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ABSTRACT 

Conceptual Structures and 
Computational Methods for Indexing 

and Organization of Visual 
Information 

 

Alejandro Jaimes 

We address the problem of  automatic indexing and organization of  visual 

information through user interaction at multiple levels. Our work focuses on the 

following three important areas: (1) understanding of  visual content and the way 

users search and index it; (2) construction of  flexible computational methods that 

learn how to automatically classify images and videos from user input at multiple 

levels; (3) integration of  generic visual detectors in solving practical tasks in the 

specific domain of  consumer photography. 

In particular, we present the following: (1) novel conceptual structures for 

classifying visual attributes (the Multi-Level Indexing Pyramid); (2) a novel 

framework for learning structured visual detectors from user input (the Visual 

Apprentice); (3) a new study of  human eye movements in observing images of  

different visual categories; (4) a new framework for the detection of  non-identical 

duplicate consumer photographs in an interactive consumer image organization 

system; (5) a detailed study of  duplicate consumer photographs.  



 
 

 

In the Visual Apprentice (VA), first a user defines a model via a multiple-level 

definition hierarchy (a scene consists of  objects, object-parts, etc.). Then, the user 

labels example images or videos based on the hierarchy (a handshake image 

contains two faces and a handshake) and visual features are extracted from each 

example. Finally, several machine learning algorithms are used to learn classifiers 

for different nodes of  the hierarchy. The best classifiers and features are 

automatically selected to produce a Visual Detector (e.g., for a handshake), which is 

applied to new images or videos. 

In the human eye tracking experiments we examine variations in the way people 

look at images within and across different visual categories and explore ways of  

integrating eye tracking analysis with the VA framework. 

Finally, we present a novel framework for the detection of  non-identical duplicate 

consumer images for systems that help users automatically organize their 

collections. Our approach is based on a multiple strategy that combines 

knowledge about the geometry of  multiple views of  the same scene, the 

extraction of  low-level features, the detection of  objects using the VA and 

domain knowledge. 
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1 INTRODUCTION 

1.1 

                                               

 Motivation and Overview 

In the last few years, there has been tremendous growth in the availability of  

multimedia data for personal use. This is partly due to better and less expensive 

technologies to facilitate personalized digital content creation (e.g., digital cameras), 

acquisition (e.g., scanners), and access (e.g., the world wide web). With the prospects 

of  novel capture and display technologies there is no doubt that digital visual 

content in the future will become as ubiquitous as paper is today.  Furthermore, 

advances in communications, affective, and wearable computing, assures us that 

personal visual information1 will be used in unexpected and exciting ways, beyond 

anything we’ve been exposed to— personal collections of  images and videos will 

truly be available everywhere, in many forms, at all times (Figure 1). 

 

 

 

 

1 Throughout this thesis we will use the term Visual Information to refer to 2-dimensional images and 
videos. 
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 Everywhere 
Display 

Personalized 
Affective 
Interface  

Wearable  
Multimedia 
Application 

Multimedia 
Capture 
Device 

Figure 1.  Alex in the future.   

This view of  the future immediately underlines the need to develop techniques to 

allow users to effectively access and organize their own personal digital image and 

video collections so that they can be used in or by these novel applications. This 

requires labeling, or indexing of  the data at multiple levels. For example, the 

drawing in Figure 1 can be labeled as “drawing”, “man”, “man of  the future”, or 

“happy man” among others. Such labels can be created manually, but clearly this 

is not an option even for small personal collections (consider the number of  

family photographs you own). Fully automatic approaches are desirable in some 

cases, but are not always achievable with the current state of  the art. 

Furthermore, these algorithms are often constructed by experts for specific 

applications and cannot accommodate individual user’s needs. Therefore, our goal 

should be to develop flexible techniques that automatically index or label our 

visual information according to our interests, and that at the same time allow us 

to make the final decisions about how it is organized and used.  

In order to achieve this goal, on one hand, it is imperative to have a deep 

understanding of  visual content and the way users index it and search it. On the 
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other hand we need to develop flexible approaches that learn from users and do 

not rely entirely on experts, but that index visual information automatically at 

multiple levels based on users’ interests to accommodate users’ subjectivity.  

