)(M − 2)... would be changed to

d1(d2 − V1)(d2 − V2)..., where V1, V2, ... are the terms resulted from the invalid configu-

rations. Therefore, we can use similar proof sequence and the inequality changes to

lnZ(N ; d1, d2, ..., dN ; z)≤N ln(1 +maxi{di}z) (A.5)

A.3 Proof of Proposition 2.1

Proof. We note that the partition function Z(N ;M ; z) can be represented as a generalized

hypergeometric function

Z(N ;M ; z) =
N∑

i=0

(
N

i

)(
M

i

)
i!zi = 2F0(−N ;−M ; ; z) (A.6)

2F0(a; b; ; z) is a generalized hypergeometric function[28], written as:

2F0(a; b; ; z) =
∞∑

n=0

(a)n(b)n
zn

n!
(A.7)



111

where (a)p, (b)p are rising factorials, written as (a)p = a(a+1)· · ·(a+p). It is not difficult to

show that 2F0(a; b; ; z) is the solution of the following Ordinary Differential Equation (ODE):

z2y′′ + [(a+ b+ 1)z − 1]y′ + aby = 0 (A.8)

Therefore the partition function Z(N ;M ; z) is the solution of the following ODE:

z2Z ′′ + [(1−N −M)z − 1]Z ′ +MNZ = 0 (A.9)

To solve this ODE, we make a change of variable to let Z = eNw, then we have

Z ′ = eNwNw′

Z ′′ = Nw′′eNw +N2(w′)2eNw

plug into Eq. (A.9), we get

z2Nw′′ + z2N2(w′)2 + (1−N −M)zNw′ +MN = 0

Divide the above equation by N2, then when N → ∞ and M → ∞, the 2nd-order ODE

tends to the following 1st-order ODE

z2(w′)2 − 2zw′ + 1 = 0

which yields w′ = ±1
z . But since z is positive and Z has to be monotonically increasing with

respect to z, w′ must be positive. Therefore we have solution w = ln(z) + λ, where λ is a

constant. Accordingly, we have

Z = eNλzN

Therefore, when N →∞, the log partition function lnZ tends to

N [ln(z) + λ]
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To obtain the constant λ, we can let z = 1, then

λ = lim
N→∞

1
N

ln
[ N∑

i=0

(
N

i

)(
N

i

)
i!
]

Here the constant λ may be calculated numerically, which approximately equals to

4.1138.

A.4 Proof of Theorem 2.1

Proof. We start from the posterior probability p(X|Gd, Gm, H = 1). According to the Bayes

rule

p(X|Gd, Gm, H = 1) =
1
C
p(Gd|Gm, X,H = 1)p(X|Gm, H = 1)

where C is the normalization term, which happens to be the positive likelihood function:

C =
∑
X

p(Gd|Gm, X,H = 1)p(X|Gm, H = 1) = p(Gd|Gm, H = 1) (A.10)

And the likelihood function is

p(X|Gd, Gm, H = 1) =

∏
i fB1(yu)

∏
ij fB2(yuv)

CZ

p(Gd|Gm, X,H = 1)p(X|Gm, H = 1)Z∏
i fB1(yu)

∏
ij fB2(yuv)

(A.11)

Note that we assume the observations are independent given the correspondence. Also, plug-

ging in the identities (Eq.(2.11)) into Eq.(A.11). We can see that for any configuration X , we

have

p(Gd|Gm, X,H = 1)p(X|Gm, H = 1)Z∏
i fB1(yu)

∏
ij fB2(yuv)

=
∏
ij,uv

ςijuv(xiu, xjv)
∏
ij

ηiu(xiu)

And the domain of p(X|Gd, Gm, H = 1) and the MRF Gibbs distribution is the same. There-

fore, the normalization constant should be also equal, therefore

CZ∏
i fB1(yu)

∏
ij fB2(yuv)

= Z ′



113

Therefore the likelihood ratio is

p(H = 1|Gd, Gm)
p(H = 0|Gd, Gm)

=
Z ′

Z
(A.12)
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Appendix B

Proofs of Chapter 3

B.1 Proof of Lemma 3.1

Proof. To simplify the notation, we assume N ≤ M . It is easy to extend to the case when

N > M . The partition function can be calculated by enumerating the admissible matching

(matching that does not violate the one-to-one constraint) as the following

Z(N ;M ; z1, z2, ..., zN ) =
∑
X

∏
iu,jv

ψiu,jv(xiu, xjv)
∏
iu

φiu(xiu) =
∑

admissible X

∏
iu

zi

To calculate the above summation, we first enumerate the matchings where there are i nodes

nI1 , nI2 ...nIi in the RARG being matched to the nodes in ARG, where 1 ≤ i ≤ N ,and

I1, I2...Ii is the index of the RARG node. The corresponding summation is

M(M − 1)(M − 2)...(M − i+ 1)zI1zI2 ...zIi =
(
M

i

)
i!zI1zI2 ...zIi

For all matchings where there are i nodes being matched to RARG, the summation becomes

(
M

i

)
i!

