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ABSTRACT

Content-based Video Communication: Methodology and

Applications

Paul Bocheck

Most traditional video communication systems consider videos as large �les or

long bit streams, ignoring the underlying visual content. We introduce a new

content-aware framework that explores the strong correlation between video con-

tent, resource (bit rate), and utility (quality). Content-based video communication

is a promising approach that seamlessly integrates video compression and networking

technologies aimed at overcoming current limitations of multimedia communication

technology.

Under the new framework, the video tra�c and utility functions can be modeled

and predicted by analyzing the video content. The resulting tra�c and utility

function models facilitate joint adaptation between di�erent video streams under

dynamic content changes, network conditions, and heterogeneous device capabilities.

Utility functions can be used in selecting the optimal transcoding architecture in a

pervasive computing environment.

We demonstrate the advantages of the content-aware approach in two applica-

tions. First, content-aware models were developed for predicting video tra�c for

live video streams. The video tra�c models were evaluated in a dynamic network

resource allocation system. Our simulations have shown that, compared to existing

techniques, a signi�cant reduction (� 55% to 70%) in required network resources or

up to a 60% reduction in renegotiation frequency can be achieved. Second, we have

used the content-aware principle for automatic generation of utility function (sub-



jective quality vs. bit rate) for live video. Our results indicate that high accuracy

in estimating utility functions can be achieved.

The main objective of MPEG-7 Universal Multimedia Access is to enable adap-

tive transport and delivery of multimedia to various client devices with limited

communication, processing, storage and display capabilities. Based on our propos-

als, the media object scalability in the form of utility functions has been included

in description schemes for Universal Multimedia Access (UMA) of MPEG-7. The

content-aware approach can be directly used for generation of UMA descriptors.
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Chapter 1

Introduction

1.1 Background and Motivation

Over the past decades, processing speed, chip density, memory size and network

bandwidth have been exponentially increasing. Continuously falling prices of per-

sonal computers and other digital devices in
uenced their widespread usage and

acceptance. Today, personal computers, personal digital assistants (PDA), smart-

phones and even pagers are powerful enough to send, receive and process the infor-

mation in many di�erent media. In this context, multimedia refers to the combined

use of several media such as text, audio, graphics, video, etc.

Multimedia communications is a burgeoning �eld [1]. Until now, because of

insu�cient network bandwidth or inadequate bandwidth management, access to

multimedia has been limited primarily to local systems. Use of multimedia in com-

munications is a natural extension of traditional communication technologies such

as the telegraph, telephone, fax, etc. The recent burst of Internet applications

is a good example of how multimedia-enabling technologies transformed a packet-

switched network infrastructure into a global world-wide network with multimedia

features [2].

Contrary to the circuit switched telephone networks, future multimedia networks
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will be able to transport more e�ciently not only the voice or data, but also the video

tra�c. These networks will also allow easy deployment of new multimedia services.

However, compared to data services, many multimedia applications require a quality

of service (QoS) guarantee. For example, video and audio applications may impose

requirements on bandwidth, end-to-end delay and jitter.

Although today the Internet uses a substantial portion of its bandwidth for

multimedia tra�c (i.e., image, video and voice), it cannot meet QoS requirements.

New advanced Internet protocols (such as RTP, RSVP, IntServ, Di�Serv, etc.) [98, 3,

100, 4, 5] allowing limited quality of service guarantees are being proposed and built

into the applications and commercial network hardware. In contrast, Asynchronous

Transfer Mode (ATM) is a network technology that includes QoS guarantees as a

part of its design objectives.

Wireless networks seem to follow a pattern of evolution resembling that of wired

networks. In the United States, the �rst generation of wireless networks was built on

top of an analog mobile telephone standard, called Advanced Mobile Phone System

(AMPS), that supports voice services only. Besides voice, second generation wireless

networks allow various narrow-band data services including the Internet connection,

short e-mail (e.g., SMS), etc. However, since second generation wireless networks

were originally optimized for voice tra�c, their ability to provide multimedia services

is limited.

The common denominator of all second generation wireless networks (e.g., GSM,

TDMA, PDC, cdmaOne, etc.) is the concept of circuit-switched channels over the

wireless interface. It results in limited e�ciency of bandwidth usage. Third genera-

tion wireless networks will be based on the packet switching technology. In addition,

these networks will allow access to up to 2Mb/s - at least 40 times higher than the

currently available bandwidth [23]. Thus, third generation wireless networks will
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provide high speed access to the Internet and various multimedia applications. Sim-

ilar to wired networks, a major technical challenge for wireless networks is bandwidth

and quality of service management. Given di�erent types of networks, it is essential

to support a wide range of QoS.

We focus on quality of service issues for networked video services. Quality of the

video, as perceived by the end-user, depends on the entire end-to-end connection

that spans (i) source, (ii) network, and (iii) receiver. The network component may

constitute multiple hops over wired and wireless segments.

In the source, three components directly a�ect characteristics of the video tra�c.

The �rst component is related to the video content. Video programs have di�erent

presentation styles, story structures, lengths, etc. The second component is related

to the encoding algorithm. Video programs can be encoded using various standards

(i.e., H.263, MPEG-1, MPEG-2, etc.) [90, 91]. The third component is related to

the encoding mode. For example, video programs can be encoded as constant-bit

rate (CBR) or variable-bit rate (VBR) sources. Other factors on the client side may

also in
uence tra�c from the server. For example, video transport and resulting

tra�c may be constrained by capabilities of the client receiver. Applications with

strict timing requirements may pose stringent constraints on the video server [87].

Network bandwidth limitation and variability pose the stringent requirements on

bandwidth management. Because of physical limitations (e.g., in wireless networks),

it may not be possible to guarantee bandwidth for individual connections. However,

it is highly desirable that available bandwidth be distributed among applications in

a fair manner.

On the receiver's side, there is a growing trend toward using various heteroge-

neous devices, e.g., laptops, PDA's, and smartphones equipped with thin wireless

application protocol (WAP) browsers. These pervasive computing devices have sig-
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ni�cantly di�erent capabilities (e.g., processing speed, screen size, color capability,

limited battery power, etc.) compared to capabilities of desktop computers or work-

stations. Limited computing power also results in slower decoding of video streams

and stricter timing requirements. Battery powered devices will be required to man-

age the energy e�ciently, e.g., by intelligently processing the most important and

valuable information for the user. In addition, handheld mobile devices will not

have access to the same bandwidth as the desktop does.

Compared to data transport, complex characteristics and heterogeneity of mul-

timedia sources, networks and receivers make the task of network resource man-

agement and quality optimization very complex. The development of multimedia

networks that support a wide range of services poses signi�cant technical and con-

ceptual challenges.

1.2 Challenges of Multimedia Communications

1.2.1 Video Tra�c Modeling

In network engineering, multimedia is de�ned in terms of network tra�c. The

characteristics of multimedia tra�c depend on many factors. Various forms of mul-

timedia (e.g., voice, still image, video, etc.) are compressed by di�erent standards.

For high quality video, MPEG-2 provides good results [91]. However, for VHS qual-

ity, MPEG-1 su�ces [90]. For low bit-rate streaming applications, H.261, and H.263

codecs and in some cases their proprietary variants are currently used. MPEG-4 is a

new standard that allows 
exible integration of video, graphics and sound [92, 17]. It

also enables content-based (CB) interactive access and a wide range of bit rates. In

addition, compared to MPEG-2, new error resilience features that support various

network channel conditions are added and are complementary to error correction
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features of transport protocols.

Video tra�c can be classi�ed into two categories: pre-generated (i.e., generated

o�-line) and real-time (e.g., live video programs). Pre-generated streams are pre-

pared and encoded prior to the transmission and stored at the server. Many complex

issues related to the transmission of real-time video can be avoided by using pre-

generated video. For example, its tra�c pro�le, tra�c model and descriptors can

be accurately computed in advance before the transmission. For real-time video

however, exact tra�c pro�les are, in general, di�cult to compute. It is important

to note that video tra�c does not only depend on the compression algorithms. It

is strongly connected to the change of the video content, which is the main source

of non-homogeneity in video tra�c. Our proposed approach, called content-based

modeling, explores the strong correlation between video content and video tra�c.

1.2.2 Network Resource Allocation

Video programs can be encoded as constant-bit rate (CBR) or variable-bit rate

(VBR) streams. Variable bit rate video encoding is typically used to maintain

near constant video quality. Complex bandwidth characteristics of VBR tra�c may

prevent e�cient network utilization (as compared to CBR tra�c) in current access

networks or wireless networks that has limited bandwidth availability [101]. This

trend likely will not disappear, because deployment of next generation networks will

not necessarily mean unlimited access or free bandwidth. Without proper resource

management schemes and resource reservation protocols, the bandwidth would be

soon exhausted.

New techniques that support dynamic bandwidth allocation (DRA) have been

proposed to address this issue [99, 28, 24, 25, 26, 27]. Contrary to traditional

resource allocation schemes that reserve network resources only at the beginning
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of the session, DRA allows reservation (increase and decrease) during the single

session. Controlled access to the network resources in DRA is translated into QoS

and formulated in terms of probability of source blocking. Prediction of the real-

time video tra�c and renegotiation scheme poses a challenging issue and is one of

the foci of this work.

1.2.3 Content Scalability and Adaptation

The quality of multimedia delivered to the user terminals depends on QoS supported

along the entire end-to-end connection. For some applications, it may not be possible

or economically viable to support hard end-to-end QoS. These conditions may arise

in the Internet or wireless networks. Historically, the Internet was not designed to

support QoS. The RSVP protocol [3], although partly able to support QoS, does not

scale well to be used in the core Internet network. New initiative that is based on

tra�c di�erentiation, Di�Serv, may improve quality for some applications, however

QoS for individual sources will not be explicitly supported [5].

Similar situation is in wireless networks. Since the wireless networks infrastruc-

ture requires substantial investments, network e�ciency is a very important factor.

However, network e�ciency and QoS support for multimedia are con
icting require-

ments. Although it is, in principle, possible to support bandwidth reservation over

the wireless networks, in practice, bandwidth variations over the wireless may sub-

stantially limit network utilization and e�ectiveness.

Given the probabilistic nature of bandwidth variations over the Internet and

wireless links, these networks may be able to provide soft QoS only [72]. It will

be di�cult to support hard QoS for all streams unless the network e�ciency is

degraded. Based on di�erent application needs, it may be necessary to di�erentiate

QoS services and regulate their usage by established pricing schemes [21]. Under
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these conditions, one of the promising solutions is to explore the intrinsic nature of

media: scalability.

In general, media adaptation can be supported at the source, receiver, and the

network. At the source, multimedia applications may want to adapt the content

based on network conditions. At the receiver, media adaptation is concerned with

presentation issues [22]. In addition, media scaling can also be supported inside

some network nodes (e.g., wireless base stations) in the form of media adaptation

service. Combined use of the media adaptation and resource allocation techniques

may improve the utilization of the network resources while providing the acceptable

quality of the multimedia presentation.

1.3 Thesis Outline

The research theme in this thesis is concerned with the framework of the content-

aware video communications integrating studies in communications, video coding,

and content analysis. Until recently, these �elds were considered relatively indepen-

dent of each other. Many video tra�c models used for prediction conceived video

streams as time series generated by unknown stochastic models, parameters of which

have to be obtained. Yet, the underlying visual content of the video stream contains

vast amount of information that can be used to predict the bit-rate or quality more

accurately. In the content-aware framework, this information is extracted by ana-

lyzing the video content. Exploration of the correlation between the video content

and required resources represents the main idea of the proposed content-aware video

communication framework.

The content-aware principle has many applications. In dynamic resource alloca-

tion, we will show its e�ective use for real-time video tra�c prediction. Alternatively,

it can be used for automatic utility function generation for video content adaptation.
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We have used it in selecting the optimal media transcoding operations and content

�ltering in a pervasive computing environment. Based on our proposal, the media

object scalability in the form of utility functions has been included in description

schemes for Universal Multimedia Access (UMA) in MPEG-7 [94, 93].

In Chapter 2, we present a generic model of video. In this model, the video

is characterized from two perspectives: content and tra�c. At the high level of

abstraction, video is represented by a hierarchical object structure. From the content

point of view, video programs can be classi�ed into di�erent categories, such as the

movie, documentaries or sitcoms. Each video program is represented chronologically

as a sequence of scenes, shots, and activity periods. An activity period is de�ned

as an elementary, content-homogeneous segment of video program during which

optical transition remains relatively unchanged. Activity period is described by

content features. Our hypothesis is that the homogeneous visual features in an

activity period determine the associated tra�c characteristics.

We present hierarchical spatial segmentation scheme for content characterization

that is based on video object hierarchy. At di�erent layers of the hierarchy, object

regions may or may not correspond to natural video objects in the scene. Individual

video objects are characterized by a set of content features.

We present the methods for detection activity periods and associated object

features from compressed video stream. We also discuss the implementation of the

content analyzer for MPEG-2 videos. At �nal part of this section, after a brief

discussion of tra�c modeling, we focus our discussion on characterization of tra�c

at activity periods. In our simulations, based on conceptual MPEG-2 tra�c model,

we demonstrate that tra�c at activity periods can be characterized by relatively

simple stochastic models (e.g., AR(1), random walk models). This observation is

one of the important features of the proposed video content modeling. We review the
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D-BIND tra�c model [56] that will be used for network simulations of content-based

video tra�c model.

In Chapter 3, we introduce a framework of content-based video tra�c modeling.

We present the separation principle to model the relationship between video content

and video tra�c. In addition, we present two content-based approaches for model-

ing of activity periods: content-based content-clustered (CBCC) and content-based

tra�c-clustered (CBTC) models. Both models are veri�ed in our experiments. The

CBCC model can be used for synthetic tra�c generation. The CBTC model is used

for tra�c prediction in dynamic resource allocation (DRA), described in Chapter 4.

In Chapter 4, we discuss resource allocation issues in bandwidth-limited net-

works. In particular, we present a content-based dynamic resource allocation system

that combines the above content-based tra�c models and several DRA schemes. In

our experiments, we have implemented a real-time content analyzer that is based

on a fully automated analysis of compressed videos. The MPEG-2 content analyzer

consists of four modules that are invoked sequentially. In the analyzer, components

for activity period detection, video object detection and content feature estimation

are included.

Performance study of content-based DRA was based on trace-driven simula-

tions. Results were obtained using a single 54000-frame-long trace (30 minutes) of

an MPEG-2 encoded movie. Network simulations revealed that the content-based

approach achieved better performance (in terms of link utilization) than other ex-

isting schemes (RVBR, RCBR) [54, 53]. The link utilization achieved by RVBR

was substantially less than utilization achieved by CBTC scheme (about 55% - 70%

di�erence) [75].

Utility functions represent a powerful framework for characterizing the ability of

applications to adapt to varying network conditions. Speci�cally, in the context of
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bandwidth allocation, utility functions indicate a media object's quality as a function

of available bandwidth. In Chapter 5, we describe conceptual model of multimedia

communications based on utility-based adaptation. The aim of the model is to

encompass, in general, source and network characteristics, terminal capabilities and

user preference into the uni�ed framework.

In particular, we present one of the components of the model: the content-based

utility estimator. The estimator implements an automated technique to estimate

utility functions for video objects. The content-based principle is applied and ma-

chine learning techniques are used. The system uses video content, represented by

a small set of content features, to determine the utility class of an object. Because

video features can be automatically extracted from compressed video streams, this

technique is also suitable for real-time applications.

Accuracy of MPEG-2 and MPEG-4 content-based utility estimators was evalu-

ated in simulations. For the experiment using MPEG-2 video (17 utility classes),

the classi�cation accuracy of the whole set of utility functions was 91%. Similarly,

high classi�cation accuracy of 80% - 85% was achieved using MPEG-4 traces [95].

In Chapter 6, we discuss some key issues concerning content-aware communica-

tions. In particular, we present the work toward the content description for univer-

sal multimedia access (UMA) [94] that was included as part of MPEG-7. MPEG-7

is an ongoing standardization process headed by Moving Picture's Experts Group

(MPEG) [92]. One of the goals of the proposed standard is description of the multi-

mediamaterial. Some of the applications of MPEG-7 and UMAwill deal with access,

delivery and presentation issues of multi-resolution audio-video objects. Based on

the results presented in this thesis, a set of content descriptors for UMA applicable

for media adaptation and transcoding was incorporated into the MPEG-7 UMA.
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1.4 Thesis Contributions

(a) We present a generic model of video applicable to tra�c modeling.

(b) We present a hierarchical spatial segmentation scheme content character-

ization of activity periods.

(c) We de�ne content features and present methods for their extraction in

the compressed-domain.

(d) For our simulations, we implemented a real-time MPEG-2 content ana-

lyzer.

(e) We performed network simulations of conceptual MPEG-2 video tra�c

model. In this model, the tra�c was characterized at time-scale of activ-

ity periods. The results show that tra�c within activity periods can be

modeled by relatively simple stochastic models.

(f) We formulate the separation principle as a basis for content-based video

tra�c modeling.

(g) We propose two variants of the content-based video tra�c model: content-

clustered (CBCC) and tra�c clustered (CBTC). The accuracy of both

models was evaluated and compared.

(h) We propose a system model for the content-based dynamic resource allo-

cation. The system was evaluated in network simulations and compared

to other dynamic resource allocation systems.

(i) We present a conceptual model of multimedia communications based on

utility-based adaptation.

(j) We propose a systemmodel for accelerated generation of utility functions.

We present results based on two variants of the model for subjective and
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objective quality metrics.

(k) We present a content description framework for Universal Multimedia

Access (UMA) that was included into the current MPEG-7 standard.
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Chapter 2

Video Characterization

2.1 Introduction

The compressed video stream is produced by a video encoder. The main goal of

video encoding is the reduction in the bandwidth of the original video source. Tradi-

tionally, video tra�c modeling focused on �nding best-�t parameters of well-known

stochastic models (e.g., AR, ARIMA, MMPP, etc. [101, 102, 103]). The model

parameters were estimated based on empirical traces of real video programs. Accu-

racy of tra�c models can be found by comparing tra�c characteristics (e.g., �rst

or second order statistics, histogram, etc.) or results of network simulations. In

many cases, parameters of tra�c models were obtained under the assumption that

experimental traces are homogeneous for the duration of the entire video program.

In addition, in most of these models, no extraneous information about the content

source was used.

The encoded video stream contains the information necessary for reconstructing

the video program, i.e., its entire video content. As we will show in Chapter 3, there

is a high correlation between the video content and the video tra�c. This important

observation suggests that the video content can be used for video tra�c modeling.

We argue that if this content information can be extracted in an adequate way, it can
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be used to boost the performance and accuracy of the tra�c prediction models. In

addition, tra�c models based on video content allow generation of synthetic tra�c

for di�erent video categories (e.g., movie, news, etc.). In this chapter, we propose

the hierarchical scheme for the content and tra�c description of video programs. In

the rest of the thesis, video sequence and video are used to refer to video program.

2.2 Video Hierarchy

In general, video programs di�er in their content, presentation style, purpose, etc.

The structure of video programs (e.g., the particular sequence of scenes and shots)

might di�er considerably accross various video categories. Movie, documentary,

sports, and news are examples of di�erent video categories. The video categories

di�er in editing methods, scene and shot length characteristics, types of camera

operations, use of special trick modes, etc. Many factors determine the structure

of the video programs. The psychological factors are among the most important.

The video program should present the story in an understandable way. The other

factors may be the editor's personal preferences and experience, length limitations,

available footage, and editing technology, etc. Although humans can easily deter-

mine the video category, automatic classi�cation by machines is rather complicated.

Automatic classi�cation can be based on statistical analysis or knowledge-based

analysis of video content.

The video program can be represented as a sequence of scenes. A scene is de�ned

as a continuous video segment (i.e., time interval) that can be described by some

meaningful element such as location or action. For example, a scene may depict a

dramatic episode at one common location. Scenes can be further divided into one

or more shots. A shot is de�ned as a continuous video segment that is outlined by

an abrupt optical transition. The abrupt optical transitions are usually a result of
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video editing process.

At a high level of abstraction, the chronological sequence of scenes or shots can

be visualized by space-time diagrams [6], which depict the correct playback order

of shots. The playback order is a result of the particular sequence of typical video

editing operations. Several di�erent video editing operations are used in practice:

spatial or temporal deletion, 
ash-back and 
ash-forward, and parallel and multiple

parallel actions. For example, the time-space diagrams of two video programs A and

B representing two di�erent video categories are depicted in Figure 2-1. Video A is a

movie and video B is a real-time sport program. Shots are shown as horizontal lines.

The length of each line corresponds to the shot duration. Note that the playback

order of shots is not necessarily in the order in which the shots were acquired. For

example, movie A contains 
ash-back temporal and space transitions between the

locations A;B;C;D while real-time sport programB contains space transitions only:

four cameras at �xed locations A;B;C;D are used to show the sport event.

It is important to note that during a shot, the continuous optical transition may

occur. This situation may arise, for example, during a long camera panning. If

the transition results in substantial change of video content, video programs cannot

be su�ciently described by a sequence of shots. These changes during the single

shot will result in di�erent bit-rate statistics. In other words, representation by

space-time diagrams is not adequate for content-based video tra�c modeling.

In the context of video tra�c modeling, we propose to represent video programs

as a sequence of content-homogeneous time intervals, called activity periods (AP).

The activity period is de�ned as a continuous video segment during which optical

transition remains relatively unchanged. In other words, activity periods are bound

by an observable optical transition such as a change of camera operation, a change

in the number of objects, etc. For example, during a single shot, the camera may be
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Figure 2-1: Space-time diagram. (A) movie program, (B) real-time sport event
program

static (�rst activity period), then a new object may appear in the picture (second

activity period) and �nally, the camera may follow the moving object (third activity

period). In our model, the activity period represents an elementary unit for content

description. The above described hierarchical representation of video programs is

depicted in Figure 2-2. Also note that in practice, activity periods consist of a

sequence of video frames.