1.1.1 Problems Addressed  

Based on these premises, in this thesis we address the problem of  automatic 

indexing and organization of  visual information through user interaction at 

multiple levels. Our work focuses on the following three important areas. 

(1) Understanding of  visual content and the way users search and index it.  

(2) Construction of  flexible computational methods that learn how to 

automatically classify 2  images and videos from user input at multiple 

levels.  

(3) Integration of  generic visual detectors in solving practical tasks in the 

specific domain of  consumer photography. 

More specifically, we present the following: (1) novel conceptual structures for 

classifying visual attributes (the Multi-Level Indexing Pyramid); (2) a novel 

framework for learning structured visual detectors from user input (the Visual 

Apprentice); (3) a new study of  human eye movements in observing images of  

different semantic categories; (4) a new framework for the detection of  non-

                                                

2 Classification is explained in chapter 2. Our use of the word here implies labeling of the data.  
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identical duplicate consumer photographs in an interactive consumer image 

organization system; (5) a detailed study of  duplicate consumer photographs. 

The specific problems we address can be summarized as follows: 

1. Understanding of  visual content and the way users search and index it. 

a. Construct conceptual structures that can classify the visual 

attributes of  an image into different levels. 

b. Determine if  there are patterns in the way people view 

images of  different semantic categories, and whether those 

patterns depend on the subject, the image, and/or the image 

categories. 

c. Examine a collection of  consumer images that are labeled as 

duplicates by human subjects and propose a comprehensive 

model of  distinctive classes of  duplicates.  

2. Construction of  flexible computational methods that learn how to 

automatically classify images and videos from user input at multiple levels.  

a. Given an image or video develop algorithms that can 

automatically assign a semantic label to the image or video 

based on the objects that appear or on the entire scene 

depicted. We call these algorithms Visual Detectors.  
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b. Develop a computational framework that, given a set of  

training examples S individually labeled by a user, can 

generate Visual Detectors that label new images or videos 

according to the examples and object or scene model defined 

by the user. The Visual Detectors should be structured (e.g., 

objects contain parts) and should be generated automatically 

from user input without expert intervention. Many Visual 

Detectors are constructed by experts for very specific tasks 

such as face detection. The problem we address here is 

different because the construction of  detectors requires no 

expert input.   

3. Integration of  generic visual detectors in solving practical tasks in the 

specific domain of  consumer photography. 

a. Construct a framework for semi-automatic organization of  

personal photography collections. Given a set of  images, 

automatically cluster those images so that a user can 

subjectively manipulate such clusters according to his 

personal interests.   

b. As needed step in the clustering process, construct a 

framework that, using Visual Detectors, can automatically 
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determine if  two images and are duplicates even if  they are 

not identical.  

c. Explore the structure of  visual information by analyzing the 

results of  eye tracking experiments using different semantic 

categories. 

1.1.2 Outline of  the chapter 

In section 1.2 we discuss the evolution of  photography and how that evolution 

drives the work presented in this thesis. In section 1.3 we discuss how the work in 

this thesis relates to the future of  multimedia systems. In section 1.4 we briefly 

describe current visual information indexing systems and review related research. 

In section 1.5 we summarize the contributions of  this thesis and in section 1.6 we 

explain why the work presented here is important. In section 1.7 we give an 

outline of  the rest of  the thesis. 

1.2 The Evolution of  Photography and Its 

Implications 

1.2.1 Is it Art? 

Man has always been fascinated by imagery. The first “images” we can think of  

where carved into rock during pre-historic times and most of  us learn to draw 

before we are able to write. In modern times, before the invention of  
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photography, practically all imagery, including paintings, sketches, and engravings, 

was considered art and was created mostly by skilled artists. Systematic 

reproduction of  imagery, pioneered by the invention of  lithography brought 

about a revolution in art and the kinds of  images people could own and collect 

[6]. However, before the invention of  photography in the 1860s most people 

could not create their own images and if  they wanted portraits these had to be 

made by artists. After photography was invented, people lucky enough to afford a 

camera could now be creators of  imagery (art?) via a not-so simple process. 