∑
1≤I1<I2<...<Ii≤N

zI1zI2 ...zIi =
(
M

i

)
i!Πi(z1, z2, ..., zN )
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Where

Πi(z1, z2, ..., zN ) =
∑

1≤I1<I2<...<Ii≤N

zI1zI2 ...zIi

is known as Elementary Symmetric Polynomial. By enumerating the index i from 0 to N ,

we get

Z(N ;M ; z1, z2, ..., zN ) =
N∑

i=0

(
M

i

)
i!Πi(z1, z2, ..., zN ) (B.1)

Likewise, for the presence probability ri, we enumerate all matchings in which the node i in

the RARG is matched to a node in the ARG, yielding

ri =
1
Z
M

N−1∑
j=0

(
M − 1
j

)
j!ziΠj|i(z1, z2, ..., zN )

=
1
Z
zi

N−1∑
j=0

(
M

j

)
j!Πj|i(z1, z2, ..., zN )

= zi
1
Z
∂Z/∂zi = zi∂ln(Z)/∂zi

Where, we have used the short-hand Πj|i(z1, z2, ..., zN ), which is defined as

Πj|i(z1, z2, ..., zN ) =
∑

1≤I1<I2<...Ip,...<Ij≤N ;Ip �=i,∀p∈{1,2,...,j}
zI1zI2 ...zIj

For the pruned MRF, which is the more general case, we can separate the summation into

two parts, the summation of the terms containing zi and the summation of those not

Z(N ;M ; z1, z2, ..., zN ) = V1(z1, z2, ..., zi, ...zN ) + V2(z1, z2, ..., zi−1, zi+1...zN )

Then the presence probability ri is

ri =
V1

Z
=
zi

∂Z
∂zi

Z
= zi

∂ lnZ
∂zi

Where we have used the fact that V1 and Z is the summation of the monomials in the form

of zI1zI2 ...zIi , which holds the relationship

zI1zI2 ...zIi = zIk

∂

∂zIk

(zI1zI2 ...zIi), ∀Ik ∈ {I1, I2, ..., Ii}
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B.2 Proof of Lemma 3.2

Proof. We have obtained the closed-form of the partition function Z in the proof of Lemma

1, therefore it is apparent that Z satisfies the following inequality

Z =
N∑

i=0

M(M − 1)...(M − i+ 1)Πi(z1, z2, ..., zN ) ≤
N∑

i=0

M iΠi(z1, z2, ..., zN ) (B.2)

The equality holds when N/M tends to zero. And we have the following relationships

N∑
i=0

Πi(z1, z2, ..., zN ) = 1 + z1 + z2 + ...+ zN + z1z2 + ...+ zN−1zN + ... =
N∏

i=1

(1 + zi)

and

M iΠi(z1, z2, ..., zN ) = Πi(Mz1,Mz2, ...,MzN )

Therefore, the RHS in equation (7) can be simplified as the following

N∑
i=0

M iΠi(z1, z2, ..., zN ) =
N∑

i=0

Πi(Mz1,Mz2, ...,MzN ) =
N∏

i=1

(1 +Mzi)

The above function in fact is the partition function of the Gibbs distribution if we remove

the one-to-one constraints. Likewise, for the pruned MRF, the partition function is upper-

bounded by the partition function of the Gibbs distribution if we remove the one-to-one con-

straints, which, by enumerating the matchings, can be written as

1 + d1z1 + d2z2 + ...+ dNzN + d1d2z1z2 + ... =
N∏

i=1

(1 + dizi)

Therefore we have

lnZ≤
N∏

i=1

(1 + dizi)
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B.3 Proof of Theorem 3.1

Proof. We start from the posterior probability p(X|O,H = 1). According to the Bayes rule

p(X|O,H = 1) =
1
C
p(O|X,H = 1)p(X|H = 1)

where C is the normalization term, which happens to be the positive likelihood p(O|H = 1):

C =
∑
X

p(O|X,H = 1)P (X|H = 1) = p(O|H = 1) (B.3)

Next, let us rewrite the posterior probability p(X|O,H = 1) as the following

p(X|O,H = 1) =

∏
u f

+
B1

(yu)
∏

uv f
+
B2

(yuv)
CZ

p(O|X,H = 1)p(X|H = 1)Z∏
u f

+
B1

(yu)
∏

uv f
+
B2

(yuv)
(B.4)