As we will show later, the change of the video content, e.g., background change,

can induce a signi�cant change of the bit-rate. These changes in the tra�c char-

acteristics typically correspond to boundaries of scenes, shots or activity periods.

Changes can assume variations of abrupt or smooth transitions. Changes between

activity periods are more di�cult to detect if there is a contiguous optical transition

between two activity periods.



17

Activity Period

Shot

Frame

Scene

Video Program

Scene

Figure 2-2: Hierarchical decomposition of video programs

In the context of tra�c modeling, activity periods are characterized by duration,

content and tra�c. The content of activity periods is described in Chapter 2.3 and

the tra�c of activity periods is described in Chapter 2.4.

2.3 Content Characterization

2.3.1 Spatial Decomposition

In order to describe the video content, �rst, we present the following hierarchical

spatial segmentation scheme. Figure 2-3 depicts a single video frame and its de-

composition. At the root of the segmentation tree (�rst decomposition layer), the

entire frame is considered as a single object region. At other decomposition layers,

the video frame is segmented into several object regions. For example, at the second

layer, two object regions are shown. The �rst object region, o21, is associated with

a collection of foreground objects (car, house, tree, etc.). The second object region,

o22, is associated with the background (sky).
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Figure 2-3: Hierarchical spatial segmentation.

Based on our previous example, object regions may directly relate to real objects

or just their parts. With new advanced image segmentation algorithms, it is possible

to roughly segment object regions in real time� [58, 60, 61, 62, 63].

In practice, the algorithms for spatial segmentation are relatively complex and

require a substantial amount of processing power. Many image techniques, suit-

able for automatic spatial segmentation of video sequences, are currently available

[62, 63, 104]. Although some techniques may not be able to match segmented object

regions and real objects perfectly, they have been applied successfully to video cod-

ing and indexing [58, 64]. Unfortunately, many of these techniques are not designed

for real-time operations. Alternative approaches are segmentation algorithms that

operate on video streams directly in the compressed domain [59]. The main advan-

tage of compressed-domain algorithms is their higher speed when applied to already

�With the accuracy adequate for tra�c modeling since the perfect correspondence with real-

world objects is still di�cult.
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compressed streams as compared to non-compressed domain algorithms. Because of

the commonly used block-based structure of compression algorithms (e.g., MPEG),

compressed-domain segmentation algorithms su�er from a lower resolution in seg-

mentation boundaries. However, for the purpose of video tra�c modeling, extraction

of detailed object regions and their accurate correspondence to physical objects is

not necessary. In our work, automatic real-time compressed-domain segmentation

is used for object region detection and spatial segmentation.

The object region can be conceptualized as a snapshot of the video object (VO),

de�ned in both spatial and temporal domains. In this sense, the outlined hierarchical

spatial decomposition is compatible with the video object de�nition in MPEG-4.

The object region corresponds directly to the MPEG-4 video object plane. Video

object (e.g., the sequence of object regions over the activity period) corresponds

directly to MPEG-4 video object.

Note that the object segmentation tools do not recognize the semantic informa-

tion in the scene. However, this does not invalidate our de�nition of video object,

since, for our purpose, we are interested in the perceived video object rather than

the real one.

2.3.2 Content Description

The content description model, depicted in Figure 2-4, is synergetic with the hierar-

chical spatial segmentation. In the following, the model is used to describe the video

content in terms of objects and their descriptors. The model is 
exible in terms of

segmentation accuracy, number of content features, number of layers, etc.

The activity period, �, containing a set of video objects, oi, is described by a sin-

gle global descriptor, DG(�), and several object descriptors, DO(oi). Each descriptor

contains a set of content features. In general, the content features characterize (i)
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Figure 2-4: Content description model.

the entire visual scene or (ii) individual video objects. The features that relate to

all objects in the activity period are called global features, FG, and assigned to DG.

The content features that describe individual objects only are called object features,

FO, and assigned to DO.

The above content description model is quite general. In practice, it is desirable

to keep the number of content features on a manageable level. Hence, only features

that are important to the given application will be selected. In video tra�c mod-

eling, the content features that in
uence the bit-rate will be chosen. For example,

an important feature a�ecting the video bit-rate is the type of camera operation

employed (i.e., static, panning, zooming, etc.).

The individual video object is characterized by a set of object features, FO. Each

FO represents a particular content feature of the video object. For example, video

objects can have di�erent sizes, shapes, complexities (e.g., cluttered vs. smooth
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texture), and can move at various speeds and in di�erent directions. Again, selection

of particular features depends on application and complexity constraints. In the

context of video tra�c modeling, some object features might have a direct in
uence

on the bit-rate (e.g., spatial complexity or motion) while others might not (e.g.,

motion direction).

The entire activity period is then described by a content descriptor DC :

DC(�)
4
= fDG(�);DO(o1);DO(o2); � � � ;DO(oi); � � � DO(oN )g (2.1)

DG(�)
4
= fFG1;FG2; � � � ;FGJg (2.2)

DO(�)
4
= fFO1;FO2; � � � ;FOKg (2.3)

where N is a number of objects in activity period, J is the number of global features,

FG, and K is a number of object features, FO.

2.3.3 Content Features

The content features can be de�ned in either uncompressed or compressed domains.

Estimation of content features in the compressed domain has several advantages.

In practice, if the video is already encoded, feature estimation in the compressed

domain reduces computation time because frames do not need to be converted back

to the original uncompressed domain. The disadvantage of de�ning the content fea-

tures in the compressed domain may be the dependency on particular compression

mechanisms. However, such a close relationship with the encoder structure may be

worthwhile in real-time applications. Fully automated analysis of compressed video

signals has shown great promise [59, 65] and can provide a satisfactory approxima-

tion for the purpose of content-based video tra�c modeling.

Sometimes, the video content information may be supplied directly by a digi-
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tal video camera and associated scripts. Additional external information that can

be used for describing video content includes scene cut schedules, storyboards de-

scribing scene activities and camera operations. Future cameras might also provide

supplemental information about zooming, panning and other features related to the

video content. In the future, the content information may be available in the form

of MPEG-7 descriptors and description schemes.

In MPEG-2, video object size, spatial complexity and object motion can be

obtained directly from the compressed video stream. These features are de�ned in

the following way.

Denote N the total number of transform blocks in the frame. Size S(oj) of video

object is de�ned as the number of DCT blocks bi belonging fully to the video object

(e.g. excluding blocks that belong to the object partially only):

S(oj)
4
=

N�1X

k = 0

1fbk2 ojg (2.4)

In the compressed domain, object motion magnitude, M(oj), is estimated from

motion vectors of blocks belonging to the same object. For MPEG video, motion

vectors can be extracted directly from compressed streams. In this case, motion,

M(oj), can be estimated as follows:

M(oj)
4
=

1

S(oj)

X

bk2 oj

j~mkj (2.5)

where ~mk is a motion vector of the block bk. When motion information is not

present in the compressed stream (i.e., during I-frames), video object motion can be

predicted from previous frames or evaluated in the spatial domain. However, this

approach may require full decoding of compressed streams resulting in increased

computational delay.



23

We de�ne the spatial complexity of a video object in relation to its entropy: as

a number of bits needed for that object, given entropy-coded uniform quantizer. In

block-based compression algorithms, each block is independently encoded. Under

this assumption, spatial complexity, C(oj), of the object oj can be estimated as the

sum of a number of bits Bk of blocks belonging to the same video object:

C(oj)
4
=

1

S(oj)

X

bk2 oj

Bk (2.6)

Because of the independence of transform (frequency) coe�cients, the number of

bits for each block, Bk =
P

i2bk y(i), can be expressed simply as the sum of bits, y(i),

of all of its coe�cients i. Under the assumption that coe�cient i can be modeled as

a discrete i.i.d. process with zero mean and variance �2 and under the criterion of

small to medium distortion (compared to standard deviation), the number of bits

y(i) can be estimated as [66]:

y(i) =
1

2
log2(12 �

2 �2

�2
) (2.7)

where � is a quantizer step size and � is a model-dependent constant corresponding

to the frequency coe�cient, which is equal to about 1, 1.2, and 1.4 for Uniform,

Laplacian and Gaussian distribution (pdf) respectively.

Then, the number of bits, Bk, of the MxM block, bk size would be:

Bk =
1

M2

M2�1X

i=0

y(i) =
1

2M2
log2

M2�1Y

i=0

(12�2i
�2i
�2
i

) (2.8)

where y(i) denotes number of bits for coe�cient i.

In practice, complexity can be estimated in two ways. In the compressed domain,

DCT coe�cients are already run-length encoded (e.g., I-frame in MPEG-2). In that
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case, complexity of the object can be estimated from a number of bits used for

its DCT coe�cients. If the motion estimation prevents this direct estimation (i.e.,

encoded coe�cients represent residual error of motion compensation in P and B

frames in MPEG), the complexity can be estimated from Equation 2.7, measuring

the variance of the frequency components. The disadvantage of this method is that

it needs to partially decode the video stream to the transform domains. If a delay

in estimation of entropy is allowed (i.e., until the next I-frame), it may be su�cient

to estimate the complexity using the former approach only.

2.3.4 MPEG-2 Content Analyzer

In our implementation, the MPEG-2 automatic content analyzer consists of three

modules that are invoked sequentially. In the �rst module, the activity periods are

detected. In the second module, video objects are detected in each activity period.

Finally, activity period content descriptors are estimated.

The real-time automatic content analyzer was based on Columbia University's

MPEG-2 decoder [59]. Since the content analyzer process streams directly in the

compressed domain, the decoder was simpli�ed to contain only parts that are nec-

essary for activity period detection, video object detection and content feature es-

timation. In particular, the computationally intensive inverse DCT function was

fully omitted. In our implementation, the complexity was estimated from I-frames

only and motion was estimated from P-frames only. This simpli�cation resulted in

real-time performance on a general-purpose workstation. On SUN SPARCstation 5

it was possible to analyze each video frame for its content in less then 10 ms, i.e.,

before the next frame came in.
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2.3.4.1 Detection of Camera Operation

Global motion and camera operations are determined from the compressed video

stream with the use of motion vectors. Although motion vectors are estimated

in the encoding process for each macroblock independently and do not necessarily

represent true motion, they can be successfully used to estimate global motion,

camera operations and to detect moving objects in P- and B-frames.

The size of macroblocks (16 � 16 pixels) in MPEG-2 limits the accuracy of

motion detection and object extraction. For that reason, it is su�cient to use

relatively simple 2D motion model for global motion estimation. Global motion

directly corresponds to camera operations.

In general, global motion can be found, given motion vectors of all macroblocks

in the frame, by using the histogram segmentation method introduced in [59]. The

method is based on detecting of the single dominant motion direction from the

histogram of motion vector angles. If such a dominant motion can be found, the

camera operation is declared as pure panning with parameters corresponding to

the average magnitude of motion vectors corresponding to the \peak" bin of the

histogram. If no dominant motions can be found and the average magnitude of

motion vectors is close to zero, the camera operation is declared as static. Otherwise,

the camera operation is declared as zooming. In that case, zooming and panning

parameters are estimated using the least squares method.

2.3.4.2 Detection of Video Objects

Moving video objects are found by recovering their non-zero local motions. This

is accomplished by using the global motion compensation method described above.

After global motion compenstation (e.g., subtraction of global motion from all mac-

roblocks in the frame), macroblocks that belong to the background will have mag-
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nitude of motion vectors close to zero. On the other hand, macroblocks belonging

to moving objects have non-zero motion vectors. After global motion compensation

and noise �ltering, moving object boundaries are found by a histogram segmentation

method. Macroblocks that belong to the bin with maximumnumber of macroblocks

are marked as belonging to the same object. Although several video objects moving

in di�erent directions can be found, the histogram segmentation method was used

to recover one dominant moving object only. After the macroblock labeling oper-

ation, video objects are extracted using a simple block merging operation that is

used to delete objects consisting of single macroblock and merge regions surrounded

by labeled macroblocks, e.g. containing \holes".

The following content features have been chosen to characterize video object's

content (i.e., DO): object size, spatial complexity, and motion were estimated as

de�ned in Equations 2.4, 2.5, and 2.6 respectively.

2.4 Tra�c within Activity Periods

Despite a large number of VBR models proposed over the last decade, no model ap-

pears to be suitable for all di�erent types of real-world video tra�c [30]. VBR video

exhibits complex characteristics (e.g., self-similarity, variable time-scale property,

long-term dependency and non-stationarity) that make model identi�cation and es-

timation very hard. In general, there is a tradeo� between model complexity and

accuracy. To simplify model complexity, it is sometimes necessary to accept vari-

ous assumptions that result in decreased accuracy. The �nal selection of a suitable

model depends on the application and its requirements.

Fundamentally, the stochastic process representing the video tra�c is non-stationary.

Some consider the tra�c model as doubly stochastic, i.e. parameters of the model

are itself random variables. The video input can be seen as an external source de-
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�ned by entropy. Output from the video encoder can also be modeled as entropy

of the source after the decorrelative procedure is applied (e.g. spatial and temporal

correlation is extracted).

The removal of such spatial and temporal correlation is a general objective of

compression algorithms. However, the correlation at larger time-scales (in the order

of several frame periods) still remains. The correlation at these scales depends

on several factors: (i) editing structure of the program (ii) video format and (iii)

and encoding algorithm. Video format and encoding mechanism are de�ned by

standards, for example H.263 and MPEG-2.

Because of its natural dependency on the video content, the VBR video tra�c

is non-stationary. For example, after the scene change, the stream generated by

the encoder might completely change its stochastic characteristics. Furthermore,

it was found that video tra�c exhibits self-similar properties and long-term depen-

dency. The behavior of real video sources is rather complex and cannot be accurately

modeled by simple stochastic models; more complex doubly stochastic models are

typically not analytically tractable and their parameters are di�cult to obtain. How-

ever, depending on applications, many of these undesired statistical characteristics

can be disregarded under the assumption that tra�c behavior is modeled at a rela-

tively short time-scale, compared to the length of the video program. For example,

the video tra�c can be modeled in any of the following time-scales: scene, shot, and

activity period (Figure 2-5) [38]. When long sequences of non-homogeneous video

programs are segmented into homogeneous activity periods, tra�c at each activity

period can be modeled by relatively simple stochastic models.

Video tra�c at time-scales shorter than activity periods is directly related to the

compression mechanismor network architecture. For example,MPEG-2 video tra�c

can be modeled at the level of a group of pictures (GoP), frames, in slices and in
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Figure 2-5: Frame/block-based video decomposition.

block domains. Given Asynchronous Transfer Mode (ATM) networking technology,

video tra�c can be modeled in terms of inter-arrival times of �xed-size ATM cells

(53-byte packets). Models in these time-scales are considered to be compression

mechanism or networking architecture related.

2.4.1 Tra�c Models

Tra�c models are used for di�erent purposes. Stochastic models are generally used

in an analytical estimation of the queuing performance; e�ective bandwidth and

resource bounding models are used for the admission control. Resource bounding

models are described in terms of bounds on the source tra�c. Autoregressive models

are typically used for the real-time tra�c prediction in dynamic resource allocation.

Encoder-speci�c synthetic tra�c generators are used as a tra�c source for simulation

of bu�ering requirements and cell loss estimation at the network multiplexer.

A good overview of tra�c modeling can be found in [30]. Typically, tra�c models

are based on renewal processes (special case Poisson and Bernoulli), Markov-renewal

processes, Markov processes, Markov-modulated processes (special case Markov-

modulated Poisson Process, 
uid tra�c models), and autoregressive models (AR,

MA, ARMA, ARIMA) [101, 102]. These stochastic models can capture mean, vari-

ance or autocorrelation function of video sequences. Their parameters can be found

o�ine or approximated online by measurement-based algorithms. The Transform-

Expand-Sample (TES) models can match both marginal distributions and autocor-

relation of original traces. The main disadvantage of TES modeling is its relatively
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complex process of �nding parameters that rely heavily on heuristic computer-aided

tools [31]. Other features such as self-similarity, found in local area networks, and

long range dependency can be modeled by doubly-stochastic processes.

The concept of e�ective bandwidth is used in call admission. Estimation of the

e�ective bandwidth is based on the theory of large deviations. The approximation

to the cell loss probability holds only in the asymptotic sense under the limiting

assumptions of a very large number of multiplexed sources and very large network

bu�ers. In the asymptotic case, for very large number of sources and large bu�ers,

e�ective bandwidth of homogeneous statistically multiplexed sources is equal to the

sum of their individual e�ective bandwidths. In that sense, e�ective bandwidth,

which is less than peak rate, assigned to the stream is a measure of its resource

usage. In order to keep the required QoS, the call admission algorithm can accept

only so many sources as long as the sum of the individual e�ective bandwidth does

not exceed the link capacity.

Analytical derivations of e�ective bandwidth are known only for very few homo-

geneous tra�c models such as on-o� or Markov chain stochastic processes [55, 7].

Although it is also possible to estimate the e�ective bandwidth on-line using the real-

time tra�c measurements [8], it is very hard to monitor the source conformance to

its e�ective bandwidth in real-time.

Two tra�c models for video phone sessions were proposed by Maglaris et. al.

[32]: the continuous-state autoregressive Markov model, and the discrete-state con-

tinuous time Markov process. The �rst model can be used in simulations, but it

does not lead to simple results of queuing analysis. The second model can be used

to analyze performance of a statistical multiplexer. This work was later extended

[33] by considering scenes with multiple activity levels. The extended 2D Markov

process model included both short-term and long-term correlation.
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Skelly et. al. [34] introduced a single source model based on an arrival rate

histogram of smoothed tra�c. In this model, queuing performance of aggregated

tra�c in the ATM multiplexer was predicted simply by convolution. Authors con-

cluded that this model is quite general, in that it does not assume any speci�c cell

arrival process. The histogram should be estimated over the smoothed tra�c with

the rate of modulation much smaller than that of the cell arrival process. Based on

simulation results, authors argue that while long-term correlation of video tra�c is

important, its actual form is not. The proposed model does not attempt to charac-

terize the arrival process in the time domain, but only its important factors (e.g.,

bit-rate distribution) that can be directly used for prediction of network resources

required for video stream.

The class of tra�c models called scene models is able to capture scene changes,

di�erent motion activity within scenes, etc. For example, the model for variety of

motion activities within scenes was proposed by Yegenoglu [36]. Their model has

three motion activity classes corresponding to low, medium and high motion. Tra�c

generated by each frame is represented by AR(1) process belonging to one of three

motion classes. Each process has di�erent parameters. The discrete-time Markov

process governs changes between motion activity classes.

Leduc et. al. provided a comprehensive statistical analysis of real VBR sources

[38]. They developed di�erent tra�c models from the ATM cell domain up to the

TV program domain and validated their theoretical approach with a 25-hour-long

television program. They argue that each domain has to be modeled by fundamen-

tally di�erent stochastic models. Video scene changes and the mean bit-rate within

scenes were identi�ed as the most important sources of non-stationarity observed

within TV programs.

Ramamurthy et. al. [35] developed a VBR video model for many di�erent video
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sources ranging from a videophone to a full motion video with scene changes. They

observed that video tra�c depends on a variety of factors, including: video content,

amount of movement in the scene, and type of coding technique used. Their model

consists of the sum of two independent AR(1) processes and Markov-modulated

normally distributed random process. The later models increase of the bit-rate

during scene changes and sum of AR(1) processes capture autocorrelation function.

Another model that accounts for scene changes was proposed by Lazar [37].

In their work, VBR video sequences were modeled as a collection of stationary

subsequences corresponding to scenes. Within the individual scene, the TES model

was used to match both marginal distribution and autocorrelation. Based on their

data, they established that a scene length can be modeled as the Bernoulli process.

The previously described stochastic models did not consider unique features of

the encoding algorithms. The encoder-speci�c models are used to model speci�c

encoders, such as MPEG-2, H.261, H.263, etc. In addition to frame ordering, these

models typically consider correlation between di�erent frame types. The statistical

analysis and modeling of MPEG-2 VBR tra�c was presented by Heyman [39]. Their

model explicitly considers the correlation between di�erent frame types within the

MPEG-2 standard. It is able to follow the periodic GoP structure such that a

synthetic trace, produced by the model, resembles the real MPEG-2 trace very

closely. Their model was extended to account for frequent scene changes in [40]. The

proposed compound model consists of separate models for scene lengths (Gamma,

Weibull, and generalized Pareto distributions), scene-change frames and intra-scene

frames (discrete autoregressive DAR(1) process). They concluded that although the

modeling approach is the same for all 11 experimental sequences, the use of a single

model with few parameters that would be applicable to all sequences does not seem

to be possible.
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Another, Non-Markovian model for VBR video sequences was proposed by Frater

[41]. Their scenicmodel is similar to the DAR(1) model except it uses non-exponential

scene length distribution.

2.4.2 A Conceptual MPEG-2 Model

In the following, we present a conceptual tra�c model for MPEG-2 video. The main

purpose of the model is to show that tra�c in activity periods can be modeled by

simple stochastic models. This is demonstrated by a comparison of the �rst and

second order statistics and ATM network simulation.

The model generates the tra�c frame by frame, using two processes for MPEG-2

speci�c parameters: complexity and motion. In addition, the model preserves the

MPEG-2 frame structure. Each activity period �i is characterized by descriptor

E(�i) which contains two stochastic processes Ri = fRi;k; k = 1; 2; � � �g and Mi =

fMi;k; k = 1; 2; � � �g:

E(�i)! fRi; Mig (2.9)

where k denotes a frame number index. We call Ri and Mi activity period reference

processes. Ri models the complexity parameter. Mi models the motion parameter.

Both parameters depend on the MPEG-2 coding technique: complexity is de�ned

as the sum of the absolute value of DCT coe�cients; motion is de�ned as the sum

of the absolute value of motion coe�cients.