Portrait photographers proliferated and the masses, who could previously not 

afford having their portraits made, could now have their own photographs. In 

1900 the creation of  imagery was again revolutionized by the introduction of  the 

Kodak brownie cameras— now everyone could easily become a creator and have 

a personal photography collection. This trend also extended to film with the 

introduction of  8 mm film cartridges in 1965. Again those fortunate enough to 

afford such equipment could easily create and view their own personal movies.  

The introduction of  the VCR in 1972 expanded the types of  visual information 

that people could collect. From family snapshots and home movies to content 

created by third parties. Today, in industrialized nations, almost everyone has at 

least one camera and without a doubt an extensive photography collection. The 

proliferation of  digital cameras has only increased the amount of  imagery that 

ordinary people produce. Not only are ordinary people creating imagery, they are 

collecting it, processing it, organizing it, modifying it, and publishing it. Imagery 
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can now be created by almost anyone, not just by highly skilled artists. 

Technologies such as those in TiVO [257] and the TV-Anytime Forum [263] pave 

the way for a future in which users will easily collect and reuse digital visual 

information, perhaps by combining it with their own.  

As illustrated by Figure 2 the way people acquire and use visual content has 

changed tremendously. The process has gone from a passive one to a very active 

one. This trend, driven by technology, has several important implications that 

form the core of  the research presented in this thesis. 

Photography 
1860s 

Lithography 
1798 

Future 
Applications 
2050+ 

TIVO 
TV Anytime
Late 1990s 

Digital  
Cameras 
1990s 

VCR 
1972 

Super 8 mm
Film  
Cartridges 
1965 

User 

Activity 

Brownie 
camera 
1900 

Time

Figure 2.  A non-mathematical, historical perspective on the trends in the way people 
use visual information. 

1.2.2 Implications: Active User Role 

The implications of  the previous discussion are very simple: in the future users 

can be expected to take an even more active role in creating and using visual 
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information for their own purposes. This completely changes the way people use 

content collected from other sources and the way they use their own content. 

The trend of  Figure 2 suggests that visual information users of  the future will be 

more sophisticated, more involved, and closer to the process of  organization and 

packaging of  their multimedia content. It is only the beginning of  the new active 

user paradigm— for the future many novel applications can be envisioned. 

The technical implications of  this future trend can be summarized by the 

following two questions: (1) how can we gain a deeper understanding of  visual 

information, its structure, and its users, to satisfy the needs of  future novel 

applications? (2) how do we develop computational techniques that can adapt to 

the specific needs of  users and consider the structure of  visual information and 

that are flexible and scalable in the sense that the same framework can be applied 

to different problems without the need for the manual construction of  new 

algorithms or expert input? 

The work presented in this thesis directly addresses these two questions. The first 

one is addressed in chapters 3 and 4 and the second one is addressed in chapters 

4 and 5. 

1.2.3 Words of  Caution: Not All Users Are Equal! 

Even as new technologies develop users will be in a range similar to that depicted 

in Figure 2. Some will remain very passive and will want to get their information 

pre-packaged, while others will want to be fully involved in the creative process 

 



10
 
 

 

and organization of  the collections. Perhaps this has always been the case, but 

now the balance has shifted and most people in the future will be clustered on the 

active side of  Figure 2, regardless of  how exactly multimedia is used in the future.  

Our work addresses users in the entire range: the conceptual structures presented 

in chapter 3 apply to different types of  visual information and are independent 

of  the application; the techniques of  chapter 4 apply to intermediate users or 

experts who wish to build systems that can be utilized by passive users; the eye 

tracking study of  chapter 4 is of  interest to experts as well as to anyone 

concerned with understanding how we look at images; the approaches of  chapter 

5 are geared towards future applications that focus on active users that 

subjectively organize their photography collections. 