Using the independence assumption

p(O|X,H = 1) =
∏
uv

p(yuv|x1u, x1v, ..., xNu, xNv, H = 1)
∏
u

p(yu|x1u, ..., xNu, H = 1)

and plugging in the parameter mapping equations in Eq.(3.6) and Eq.(3.7). Comparing the

term in Eq.(B.4) and the term in the Gibbs distribution in Eq.(3.9), we note that for any

matching X , we have

p(O|X,H = 1)p(X|H = 1)Z∏
u f

+
B1

(yu)
∏

uv f
+
B2

(yuv)
=

∏
iu,jv

ςiu,jv(xiu, xjv)
∏
iu

ηiu(xiu)

Furthermore, the posterior probability p(X|O,H = 1) and the Gibbs distribution in Eq.(3.9)

have the same domain. Therefore, the normalization constant should be also equal, i.e.

CZ∏
u f

+
B1

(yu)
∏

uv f
+
B2

(yuv)
= Z ′

Therefore the positive likelihood is

p(O|H = 1) = C =
Z ′

Z

∏
u

f+
B1

(yu)
∏
uv

f+
B2

(B.5)

and the likelihood ratio is

p(O|H = 1)
p(O|H = 0)

=

∏
u f

+
B1

(yu)
∏

uv f
+
B2∏

u f
−
B1

(yu)
∏

uv f
−
B2

Z ′

Z
= σ

Z ′

Z
(B.6)
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Appendix C

Higher-Order Belief Propagation

C.1 Derivation of Higher-Order Belief Propagation

Let bi(xi) denotes the one-node belief and bijk(xi, xj , xk) denotes three-node belief. Let

Np(i) be the node pair set in which every node pair forms a three-clique with the node i.

The energies associated with nodes and cliques can be define as

Ei(xi) = −lnφi(xi)

Eijk(xi, xj , xk) = −lnψijk(xi, xj , xk)− lnφi(xi)− lnφj(xj)− lnφj(xj).

Then the Gibbs free energy [111] is

G =
∑
ijk

∑
xixjxk

bijk(xi, xj , xk)
(
Eijk(xi, xj , xk) +

lnbijk(xi, xj , xk)
)−∑

i

(qi − 1)
∑
xi

bi(xi)
(
Ei(xi) + lnbi(xi)

)

Where qi is the degree of the node i. Therefore the Lagrangian multipliers and their corresponding

constraints are
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rijk :
∑

xi,xj ,xk

bijk(xi, xj , xk)− 1 = 0, ri :
∑
xi

bi(xi)− 1 = 0

λjki(xi) : bi(xi)−
∑
xj

∑
xk

bijk(xi, xj , xk) = 0

The Lagrangian L is the summation of the G and the multiplier terms. To maximize L, we have

∂L

∂bijk(xi, xj , xk)
= 0 ⇒

lnbijk(xi, xj , xk) = Eijk(xi, xj , xk) + 1 + λjki(xi) + λkij(xj) + λijk(xk) + rijk

∂L

∂bi(xi)
= 0 ⇒

lnbi(xi) = −Ei(xi) +
1

qi − 1

∑
(j,k)∈Np(i)

λjki(xi) + r′i

where r′i is the rearranged constant.

By using change of variable or defining message as:

λjki(xi) = ln
∏

(l,n)∈Np(i)\(j,k)

mlni(xi)

We obtain the following equations

bi(xi) = kφi(xi)
∏

(j,k)∈Np(i)

mjki(xi),

bijk(xi, xj , xk) = kψijk(xi, xj , xk)φi(xi)φj(xj)φk(xk)
∏

l,n∈Np(i)\j,k

mlni(xi)
∏

l,n∈Np(j)\i,k

mlnj(xj)
∏

l,n∈Np(k)\i,j

mlnk(xk)

Apply the constraint bi(xi) =
∑

xj

∑
xk
bijk(xi, xj , xk), we obtain

mjki(xi)←−λ
∑
xj

∑
xk

φj(xj)φk(xk)ψijk(xi, xj , xk)

∏
(l,n)∈Np(k)\(i,j)

mlnk(xk)
∏

(l,n)∈Np(j)\(i,k)

mlnj(xj) (C.1)

Which is exactly the message passing rule in Eq. (4.6) and Eq. (C.1).



Apply the constraint bi(xi) =
∑

xj

∑
xk
bijk(xi, xj , xk), we obtain

mjki(xi)←−λ
∑
xj

∑
xk

φj(xj)φk(xk)ψijk(xi, xj , xk)

∏
(l,n)∈Np(k)\(i,j)

mlnk(xk)
∏

(l,n)∈Np(j)\(i,k)

mlnj(xj) (C.2)
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