Both Ri and Mi reference models are used to create the MPEG-2 speci�c frame

structure in the following way. First, three values SI;k, SP;k, and SB;k are generated,

each representing the sizes of modeled I, P, and B frames respectively. For simplicity,

we assume these values are arranged in the sequences SI = fSI;k; k = 1; 2; :::g,
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SP = fSP;k; k = 1; 2; :::g, and SB = fSB;k; k = 1; 2; :::g. Based on the MPEG-2

standard, the video frames are properly assembled from SI , SP , and SB sequences

to re
ect the correct frame ordering. Assuming a GOP (Group of Pictures) of size

12 with 4 subgroups each starting with I or P reference picture, the frame ordering

sequence is as follows:

SI;1; SB;2; SB;3; SP;4; SB;5; SB;6; � � � ; SP;10; SB;11; SB;12; SI;13; � � � (2.10)

The values of SI;k, SP;k, and SB;k frames are modeled as follows. Since I frames

are intra-frame coded using the DCT transformation, they are directly related to

the current frame complexity parameter, denoted as Ri;k. Then for each frame k,

its compressed I-frame size, denoted as SI;k, is modeled as:

SI;k = fI(Ri;k) = CI Ri;k (2.11)

where fI is mapping function simpli�ed to a scaling constant CI in this case.

On the other hand, P and B frames are coded using the motion compensation.

Their frame size is the combination of complexity, Ri;k, and motion parameters,

denoted as Mi;k. We approximate the size of P and B frames, denoted as SP;k and

SB;k respectively for each frame k as:

SP;k = fP (Ri;k; Mi;k) = Ri;k Mi;k (2.12)

SB;k = fB(SP;k; Mi;k) = SP;k Mi;k + SP;k (1 �Mi;k) � (2.13)

here fP and fB are mapping functions, Ri;k is an complexity parameter, and b = 0:5

is a empirically estimated scaling coe�cient. Equation 2.12 expresses the observed

dependency of SP;k frame size on Mk and Rk. It shows that the P-frame size de-
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Figure 2-6: Dependency of B-frame of compression gain on Mk.

pends on both complexity and motion parameters. Equation 2.13 expresses the

observed nonlinear dependency of SB;k frame size on Mk. The intuition behind this

non-linearity is the following: it was observed that for low motion, the advantage

of bidirectional motion compensated coding was not signi�cant, while for higher

motion, the substantial compression gain was observed. Note however, that for very

high motion, the B frame size approaches the P frame size (Figure 2-6).

2.4.2.1 Results

We evaluated the model by comparing the �rst and second order statistics of the

original and modeled trace. To be able to test our model, we created the video

content template of the original source sequence-1, depicted on the left of Figure 2-

7. For the tra�c model at activity periods, we have chosen the random walk for its

relative low computation requirements and high correlation between close samples.

We approximated the complexity parameter of the �rst frame, denoted as Ri;1, and

step size, denoted as �R as:

Ri;1 = mRi
; �2

Ri
= �2Ri

=�i (2.14)
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where mRi
and �2Ri

are the mean and variance of I frame sizes in the activity period

i, and �i is the activity period length. For the still camera motion we set � = 0. For

each activity period, motion M1 and motion step size were evaluated similarly by

normalizing each frame size in a GOP with respect to its I frame (the �rst frame in

GOP) and taking the average and variance of such normalized P frames.

The model and real traces are depicted in Figure 2-7. In the model trace we

can identify similar periods corresponding to activity periods in the original source.

Autocorrelation of I, P and B frames, depicted in Figure 2-8 also resemble the similar

behavior. We can con�rm its slow decaying characteristic, as reported in [10].

To further evaluate the model, we simulated the ATM multiplexer loaded with

several sources, either real or modeled. The results are depicted in Figure 2-9. Four

cases of 100, 120, 140 and 200 sources correspond to load r=0.47, 0.57, 0.66, and

0.95. The bit error rate (BER) of the model closely matched the bit error rate of

the real source for the low bu�er values and all four utilizations. Note that for high

multiplexer loads the model estimates the change of the slope of the bit error rate

characteristics accurately. Multiple-slope characteristics, similar to those appearing

in Figure 2-9, were reported in [11].

2.4.3 D-BIND Video Tra�c Model

The D-BIND is a deterministic video tra�c model that was introduced by Zhang

et. al. [54]. It was used as a tra�c model for renegotiated VBR (RVBR) resource

allocation service [56]. The D-BIND model has the ability to characterize source

burstiness at di�erent time scales, i.e., variable-length time intervals. Time-scale

dependent properties were observed in streams generated by VBR video encoders.

The use of the D-BIND model for tra�c characterization of activity periods has

the following advantages [54]. It has been shown that peak rate allocation is not
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Figure 2-7: Trace of I, P, and B-frames of original and modeled video trace.
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necessary to provide the deterministic QoS guarantee for the VBR tra�c. By using

the D-BIND tra�c descriptor, higher network utilization was achieved. In addition,

instead of modeling the process itself, the bounds on the tra�c are modeled. The

complex encoder-speci�c structures corresponding to di�erent frame-types (I-, P-,

and B-frames in MPEG-2) do not need to be explicitly modeled. This signi�cantly

simpli�es the model. An advantage of modeling in terms of bounds in the tra�c is

that it can be e�ciently used for resource management during the dynamic resource

allocation [56]. The D-BIND tra�c descriptor can be directly used for that purpose.

Finally, tra�c conformity to the deterministic-bound source descriptors can be easily

policed using a number of leaky bucket regulators.

The unique feature of the D-BIND tra�c model is its ability to capture the time-

scale dependent characteristics of the video source. The D-BIND model is de�ned

as follows [56]. Denote A[�; �+t] cumulative arrivals of a source s during an interval

[�; � + t]. De�ne an empirical envelope B�(t):

B�(t)
4
= sup

�>0
A[�; � + t] 8t > 0 (2.15)

The empirical envelope, B�(t), represents the tightest time-invariant bound on

source arrivals for every interval [�; � + t] of length t. De�ne a family of tra�c-

constrained functions B:

B
4
= fB(t) j B�(t) � B(t)g 8t > 0 (2.16)

The source s is deterministically bound by the tra�c-constrained function B(t) if

B(t) 2 B. In other words, for source arrivals during a time interval of length t the
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following holds:

A[�; � + t] � B�(t) � B(t) 8t; � > 0 (2.17)

The D-BINDmodel refers to a parameterized continuous tra�c-constrained function

BWT
(t) 2 B de�ned on a set of P points WT = f(qk; tk) j k = 1; 2; :::; Pg:

BWT
(t)

4
= qk +

qk � qk�1
tk � tk�1

(t� tk) tk�1 � t � tk (2.18)

with the assumption that q0 = 0 and t0 = 0. In other words, a set of points WT

de�nes BWT
(t) as a continuous piece-wise linear function bounding the empirical

envelope B�(t) described above. We refer to the tra�c-constrained function BWT
(t)

as a D-BIND tra�c-constrained function. The number of time intervals tk generally

depends on required accuracy of the piece-wise linear approximation. In experi-

ments, described in [56], a maximum of seven time intervals tk in a range from

several tenths of ms to several seconds were used for the D-BIND tra�c descriptor.

In our simulation experiments, we have used nine time intervals tk ranging from 33

ms (one frame interval) to 2.5 s (corresponding to f1,4,7,10,13,25,37,49,61g frames)

for the D-BIND tra�c descriptor.

2.4.3.1 D-BIND Descriptor Estimation

There could be di�erent ways to construct BWT
(t) o�-line, but the following pro-

cedure can be used to construct B�
WT

(t) that represents a tight bound on B�(t).

In general, BWT
(t) is di�erent for di�erent video or activity periods. The proce-

dure computes, for the empirical envelope B�(t) and a given set of time intervals

T = ftkg
P
k=1, values of qk such that WT = f(qk; tk) j k = 1; 2; :::; Pg de�nes the

D-BIND tra�c constrained function B�
WT

(t). The algorithm is as follows:
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Figure 2-10: A(0; t), B�(t) and BWT
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1. Input: B�(t) and given set T = ftkg
P
k=1

2. Initialize starting point Y0 = fq0 = 0; t0 = 0g

3. For k = 1 to P

4. Find Yk = fqk; tkg corresponding to minimum qk such that

line Yk�1; Yk is never below B�(t) on time interval (tk�1; tk).

5. end

6. Output: WT = fYk j k = 1; 2; :::; Pg

Figure 2-10 depicts schematically the cumulative arrival function A(0; t), the

empirical envelope B�(t) and two D-BIND tra�c constrained functions BWT
(t) and

B�
WT

(t). The B�
WT

(t) represents an optimal (tight) D-BIND tra�c constrained func-

tion. The BWT
(t) is another possible D-BIND tra�c constrained function, which is

not tight.

It is sometimes more convenient to express the D-BIND tra�c constrained func-
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tion as rate-interval pairs RT = f(rk; tk) j k = 1; 2; :::; Pg such that rk = qk=tk

denotes bounding rate over the interval length tk. We refer to this speci�cation as

the D-BIND tra�c resource descriptor.
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Chapter 3

Content-based Tra�c Modeling

3.1 Introduction

The tra�c generated by multimedia and video applications is, in general, non-

stationary and bursty with long-term dependence and fractal characteristics. In ad-

dition, high bandwidth video streams may consume a substantial portion of available

network capacity. Dimensions of networks and complexity of tra�c characteristics

are the main reasons that make exact analytic evaluation of the network perfor-

mance practically intractable. Exceptions are asymptotic results of statistical mul-

tiplexing derived from 
uid models using large deviations theory. These solutions,

however, were derived for some simple stochastic models only (e.g., on-o� Markovian

mini-source) and results have been made explicitly for large queue size and large

number of superimposed sources [29]. Characteristics of real world VBR tra�c such

as non-stationary behavior and periodic frame-type structure of MPEG cannot be

adequately expressed by these models.

Because of these complex tra�c characteristics, network simulations are in many

cases used as an aid in developing and dimensioning future communication networks.

The validity of network simulations depends on the accuracy of the tra�c model.

The tra�c modeling is an essential instrument in solving communication issues
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connected with bandwidth management, bu�ering, latency, and quality of service.

Tra�c models are used in three major areas: as part of the analytical solution

to statistical multiplexing in queuing networks, as synthetic tra�c generators for

network simulations, and as real-time tra�c predictors of network resources. The

suitability of the tra�c model for the network simulation depends on how close the

model resembles the characteristics of the real video tra�c. Although real tra�c

generated o�-line can still be used in simulations, there is often only a limited

number of video traces available. Synthetic tra�c generators have the ability to

adjust to di�erent types of encoding mechanisms. In general, synthetic video tra�c

models should be 
exible in accommodating a wide range of video tra�c encoders

and video sources by adjusting only a few parameters.

Another important application of tra�c modeling is real-time bandwidth predic-

tion for use in networks supporting dynamic bandwidth allocation. In packet net-

works, video quality can be substantially reduced when packets are dropped inside

the network in an uncontrolled fashion due to the insu�cient bandwidth. Because

of high burstiness in tra�c, static call admission and reservation based on peak rate

is not desirable. The e�ectiveness of dynamic resource allocation (DRA) depends

on accuracy of tra�c prediction models. In general, tra�c prediction models should

not be too complex so that video streams can be processed in real-time.

A review of previous works in previous chapter shows that in traditional tra�c

modeling, video tra�c was assumed to be generated by a homogeneous stochastic

process, parameters of which have to be estimated. Most of these models did not

consider any additional content-related information, i.e., whether this is a conference

call with a head-and-shoulder static video scene or a 10-s advertisement of high

activity. This information can be extracted from the video stream or can be available

from the scene and object descriptors of the future MPEG-7 standard. The models
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that can use this information are called content-based.

The motivation behind the use of video content is not surprising because it nat-

urally re
ects the video stream encoding process. The close relationship between

video content and bit rate was previously discovered in VBR video streams. Ro-

driguez proposed a new approach for modeling of VBR video sequence [42]. It was

based on an assumption that (i) every video sequence can be characterized by a set

of fundamental indexes or parameters relating to the video content and (ii) that the

bit-rate can be generated by a \parametric model" of the corresponding indexes.

They suggest that an appropriate linear model can be obtained for each encoding

mechanism. The fundamental indexes that can be estimated from the video source

included pixel histogram, spatial and temporal correlation, motion index and other

parameters.

The idea of fundamental indexes can be related to content features, described

later in Chapter 2. However, as we will show later, besides this similarity, the models

di�er in several key points. For example, the concept of video object and its content

features is not considered in the \parametric model". The features that relate to the

visual content are also not used (e.g., motion). In addition, the \parametric model"

assumes only a linear combination of parameters. On the other hand, our content-

based model is based on video objects and their content features. Furthermore, the

classi�cation scheme provides a more 
exible mapping between the video content

and the bit-rate.

The modeling based on the description of the video content fundamentally de-

viates from the traditional tra�c modeling. The content-based model di�ers from

traditional models in that it considers the video content as a natural source of video

tra�c non-stationarity. In this sense, the video tra�c depends on both the video

content and encoder. Consequently, modeling the video tra�c by exploring ad-
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ditional information about its nature and generating process leads to results that

are more realistic and accurate compared to traditional models. The content-based

model can be used for generation of synthetic tra�c using deterministic or proba-

bilistic content scripts. Additionally, the model can be used for rate control as part

of video encoders or for real-time tra�c prediction and resource allocation.

3.2 Relationship Between Video Content and Tra�c

Figure 3-1 depicts a 1000-frame segment of VBR MPEG-2 encoded video stream. It

was created from the movie Forrest Gump [43] using Columbia University'sMPEG-2

software encoder. This example illustrates the non-stationary characteristics of the

video tra�c. To better visualize the trend of I, P, and B frames, frame envelopes

were used. The frame envelope connects frames of the same type (see legend).

Vertical dotted lines mark changes in video content of video (such as a change of

camera view, beginning or ending of camera or object motion, etc.). Sample frames

corresponding to each segment in Figure 3-1 are depicted in Figures 3-3 to 3-10

respectively. D-BIND rate constrained functions for each segment are depicted in

Figure 3-2.

Comparing Figure 3-1 and Figure 3-2 with Figures 3-3 to 3-10, it can be observed

that video trace characteristics (e.g., discontinuities and changes in its stochastic

nature) are directly related to the changes and characteristics of the video content.

The scene changes coincide with singularity points delimiting the abrupt changes

in the stochastic nature of the trace. However, the characteristics remain relatively

homogeneous at times between the segments. For example, segment 1 is an image

sequence with a smooth texture and high-speed camera panning in a horizontal di-

rection. Similarly, high-speed horizontal camera panning appears at segments 4 and

5, although both of them are not as smooth as segment 1 (e.g., medium smoothness).
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Figure 3-1: MPEG-2 VBR trace of movie Forrest Gump.
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Segment 2 corresponds to an image sequence with a relatively rough texture and

medium speed camera panning along the vertical axis. Segments 3 and 6 correspond

to static image sequences without camera motion, but with rough texture; segment

3 corresponds to the image sequence with a single large object moving with medium

speed while the images in segment 6 have no moving objects. Both segments 7 and 8

are image sequences with a rough texture background; additionally, segment 7 cor-

responds to an image sequence with medium speed camera zooming, while segment

8 corresponds to an image sequence with high speed camera zooming.

3.2.1 Separation principle

There are several important observations, marking the importance of the content

and its use in the tra�c modeling. During the compression, the video content of the

video is encoded into the bit stream. It is clear that the video tra�c is in
uenced

by two independent factors: video content and the compression mechanism. In

essence, based on the same video content, di�erent video encoders can generate

tra�c streams with di�erent stochastic characteristics. Additionally, it has been

shown that tra�c characteristics corresponding to periods of homogeneous content

(i.e., activity period) do not possess extreme and complicated behaviors (e.g. non-

stationarity) and therefore, can be modeled by stationary Markov or AR(n) models

[38]. These observations are summarized as the separation principle, representing

the important concept of content-based video tra�c modeling [57].

The separation principle is schematically shown in Figure 3-11. It depicts the

content-based video tra�c model comprising (i) content-dependent and (ii) encoder-

dependent component. The content-dependent model corresponds to the entire

video production (i.e., visual scene composition, editing style, control of the video

camera, etc.). The video sequence is represented as a collection of activity peri-



48

Figure 3-3: Segment 1 Figure 3-4: Segment 5

Figure 3-5: Segment 2 Figure 3-6: Segment 6

Figure 3-7: Segment 3 Figure 3-8: Segment 7

Figure 3-9: Segment 4 Figure 3-10: Segment 8
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Figure 3-11: Separation principle in the Content-based Video Tra�c Model.

ods during which video content is assumed homogeneous. On the other hand, the

encoder-dependent component models a compression mechanism. Use of a relatively

simple tra�c descriptor greatly simpli�es the encoder-dependent component. This

component captures quasi-stationary tra�c behavior within the activity period.

Relative independence between content-dependent and encoder-dependent com-

ponents of the model does not imply independence of source bit-rate on both models.

On the contrary, the bandwidth depends on both the video content and the com-

pression technique.

3.3 CB Content-Clustered Model (CBCC)

The content-clustered model is used to investigate a relationship between video

content and its tra�c. In practice, the content-clustered model can be used as a

synthetic tra�c generator.

Assume that a video program is segmented into activity periods, characterized

by the content descriptorDC , as described in Section 3.3.3. Bandwidth requirements
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of activity periods are characterized by the tra�c model, described by the tra�c

descriptor DT . For the purpose of video tra�c modeling, it is bene�cial that the

content features are chosen based on their close relationship to bandwidth require-

ments. However, the exact form of such relationship is complex. To simplify the

model, we propose that each activity period to be classi�ed according to its content

features.

The content classi�cation scheme expresses the relationship between the video

content and bandwidth requirements of activity periods. Denote C = fCi j i =

1; 2; � � � ; gg a content-based classi�cation scheme consisting of g content classes Ci.

Denote DT;Ci
(�j) a characteristic tra�c descriptor of activity period �j, associated

with the content class Ci. Formally, content-based resource mapping can be ex-

pressed as:

DC(�j)
C
! Ci !DT;Ci

(�j) (3.1)

where DC(�j) denotes content descriptor of �j.

Resource mapping, based on content-based classi�cation, can be summarized as

follows. The content-based classi�cation scheme C clusters activity periods based

on a set of content features contained in content descriptor DC into a set of content

classes. Video tra�c that is generated over the given activity period is modeled by

the tra�c model that is associated with the content class. In practice, it assumes

that activity periods with the same content class are associated with the same tra�c

model. We will present experiments to verify this assumption later in this section.

The content-clustered model was investigated as proof of the proposed content-

aware framework. To demonstrate the e�ectiveness of the model, the following

experiment was conducted. In the experiment, manual methods of content extrac-
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tion relying on subjective analysis and classi�cation were used. The goal was to

study performance achievable by the subjective content-based tra�c model while

isolating possible errors made by the automatic content analyzer. The content fea-

tures were selected such that they can be used to visually describe the scene. Main

applications of the content-clustered model is synthetic tra�c generation based on

scene description scripts.

The purpose of this experiment was not to select an optimal combination of

parameters describing the video content, but to show that even this simple model

can reveal the correlation between the video content and the trace. First, using

manual frame-by-frame control of the MPEG-2 video player, we visually observed

a video and segmented it into activity periods by detecting abrupt and substantial

changes in the video content. Second, we characterized each activity period by a set

of content features.

3.3.1 Estimation of Content Features

Table 3.1 summarizes the content features and their evaluation, as they were used in

the content-clustered model. The content features were chosen such that they can

easily be obtained by direct visual observation of the video. A single global feature,

camera operation, was chosen to characterize the activity period in the global sense.

Each activity period was manually classi�ed as camera static, camera panning or

camera zooming.

Within each activity period, a maximum of three video objects were identi�ed.

To limit the number of classes and control the complexity of the content-based

classi�cation scheme, both global and object features were categorized into three

values only. Three object features have been used: object size, spatial complexity,

and motion. Independent of location, each VO has been assigned an approximate
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content features FG, FO descriptor category

camera operation DG static, panning, zoom
number of video objects - 1, 2, 3
video object size DO small, medium, large
video object complexity DO smooth, medium, cluttered
video object speed DO low, medium, fast

Table 3.1: Estimation of global and object features.

size of 33%, 66%, and 100% of the entire image (i.e., frame size), corresponding to

small, medium, and large object size. Video object motion� was also manually esti-

mated and categorized into one of three categories: slow, medium, and fast. Spatial

complexity was approximately categorized as smooth, medium, and cluttered.

3.3.2 Content Classi�cation

Figure 3-12 depicts three content-based classi�cation schemes suitable for MPEG-2

video. The model A incorporates all content features that were determined using the

described manual procedures. It includes three di�erent classi�ers A1, A2, and A3

corresponding to one, two, and three objects in the activity period. Classi�ers di�er

in the number of content features used for classi�cation. For example, classi�er A2

is selected when two video objects are identi�ed in the activity period. In that case,

the activity period is classi�ed according to camera operation, motion and spatial

complexity of each video object. The disadvantage of this classi�cation scheme is

the large number of classes (33+35+37 = 2457). It is therefore desirable to decrease

the number of classes.

The number of classes can be simpli�ed in the following way. First, the number

of identi�ed video objects was limited to two. Second, the spatial complexity of the

�Note that object motion here refers to perceived motion rather than \true motion". For

example, in the activity period, where a camera is tracking a foreground object, perceived speed

of the foreground object is close to zero.



53

1 object, 27 classes

F=16.61

2 objects, 81 classes

F=20.76

1 object, 27 classes 2 objects, 243 classes 3 objects, 2187 classes 2 objects, 81 classes

A1 (one object) A2 (two objects) A3 (three objects) B1 (one object) B2 (two objects) (one/two objects)

Primary Obj.
Complexity

Global

Motion

Complexity

Global

Primary Obj.

Motion

Complexity

Secondary Obj.

Complexity

Primary Obj.

Motion

Secondary Obj.