1.3 Trends and Needs 

1.3.1 Better Understanding of  Visual Information 

In order to understand visual information it is crucial to recognize that imagery is 

evolutionary. This means that the photographs (and movies) that people create 

are the result of  minor variations of  other visual works they have seen before 

(see Figure 3). In the history of  art this is not a new concept. The first 

photographs resembled painting and perspective projection was only understood 
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as late as the Renaissance3 , after a long evolutionary process. Art is full of  

symbolisms and meaning is attached not only to objects, but to forms, colors, and 

textures. If  we wish to develop future applications of  visual information, don’t 

we need to consider these different levels of  meaning? How can we succeed if  we 

do not understand and do not study all of  the levels of  meaning that can be 

encoded in visual information?  

  

 

Figure 3.  An example of paintings from different time periods.  

Man has been studying images and communicating through images for hundreds 

of  years. Nevertheless, it is naïve to assume that we are close to fully decoding the 

meaning of  the messages conveyed in all images. However, in order to build the 

multimedia applications of  the future we need to construct conceptual structures 

                                                

3 According to David Hockney’s theory artists as early as the 1420s used special optical projection 
devices [69], and may have understood principles of perspective projection at the time. 
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that accommodate the different levels of  attributes inherent in visual information 

so that we can develop computational approaches to handle them. This means 

not only understanding the history of  visual information, but also understanding 

how we look at images.   

Computationally, this evolution has even stronger implications. Since all of  the 

images that exist are the product of  an evolutionary process, they inherit 

structure from their ancestors. The photographs most consumers make, for 

example, follow composition guidelines with roots in art. In domains such as 

news and sports, it is clear that broadcasters follow patterns set by their 

predecessors. The way cameras are placed follows certain standards, which 

change over time. As a result the images that we see, within certain domains, have 

a recurrent and consistent structure. Consider Baseball video (Figure 4), or 

practically any sport. 

  

Figure 4. An example of consistent structure due to the evolutionary process. Early 
(left) and modern (right) batting scene views in Baseball TV broadcast.  

As we will argue in chapter 4, structure is important in the application of  flexible 

frameworks that learn. 
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We examine different levels of  visual descriptors in chapter 3, and study the way 

that people look at images in chapter 4. In chapter 5 we analyze in detail non-

identical duplicate consumer images, which is useful in understanding visual 

similarity judgments.   

1.3.2 Personal Scalable Solutions Using Machine Lerning 

It is absolutely clear that the world is full of  structure. In photographs and video, 

objects, scenes, and events repeat over and over. Objects and scenes, in turn, have 

structures that characterize them objects have parts and parts have sub-parts. 

Many current automatic approaches to index visual information rely on specific 

algorithms constructed by experts. The goal of  such algorithms (Visual Detectors) 

is to automatically label, or index visual content. While these algorithms can often 

be robust, it is clear that it is not possible to construct a large number of  

detectors by hand. Therefore, for future applications it is desirable to build 

systems that allow the construction of  programs that learn, from user input, how 

to automatically label data without the need of  experts. Not only should such 

systems be scalable but they should also take into consideration users’ interests 

and subjectivity. This requires recognizing the structure inherent in visual 

information and exploiting such structure in computational frameworks. Without 

a doubt machine learning will form the basis of  successful, scalable applications 

in the future. Those applications will change, and the way such algorithms learn 

will change. Perhaps learning will take place without explicit input from users. 
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The fundamental paradigm, however, will remain. How can we construct 

frameworks that learn visual detectors and make use of  their inherent structure?  

We address this question in chapter 4, in which we present a novel framework to 

construct structured visual detectors from user input at multiple levels. Such 

detectors exploit implicit and explicit world structure.  

1.3.3 Organize Your Own Images 

Again referring to the trend of  Figure 2 we argue that personal digital multimedia 

collections will drive the most important future applications of  multimedia. 

People will not stop collecting and making photographs, and the advent of  new 

technologies will open the doors to exciting applications that use our own 

collections. But how can we drive such technologies? 

Regardless of  what future applications bring us, it is clear that human subjectivity 

will continue to be a factor. Just as the trend of  Figure 2 suggests, more people 

will be active, meaning that they will be more involved in producing and using 

their content. Most of  these active users will want to have a final say on how their 

images are organized and how they are used.   