Secondary Obj.

Complexity

Complexity

Object 3

Primary Obj.

Motion

Secondary Obj.

Motion

Object 3

Motion

Model B Model CModel A

F=8.20 F=7.52 F=7.73

Global

Complexity Complexity

Global

Complexity

Global

F=16.25 F=12.21 F=15.69

Global

F=19.67

Motion

Camera

F=15.63 F=18.33

Primary Obj. Primary Obj.

Motion Motion

Secondary Obj.

Secondary Obj.
Motion

Motion
Camera Camera Camera Camera Camera

Operations Operations Operations Operations Operations

Operations

Figure 3-12: Manual activity period classi�cation.

entire image instead of the object was used. The classi�er is depicted as model B in

Figure 3-12. This way, the number of classes was reduced to 108 (33+34). To further

simplify the model, a �nal classi�er, depicted as model C in Figure 3-12, was used for

activity periods with single object (background only) and two objects (background

and single video object). For the single object case, motions of composite objects

(e.g., Primary and Secondary) were considered equal. The number of classes of

model C was reduced to 81.
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3.3.2.1 Classi�cation Consistency Method

We have introduced a content-based classi�cation scheme that clusters activity pe-

riods according to their content. To validate the relationship between video content

and its bandwidth requirements, we propose the following method which measures

the classi�cation consustency. The classi�cation consistency method was applied to

the manual classi�cation scheme, described in detail in Section 3.4.

The classi�cation consistency method measures the \accuracy" of classi�cation.

In particular, it measures (i) the similarity of bandwidth requirements of activity

periods identi�ed as belonging to the same class and (ii) how distinct they are for ac-

tivity periods classi�ed into di�erent activity classes. The classi�cation consistency

method can be used to measure the \goodness" of a classi�cation scheme, e.g., how

well activity periods of the similar content can be mapped into same tra�c descrip-

tor classes. Note that the proposed classi�cation consistency method is not intended

to measure clustering consistency in terms of content features. On the contrary, it

is intended to measure clustering consistency in terms of tra�c descriptors.

Assume that the bandwidth requirements of the activity periods (e.g. DT de-

scriptors) can be parametrized and written as vector ~X. The vector ~X can also

de�ne a point X in a P-dimensional space SP . In general, we can de�ne distance

between vectors ~X and ~Y in the space SP as the sum of weighted di�erences with

power b:
PP

i=1 wijyi � xij
b. In the case where tra�c descriptors are represented by

D-BIND tra�c descriptors, this distance actually represents di�erence in resource

requirements that must be allocated to two di�erent activity periods.

Further assume, that each point X, which represents a particular activity period,

is characterized by content features. Denote P =
Sg
n=1 pn as a set of g partitions,

each representing a speci�c content class. Note that the partitions are mutually

exclusive and it holds that pi \ pj = � for i 6= j. In other words, each point X 2 SP
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is classi�ed and assigned into a single partition p.

De�ne within class distance Din(p) and between class distance Dout(p) in the

following way:

Din(p) =
1

2

X

Xi;Xj2p

�2(Xi;Xj) Dout(p) =
X

Xi2p;Xj 62p

�2(Xi;Xj) (3.2)

where �2 is Euclidean distance between points in SP

Note that Equation 3.2 de�nes evaluation of Din(p) and Dout(p) for general par-

tition p. It does not suggest how the set of partitions P was in fact obtained. Using

Equation 3.2, de�ne two measures on the partition set P, namely the degree of

grouping G(P) and degree of separation S(P):

GfPg
4
=

1

Din(P)

X

pk2P

Din(pk) SfPg
4
=

1

2Din(P)

X

pk2P

Dout(pk) (3.3)

where Din(P) is within class distance measured on an entire set of partitions P =

Sg
n=1 pn.

The degree of grouping conveys the information regarding how well pointsX;Y 2

SP are uni�ed together under given partitions P while the degree of separation

indicates how well partitions separate these points from each other. Ideally, the

degree of grouping should be as small as possible and the degree of separation

should be close to one. Note that GfPg + SfPg = 1.

The overall goodness of the content-based classi�cation method can be obtained

using the classi�cation consistency FfPg, de�ned on a partition set P:

FfPg
4
= 10 log10

SfPg

GfPg
(3.4)

Note that FfPg ! 1 if each sample (i.e., activity period) is classi�ed into a
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separate activity class and FfPg ! �1 if no classi�cation is performed (e.g., there

is only one single class into which all samples are classi�ed). Given the constraints

on the number of activity classes, our objective is to maximize the classi�cation

consistency FfPg of the proposed classi�cation scheme.

The number and length of the intervals in D-BIND is one of the design parame-

ters. Therefore, we assume they are �xed for computational convenience. In the case

where number and size of the intervals do not match, appropriate transformation

(interpolation) can be applied.

To �nd the relative importance of di�erent content features in terms of their re-

lation to bandwidth requirements, the classi�cation consistency method was applied

to the content-based classi�cation scheme of model B and C. Starting from top to

bottom, features are ordered in terms of their in
uence on the bit-rate. For exam-

ple, to determine the content feature that most in
uences the resource requirements

of the activity period, all three content features were compared: spatial complex-

ity, motion, and camera operations. The spatial complexity was selected because

it achieved the highest value of classi�cation consistency, F = 7:73. Figure 3-13

depicts the derivation of the optimal classi�cation tree for model C. Based on this

method, the order of importance of content features was identi�ed as follows: spatial

complexity, motion and camera operations.

The model C has 81 classes only. Despite a reduced number of classes, in this

example, the classi�cation tree of model C achieved better classi�cation consistency

when compared with Model B. The model C classi�er was used in network simula-

tions, described in the Chapter 4.

The order of importance has signi�cant implications for the design of a real-time

content analyzer/classi�er. For example, because of the MPEG-2 motion prediction,

spatial complexity can be directly evaluated in the compressed domain for I frames
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Figure 3-13: Experimental MPEG-2 content-based scene classi�cation tree (Com-
bined First and Second layer, 1-2 objects).

only. However, since spatial complexity is important in terms of its in
uence on the

bit-rate, it is also desirable to predict its value for frames for which direct evaluation

is not possible (i.e., P and B frames). Simple prediction can be realized using a group

of frames (GoP) for which spatial complexity is assumed to be constant during the

entire GoP period. This prediction may be satisfactory in the middle of the activity

period. However, in cases when a new activity period starts in the middle of the GoP,

full frame decoding may be necessary to estimate spatial complexity for beginning

frames of the new activity period.

3.3.3 Video Segmentation

Video segmentation algorithms have been previously applied for detection of scene

changes in content-based video retrieval systems. In addition, video segmentation

algorithms have been used for determining re-negotiation points in dynamic resource

allocation.

Generally, we distinguish two video segmentation algorithms: o�-line and on-

line [53, 54, 13]. The o�-line video segmentation algorithm can be applied to stored

video streams. Since o�-line algorithms are not causal and can take advantage of
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knowledge of the full video trace history, o�-line segmentation algorithms can be

used to obtain the optimal re-negotiation schedule. However, since determination of

the optimal re-negotiation points is computationally extensive, sometimes heuristic

o�-line segmentation algorithms are used [13]. These algorithms are typically less

computationally extensive but lead to sub-optimal solutions only.

On-line video segmentation algorithms used for real-time tra�c are causal; they

are based on an assumption of knowledge of only present and previous bit-rate

history. These algorithms are based on heuristic tra�c prediction models monitoring

the incoming tra�c, network queue length or cell loss to assess the future stream

resource requirements.

Review of previous video segmentation algorithms has shown that their criterion

for segmentation was based solely on a tra�c pro�le. It is rather di�cult to �nd

parameters of traditional stochastic models and to �nd the singularity points, e.g.,

points at which characteristics of the tra�c change. To solve this problem, various

heuristics were used to determine these points. However, another approach can be

taken. Because of the close relation between video content and video tra�c, video

content can be used to determine the periods at which tra�c characteristics change.

The content-based video segmentation algorithm is based directly on video content

rather than bit-rate.

A video stream is segmented in the following way. First, each frame is segmented

into video objects. Global features and object features are estimated. Then, each

frame is classi�ed according to content features. The consecutive frames being

classi�ed into the same content class are grouped together to form a single activity

period. A scene change occurs between two frames classi�ed into the di�erent classes.

Formally, the content-based segmentation is expressed as follows. Denote video

V = ffkg
n

k=1 as a sequence of frames fk. Denote Ci content class of activity period
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�j. Denote content-based classi�cation of the frame as fk ! Ci and classi�cation

of the activity period as DC(�j)
C
! Ci. The goal of the content-based segmentation

is to partition a video into a set of non-overlapping segments (activity periods)

�j = [fk; fk+li]j of length lj. Each segment consists of a variable number of frames.

We say that an activity period is classi�ed into the class Ci when the following holds:

(DC(�j)
C
! Ci) � f8fk 2 �j; fk ! Cig; Ci 2 C (3.5)

where C is the set of all di�erent content classes. In other words, content-based

segmentation divides the video frame sequence into segments, frames of which belong

to the same scene class.

3.3.3.1 Detection of Activity Periods for MPEG-2 streams

Detection of activity periods was based on a simpli�ed algorithm for scene change

detection in MPEG video streams [59, 65]. This algorithm is based only on partial

decoding of the compressed video stream. Since the full decoding of each frame is

not necessary, the computing complexity can be reduced. In particular, a simple

MPEG-2 video parser that extracts DCT DC coe�cients for I- and P-frames and

motion vectors for P- and B-frames will su�ce for its implementation.

The algorithm for detection of activity periods depends on the frame format.

The algorithm for scene detection in I-frames is based on the fact that intensity

variance of frames within the same activity period tends to be stable. Transition of

activity periods is indicated by a peak of the absolute value of the frame di�erence.

Additionally, the algorithm in [65] suggested as a second condition to use ratio of a

number of forward to backward motion vectors of proceeding B-frames to identify

abrupt \scene" changes in I-frames. The reason for this additional condition was
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that the absolute value of frame di�erence may be unstable at periods of high motion.

The activity period detection algorithm for P-frames is based on the ratio of

the number of macroblocks without motion compensation (i.e., intra-coded mac-

roblocks) to the number of blocks with motion compensation. The reason for this

measure is that when the activity period change occurs at P-frame, many mac-

roblocks must be intra-coded because motion compensation cannot �nd correspond-

ing macroblocks at previous anchor frame. Activity period change is declared at

peaks of this ratio.

Detection of activity periods at B-frames is based on the ratio of the number

of backward to forward motion vectors. When activity period change occurs at

B-frame, most motion vectors come from the future anchor frame (e.g., later in

display order) rather than from the past anchor frame. The adaptive window-based

threshold technique is used to detect peaks. Activity period change is declared at

peaks of this ratio.

3.3.4 Resource Mapping

To illustrate results of the content-based scene classi�cation scheme in terms of class-

to-resource mapping, D-BIND tra�c functions corresponding to di�erent classes

have been evaluated. In particular, three D-BIND tra�c functions together that

were obtained using three quantization levels of complexity (i.e., smooth, medium,

and cluttered), are depicted in Figure 3-14. Error bars indicate standard deviation of

D-BIND coe�cients at each time-scale. Resource descriptors obtained with the use

of two content features (complexity and motion) are depicted in Figure 3-15. A, B,

and C are major groupings relating to spatial complexity and \slow/medium/fast"

are minor groupings relating to motion.

Figure 3-16 depicts an increase in classi�cation consistency with the number
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of categories of spatial complexity. Classi�cation consistency is not substantially

improved beyond nine categories, reaching F = 12:22. At this point, further im-

provement is possible only if the number of content features is increased.

Figure 3-17 shows an increase in classi�cation consistency with an increase in

the number of content features. Four content features were used in the following

sequence: global complexity, primary object motion, camera operations, and sec-

ondary object motion. All content features were classi�ed into three categories. For

example, using two content features classi�ed into three categories each, classi�ca-

tion consistency increases to F = 15:69. Note that this value is higher than the

case in which only a single feature was used (F = 12:22 refer to Figure 3-16). The

use of two di�erent content features, classi�ed into a small number of categories, is

advantageous as compared to the use of a single content feature, classi�ed into a

large number of categories.

Previous results suggest that while an increase in the number of categories of each

individual content feature improves the classi�cation consistency, such improvement

is not linear and asymptotically approaches a limiting value. The use of more content

features, categorized into fewer categories each, has shown to be more e�ective when

compared to classi�cation schemes based on fewer content features, classi�ed into a

larger number of categories each.
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3.4 CB Resource-Clustered Model (CBRC)

We have found that although the content-clusteredmodel, described in Section 3.3.2,

is su�cient for manual feature estimation, it does not perform well in a case where

features are extracted automatically. Note that in the content-clustered model,

activity periods were classi�ed into content classes based on content features.

The resource-clustered model assumes that activity periods are classi�ed into

tra�c classes Ti. Denote T = fTi j i = 1; 2; � � � ; lg a content-based classi�cation

scheme consisting of l tra�c classes Ti. Denote DT;Ti(�j) a characteristics tra�c

descriptor of activity period �j that is associated with each tra�c class Ti. Then,

the resource-clustered scheme can be expressed as:

DC(�j)
T
! Ti ! DT;Ti(�j) (3.6)

where DC(�j) denotes content descriptor of �j. In other words, tra�c classes are

directly predicted based on content features. Content classes are not formed.

3.4.1 Tra�c Classi�cation

The resource-clustered classi�cation scheme utilizes machine learning algorithms. It

operates with two modes: training and selection. In the training mode, the content-

based classi�cation scheme is initialized: the decision tree classi�er and characteristic

tra�c descriptors, DT;Ti, are estimated. In real-time, the scheme operates at the

selection mode: the activity period's tra�c class is determined by using the decision

tree classi�er. Corresponding DT;Ti is used to predict bandwidth requirements for

that activity period. For 
exibility, in our experimentswe have used general, publicly

available machine learning tools. We have simulated generation of the decision tree

classi�er o�ine using a subset of activity periods only. The remaining activity
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periods were used for testing.

The decision tree classi�er was generated in the following way. First, the activity

periods were automatically clustered into di�erent tra�c classes Ti by Autoclass

III [78]. Autoclass III is a Bayesian unsupervised classi�er that estimates class

membership given unlabeled test cases. Each activity period was classi�ed into one

of nine tra�c classes.

Figure 3-18 illustrates the classi�cation results. In this example, 9 classes were

formed based on tra�c descriptors of 295 activity periods. Each sub-graph illus-

trates individual tra�c descriptors within one single class, which are shown in the

shaded curves. The single dark curve represents the characteristic tra�c descrip-

tor of that class, which is obtained, in this case, as the 90 percentile of the tra�c

descriptors belonging to that class.

The classes are numbered 0 to 8. The number in parenthesis indicates the number

of tra�c descriptors in that class. In our case, the number of tra�c descriptors in

a single class ranges from 28 to 47. The �gure clearly shows the good clustering

performance of Autoclass III software, as the tra�c descriptors of similar shapes are

clustered into the same tra�c class.

After the clustering operation, tra�c classes and content features were used to

generate the decision tree classi�er. The decision tree classi�er was estimated of-


ine by OC1 software [79], a supervised machine learning system based on oblique

decision trees. Decision trees of this form consist of a linear combination of the

attributes (in our case content features) at each internal node and can be viewed

simply as a more general form of axis-parallel univariate decision trees. In our ex-

periments, a relatively high classi�cation accuracy of 86.1 % was achieved. Accuracy

of classi�cation for each tra�c class is summarized in Table 3.2.

Figure Figure 3-19 illustrates the classi�cation results based on the decision tree.
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class 1 2 3 4 5 6 7 8 9
accuracy % 85.1 88.9 82.9 87.5 83.3 90.00 89.7 82.1 85.7

Table 3.2: Accuracy of decision tree classi�er.

The sub-graphs are presented in the same way as the ones in Figure 3-18.

The decision tree enables estimation of the tra�c class given a set of content

features that are easy to obtain from compressed video streams. However, a mis-

match between content features and tra�c class can occur. In other words, in some

instances, a decision tree is not able to correctly identify a tra�c class based on

content features alone. This e�ect can be observed from Figure 3-19. Figure 3-19

depicts tra�c descriptors that were not correctly classi�ed. In practice, this will lead

to choosing a wrong characteristic tra�c descriptor. The �rst number in parenthesis

indicates the number of tra�c descriptors that were classi�ed into that class; the

second number indicates the number of tra�c descriptors among then that were

classi�ed incorrectly.

The decision tree was used in our simulations to predict resource requirements

for each activity period. In particular, once the tra�c class of an activity period

was determined by the decision tree classi�er, the characteristic tra�c descriptor

DT;Ti was used to predict the resource requirements for that activity period. In our

simulations, we have used three di�erent metrics for an evaluation of DT;Ti: mean,

maximum and 90 percentile of a particular class.

The resource clustered model can be used for the prediction of bandwidth require-

ments in a dynamic resource allocation system. The approach and its performance

is further discussed in Chapter 4. In this model, we have used a real-time con-

tent analyzer that is based on fully automated methods of content analysis. It was

intended to provide practical experience with the implementation of an automatic

content analyzer/classi�er.
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Figure 3-18: Tra�c classes.
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Figure 3-19: Accuracy of content-based decision tree classi�er.
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Chapter 4

Network Resource Allocation

4.1 Introduction

Historically, telephone circuit switched networks provided guaranteed service while

packet networks provided best e�ort service. Both networks were not designed to

support quality of service (QoS) and multimedia in general. Use of circuit switched

networks for multimedia is not economical, mainly because quality of service re-

quirements and highly variable tra�c characteristics would lead to low network

utilization. On the other hand, packet networks are more e�ective in terms of use

of network resources. However, to support multimedia e�ciently, quality of service

provisioning is necessary.

A comprehensive survey of QoS architectures can be found in the literature [68].

In general, various classes of quality of service can be designated for transmission

of a video, audio and data over multimedia networks. For example, with respect

to user QoS requirements, application QoS requirements can be loosely divided

into the following categories: hard delay and loss bounds (e.g., CBR, VBR video),

hard delay and soft loss bounds (e.g., voice), soft delay and hard loss bounds (e.g.,

real-time data), and soft delay and loss bounds (e.g., data) [69]. While network

QoS is commonly speci�ed in terms of cell loss, end-to-end delay, and cell delay
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variation (CDV), application QoS requirements cannot be expressed in those terms.

Mapping between the application and network QoS requirements is necessary. The

mapping may not be unique; application QoS requirementsmay possibly be satis�ed

by di�erent network QoS descriptors.

The role of the call admission control (CAC) is instrumental in QoS provisioning

[69, 27, 28]. CAC decides whether to admit or reject a new session and manages

network resources such that QoS is guaranteed for all accepted sessions. The as-

signment of available network bandwidth and bu�ers among sessions is, in general,

policed at the network interface such that no stream can corrupt or cause QoS vi-

olation of other well-behaved streams. On the session level, the call admission is

based on network parameters (e.g., network status and desired network utilization)

and parameters supplied by an individual session such as service class, tra�c model

(descriptor), QoS objectives, etc. For example, for ATM tra�c, �ve service classes

are de�ned by ATM Forum: constant-bit rate (CBR), real-time variable-bit rate

(rt-VBR), non real-time variable-bit rate (nrt-VBR), available-bit rate (ABR), and

unspeci�ed-bit rate (UBR) [14].

Because of constant picture quality, support of VBR video in packet networks is

desirable. However, because of complex VBR tra�c characteristics, call admission

control for VBR service class is a challenging issue. Recent studies show that trans-

port of VBR video may lead either to network congestion or low network utilization

[15]. These results highlight the necessity of new advanced resource allocation tech-

niques suitable for both real-time and non real-time VBR video tra�c.

One promising solution, aimed to overcome these di�culties, is to replace the

static resource allocation of CAC, with dynamic resource allocation (DRA). In static

resource allocation, the network resources are allocated only once at the beginning of

the session. Resource allocation is done as part of CAC algorithm. On the contrary,
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DRA allows in-call resource allocation. The network resources, based on current

need, can be dynamically requested while the session is in progress. Compared to

the static resource allocation, DRA may lead to an increase in network utilization.

In essence, DRA is a scheme for preventive congestion control that supports

quality of service (QoS) for individual sources. DRA is suited for transport of VBR

video over bandwidth limited networks, e.g., for networks that can support only a

limited number of streams (in the order of several tenths) for which statistical mul-

tiplexing would not lead to substantial multiplexing gain. It is e�cient for bursty,

non-homogeneous VBR sources for which the tra�c model is generally di�cult to

obtain. For example, DRA can be bene�cial in access and wireless networks with

limited or variable bandwidth that can support a relatively small number of con-

current VBR video streams.

One of the challenges of dynamic resource allocation exists in the selection of

renegotiation strategies. The solution is connected to tra�c prediction and selection

of renegotiation points, i.e., instances in which renegotiation of resources should

take place. The selection of renegotiation points is more complicated for real-time

video. In the past, several tra�c prediction models based on a single indicator

(bit rate) have shown promising results [52, 53, 54]. However, since these models

are based on heuristic tra�c prediction methods combining tra�c monitoring and

bu�er occupancy, their performance is sensitive to parameter selection.

In this chapter, we present another approach. In particular, we apply the

content-based framework to both tra�c prediction and selection of renegotiation

intervals. We refer to this new approach as content-based DRA. The content-based

tra�c model explores the video content of the video as an important indicator of

VBR stream bandwidth requirements. Because video content can be extracted from

video streams in real-time, tra�c prediction based on video content is suitable for
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live video.

The rest of this chapter is organized as follows. In Section 4.2, we discuss more

speci�c issues related to the congestion control and resource allocation. In particu-

lar, we point out the need for the layered congestion control matching the di�erent

tra�c patterns in both core and external networks. We present an overview of dif-

ferent tra�c models that are typically used in the admission and congestion control

algorithms. In Section 4.3, we present our content-based dynamic resource alloca-

tion model, its real time implementation and related issues of video segmentation,

classi�cation, and resource mapping. We also compare results of trace-driven simu-

lation of content-based model to results obtained by using other models.

4.2 Resource Allocation

The function of the call admission control is to avoid congestion in communication

networks. When the user requests a new network connection, the admission control

decides if a new call can be accepted and a connection established. A new call is

accepted only if there are enough resources and the QoS of all multiplexed connec-

tions will not be violated. In addition to network resources, other factors might

be considered in call admission. For example, only calls maximizing the network

utilization or network provider's pro�t would be admitted.

For video transport over packets networks to be e�ective, the following issues

should be addressed. First, high burstiness and the multiple-time scale property

of VBR tra�c prevents achievement of high statistical multiplexing gain when the

number of multiplexed streams is small [55]. This applies mostly to bandwidth-

limited networks that can support only a small number of streams. Second, because

bursts of high bit rate in VBR streams can occur for a relatively long time, large

network bu�ers associated with large delay would have to be used to allow transmis-
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sion at lower than peak rate. Under these conditions, the traditional static resource

allocation is ine�cient (requires near peak rate bandwidth allocation) leading to

very low network utilization. To keep the delay small and still provide adequate

QoS, controlled access to the network resources on the burst time-scale is necessary.

For access networks or network interfaces that cannot accommodate large num-

ber of video streams, a more 
exible multilayer congestion control model for trans-

port of bursty tra�c was proposed [51]. In this model, the congestion is controlled

at three layers: packet (cell), burst and call. Congestion at each layer is measured by

probability of cell loss, burst blocking and call blocking probabilities. Tra�c control

at the higher layer can reduce congestion at the lower layer. At the call layer, a

new session is denied if the excessive burst blocking probability occurs; similarly,

the burst of the already admitted call is denied if it would cause excessive cell loss

at the cell layer. For example, the network may support probabilities in the range

of 10�2 for call blocking, 10�2 to 10�4 for burst blocking and 10�6 to 10�8 for cell

loss.

4.2.1 Dynamic Resource Allocation

Generally, we can identify two resource allocation mechanisms: static and dynamic.

Static allocation uses a priori tra�c source descriptor and is concerned with resource

allocation on the call layer. During the connection setup, the network resources are

allocated at the beginning of the call and deallocated only at the end of the call.

On the other hand, dynamic resource allocation is based on the three-layer con-

gestion control model. It is a technique allowing network resources to be allocated

on need basis during the lifetime of the connection. A request for the change of

resources is generated when source tra�c conditions change; for example, at the

beginning of excessive cell bursts. While a request for a decrease in resources will
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always be granted, the request for an increase can be denied.

In theory, dynamic resource allocation represents a burst resource allocation

layer [51]. This layer operates on the time-scale between cell scheduling and call

admission layers.

The e�ciency of dynamic resource allocation depends on the strategy of de-

termining the renegotiation intervals and accuracy of tra�c prediction. The most

e�cient renegotiation scheme is to allow renegotiation in every time-frame interval

[52]. However, there is an overhead associated with the renegotiation, namely the

processing cost of a renegotiation request message. The implementation of a frame-

by-frame renegotiation scheme could create a bottleneck due to the limited message

processing power at the switch or router.

Figure 4-1 depicts the conceptual model of a dynamic resource allocation system.

Its two primary components are the resource allocation broker (RAB) and media

tra�c agent (MTA). RAB controls bandwidth allocation for multiple streams that

share network resources. MTAs are associated with video streams. MTA predicts

video stream bandwidth requirements, generates resource requests, and, if neces-

sary, dynamically regulates the video stream such that it conforms to its currently

assigned bandwidth. The location of RAB and MTA components in the network

is 
exible. For example, both components can coexist at a user network interface

UNI. In that case, dynamic resource allocation is performed locally at the network

multiplexer only. Alternatively, RABs can be distributed across the network. They

can be located at the external ATM switch, QoS enabled router or a wireless base

station. In the distributed case, RABs control resource allocation locally along the

route for each individual network link and node. In the centralized case, the single

RAB controls the resource allocation among multiple switches.

The network resource and QoS management at the RAB is based on (i) call
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Figure 4-1: Conceptual model of DRA system.

admission control (CAC) and (ii) dynamic resource allocation (DRA) algorithms.

The CAC algorithm handles the admission of new streams into the network [69].

Once the stream is admitted, its resource allocation is handled by DRA algorithm.

For each admitted source, RAB maintains information about the desired QoS re-

quirements and current network resource assignments.

DRA algorithm assigns the bandwidth for each individual video stream based on

its requirements. In the case of stored video, future bandwidth requirements may

be known in advance. However, in real-time video, the future resource requirements

can only be predicted. In that case, the MTA assumes the role of tra�c predictor. If

the future resource requirements of the stream exceed the resources currently avail-

able, the MTA generates resource management requests, RM REQ, and send them

to RAB for processing. RM REQs convey information about network resources that

are requested by the video stream. In RAB, the DRA algorithm compares resource

requirements with currently available network resources. If there are enough re-

sources available, they are allocated (i.e., increased or decreased) and reserved. In

that case, successful reservation is acknowledged by RM ACK. Otherwise, request
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is rejected and a negative response RM NACK may be returned. To limit signaling

overhead, some lightweight DRA protocols do not explicitly con�rm or reject the

reservation [49].

In the when that resource allocation brokers are distributed across the network,

RM REQs messages may impose signaling overhead on the network. In addition,

the processing of requests at the RAB should also be considered. The frequency

of renegotiation (e.g., frequency of generation of RM REQ) plays an important

role in the evaluation of the performance of di�erent dynamic resource allocation

schemes. Frequency of renegotiation in the order of seconds (i.e., interval between

renegotiations) is reasonable and possible to achieve with current technology.

To lower signaling and procession overhead, new lightweight DRA reservation

protocols were recently proposed; for example, YESSIR reservation mechanism that

is suitable for Internet. It is built on top of RTP and RTCP protocols and sup-

ports in-band DRA reservations [48]. Another reservation mechanism, SRP, allows

applications to make dynamic reservations of their minimum bandwidth using two

protocols [49]. The reservation protocol uses data packets of di�erent types. Packet

type is used to convey reservation information from the source to the network. The

feedback protocol conveys information about reservation status back to the sender.

4.2.2 Video Segmentation and Resource Prediction

Dynamic resource allocation systems may employ di�erent video segmentation al-

gorithms, tra�c prediction models, and signaling protocols. In addition, di�erent

tra�c descriptors may be used for resource allocation. The video segmentation algo-

rithm determines renegotiation points, i.e. times at which renegotiation should take

place. The tra�c prediction model determines resource requirements that should

be requested. The tra�c prediction is needed for on-line segmentation only; in o�-
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line segmentation, precise bandwidth requirements can be pre-computed and stored

along with the video stream.

The renegotiation intervals are found by video segmentation algorithms that

divide video streams into variable size sections [53, 54, 13]. Renegotiation points for

stored video can be found o�-line [44]. However, o�-line segmentation algorithms

cannot be directly used for real-time or interactive video for which future resource

requirements cannot be precisely predicted. For real-time video, heuristic on-line

segmentation algorithms are used instead [25]. On-line segmentation algorithms

are causal; typically, they are based on heuristic prediction models monitoring the

incoming tra�c, network queue length or cell loss to assess the future resource

requirements. In essence, their function is as follows: when current or future resource

requirements exceed the reserved resources, more resources are requested. On the

other hand, when the stream resource requirement is less than currently reserved,

the request to decrease the resources may be generated.

The autoregressive tra�c models are used for the real-time bandwidth prediction.

Parameters of the tra�c model are estimated in real-time. To improve the prediction

accuracy, some heuristic models also use the status of the encoder or network bu�er.

The following are two examples of models used for tra�c prediction.

Simple tra�c prediction models can be realized as follows. Let Xn be a stochastic

process and X̂n be prediction of the Xn. The simple linear bit rate predictor can

realized as follows:

X̂n = Xn�1 + �(Xn�1) (4.1)

where �(Xn) denote a standard deviation of Xn. This prediction model assume an

increase equal to the standard deviation. This may often lead to an overestimation

of the bit rate.

A heuristic ta�c prediction algorithm was suggested by Grossglauser [53]. It
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uses a monitoring of video tra�c and multiplexer queue length [53]. It is based on

AR(1) model with additional term estimating required bandwidth to 
ush a current

content of network bu�er:

X̂n = �X̂n�1 + (1 � �)[Xn�1 +maxfbi �Bh; 0g] + " (4.2)

where " is a white noise process, � is an autoregressive coe�cient, bi and Bh are

current bu�er state and high bu�er mark threshold; additional term maxfbi�Bh; 0g

prevents bu�er buildups.

Linear prediction algorithms work well only for processes for which the stochastic

model is known and parameters can be easily obtained. Unfortunately, this is not the

case in the VBR tra�c modeling, where model parameters are constantly changing.

In the following, we discuss three DRA schemes: frame-based, renegotiated CBR

(RCBR), and renegotiated VBR (RVBR). Both RCBR and RVBR schemes use

di�erent video segmentation and tra�c prediction algorithms. We describe our

content-based DRA in the next section.

4.2.2.1 Frame-Based DRA

In frame-based DRA, network resources (equivalent to number of bits in a frame)

are requested in a frame by frame fashion. The main advantage of frame-based

DRA is its ability to achieve high network utilization due to its high frequency

of renegotiation. In addition, the size of the frame may be known in advance or

it can be predicted relatively accurately. In general, network utilization depends

on characteristics of the source as well as on the frequency of renegotiation; high-

bursty VBR sources can bene�t from an increase in renegotiation frequency while

CBR sources cannot. The disadvantage of frame-based DRA is the high frequency
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of renegotiation. The frame-based DRA scheme may not be practical if it causes

bottleneck due to the limited processing capacity or bandwidth. [52].

High frequency of renegotiation can be compensated by simpli�ed processing at

the RAB. For example, note that frame-based DRA does not need complex VBR

tra�c descriptors to characterize its tra�c at each period. In addition, lightweight

resource allocation protocols can further reduce signaling overhead. For example,

ATM block transfer that is being standardized by ITU-T allows bandwidth renego-

tiations on basis of a block of cells [47]. In transmission, the block of cells is enclosed

in two resource management (RM) cells. The �rst RM cell requests network band-

width and the second one releases bandwidth. At the network node, blocks of cells

are handled as basic units, e.g., they are either accepted for transmission or fully

discarded. Admission control and QoS support for frame-based DRA suitable for

interactive video is presented by Lam et. al. [45] and Xie et. al. [46].

4.2.2.2 Renegotiated VBR Model

The renegotiated VBR (RVBR) dynamic resource allocation scheme, proposed by

Knightly et. al. [56], is depicted in Figure 4-2. In RVBR scheme, VBR streams are

characterized by D-BIND tra�c descriptors. The heuristic on-line video segmenta-

tion algorithm of the RVBR scheme is based on the video tra�c history. The current

resource requirements of the stream are estimated on-line using a measurement-

based algorithm of predetermined window length. If current resource requirements

exceed the available bandwidth, resource management requests are generated imme-

diately. Requests for reduction of resources are generated when currently estimated

tra�c falls under the given threshold.

In RVBR, the DRA algorithm used for accepting/rejecting of the resource allo-

cation request is closely related to D-BIND video tra�c descriptors. As described in
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Figure 4-2: Content-based and RVBR dynamic resource allocation system model.

Chapter 2, D-BIND constrained sources si are characterized in terms of the tra�c

constrained function de�ned in terms of rate-interval pairs R(i)
T = f(r(i)k ; tk) j k =

1; 2; � � � ; Pg [54]. Denote Q network bu�er size and B� network bu�er requirements

at time � when new resource reservation request for the source sn+1 arrives. Further

de�ne subset A� = fsi j i = 1; � � � ; ng of n sources si that are currently enabled

for transmission by dynamic resource allocation algorithm at time � . For FCFS

scheduling policy, the required network bu�er size B� for all streams, including new

one, is:

B� = maxf0;max
k
ftk(

NX

i=1

si2A�

r
(i)
k + r

(n+1)
k � c)gg; k = 1; � � � ; P (4.3)

where N is total number of sources, admitted by CAC, and c is a link speed. Note

that n � N , i.e., number of sources currently enabled by DRA is less or equal to

total number of sources accepted by CAC. It is assumed in Equation 4.3 that R
(i)
T

of all sources are de�ned using same time intervals tk.

The DBA algorithm for the RVBR system, used by a resource allocation broker,

takes into account the current occupancy of a network bu�er. It is formulated as
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follows: denote Q� bu�er occupancy at time � . Any resource reservation request can

be positively acknowledged only if currently available bu�er space is greater than

or equal to total bu�ering requirements of all sources B� :

B� � Q�Q� (4.4)

4.2.2.3 Renegotiated CBR Model

The RCBR dynamic resource allocation scheme, as proposed by Keshav et. al.

[53], is depicted in Figure 4-3. Contrary to other DRA schemes, in the RCBR

scheme, streams are assumed to be separately bu�ered before entering a network

multiplexer. Additionally, the network multiplexer does not use the shared network

bu�er. Video streams are multiplexed at the entrance to the network using the

FCFS network scheduler policy. The RCBR scheme is essentially a piece-wise CBR

allocation scheme. The DRA algorithm for RCBR is simpli�ed, compared to RVBR,

because the bandwidth descriptor is represented by a single value: CBR rate. If the

sum of CBR rates of all already accepted streams and new ones exceeds the link

capacity, the request is rejected. Otherwise, the request is accepted.

The RCBR on-line segmentation is closely related to the tra�c model. It is

assumed that video tra�c between renegotiations can be described by an autore-

gressive AR(1) stochastic model:

X̂n = �X̂n�1 + " (4.5)

whereXn denotes current stream bandwidth, X̂n is the predicted stream bandwidth,

" is a white noise process, and � is an autoregressive coe�cient.

However, in RCBR the bandwidth is predicted using the following heuristics:

the model uses an additional term that describes the current occupancy of network
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Figure 4-3: Simulation model for RCBR dynamic resource allocation.

bu�er:

X̂n = �X̂n�1 + (1� �)[Xn�1 +maxfbi �Bh; 0g] (4.6)

where bi and Bh are the current bu�er state and high bu�er mark threshold (in our

experiments set to 90% of the bu�er occupancy); the additional termmaxfbi�Bh; 0g

prevents bu�er buildups.

4.3 Content-based DRA

In the content based DRA, resources are allocated based on the video content of

activity periods rather than on heuristic tra�c measurements. The bandwidth of

activity periods is predicted by the content-based video tra�c model. The content

information can be extracted from the compressed video stream in real-time or sup-

plied directly by video camera. Methods for analyzing video content and estimating

resource requirements have been described in Chapter 2.

The content-based video tra�c model takes into account the process of VBR

stream generation. This provides the basis for more accurate tra�c prediction and
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QoS of Renegotiation rejection
requesting stream probability

resources overestimated increase or no change higher
resources underestimated decrease (loss) lower

Table 4.1: In
uence of prediction error on QoS and renegotiation rejection proba-
bility.

e�cient video segmentation ultimately resulting in an increase of network utiliza-

tion. The content-based video segmentation operates on a time scale of several

seconds (corresponding to the scene length scale). The operation on this time-scale

(VBR burst scale) is preferable to the frame-by-frame scheme. The frame-by-frame

renegotiation could create a bottleneck due to the limited processing power at the

switch or network interface.

Table 4.1 shows the in
uence of prediction error on stream QoS and rejection

probability. QoS of the requesting stream (for example cell loss) might be increased

or not e�ected if the tra�c prediction model overestimates the amount of required

resources. Nevertheless, since more resources are reserved than actually needed, the

renegotiation rejection probability of other streams increases and overall network

utilization decreases. On the other hand, decrease in QoS might be a result of the

tra�c prediction model underestimating the amount of required resources. In this

case, the source tra�c must be scaled. This can be accomplished in two di�erent

ways. Either the dynamic shaping can be applied to the already compressed stream

in real-time, or an encoder will be noti�ed to decrease the bit rate (e.g., to increase

quantization step size). In addition, the probability of successful renegotiation of

other streams will increase (e.g., there will be more resources available).

The content-based network resource allocation algorithm can be used in both

real-time and non real-time systems. The main di�erence between both systems is

that the non real-time system has all the information about scene content, including
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the renegotiation points, scene length and resource requirements available before the

stream is sent to the network. In addition, the o�-line content-based segmentation

is more accurate, since it does not experience delay associated with the determi-

nation of the video content. In o�-line segmentation, resources can be requested

ahead of time. The real-time system is more complex, since it assumes no previous

information about the stream. The real-time system can be used for live video pro-

grams. On the other hand, o�-line segmentation can be used in video-on-demand

applications only.

4.3.1 Media Tra�c Agent

Figure 4-4 depicts the content-based media tra�c agent that manages the video

stream transmission. The video segmentation and tra�c prediction is based on the

content-based video tra�c model. The MTA monitors the incoming compressed

video stream and extracts video content that is used for prediction of stream band-

width requirements. MTA consists of �ve components: content analyzer/classi�er,

tra�c analyzer, tra�c prediction module, resource reservation module, and dynamic

resource shaping module.

Module functions are as follows: the video stream is �rst analyzed by content

analyzer/classi�er, CA/C. The video stream is segmented into individual activity

periods, content features are estimated and tra�c class, Ti, of the activity period

is determined. In practice, there may be delay associated with the extraction of

content features. The delay depends on the particular compression mechanism and

the method that is used to determine content features. For example, the delay of

several frames may be needed in MPEG-2 to determine spatial complexity directly

from the compressed stream without fully decoding video stream. For that reason,

the content-based MTA system is best suited for live video, which di�ers from
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Figure 4-4: Content-based Media Tra�c Agent (MTA).

interactive video in that it relaxes the end-to-end interactive delay requirement.

The tra�c analyzer, TA, is triggered by CA/C at the beginning of each activity

period. It continuously measures the tra�c descriptor or each activity period. At

the end of each activity period, both the activity period's tra�c class and the tra�c

descriptor are used to update the characteristic tra�c descriptors, DT;Ti, at the

tra�c prediction module.

The tra�c prediction module, TP, predicts resource requirements for the current

activity period. It maps the tra�c class, determined by CA/C, into DT;Ti descriptor.

Values of DT;Ti descriptors may be adaptively updated based on DT descriptors of

previous activity periods that were classi�ed into the same tra�c class.

The resource reservation controller, RR, decides whether to initiate a renegoti-

ation of network resources. If necessary, a reservation request is sent to the RAB

to either increase or decrease the currently reserved stream's bandwidth. If new

resources are successfully obtained, the stream is sent to the network without any

changes. However, if resources cannot be allocated, previously obtained resources

have to be used. In that case, the source should be (i) regulated (e.g., dynamic rate
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shaping), (ii) delayed or (iii) the stream may enter the network, but marked as a

lower priority.

There is a tradeo� between the use of delayed transmission, regulation of the

video stream and the use of the packet prioritization. Regulation of the source

causes controlled, but immediate video degradation. However, it does not introduce

signi�cant delay. On the other hand, although delayed transmission does not cause

any immediate quality degradation, it requires additional bu�ering and may not be

suitable for interactive applications. The stream consisting of low priority packets

may maintain the quality under the low network load. However, packets are ran-

domly discarded at network nodes in case of congestion. In that case, uncontrolled

quality degradation would take place.

If required, the stream is regulated at the dynamic resource shaping module,

DRA, or directly at the encoder (in real-time by modi�cation of its quantization

parameters). A policing of D-BIND constrained sources can also be accomplished

by a set of leaky buckets [54].

Content-based scheme is best suited for prediction of resource requirements for

live video. For stored video, optimal segmentation can be computed directly from

known video trace statistics, as described in [53, 54, 44]. In our simulations, the

CB model compared favorably, in terms of prediction accuracy and renegotiation

frequency, to other bandwidth prediction models. The performance was signi�cantly

better than other techniques for live video simulations.

4.4 Network Simulations

We compare the performance of content-based DRA and three other DRA schemes

(i.e., frame-based, RVBR and RCBR) based on trace-driven simulations. A trace-

driven simulator was developed for that purpose. Results were obtained using a
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single 54000-frame-long trace (30 minutes) of an MPEG-2 encoded movie, Forrest

Gump [43]. This trace includes over 300 activity periods of di�erent content.

4.4.1 Trace-Driven Simulator

Figure 4-2 depicts a model of entry node multiplexer, with a service rate of c =

45 Mbps and FCFS scheduling policy. Given the average rate of our video stream

(i.e., 0.5 Mbps), maximum of 90 sources would be possible to multiplex to assure

a stable system. At the beginning of the simulation, each source was assigned a

random starting point within the trace. When the source reached the end of the

trace, it wrapped around and continued from the beginning of the trace. Each

source dynamically requests resources at renegotiation points that were determined

by the video segmentation algorithm of each given DRA scheme. For simplicity, it

was assumed that once the request for more resources was rejected by RAB, the

corresponding source was blocked and the new request was generated at the next

renegotiation point only. As we will show later, it may be possible that resources,

predicted at the beginning of the activity period, are underestimated. In that case, a

new resource allocation request is generated. To limit the renegotiation frequency, in

our simulations, we request a 10% increase of the currently needed (i.e., measured)

resources.

In each simulation, the maximum number of streams that can be multiplexed

was obtained. Experiments were conducted using renegotiation blocking probability

of 10�2. We assume shared network bu�er size to be equivalent to 300 ms delay.