While in some cases it may be desirable to have algorithms that fully 

automatically organize our content, we need to recognize that current limitations 

in the state of  the art make it impossible.  
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In chapter 5 we focus on semi-automatic techniques for organizing personal 

image collections. This is clearly a needed first step for the future use of  such 

collections. 

1.4 

                                               

Current and Future Indexing Systems 

Visual information systems consist of  four basic components: the data, the 

indexing structures, the interface and the users. The data, in our case images and 

videos, can be infinitely complex and can clearly be described in an infinite 

number of  ways. The way data is indexed depends on factors such as context, 

domain, and application, among others. The way visual information is searched 

has changed in the last few years and there are now new paradigms for searching 

and browsing. Basic concepts and techniques for Visual Information Retrieval 

(VIR)4 are described in detail in chapter 2. The overall goals, however, remain the 

same: given a personal image or video database, how can users effectively find 

what they are looking for? How can they subjectively organize their collection or 

browse through it?  

1.4.1 Related work 

The continuing increase in the amount of  visual information available in digital 

form has created a strong interest in the development of  new techniques that 

 

4 We will also use the terms Content Based Retrieval. 
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allow efficient and accurate access of  that information. One crucial aspect is the 

creation of  indexes (e.g., labels, or classifications) that facilitate such access. In 

traditional approaches, textual annotations are used for indexing— a cataloguer 

manually assigns a set of  key words or expressions to describe an image. Users 

can then perform text-based queries, or browse through manually assigned 

categories. In contrast to text-based approaches, recent techniques in Content-

Based Retrieval (CBR)5 [102][92][223][273] have focused on automatic indexing 

of  images based on their visual content. The data in the images or video is 

indexed, and users can perform queries by example (e.g., images that look like this 

one) or user sketch (e.g., images that look like this sketch). Traditional query-by-

example and query-by-sketch techniques are usually based on low-level features 

(color, texture, etc.), thus concentrating on the form of  the visual information 

(syntax: color, texture, etc.) rather than on the meaning (semantics: objects, events, 

etc.). Users, however, are generally interested in semantics.  Moreover, even when 

syntax is a necessary part of  the query, the user frequently wishes it to be 

subordinate to semantics— the query “show me all the images that contain green 

apples” is more likely than the query “show me all the green areas that are 

apples”.  Although useful, low-level features are often unsuitable at the semantic 

level: meaningful queries by sketch are difficult to formulate, and example-based 

queries often do not express semantic level distinctions.  

                                                

5 Throughout the thesis we will use the term Visual Information Retrieval (VIR) instead. 
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Consequently, most recent efforts in VIR attempt to automatically assign 

semantic labels to images or videos. Proposed techniques range from 

classification mechanisms, to approaches that structure and describe data. 

Automatic classification of  images, for example, can be done at the object (e.g., 

the image contains a horse, or a naked body [113]), or scene level (indoor and 

outdoor [254], mountain scene [264], etc.). Classification of  video can also be 

performed at the scene or object levels. Several other approaches attempt to 

automatically structure data (image collections or videos). Additionally, there are 

major efforts to create structures and standards for the description of  multimedia 

content. MPEG-7 [91][192] for example, standardizes a framework for describing 

audio-visual content.  

In addition to issues regarding the complexity of  visual information, there are 

issues related to users and their subjectivity when searching/browsing. It is well 

understood that different users search for information in different ways and that 

their search criteria change over time [185][212]. Related work in this and other 

areas is described in subsequent chapters. 

1.5 Summary of  Contributions and Impacts 

The contributions of  this thesis can be summarized as follows. In this thesis we 

performed the following tasks: 

1. Develop a conceptual framework for classifying visual attributes into 

ten levels. The framework makes distinctions between syntax and 
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semantics and between general concepts and visual concepts. The Multi-level 

Indexing Pyramid was tested extensively in the context of  MPEG-7 [239]. 

Many of  the concepts and components in the pyramid are included in 

the standard [190][191][176]. Other researchers [37] have independently 

tested the ability of  the pyramid to classify image descriptions and 

found that it is able to fully classify all of  the attributes generated in 

image description experiments. 