For each result, simulations were run 100 times, starting at di�erent random points

within the trace. Performance evaluation was based on link utilization, de�ned as

the ratio of the number of streams that are admitted under a given DRA policy to

the maximum number of streams that are admitted under the average rate admis-
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sion policy. The trace driven simulator was based on the following algorithm:

1. Fix bu�er size and initial number of multiplexed sources

2. Run simulation 100 times and calculate rejection probability

3. If rejection probability is less than the maximum speci�ed,

increase number of sources and run simulation again from 2

4. Else, save results (number of sources)

5. If needed,

select another bu�er size and start from 1

6. Else, end simulation

4.4.2 Results

4.4.2.1 Performance of o�-line video segmentation algorithms

In this section, we compare the e�ciency of the following o�-line video segmentation

algorithms: (i) \frame-based", (ii) \APD manual" (manual content-based video

segmentation, (iii) \APD auto" (automatic content-based video segmentation, and

(iv) \RVBR o�-line" scheme [54].

Since network e�ciency is heavily in
uenced by the renegotiation frequency of

DRA, parameters of \APD auto" and \RVBR o�-line" segmentation schemes were

tuned such that each algorithm produced a renegotiation frequency equal to that

of \APD manual" segmentation, described in Section 3.3.3. The average interval

between renegotiations for \APD manual" scheme was 3.3 s. Renegotiation fre-

quency of \RVBR o�-line" segmentation scheme is controlled by a single parameter

 (0 �  � 1). The parameter,  , was adjusted to  = 0:65 such that the average

interval between renegotiations was about 2.58 s, close to that of the \APD manual"

segmentation scheme.
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In this experiment, the actual activity period tra�c descriptors (DT ) of each

activity period (e.g., D-BIND for all DRA schemes except \frame-based") were pre-

computed o�-line. In our simulations, DT descriptors were used to generate resource

requests at the beginning of each activity period.

Simulation results are shown in Figure 4-5. As expected, utilization of the

\frame-based" scheme was superior; it established an upper bound on network uti-

lization for a given video. High link utilization, the result of high statistical mul-

tiplexing gain, is due to a high frequency of renegotiations. As the network bu�er

(and corresponding delay) increases, utilization of other schemes is asymptotically

approaching utilization of the frame-based scheme. While \APD auto" scheme has

slightly better performance (� 5%) for small network bu�ers, compared to \RVBR

o�-line" scheme, for large bu�ers their performance is almost undistinguishable. At

large delays, \APD manual" scheme shows a small, 5% improvement of the utiliza-

tion, compared to both \APD auto" and \RVBR o�-line" segmentation schemes.

Note that the e�ect of network bu�ering is present in all segmentation schemes.

Network bu�ering is able to smooth the bit rate of the source, resulting in a further

increase in network utilization.

Although we can conclude that in our simulations all segmentation schemes per-

formed similarly, both \APD manual" and \APD auto" video segmentations have

shown up to a 5% improvement, compared to \RVBR o�-line" scheme. However,

note the di�erence between \APD auto" and \RVBR o�-line" schemes. The advan-

tage of \APD auto" algorithm is that it can be used for real-time segmentation of

video streams, while \RVBR o�-line" scheme, which is not causal, cannot.
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Figure 4-5: Impact of video segmentation accuracy (o�-line segmentation).

4.4.2.2 Performance of DRA Schemes

In this section, we compare the performance of the following dynamic resource al-

location schemes: (i) content-based resource clustered (CBRC), (ii) real-time rene-

gotiated variable bit rate (RVBR), and (iii) real-time renegotiated constant bit rate

(RCBR) [53].

In CBRC, bandwidth requirements of activity periods (i.e., DT ) cannot be de-

termined precisely for live video; characteristic tra�c descriptors, DT;Ti, are used

instead. In our simulations, activity periods were classi�ed based on content features

extracted from the video stream in the �rst group of frames (GoP) after the change

of the activity period. The decision tree in the content-based analyzer/classi�er

(CA/C) and all DT;Ti characteristic tra�c descriptors in the tra�c prediction mod-

ule (TP) have been initialized before the start of simulations (refer to Section 3.4).
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MAX PER AVG

CBRC, Ideal CA/C 0.01% 1.1% 18%
CBRC 5.3% 8.1% 28%

Table 4.2: In
uence of DT;Ti evaluation metrics on renegotiation frequency of CBRC
scheme (relative to \APD auto") for rejection probability=0.

Activity periods of MPEG-2 stream that were used for the training of the content-

based classi�er were not used for simulations. Note that in practical implementa-

tions, tra�c classes can be updated (i.e., continuously learned) as new video activity

periods arrive.

In our simulations, we have used three di�erent evaluation metrics for compu-

tation of characteristic tra�c descriptors, DT;Ti. The descriptors were computed as

average (AVG), 90th percentile (PER), or maximum (MAX) of all tra�c descrip-

tors, DT , of activity periods that were classi�ed into the same activity class. The

computation of DT;Ti using the maximum metric corresponds to the deterministic

case. In other words, bandwidth requirements of any activity period, classi�ed into

a particular activity class, never exceed predicted resources. Of course, this ideal

case can be achieved only under the assumption of an ideal content-based classi�er

that produces no error in content classi�cation. The deterministic evaluation (e.g.,

using maximum metrics) creates conditions, similar to peak rate allocation, under

which network resources are underutilized. Unless we indicate otherwise, in the

following, we assume MAX evaluation metrics for CBRC scheme.

On the other hand, resource requirements of activity periods for which DT;Ti

was computed using AVG or PER metrics may, in some cases, exceed predicted

resources. If the current resource requirements exceed reserved resources, it may

be necessary to generate an additional resource allocation request. Alternatively,

the stream can be delayed, shaped (e.g., DRS), or it may enter the network, but

marked as a lower priority. The DRS can be used to limit the source tra�c such
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that it conforms to the previously obtained DT;Ti descriptor. DRA causes controlled,

but immediate video degradation. On the other hand, a stream consisting of low

priority packets may be discarded at network nodes only in the case of congestion.

Correspondingly, if congestion does not occur, underestimation of DT;Ti descriptors

may result in an increase in network utilization.

The underestimation of resources may also occur in the case of non-ideal CA/C;

an activity period may be incorrectly classi�ed by the decision tree classi�er. For

example, the increase of the renegotiation frequency of our MPEG-2 stream for

di�erent evaluation metrics and the ideal or non-ideal CA/C is shown in Table 4.2.

It is assumed that all requests are accepted (i.e., zero rejection probability). In

our experiments, the accuracy of the decision tree classi�er is 86.14%. However,

this non-ideal CA/C causes only a 5.3% increase in the renegotiation frequency for

MAX metrics.

Figure 4-6 compares the results of six CBRC simulations. The simulations are

based on the MAX,AVG, and PER evaluation metrics, described above. In addition,

the results based on ideal and non-ideal CA/C are shown. Corresponding to these

simulations, Table 4.3 and Table 4.4 show the average time between renegotiations

and an increase in renegotiation frequency (relative to original \APD auto"). The

results of our simulations show a tradeo� between di�erent evaluation metrics and

the renegotiation frequency. Although the AVG case achieves a 27% increase in

utilization, its renegotiation frequency is 40% higher than the original. On the

other hand, the increase of the renegotiation frequency due to the non-ideal CA/C

is only 10%, for the MAX metrics. We have found no substantial di�erence in

utilization between the non-ideal and ideal CA/C. However, the non-ideal CA/C

causes an increase of renegotiation frequency for all evaluation metrics.

Figure 4-7 depicts the main result of our simulations: \APD auto", CBRC,
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Figure 4-6: E�ectiveness of CBRC schemes.

Evaluation metrics Average time between
renegotiations

Increase of renegotiation
frequency

MAX 3.17 s/req 4%
PER 3.05 s/req 8%
AVG 2.54 s/req 29%

Table 4.3: In
uence of DT;Ti evaluation metrics on renegotiation frequency of CBRC
scheme (relative to \APD auto"), ideal CA/C.

Evaluation metrics Average time between
renegotiations

Increase of renegotiation
frequency

MAX 2.98 s/req 10 %
PER 2.85 s/req 15 %
AVG 2.34 s/req 40 %

Table 4.4: In
uence of DT;Ti evaluation metrics on renegotiation frequency of CBRC
scheme (relative to \APD auto").
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RVBR, and RCBR dynamic resource allocation schemes for three di�erent rene-

gotiation frequencies. The �rst curve, \APD auto", serves as a benchmark. It

corresponds to the automatic activity period detection combined with precise o�-

lineDT descriptor evaluation (also shown in Figure 4-5 as \APD auto".) The second

curve corresponds to the CBRC scheme, described previously (shown in Figure 4-6

as MAX). For comparison, three other simulations of RVBR scheme are shown. In

RVBR, parameters � and � control the renegotiation frequency [54]. Three di�er-

ent parameter sets were used for each simulation: (� = 1:1, � = 0:9), (� = 1:2,

� = 0:8), and (� = 1:3, � = 0:7) resulting in 1.15, 2.23, and 4.23 s/request mean

interval between renegotiations respectively. Real-time RVBR video segmentation

is described in more detail in Section 4.2.2.2. For comparison, performance of three

RCBR schemes with 1.15, 1.44, and 2.0 s/req mean intervals between renegotiations

are shown.

Best overall performance was achieved with \APD auto" scheme, which has

shown a sharp increase in utilization from 31% (no bu�ering) to 81% at the bu�er

of 20 Kbytes/stream. It is apparent that the performance of both RVBR and RCBR

schemes depend extensively on renegotiation frequency.

Network simulations have shown that the link utilization achieved by all three on-

line RVBR schemes was substantially less than utilization achieved using the \APD

auto" (about 55% - 70% di�erence). Compared to the CBRC scheme, only one

RVBR scheme with substantially a higher renegotiation frequency (corresponding

to 1.15 s/request) achieved higher utilization at low bu�er sizes. Two other RVBR

schemes (corresponding to 2.23 and 4.23 s/request) achieved network utilization

that was 15% - 20% lower. Average renegotiation frequency of CBRC scheme was

2:98 s.

The RCBR scheme has shown very low utilization at small bu�er sizes per
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stream, but its utilization increased sharply at large bu�er sizes. This e�ect and the

low performance of the RCBR scheme is explained by its separate bu�ering (refer

to Section 4.2.2.3).

The superior performance of the CBRC, based on the content-based model, can

be attributed the fact that it is able to track changes in video content (and therefore

changes in the bit rate) better than other considered schemes. This is accomplished

mainly by detecting natural discontinuities in video content. Second, tra�c pre-

diction based on the video content may improve prediction accuracy compared to

schemes that use only the bit rate and network bu�er occupancy in their heuristics

segmentation and resource prediction algorithms. However, the most distinguishing

feature of CBRC is its lower renegotiation frequency, compared to RVBR and RCBR

schemes.

4.5 Remarks

Tra�c prediction based on video content is a new approach that is suitable for live

as well as stored video. It is directly applicable to dynamic resource allocation sys-

tems. The content-based model uses the video content of the video as an important

indicator of VBR bandwidth requirements. In addition, the content-based model

can also be used for o�-line synthetic tra�c generation.

The main advantages of a content-based framework are (i) lower renegotiation

frequency and (ii) reduction of network resources. In our trace-driven simulations of

a dynamic resource allocation system, a signi�cantly lower renegotiation frequency

(� 60% decrease) was needed to achieve similar network utilization for the CBRC

system that was based on the CB model, compared to other systems based on

existing DRA approaches (e.g., RVBR and RCBR). The CBRC scheme achieved a

signi�cant reduction (� 55% to 70%) in network resources under conditions of equal
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renegotiation frequency.
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Chapter 5

Media Scaling and Adaptation

5.1 Introduction

Currently, system support for multimedia has already become integrated into most

workstations, PC's, and other systems. However, quality of service (QoS) require-

ments of many multimedia applications limit their potential functionality, especially

in mobile and wireless environments.

Major changes to the wireless infrastructure have to be accomplished before

multimedia services could be deployed over wireless networks. Compared to wire-

line networks, quality of service (QoS) delivered by wireless networks is in
uenced

by many additional factors. Time-varying bandwidth characteristics are a result of

fading, shadowing, path loss, cochannel interference, etc. Besides these limitations

imposed by the physical layer, available bandwidth also depends on users' service

and tra�c requirements, mobility, location, hando� frequency and system-speci�c

implementations including media access protocol and error correction algorithms

[18]. Given �nite spectral bandwidth assigned to mobile communications, wire-

less links can be characterized, unlike traditional wireline links, as time-varying

bandwidth-limited channels. The QoS and bandwidth delivered to end-user appli-

cations is highly time-varying as well. Naturally, network e�ciency, as an economic
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factor, plays an important role in the wireless multimedia communications systems.

It is unlikely that given the physical conditions in wireless networks, hard QoS

can be guaranteed. Over the past several years, it has been studied that video

transport at wireless networks can be e�ciently addressed using multimedia adap-

tation. In essence, multimedia applications should dynamically adapt their content

to changing network conditions. Similarly, the networks should use appropriate me-

dia scaling policies and resource allocation techniques to compensate for network

conditions in order to satisfy speci�c needs of applications. Although the adapta-

tion framework is applicable to multimedia in general, in the following, we will focus

on natural video only.

Media adaptation (MA), content-based scalability (CS), dynamic resource shap-

ing (DRS) and dynamic resource allocation (DRA) are novel techniques well suited

and directly applicable to the transport of video in conditions of time-varying band-

width. It is generally accepted that video quality can be improved by exploiting

video content scalability through rate control coupled with media scaling techniques

[84]. In addition, as we have shown in Chapter 4, a signi�cant increase of network

utilization can be achieved using content-based dynamic resource allocation.

Due to the time-scale mismatch between application adaptability and variability

of network conditions, it is instrumental that dynamic adaptation is accomplished

in not only the application layer, but also other layers. Recently, several works pre-

sented adaptation policies and resource allocation algorithms in transport, network

and data link layers [16]. For example, the Utility-fair Resource Allocation scheme

introduced in [76] proposes adaptation in the wireless data link layer. The system

uses a centralized adaptation controller and distributed adaptation handlers. The

adaptation scheme is based on utility functions (UF). Utility functions may be used

for resource management, bandwidth allocation and scheduling of scalable streams
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sharing the network resources [20]. A discussion of corresponding networking pro-

tocol can be found in [81].

Besides the adaptation at end nodes, media adaptation can be accomplished in

network nodes as well. For example, the utility function may be transmitted along

with the compressed video stream to network nodes in the connection path where it

can be used for resource allocation. At network nodes, media scaling agents adapt

the streams accordingly, in the case of bandwidth variations.

The utility function is well suited for content-based adaptation and a media

scaling framework. Although previous studies related to QoS support in wireless or

bandwidth-limited networks indicated the importance of utility function as a soft

media scaling indicator [71, 85, 81], little attention was given to the generation of

utility functions. For stored-video, the utility function can be estimated o�ine. This

option is generally not available for live video. More importantly, direct estimation

of utility functions may require extensive computation. New methods that simplify

the estimation of utility functions are necessary.

In this chapter, we present a novel framework for utility function estimation that

may be used for both stored and live video encoded by standard encoding methods

such as MPEG-2 and MPEG-4. In Section 5.2, we discuss media scaling issues

including video quality metrics and utility functions. In Section 6.1, we introduce a

novel framework for utility function estimation. In particular, we use video content

to classify video objects into di�erent utility classes, each of which is associated with

distinctive utility functions. In the last section, we discuss our experimental results

of content-based approaches to utility function generation.
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5.2 Media Adaptation

Media adaptation can be achieved at di�erent layers, however, application and ses-

sion layers are more appropriate for considering user-perceived quality. Adaptation

can be accomplished at various points in the network: at the video source, receiver

and network nodes. In general, the media scaling techniques can be categorized

as: (i) spatial resolution scaling (e.g., change of picture size), (ii) temporal domain

scaling (e.g., frame dropping), (iii) quality scaling (e.g., change of quantization lev-

els, chrominance dropping, DCT coe�cients dropping, etc.), and (iv) content-based

scaling (e.g., video object prioritization, adaptation and dropping).

Techniques applicable for media adaptation can widely vary, depending on the

location at which they are used. For example, video streams of di�erent resolutions

can be selected at the source node to match the long-term bandwidth contracts. On

the other hand, for short-term bandwidth limitations or variations, it will be more

appropriate to apply dynamic rate shaping. In the network, other simpli�ed media

scaling methods (i.e., frame dropping, DCT coe�cient dropping, etc.) can be used

to react to temporary bandwidth variations.

MPEG-2 standard currently supports three-layer (base, medium, high) scalable

encoding. First, video is encoded as a base layer. Medium and high layers can be

used to further improve video quality of the base layer. In MPEG-2, the follow-

ing scalability options are supported: spatial (size), SNR (quality), and temporal

(frame-rate).

Three-layer scalability of MPEG-2 can be used in both stored and networked

video applications. For example, based on receiver resolution or network conditions,

streams corresponding to di�erent scalable layers can be multiplexed and trans-

mitted over the network. By receiving additional medium or high layer streams,

a receiver with higher bandwidth and/or resolution will be able to achieve higher
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video quality. However, a small number of scalable layers (three in MPEG-2) limits

its usage in networks that cannot su�ciently guarantee QoS. For these networks,

�ner-grain media scaling is more appropriate.

Finer granularity of scaling can be achieved, for example, during the encoding

process, by varying quantization parameter, frame rate, image size, etc. For stored

compressed video, this operation, called transcoding, may need additional comput-

ing resources because the encoded stream has to be �rst transformed back to the

original spatial domain, and then re-encoded. However, delay associated with the

transcoding operation can be compensated by retrieving the video ahead of play-

back.

Most scaling actions generate coarse-grained rate changes that can be estimated

by the amount data dropped as \frames/layers/objects". The resulting distortion

function will have a discrete drop for the scaled-down rate. In contrast, �ne-

granularity rate changes can be achieved by dynamic rate shaping (DRS) [83, 86]

method. Although its performance, in terms of perceptual video quality, may be

lower than that using transcoding, it does not require full decoding of the video.

The �ne-grain scalability of DRS is achieved by optimized DCT coe�cient drop-

ping. Compared to transcoding, this operation is relatively simple and may be

accomplished in real-time in both sources and network nodes.

5.2.1 Content-based Scalability

The above-described media scaling methods operate at the frame-level. However,

sometimes it is desirable to support even �ner granularity of scaling. Content-based

scalability is one of such techniques. It allows for scaling of speci�c regions of the

frame independently.

In general, the content-based scalability can be accomplished at two levels: across
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multiple media objects and within media objects. Given resource constraints, the

resulting perceptual quality of the video at the receiver can be maximized by the

assignment of di�erent resolutions to various regions of the frame. Based on relative

importance of video objects in the scene, their priority and content characteristics,

an appropriate amount of resources (e.g., bandwidth) can be assigned to individual

objects using utility-based resource allocation algorithms. For example, in some

applications, it may be bene�cial to preserve the resolution of the most important

video objects (i.e., foreground) while reducing the resolution of the background ob-

ject. Also, content characteristics of the video objects may in
uence the allocation

of resources. For example, it may be bene�cial to scale down the spatial resolu-

tion of fast moving objects because their details are not as important as details of

stationary objects. However, the temporal resolution (frame rate) of a fast mov-

ing object is important and should be preserved. In contrast, slow motion objects

(e.g., background) may be temporarily re-scaled such that they keep their spatial

resolution while lowering their temporal resolution.

It is important to note that the combination of scaling techniques applied to

each individual media object can vary as video content changes.

5.2.2 MPEG-4

MPEG-4 is a new video compression standard based on the object concept described

above [92]. The most distinctive feature of MPEG-4 is an e�cient representation

of audio-visual objects of arbitrary shape. It supports most of the functionality

already provided by MPEG-1 and MPEG-2 in its core video compression methods

[90, 91]. One of the most notable new features supported by MPEG-4 is separate

encoding of video objects appearing on the scene. This new feature allows advanced

media scaling, namely content-based scalability. In addition, MPEG-4 was designed
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according to requirements of both storage and communication applications. New

error-control functions of MPEG-4 may improve the performance in low bit-rate and

high bit-error rate wireless channels [17].

The MPEG-4 video stream can contain a number of MPEG-4 elementary streams

corresponding to di�erent media objects with distinctly di�erent adaptation require-

ments. This way, content-based scalability can be e�ciently combined with other

mechanisms that in
uence visual quality, spatial and temporal resolution. In fact,

each individual video object in MPEG-4 can be independently scaled to the point

that it is replaced by a static icon, or it is completely removed. At the result, the

total bit budget assigned to the video scene (e.g., scene containing more than one

video objects) may be e�ectively distributed among individual video objects such

that the optimal subjective quality is achieved.

For simpli�cation, in the following, we use the term \video object" synonymously

to refer to either video frame (for frame-based encoding schemes such as MPEG-1,

MPEG-2, H.263, etc.) or video object plane (VOP) in MPEG-4 terminology.

5.2.3 Video Quality Metrics

Video compression causes quality degradation of video content. User's satisfaction

with the quality can be measured by various \quality indicators". The simplest

quality indicator is a binary (e.g., \yes/no") indicator that expresses only satisfac-

tion/dissatisfaction with currently o�ered quality of service [71]. The measure of

quality can be objective or subjective. Based on application requirements, quality

can be de�ned on a linear or discrete scale. For example, linear objective quality

measure can be de�ned as SNR (signal to noise ratio), PSNR (peak signal to noise

ratio), and WSNR (weighted SNR). Although objective quality does not correspond

well to visual quality perceived by humans, its estimation is relatively simple. It
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was used in many image compression applications including rate control.

In contrast, subjective quality models can achieve results that are more accurate

in terms of human perception [19]. However, high computational demand limits their

use in real-time applications. One example is \Picture Quality Assessment System",

originally developed by Hamada [73]. It was reported that this system achieved

results that were highly correlated (0.8 - 0.9 correlation) with ITU standardized

subjective tests with 20 viewers. The experiments were conducted on a hardware-

assisted stand-alone device that was able to compute the picture quality of MPEG-2

compressed video streams in real-time. The quality estimation process was based

on the human visual system and modeled at three basic layers: object, texture

and local noise. The distortion residuals computed as a di�erence between original

and encoded pictures were �rst weighted based on local image characteristics at

each layer, and then aggregated at higher layers. At the resultant object layer, the

weighted noise was summed over the whole image and converted into a distortion

scale and a 5-level satisfaction index called mean opinion score (MOS), recommended

by ITU-R Rec. 500-7 [74]. MOS can be regarded as a simple and intuitive measure

of subjective video quality ranging from 1 (unsatisfactory) to 5 (excellent).

5.2.4 Utility Function

In network engineering, utility functions represent a powerful framework for char-

acterizing the ability of applications, or media, to adapt to varying network condi-

tions. Speci�cally, in the context of bandwidth allocation, utility functions indicate

achievable quality as a function of available bandwidth. As described above, utility

functions can be based on subjective or objective quality metrics. Utility functions

have been successfully applied in several network resource allocation algorithms

[71, 85, 81]. In addition to adaptation and network resource allocation, subjective
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utility functions can be e�ciently used for bit rate control in the encoder and for

dynamic rate shaping (DRS) [83] at network nodes.

In general, utility functions have a functional form depending on many variables

(e.g., power, memory, etc.). In video networking applications, the utility function

is typically de�ned as function of a single variable: bandwidth. In this case, the

utility function represents the relationship between the user's satisfaction index and

the network bandwidth. The MOS-based utility function allows simple and e�cient

expression of media scalability.

The subjective quality of video scenes can be estimated from the subjective

quality of each individual video object and its priority using \utility-fair resource

allocation" algorithms [76]. In this case, priority refers to the relative importance

of the object in terms of visual quality as perceived by the user. In practice, video

object priority may be determined based on heuristics that take into account its

content features (e.g., object position, speed, complexity, etc.). Alternatively, for

o�-line video, the video object priority can be explicitly indicated manually during

the video editing process.

Estimation of utility functions requires repetitive computation of quality under

di�erent resource conditions. Usually, it requires measurement of video quality while

varying di�erent coding parameters (e.g., quantization steps, frame rate, etc.). In

this case, utility functions may be speci�ed in parameterized form, using a limited

number of sampling points. Values between sampling points of parameterized utility

function can be, if necessary, computed by interpolation. The process of repetitive

estimation is the main cause of the large amount of calculations required for a utility

function evaluation.
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Figure 5-1: Conceptual model of the media scaling network.

5.3 Conceptual Model

The conceptual model of the media scaling network is illustrated in Figure 5-1. It

depicts three modules that constitute the utility generator including a scaling pro�le

selector, content-based utility function estimator and a long-range utility function

predictor.

A scaling pro�le selector addresses the content-based scalability function, in-

cluding an aggregation of multiple media objects and the selection of potentially

multiple scaling techniques for a single media object. The scaling pro�le selector

uses information about user scaling preferences and content features to select the

appropriate scaling pro�le for the video stream. The role of the scaling pro�le is

to ensure that a content scaler, which can be located inside the network (refer to

Figure 5-1), will select the same combination of scaling methods used by the utility

function generator for the reduction of the bit rate.

Utility functions and scaling pro�les are dynamically created by the utility gen-

erator and dispatched to the content scaler as illustrated in Figure 5-1. The content

scaler forwards utility functions to the bandwidth allocation module to make re-

source reservations. Since the generation of utility curves and scaling pro�les can

occur frequently, an e�cient signaling scheme is required to ensure a timely delivery
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of scaling information inside network. One of the options is to use the MPEG-4 or

MPEG-7 object descriptor structures [92, 93] to update utility functions and scaling

pro�les at the content scaler, located at the network nodes.

A scaling pro�le captures the scalability of a video at two levels: (i) the scaling

pattern of single video objects (i.e. combination of scaling techniques applied to one

object); and (ii) the aggregation of multiple prioritized video objects in the same

video stream. For example, in MPEG-4, a number of elementary object streams

corresponding to di�erent video objects can be multiplexed into the same network

session [105]. In that case, utility functions constructed for single video objects

need to be aggregated together into the form suitable for the utility-based band-

width allocation. In the case of aggregation, a video object priority may be used to

de�ne the scaling order for di�erent video objects: a low priority video object will

be dropped �rst, before a high priority object is scaled down. Objects that have

the same priority will be scaled proportionally, for example, using the utility-fair

algorithm [81].

The combination of scaling techniques applied to a video object is not static, but

dynamically changing and based on user preferences and video content. For exam-

ple, for a fast-motion scene, spatial resolution or quality scaling methods are more

suitable than temporal-domain scaling techniques (e.g. dropping frames) because

the details within a picture may not be important under fast-motion. However,

slow-motion scenes favor the opposite approach. In the architecture illustrated in

Figure 5-1, the scaling pro�le selector is co-located with a content analyzer, gaining

access to video content features. In addition, the module provides a user interface

to specify high-level rules used to generate scaling pro�les (e.g., a mobile PDA user

may prefer high resolution to rich color). User preferences may be speci�ed, for

example, as a sequence: �rst, dropping chrominance, second, dropping background
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objects and, third, reducing frame rate of foreground objects.

The utility function generation requires repetitive measurement of video quality

distortion. The procedure can be computationally intensive if �ne-granularity sam-

pling is taken. To reduce the impact of online utility generation on the transport

system, the generator is (i) architecturally separated from the packet forwarding

path and (ii) the utility generator is placed inside the video server. In addition,

as we will show later, by applying machine learning techniques, we can lower an

amount of computationally intensive procedures of the utility function estimator so

that the generation of the utility function is possible in real-time.

The utility functions generated for video may dynamically change over the fast

time-scale (e.g., in the order of tens of milliseconds) as the content changes (e.g.,

due to scene changes in a video stream). An important observation from the net-

work resource management point-of-view is that network adaptation operates over a

longer time-scale (in the order of hundreds of milliseconds to tens of seconds). This

is a product of the signaling system e�ciency, resulting network load of dynamic re-

source management systems and the round trip delay between a source encoder and

receiving decoder. Since the \content variation time-scale" may be several orders of

magnitude smaller than the \network adaptation time-scale", the utility generator

needs to reconcile the potential mismatch in time-scales, but without signi�cantly

sacri�cing the accuracy of the generated utility function, or burdening the network

with large volumes of signaling.

The time-scale mismatch discussed above is addressed by a long-range utility

function predictor. This module uses an adaptive �ltering algorithm [82] to keep

the generated utility functions stable over a long network adaptation time-scale. The

algorithm adjusts itself to track the long-term variation in utility functions to bal-

ance the tradeo� between increasing the utility generation interval and maintaining
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Figure 5-2: Content-based utility function estimator.

the accuracy of the generated utility function.

In the next section, we will discuss the detail design of the content-based utility

function estimator module, illustrated in Figure 5-2

5.4 Content-based Utility Function Estimator

The dynamic generation of utility functions is time-consuming and requires a large

amount of processing power. Given the current technology, generation of utility

functions on a frame-by-frame basis is di�cult to achieve in real-time.

The proposed solution is based on the use of video content. In previous chapters,

it has been shown that content features relate directly to bandwidth requirement.

These �ndings constitute a basis of our system. We show that, similar to bandwidth

requirements, content features also relate to the shape of the utility function. In

what follows, we describe a technique for content-based utility function estimation

that accelerates the generation of utility functions.

The proposed acceleration technique does not explicitly compute utility functions

for each video object. Rather, machine learning techniques are used. The system
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uses video content, represented by a set of content features, to determine the utility

class of the object. Because the video content can be dynamically extracted from

compressed video streams, this technique is suitable for real-time applications.

Figure 5-2 illustrates the architecture of a content-based utility function estima-

tor that can support a variety of compression schemes (e.g., MPEG-1, MPEG-2,

MPEG-4, H.263, etc.). The system architecture comprises two main components:

a real-time estimation module and an adaptation module. The adaptation mod-

ule comprises the utility generator, training pool, utility clustering module, and

decision-tree generator. The real-time estimation module comprises the content

analyzer and the utility selector.

The architecture of the system allows smooth adaptations during continuous

operation of the system. The adaptation module, which is computationally inten-

sive, is decoupled from the real-time estimation module. Both modules operate

asynchronously as follows: during the normal operation, based on content features

extracted online by the content analyzer, the utility selector dynamically determines

utility class and select corresponding characteristic utility function for each video

object. The characteristic utility function is used as an estimator of real utility func-

tion that is not explicitly computed for each video object. An adaptation module

is activated periodically to re-compute the decision tree parameters used to imple-

ment the utility selector. In this manner, by avoiding explicit per-object generation

of utility functions, the system facilitates operation in real-time.

5.4.0.1 Content Analysis

For illustration, we present an operation using MPEG-4 video streams. Before enter-

ing the content analyzer, MPEG-4 video programs are demultiplexed and individual

video object streams are extracted. The analyzer processes video object streams and
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extracts video content information in real-time [59]. Content information comprises

visual features and encoder-speci�c features (Figure 5-3). Visual features describe

video object characteristics (e.g., video object size, speed, etc.) that do not change

if an alternative encoding technique is applied. In contrast, encoder-related features

are sensitive to speci�c encoding technique and encoder parameters (e.g., frame type,

DCT values, number of bits for various encoder-speci�c stream components, etc.).

Most content features can be extracted directly from compressed video streams (e.g.,

object size, frame type).

Extraction of the content features is somewhat dependent on the location of the

content analyzer in the system (e.g., at the video server or network nodes). When

content analyzer is not co-located with the video server, information that cannot

be obtained from video streams directly can be carried in the extension �elds of

MPEG-4 or MPEG-7 object descriptors [92, 93]. In this case, the estimator may be

placed at network nodes.

Accurate estimation of video object features is complex and requires substantial

processing power. Video content can be accurately evaluated at the original un-

compressed domain. Alternatively, content features can be estimated with approx-

imation directly from compressed video streams minimizing the need for intensive

computations. Since high estimation accuracy of features is not crucial for most

networking applications, estimation of content features in the compressed domain
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is su�cient.

An additional function of the content analyzer is to select some video objects

for further evaluation in the adaptation module. In general, the video object in-

dicating a substantial change in its visual content will be selected. For example,

if two video objects that are extracted from di�erent scenes have content features

substantially di�erent from each other, these objects will be selected for evaluation

in the adaptation module.

5.4.0.2 Real-time Estimation

The real-time estimation module allows the estimation of utility functions on a

frame-by-frame basis. Estimation is based on the content features extracted by the

content analyzer. Assume that the system has been initialized and the adaptation

module has estimated the decision tree parameters of the utility selector. The real-

time estimation of the utility function is realized in the following manner.

1. Content features are extracted in real-time from the compressed video stream

by the content analyzer.

2. The utility selector uses these features to determine the utility class of the

current video object. The selection is based on the decision tree that is peri-

odically updated in the adaptation module.

3. Once a utility class has been determined, the characteristic utility function for

that class (that is determined initially during the training period or during the

adaptation period) is selected for the video object. The characteristic utility

function is estimated from utility functions within the same utility class and

is used as a utility function estimator for the class.
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5.4.0.3 System Adaptation

The adaptation module dynamically computes parameters of the decision tree clas-

si�er used in the utility selector. The operation of the adaptation module is compu-

tationally intensive. However, it is invoked only intermittently and is functionally

independent of the real-time estimation path. The adaptation module involves a

set of video objects in the training pool that have been placed there, as explained

earlier, by content analyzer. Each video object in the training pool is described by

(i) the utility function and (ii) content features and (iii) utility class. Utility func-

tion is computed explicitly at the utility generator. Content features are extracted

at the content analyzer. Utility class is obtained from the utility clustering module.

Smooth system adaptation is assured by continuous replacement and intermittent

re-clustering of objects placed in the training pool, as explained later.

The utility generator computes utility function for each video object in the train-

ing pool. The computation is based on the scaling pro�le [97]. The scaling pro�le

provides information about user-preferred and network-supported scaling methods

and their particular sequence. For example, the scaling pro�le may indicate, �rst, to

use DRS to scale the bit rate to 30% of its original rate and, second, to use the frame

dropping to further decrease the bit rate. The scaling pro�le is also used by media

scaling agents. The function of media scaling agents, located inside the network or

network interfaces, is to adapt the video stream to network conditions. This way,

it is assured that utility functions, generated by utility generator, correspond to

scaling actions that are applied in real-time by media scaling agents. Note that the

utility generator may need to use the original video stream for the computation of

the utility function. If the original video stream is not available, the utility function

may be determined relative to the current video quality.

A utility clustering module performs automated clustering of video objects in
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the training pool. The clustering is based on unsupervised classi�cation algorithms

operating on selected features of the utility function [78]. Utility functions of video

objects are used as feature vector. In its operation, the utility clustering module uses

only parameters describing utility function. After the completion of the clustering

operation, each video object in the training pool is marked according to its utility

class.

The decision-tree generator starts its operation after utility function clustering

is completed. The generator is also based on machine learning techniques. However,

compared to clustering module, supervised classi�cation is used [79]. The decision-

tree generator determines the decision tree by using (i) utility classes derived by the

utility clustering module and (ii) content features, extracted by the content ana-

lyzer. At this point, the decision-tree generator does not use parameters describing

utility functions. Instead, utility class and content features are used. This way, once

the decision tree is formed, the utility class of the particular video object can be de-

termined from the video object's content features only. This operation is performed

by the utility selector. Once the utility class is determined, its characteristic utility

function is used as an estimator of real utility function.

5.5 Evaluation

In the following, we present experimental results focusing on the e�ectiveness of

the content-based utility estimator. Two experimental classi�cation schemes imple-

menting utility clustering module, the decision tree generator and the utility selector

demonstrate the viability of content-based approach. The �rst experiment is based

on MPEG-4 video. The two structurally di�erent utility estimators suitable for

MPEG-4 video are compared. In the second experiment, accuracy of the MPEG-2

content-based utility estimator is evaluated.
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In all experiments, a randomly selected half of video objects available was used

for training; i.e., generation of a decision-tree. A second set of video objects was

used to obtain the classi�cation accuracy of the utility selector.

5.5.1 MPEG-4 Content-based Utility Function Estimator

For this experiment, we have prepared seven MPEG-4 video object streams in the

following way. Original video sequence was concatenated from 38 high quality CIF

video shots of 100 to 300-frames long each. First, each shot was segmented into

two or more arbitrary-shaped video objects using a system for semi-automatic video

segmentation [77]. Each video object corresponds to the real object (e.g., person,

airplane) in the scene. Second, each segmented video object was encoded using

MPEG-4 VM8 software [80]. Finally, the resulting streams corresponding to video

objects were concatenated to form a single 10734-frame long video object stream.

Seven video object streams were prepared, each corresponding to a di�erent DCT

quantization coe�cient q = 1; 5; 10; 15; 20; 25; 31.

Figure 5-4 shows seven traces of this original video sequence. From top to bot-

tom, sub-graphs corresponds to streams encoded with di�erent quantization param-

eters q = 1; 5; 10; 15; 20; 25; 31 respectively. In this �gure, bit-rate is shown on the

left sub-graphs and corresponding subjective quality is shown on right sub-graphs of

the Figure 5-4. For example, the top-left graph depicts rate variations in bits/pixel

of the stream encoded with q = 1. A video stream that is encoded using a small

quantization parameter results in high bit-rate and high subjective quality. This

is illustrated at the top-right graph of Figure 5-4, by constant utility estimated at

level 5 for the entire length of the 500-frame period. On the other hand, bit rate

variations that are shown at the bottom-left graph of Figure 5-4 correspond to a

stream encoded with quantization parameter q = 31. In this case, although the
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Figure 5-4: MPEG-4 stream bit-rate and corresponding utility estimation.

video sequence was encoded as VBR, constant quantization parameter did not re-

sult in constant subjective quality. This is illustrated at the bottom-right graph.

Figure 5-4 depicts an important observation: encoding with a �xed quantization

coe�cient (open loop VBR) does not imply constant video quality encoding.

Video object streams were VBR-encoded with following parameters: lossless

shape coding (alpha threshold = 0, changeCRdisable = 0), binary alpha channel,

8 bits/pixel, and the following options enabled: error resilience, data partitioning,

reversible VLC, AC/DC prediction and SADCT coding. In our experiment, we

selected a lossless shape because each video object was encoded independently. Lossy

encoding of independently encoded objects belonging to the same original frame

created shape artifacts at the composition layer due to misalignment of edges of

objects.
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5.5.1.1 Content Analyzer

In this experiment, content features were obtained directly from the MPEG-4 video

encoder. Alternatively, they can be extracted from the encoded MPEG-4 video ob-

ject streams in a way similar to the MPEG-2 experiment, described in Section 5.5.2.

The following video object features were used: object size (in pixels), average and

variance of motion vectors, and average energy of AC DCT coe�cients. Our ex-

periments have shown that the accuracy can be improved by including the encoder-

related features in the feature vector. The following MPEG-4 encoder-speci�c fea-

tures and parameters were used: quantization parameter q, frame type (I, P, B);

number of bits for shape, motion, texture, and headers. These features can be

extracted relatively easily from the compressed video stream at both server and

network nodes in real time. Additionally, we have used PSNR that was computed

directly by the MPEG-4 encoder.

5.5.1.2 Utility generator

A parameterized form of the utility function for each video object was obtained in the

following way. The utility generator adopted an automated method for computation

of subjective video quality. The method is based on modi�ed version of the Picture

Quality Assessment System, a model of human visual system introduced by Hamada

in [73].

To support utility estimation corresponding to individual MPEG-4 video objects,

the original Picture Quality Assessment System was modi�ed in the following way:

the system was modi�ed such that it uses three CIF streams as an input: (i) an

original video sequence, (ii) a decoded MPEG-4 video object sequence correspond-

ing to an MPEG-4 video object stream encoded at given quantization coe�cient

and (iii) a binary video object mask sequence obtained from semi-automatic video
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segmentation system [77]. The binary video object mask selects the region for which

the quality score was computed. The output from the system is the mean opinion

score (MOS) for MPEG-4 video object in a range from 1 (lowest) to 5 (highest)

[74]. Similarly, utility values (i.e., quality) corresponding to di�erent quantization

parameters q are obtained by using the MPEG-4 encoded video object stream with

di�erent q. Quality estimations corresponding to video object streams obtained us-

ing di�erent quantization coe�cients served as sampling points for parameterized

utility function.

In the experiment, utility function was de�ned by seven sampling points xq

corresponding to seven quantization parameters:

U = fxq; q = 1; 5; 10; 15; 20; 25; 31g; xq = fr(q); u(q)g (5.1)

where r(�) denotes rate, u(�) utility, and q the quantization parameter.

5.5.1.3 Utility Clustering Modules

The utility clustering module clusters the \shape" of utility function of video objects

into a set of utility classes. The \shape" was speci�ed by the feature vector consisting

of discrete values corresponding to sampling points of utility function (de�ned in

Equation 5.1. In the following, two di�erent methods based on two di�erent utility

classi�cation models, composite and joint, are compared.

The composite model consists of two independent 9-class classi�ers: rate-only

and utility-only. According to utility function de�ned in Equation 5.1, rate-only

classi�er is used for classi�cation of rate r(q) and utility-only classi�er is used for

classi�cation of utility u(q); both r(q) and u(q) are indexed by quantization param-

eter q. Consequently, the rate-only model uses only a subset of parameters from
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U , namely its rate components r(q) as a feature vector. Similarly, the utility-only

model uses utility components u(q) only. The classi�cation results from both inde-

pendent classi�ers are combined to create 81-state composite model. For example,

assume that the video object's rate r(q) is classi�ed into class ar and its utility

u(q) is classi�ed into class bu. In that case, video object classi�cation according to

composite model is expressed as far; bug.

The joint model uses all 14 parameters (i.e., r(qi) and u(qi)) de�ning utility

function U as a feature vector. Similar to the composite model, the joint model

classi�es utility function into 81 classes. There is a distinction and tradeo� between

the use of composite and joint models. Given the same number of classes, the joint

model can obtain clustering results more accurately, because it uses a full set of

utility function parameters as the feature vector. Additionally, it can be directly

used for estimation of the utility function for video streams under dynamic rate

shaping adaptation (i.e., determining utility based on available bandwidth). On the

other hand, the composite model is better suited for encoder controlled adaptation

since both of its constituent models (rate only and utility only) are indexed in terms

of quantization coe�cient q.

Functions associated with the utility clustering module and decision-tree gener-

ator were simulated using publicly available machine learning tools. In particular,

the utility clustering module was realized by Autoclass III [78] and the decision-tree

generator was based on OC1 software [79]. Autoclass III is Bayesian unsupervised

classi�er that predicts class membership given unlabeled test cases. Autoclass III

was con�gured to automatically select a �xed number of 9 classes for rate-only and

utility-only models and 81 classes for the joint model. OC1 is a supervised machine

learning system based on oblique decision trees. Decision trees of this form consist

of linear combinations of the attributes at each internal node and can be viewed as
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more general forms of axis-parallel univariate decision trees.

5.5.1.4 Results

In each one of the three experiments, we compare two utility clustering models:

composite and joint models. In the �rst two experiments, we include two distinct

models using I-frames and P-frames only. In particular, in the �rst experiment we

cluster video objects using I-frames only and in the second experiment, we cluster

video objects using P-frames only. In the third experiment, we apply the clustering

models to include both I- and P-frames.

As we have already mentioned, a composite model consists of two intermediate

utility-only and rate-only clustering models that are independent of each other.

The utility-only model is depicted in Figure 5-5 The rate-only model is depicted

in Figure 5-6. Each graph illustrates nine di�erent classes of distinct shape. Each

class is shown by its mean value, computed among all members of particular class.

In our example, nine classes were obtained using the Autoclass III software. Note

that each clustering model is based on di�erent feature vectors. In particular, the

feature vector of the utility-only model consists of seven utility values for each video

object corresponding to di�erent values of q. Similarly, rate-only model consists of

seven rate values.

Both utility-only and rate-only models are combined to form the composite

model. Figure 5-7 depicts resulting composite model consisting of 81 utility classes.