2. Present a new framework for learning structured visual detectors from 

user input at multiple levels. The Visual Apprentice has been used in 

constructing detectors for different applications (e.g., baseball, news, 

and consumer photography) in the context of  several projects 

[206][149][139]. It has also been used as an intermediate tool for 

manually constructing highly effective detectors for indexing baseball 

video [275]. 

3. Present a novel study that compares the eye tracking patterns of  

human observers within and across different semantic image categories. 

This study is important because it is the first one to compare eye 

movements within and across different image categories. Finding eye 

tracking patterns can be useful in understanding the way people look at 

images and in constructing automatic classification algorithms. 
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4. Explore automatic clustering of  consumer images within a system that 

helps users organize their own photographs. We propose the following: 

a. A new clustering algorithm based on a simple variation of  

Ward’s minimum squared error algorithm.   

b. New features for clustering images based on composition. 

c. A novel computational framework for automatically 

detecting non-identical duplicate consumer images. The 

framework uses multiple strategies based on knowledge of  

the geometry of  different images of  the same scene, and the 

integration of  low level features, visual detectors, and 

domain knowledge to measure similarity. This is a new 

problem, which has not been addressed in the literature 

before, and the framework specifically developed to address 

it is unique. 

5. Present a new study in which subjects labeled non-identical duplicate 

and non-duplicate pairs in an extensive consumer image database. 

6. Develop a new extensive classification of  non-identical duplicate 

consumer photographs. Understanding of  such a classification helps 

the development of  effective algorithms to detect non-identical 

duplicate images. This is the first comprehensive classification of  

duplicate consumer photographs. 
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1.6 Why the work in this thesis is important 

We have argued that future users of  visual information will play a more active 

role in using the images and video they collect. The systems and approaches to 

search, display, and use information will, without a doubt change. New capture 

devices will be developed which will facilitate automatic understanding of  

multimedia data. Knowledge repositories will be an inherent part of  multimedia 

systems and personalized visual information will be everywhere, in different, 

unforeseen forms. 

These exciting future changes, however, will require advances in the fundamental 

problems of  visual information indexing. These fundamental problems will have 

to be addressed before we can build the exciting systems of  the future. 

Furthermore, these problems will not change because they are at the core of  

future applications that use visual information. We summarize these problems:  

1. Understanding the data and the users. 

2. Constructing flexible systems that learn. 

3. Investigating approaches to help users organize their own visual 

information collections. 

The problems addressed by this thesis are therefore fundamental to the 

development of  new approaches to enable future applications. Contributions in 

understanding visual information will surely have an impact on future 
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applications. Even if  we do not know what those applications are we will still 

need to have a deep understanding of  the data. How to construct systems that 

learn is without a doubt a major challenge addressed by this work. Recognizing 

subjectivity and the need to develop frameworks that help users organize their 

collections is also crucial. 

1.7 Outline of  Thesis 

In chapter 2 we present some basic concepts and an overview of  current work in 

addressing the problems just described. In chapter 3 we present the Multi-level 

Indexing Pyramid, in which visual attributes are classified into ten levels. In the 

Visual Apprentice (VA) in chapter 4, first a user defines a model via a multiple-level 

definition hierarchy (a scene consists of  objects, object-parts, etc.). Then, the user 

labels example images or videos based on the hierarchy (a handshake image 

contains two faces and a handshake) and visual features are extracted from each 

example. Finally, several machine learning algorithms are used to learn classifiers 

for different nodes of  the hierarchy. The best classifiers and features are 

automatically selected to produce a Visual Detector (e.g., for a handshake), which is 

applied to new images or videos. 

In the human eye tracking experiments of  chapter 4 we examine variations in the 

way people look at images within and across different visual categories (e.g., 

landscape, people shaking hands, etc.) and explore ways of  integrating eye 

tracking analysis with the VA framework. 
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Finally, in chapter 5 we present a novel framework for the detection of  non-

identical duplicate consumer images for systems that help users automatically 

organize their collections. Our approach is based on a multiple strategy that 

combines knowledge about the geometry of  multiple views of  the same scene, 

the extraction of  low-level features, the detection of  objects using the VA and 

domain knowledge.  
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2 BASIC CONCEPTS AND 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In this chapter we give an overview of  basic concepts and existing approaches 

related to the problem of  indexing and organization of  visual information 

through user interaction at multiple levels. 