The model is based on previously obtained rate-only and utility-only models. Each

utility class is shown by its mean utility function U . Figure 5-7 illustrates di�erent

shapes of utility function corresponding to di�erent utility classes.

On the other hand, the joint model is formed directly from all 14 features of

utility function U = fxq; q = 1; 5; 10; 15; 20; 25; 31g. For comparison, the joint



121

1 5 10 15 20 25 31
1.5

2

2.5

3

3.5

4

4.5

5

quant

U
til

ity

classes EVALi2

Figure 5-5: UT9 utility classi�cation.

1 5 10 15 20 25 31
0

1

2

3

4

5

6

7

8

quant

bi
ts

/p
ix

el

classes RATEi2

Figure 5-6: RT9 rate classi�cation.



122

model is depicted in Figure 5-8. Similarly, each utility class is shown by its mean

utility function U .

In general, clusters obtained using composite and joint models are di�erent.

Because the composite model combines two independent models, some utility classes

corresponding to particular rate-only and utility-only classes may not be populated

(e.g., no video object is classi�ed into that particular utility class). Consequently,

a composite model may not represent optimal clustering. On the other hand, a

joint model can obtain clusters that are not possible to capture by the orthogonally

projected rate-only and utility-only models of a composite model. This feature

leads to better clustering results compared to the composite model. Our results,

summarized in Table 5.1, indicate that this is also the case in our experiments.

The results obtained by composite and joint utility clustering models are sum-

marized in Table 5.1. In our experiments, the quality of clustering is measured by

classi�cation consistency and mean square error (MSE). Classi�cation consistency of

model P is de�ned as FfPg = 10 log SfPg=GfPg, where G(P) is degree of group-

ing and S(P) is degree of separation [75]. In general, higher values of F are related

to the model in which better clustering is obtained (e.g., small distances between

members in the same class and large distances between classes). Mean square error

(MSE) is measured using the distance between the actual utility function of each

video object and characteristic utility function (e.g., mean utility function for each

class) of the class into which the particular video object is classi�ed. As expected,

the better clustering, indicated by higher values of F , corresponds to the joint

model. Similarly, the better clustering, with the exception of the I-frame test case,

is con�rmed by lower MSE values for the joint model, compared to the composite

model.

The results obtained by a decision-tree classi�er are summarized in Table 5.2.
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Figure 5-7: Composite utility clustering model for I-frames.
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I-frame P-frame I- & P-frame
comp joint comp joint comp joint

F 26.61 28.49 25.21 31.90 25.07 32.13
MSE 1.102 3.22 3.22 2.60 3.32 3.01

Table 5.1: Comparison of composite (comp) and joint utility clustering models.

Classi�cation accuracy measures the percentage of video objects that were classi�ed

into correct classes. In our experiments, composite and joint decision-tree classi�ers

are constructed for each I-, P-, and I- & P-frame test case. They directly corre-

spond to composite and joint utility clustering models in Table 5.1. The results

were obtained using video objects that were not used to train the adaptive con-

tent classi�cation loop (i.e., to cluster utility functions and generate decision-tree

classi�er). Because (i) the decision-tree classi�er is based on the content feature

vector and (ii) optimizations are performed in the decision-tree classi�er to reduce

complexity of decision tree, some of the video objects are not classi�ed correctly

into the utility class to which they belong. This fact is illustrated by classi�cation

accuracy and, with the exception of the joint model for I-frame, by a decrease in F

and an increase of MSE, compared to results in Table 5.1.

Although classi�cation accuracy is similar for both composite and joint models,

it is somewhat higher for the composite model and I- and P-frame test cases. In

contrast, with the exception of the I-frame case, joint models give better results in

terms of MSE. In all cases, the joint model achieved better classi�cation consistency

F compared to the composite model.

Based on our results, it appears that while composite models perform slightly

better for homogeneous test cases (i.e., for I-frames and P-frames test cases) in

terms of classi�cation accuracy, joint models perform better for both P-frame and

combined I- & P-frame test cases in terms of both classi�cation consistency and

MSE. Consequently, models based on combination of simple classi�ers (i.e., com-
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I-frame P-frame I- & P-frame
comp joint comp joint comp joint

accuracy (%) 88.62 78.93 80.51 78.75 83.89 86.78
F 25.84 30.25 24.43 30.93 24.54 31.74
MSE 1.57 4.07 4.26 3.77 3.58 3.31

Table 5.2: Comparison of composite (comp) and joint decision-tree classi�ers.

posite models) may be su�cient to construct decision-tree classi�ers that operate

on video objects of the same type (i.e., I- or P-frames only). Models based on

joint rate-utility feature vectors (i.e., joint models) are more appropriate in cases

where the training pool contains video objects of di�erent types (i.e., I- & P-frames

combined).

5.5.2 MPEG-2 Content-based Utility Estimator

In this experiment, we have used MPEG-2 video stream consisting of 3000 frames

created from the movie \Forrest Gump" using the Columbia University MPEG-

2 software encoder. Our experiment was based on a subset of the trace, namely

734 frames consisting of P-frames for which content features were obtained by the

automated content analyzer.

5.5.2.1 Implementation

The content analyzer operates as follows. First the content analyzed conducts video

scene detection, then video object detection, and �nally, content feature extraction.

Because the analyzer operates in the compressed domain, the original MPEG-2

decoder was simpli�ed to contain only parts necessary for scene detection, video

object detection and content feature estimation. In particular, the computationally

intensive inverse DCT transformation was omitted. This simpli�cation results in

real-time performance on a general-purpose workstation. For example, on SUN
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SPARCstation 5, content analysis of 3000 frames completed in 16.5 s; that is in

average 5.5 ms per frame (i.e., before the next frame needs to be processed).

The following content features are extracted directly from the encoded MPEG-

2 video stream: current frame size, number of objects (max. 2), object size (in

macroblocks), average and variance of motion vectors, number of forward-predicted

macroblocks, number of DCT-encoded macroblocks, camera operation parameters

(viz. translation, zoom and divergence speed), and average energy of AC DCT

coe�cients.

Contrary to the MPEG-4 experiment, where the video quality was evaluated for

video objects, the video quality in this MPEG-2 experiment was evaluated for the

entire frame. In addition, video objects in MPEG-4 experiment were segmented

using manually-assisted technique [77], therefore segmentation was more accurate

than in the approximate compressed-domain technique, used in MPEG-2 experi-

ment. We have found that high classi�cation accuracy of 80% to 85%, achieved

in MPEG-4 experiments, cannot be attained with a fully automated MPEG-2 con-

tent analyzer (achieved accuracy was 55% to 65%). However, the accuracy can be

greatly increased by including PSNR as one of the content features. Given that

content-based utility function estimator is collocated with real-time video source,

PSNR can be obtained directly from the encoder.

Similarly to MPEG-4 utility estimator, the utility clustering modules were based

on Autoclass III software tool [78]. Autoclass III was con�gured to automatically

select a �xed number of 17 classes used during classi�cation. Likewise, the decision

tree generator was based on OC1 software [79].
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5.5.2.2 Results

Utility function for each frame was constructed from 21 rate sampling points. The

samples were obtained using the dynamic rate shaping (DRS) system [83]. The

sampling points were evenly distributed in the range from 0% to 100% of the frame

bit-rate. Utility functions were classi�ed at the utility clustering module. Figure 5-

9 illustrates one snapshot of the classi�cation results. In this example, 17 classes

are formed out of a total 734 utility functions. Each sub-graph illustrates all the

individual utility functions within a single class. These are shown as shaded curves

in Figure 5-9. The single dark curve represents the characteristic utility function of

that utility class, which was approximated as 10th percentile of the utility curves

belonging to each class. This way, 90% of utility functions belonging to a particular

utility class will not be overestimated (in terms of quality) by its characteristic

utility function. In our experiment, we have chosen 10th percentile to correspond

to the classi�cation accuracy of utility selector (i.e., 91%).

The classes are numbered from 0 to 16. The number in parenthesis indicates the

number of utility functions in each class. In this case, the number of utility functions

in a single class ranges from 16 to 67. The �gure shows the good classi�cation

performance of Autoclass III software, as the utility functions of similar shapes are

clustered into the same utility class.

After utility classi�cation, the decision tree generator forms the decision tree from

the extracted content features serving as feature points in supervised classi�cation.

The decision tree represents a hierarchical mapping between content feature vectors

and utility classes. Figure 5-10 illustrates the classi�cation results based on the

decision tree using the same representation as Figure 5-9.

The decision tree accuracy is crucial to the proper functioning of the system.

The decision tree estimates the utility function given a set of content features that
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Utility Class 1 2 3 4 5 6 7 8 9
Accuracy (%) 100 100 93.88 90.00 93.10 100 100 98.08 92.65

Utility Class 10 11 12 13 14 15 16 17
Accuracy (%) 93.65 92.59 92.42 90.32 81.58 53.57 76.92 78.57

Table 5.3: Decision Tree Accuracy (MPEG-2 experiment).

are easy to obtain from compressed video streams. However, since content features

do not contain direct information regarding utility functions, mismatches in classi-

�cation between content features and utility classes can occur. In other words, at

some instances, a decision tree is not able to correctly identify a utility class based

on analyzed content features alone. This e�ect can be observed in Figure 5-10. For

example, comparing classes 9 in Figures Figure 5-9 and Figure 5-10, one can �nd

several utility functions that are incorrectly classi�ed into class 9 by decision tree.

In practice, this will lead to the utility selector selecting the wrong characteristic

utility function.

Table 5.3 summarizes the accuracy of the decision tree for each of the 17 utility

classes as obtained during the simulation experiments. The overall classi�cation

accuracy of the whole set of utility functions was found to be 91%; that is to say,

among the total 734 video objects, 91% of them were classi�ed correctly using

content features. This high level of classi�cation accuracy demonstrates the viability

of the approach.

5.6 Conclusion

We presented a new framework for real-time utility function estimation. We demon-

strated that the system for real-time utility function estimation could be constructed

using a unique content-aware video classi�cation approach and general machine

learning algorithms. The utility functions for video objects can be used for media
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scaling in future low bandwidth and wireless networks. Our results indicated the

feasibility and relatively high accuracy of such a system.
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Chapter 6

Key Issues and Conclusions

The content-aware framework is based on the recognition of a strong correlation

among video content, required network resources (bandwidth), and the resulting

video quality (utility function). The content-aware principle recognizes the impor-

tance of using content features in estimating the tra�c or quality models. The

content features are used as the bridge in linking the activities in visual content to

bandwidth requirements.

In the content-aware framework, media content is extracted automatically and

used to predict video quality under various manipulations (e.g., transcoding) and

network resource requirements. When we refer to \media content", we mean the

multimedia features that can be analyzed by the machine. Examples include visual

features (e.g., motion, complexity, size, and spatio-temporal relationships) of the

scenes or objects. These features can be systematically analyzed and are very likely

to be present in future multimedia content representations, such as MPEG-4 [92]

and MPEG-7 [93].

The content-aware principle can be used for many applications. In dynamic

resource allocation (DRA), it can be used for real-time video tra�c prediction.

Alternatively, it can be used for utility function generation to facilitate the network-
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wise scalability. It can be used in selecting the optimal transcoding architecture and

content �ltering in a pervasive computing environment. The media object scalability

through the use of utility functions has been included in object description schemes

for Universal Multimedia Access (UMA) of MPEG-7 [94].

In the following sections, we revisit and summarize some of the key issues and

important design strategies during the research work of this thesis.

6.1 Issues in Video Content Analysis

Content features are extracted from video streams by the content analyzer. The

estimation of content features can be done in either uncompressed or compressed

domains. Processing in the compressed domain reduces computation because frames

do not need to be converted back to the uncompressed (original) domain [59].

We have implemented a real-time content analyzer in the compressed domain

that is based on fully automated methods of content analysis. Because the auto-

matic analyzer operates directly in the compressed domain, the decoder was simpli-

�ed to contain only the parts that are necessary for activity period detection, video

object detection and content feature estimation. In particular, the computationally

intensive DCT function was omitted. This simpli�cation resulted in a real-time per-

formance on a general-purpose workstation. For example, on a SUN SPARCstation

5, it was possible to analyze each video frame for its content in less then 10 ms.

6.2 Issues in Bandwidth Prediction

One example of the purpose of a content-aware framework is prediction of band-

width requirements for live video. The tra�c prediction module is a critical element

in adaptive networking systems such as dynamic resource allocation. It predicts
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resource requirements for the current activity period. In Chapter 3, we described

an approach based on two assumptions. First, recognition of distinctive classes of

activities can be achieved by content feature analysis. Second, members of each

activity class have consistent tra�c models.

However, in practical applications, content features are extracted by automatic

processes, which may cause some errors. In addition, videos of di�erent activity

types may produce similar tra�c traces. The goal is to predict the tra�c based on

automatically extracted features. Distinction of activity types is not needed explic-

itly. Therefore, in an automated system, each activity period is directly mapped to

a tra�c class, without categorizing its activity type.

In our experiments, publicly available machine learning tools were used to sim-

ulate the above-described content-based classi�er. The time spent on the clustering

operation is not critical because it is performed during o�-line training or on-line

adaptation, and does not a�ect real-time performance.

The accuracy of the content-based classi�er is important. Misclassi�cation oc-

curs when an activity period is not mapped to the tra�c class with the most accurate

tra�c descriptor. We have simulated the generation of parameters of the content-

based classi�er using one half of the activity periods identi�ed in the video and

veri�ed its accuracy on the remaining subset. In our experiments, a high classi�ca-

tion accuracy of 86.14 % was achieved.

Performance study of content-based DRA was based on trace-driven simulations.

A trace-driven simulator was developed for that purpose. Results were obtained

using a single 54000-frame-long trace (30 minutes) of an MPEG-2 encoded movie.

Network simulations revealed that both the content-based approaches achieve

better performance (in terms of link utilization) than other existing schemes (RVBR).

The link utilization achieved by RVBR was substantially less than the utilization
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achieved using the \APD auto" scheme (about 55% - 70% di�erence). In addition,

CBRC achieved mostly better utilization than existing schemes.

The superior performance of the content-based dynamic resource allocation,

based on the content-aware framework, can be attributed to its two distinguishing

features. First, the fact that it is able to track changes in visual content (and there-

fore changes in bit-rate); this is accomplished mainly by detecting discontinuities

in visual content. Second, content-aware models facilitate the use of e�ective con-

tent classi�cation methods which improve resources prediction accuracy. This is in

contrast to traditional prediction schemes that use only bit rate and network bu�er

occupancy in their heuristics segmentation and resource prediction algorithms.

6.3 Utility Function Estimation

Utility functions represent a powerful framework for characterizing the ability of

applications to adapt to varying network conditions. Speci�cally, in the context

of bandwidth allocation, utility functions indicate a media object's quality as a

function of available bandwidth.

In practice, the estimation of utility functions requires repetitive computation of

quality metrics with di�erent encoder parameters such as quantization or dynamic

rate shaping (DRS) parameters. The process of repetitive estimation is the main

cause of the large amount of calculations required for utility function evaluation.

To the best of our knowledge, a system that allows e�cient estimation of subjective

utility function in real time does not exist. We demonstrated a new system for the

speedup of generation of utility function based on the content-based classi�cation

technique that allows estimation of utility in real-time [97].

The acceleration technique does not explicitly compute utility functions for each

video object. Rather, the content-aware principle is applied and machine learning
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techniques are used. The system uses video content, represented by a limited set of

content features, to determine the utility class of an object. Because video content

can be dynamically extracted from compressed video streams, this technique is

suitable for real-time applications.

Accuracy of the MPEG-2 and MPEG-4 content-based utility estimator was eval-

uated in [97]. For the experiment using MPEG-2 video (17 utility classes), the

classi�cation accuracy of the whole set of utility functions was 91%; that is to say,

among the total 734 video frames, 91% of them were classi�ed correctly using con-

tent features. Similarly, a high classi�cation accuracy of 80% - 85% was achieved

using MPEG-4 traces.

6.4 Content-aware Network Architecture

The content-based video communication framework presented in this thesis is likely

to have implications related to the architecture of future multimedia networks. The

content-aware networking di�ers from traditional networks. First, it takes into ac-

count a number of factors in
uencing the quality, as perceived by the end-user: video

content, encoding technique, network characteristics, terminal capabilities and user

preferences. Second, the architecture comprises several novel features enabling the

support for application-speci�c adaptation needs inside networks. The core of the

system is the utility generator formulating utility functions in real-time. By ex-

ploiting video content and user preference, the utility functions and scaling pro�les

capture application-speci�c adaptation capability and preference, respectively.

The results presented in previous chapters demonstrated that the combination

of user-preferred and application-speci�c adaptation and media scaling inside the

network is a promising approach for delivery of highly scalable multimedia materials

over the time-varying networks.
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6.5 MPEG-7 Content Description for Universal Multime-

dia Access

Multimedia Content Description Interface (MPEG-7) is an ongoing standardiza-

tion work started in 1999 by Moving Picture Experts Group (MPEG). One of the

goals of the MPEG-7 standard is to allow a generic description of the audio-visual

material in terms of it's content, purpose, ownership rights, audience, network re-

source requirements, playback capabilities, etc. The media description can be used

in database applications for fast and e�cient searching and �ltering, media com-

position and transmission. The MPEG-7 will allow applications to have seamless

access to \image/video/audio" databases based on standardized media description

language. Besides database applications, the MPEG-7 can also be used for content

description of interactive or real-time media services such as TV, video-on-demand,

radio stations, etc.

A great part of the MPEG-7 work is still in a preliminary stage. In essence, the

standard will describe a set of MPEG-7 descriptors (D) and description schemes

(DS). The MPEG-7 systems layer will deal with delivery issues. One of the ap-

plications of MPEG-7, called \Universal Multimedia Access" (UMA) was recently

added to the MPEG-7 Application document [106]. The primary goal of UMA is the

description and management of alternative versions of the audio-visual document

in terms of their resource requirements and 
exibility toward transcoding. Di�erent

abstraction levels of the audio-visual material will facilitate 
exible adaptation to

the network conditions and receiver capabilities [107, 22].

MPEG-7 will likely standardize scaling operations that are well suited for dy-

namic scaling of the multimedia objects during their transport over the bandwidth-

limited networks. The use of media scaling can substantially increase the perceptual
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quality of the multimedia presentation in the case of temporal bandwidth variation

or congestion in wireless networks or Internet. The need for media scaling opera-

tions at the network comes from the time-scale mismatch between the content (slow

time-scale) and network bandwidth variation (fast time-scale). The scaling pro�le

indicates the sequence of preferred scaling operations on multimedia objects and

their corresponding utility functions. The scaling pro�le can be used in networks

for "utility-fair" scaling during temporal bandwidth limitations. The scaling pro-

�le should contain a preferred set of scaling operations at the network, bandwidth

utility function, and the current scaling operation and utility operating point.

Multimedia content description for UMA will add a number of descriptors into

the base MPEG-7 standard. This information will be used by terminal devices when

deciding which speci�c variation of the document to retrieve. The decision will be

based on the device's communication availability, processing, power and presentation

capabilities. UMA content description information will also be used by transcoding

engines to create the requested version of the document in real-time. Alternatively,

content descriptors will likely be used by content-based media transcoding agents at

intelligent network switches or wireless base stations for resource management. This

will allow for possible gradual and non-destructive audio-visual quality degradation

in the case of temporal bandwidth variations.

In relation to UMA, the multimedia data can be described by the following

attributes: purpose, resource, priority, value, variation, utility function, tra�c de-

scriptors, scaling pro�le, variation hints, and transcoding hints.

The purpose attribute describes the role of the multimedia object. For example,

multimedia data purpose can take the following values: advertisement, decoration,

navigation, logo, etc. [108].

The resource attribute describes the requirements of the multimedia data for
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delivery, processing and rendering. For example, resource information can indicate

that a particular video requires a minimum streaming bandwidth, decoder bu�er

size. In addition it may indicate a required client device vendor, model, class of

device (phone, PDA, printer, etc.), screen size, colors, available bandwidth, CPU,

memory, input device, secondary storage.

The priority information describes the importance of a multimedia object in a

presentation. The object priority may aid the process of adaptation and transcod-

ing. For example, if the priority of the object is low, it may be scaled, translated,

summarized, removed or replaced if necessary. If possible, in the case of adaptation

multimedia, objects of high priority will be preserved.

The value information describes the value of the information contained within

the multimedia data [109]. The value may depend on the interest of the user, or

may be determined by the content author or publisher.

The variation information describes current variation of the multimedia item.

In general, di�erent variations of the content can be described as: translation, sum-

marization, extraction, substitution, visualization, and scaling. For example multi-

media object B can be a variation of another object A. The �delity attribute of the

variation relationship indicates the subjective or objective quality representing its

usability for the presentation.

The utility function is speci�ed in relation to the currently selected variation. The

function can be de�ned as continuous (polynomial, exponential, etc.) or de�ned on

a discrete set of points or categories. The utility can take values 1 to 5 or distortion

scale as recommended by ITU [74]. In networks, utility functions can be used for

utility-based bandwidth allocation.

The tra�c descriptors provide information about required bandwidth needed

for real-time streaming of the media. Several tra�c models can be supported for
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various networks.

The variation hint information is an ordered set of operations provided by the

content publisher to suggest what should be done to a particular multimedia item

within a multimedia presentation.

Besides the description of variation of a multimedia document, Universal Mul-

timedia Access requires some attributes and description tools to aid the scaling

operations. These attributes, grouped in transcoding hints, will be storage-format

dependent.

The main objective of Universal Multimedia Access is to enable adaptive trans-

port and delivery of multimedia to various client devices with limited communica-

tion, processing, storage and display capabilities. As part of MPEG-7, UMA will

represent an important application aim to be an integral part of future multime-

dia information services. Our work of utility function generation (Chapter 5) and

resource requirement estimation (Chapter 3) can be used to generate descriptors

needed in UMA.
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