While we do not present an exhaustive literature review, we do focus on the three 

areas discussed in chapter 1. 

(1) Understanding of  visual content and the way users search and index it.  

(2) Construction of  flexible computational methods that learn how to 

automatically classify images and videos from user input at multiple levels.  

(3) Integration of  generic visual detectors in solving practical tasks in a 

specific domain. 

This chapter, therefore, is divided into three parts, each of  which deals with 

issues that are relevant to each of  these areas.  

    

 



24
 
 

 

The first area is very broad and one can easily find hundreds of  topics of  interest 

in different fields dating back hundreds of  years. For the purposes of  the 

problem we are addressing, however, at least two paramount issues can be 

identified: (1) what are the basic concepts that, based on our understanding of  

visual content and users, can help us build computational approaches to 

automatically index and organize visual information? (2) what do we know about 

the way in which users search and index visual content and how can we use that 

knowledge to build better computational frameworks? Clearly, seeking the 

answers to these questions will be of  great importance in addressing the problem 

of  automatic indexing and organization of  visual information. To address the 

first question, in the first part of  the chapter, we introduce some basic concepts 

such as percept, concept, syntax, and semantics. These definitions are of  paramount 

importance as they will be used throughout the thesis and help us understand 

different aspects of  visual information. Since some of  them are directly related to 

the pyramid, they were proposed to MPEG-7 [76]. Several of  these terms are 

included in the standard [190]. The second question is addressed in detail in 

chapters 3 and 4.  

The second area, construction of  flexible computational methods, certainly 

requires attention to at least two aspects: (1) what are the basic ways in which 

users can interact with current visual information retrieval systems and at which 

levels does that interaction take place? (2) what is the state of  the art in flexible 
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computational approaches that are based on user input and how are the current 

approaches used? What are their strengths and limitations? In the second part of  

the chapter, we discuss the basic components of  VIR systems. In particular, we 

focus on query interface modalities and interfaces, discussing in detail some of  

the current approaches and systems. This section is important because in order to 

build effective computational frameworks that learn from user input we need to 

understand the different ways in which users can interact with such systems. 

Interfaces will change in the future, and perhaps the flexible systems we envision 

will not require the type of  user input of  current systems. As our discussions 

suggest, however, some of  the limitations are tightly linked to the different levels 

of  meaning inherent in visual information (see also chapter 3). The analysis in 

this chapter, therefore, serves to identify those issues even though this is done in 

the view of  current systems. The discussion on similarity, for example, is strongly 

related to the problem addressed in chapter 5. Naturally, we also review in some 

detail different types of  flexible computational approaches, including those that 

use relevance feedback and learning, which are directly related to the framework 

of  chapter 4.  

The third area, integration of  generic visual detectors in specific domains, 

presents many formidable challenges, some of  which are described in this 

chapter. Not only is it necessary to have a deep understanding of  the domain, it is 

also necessary to understand the advantages and limitations of  different 
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approaches to construct the visual detectors. Since we study our application 

domain (consumer photography) in detail in chapter 5, in this chapter we 

consider the following issues: what is the state of  the art in the construction of  

visual detectors and how are they applied? What are the strengths and limitations 

of  applying such detectors to specific domains and how do flexible approaches 

address the limitations or benefit from those strengths?  

In the third part of  the chapter we address these questions. First, we give a 

somewhat detailed overview of  the main approaches to construct visual detectors 

for VIR systems. Then, we discuss the object recognition problem and some 

model and appearance-based methods related to the work of  chapter 4. The 

distinction between approaches developed for VIR and “traditional” approaches 

in object recognition is important, particularly in the context of  applying generic 

visual detectors in specific domains. The differences are discussed in detail and at 

the end of  the chapter and we discuss the challenges that arise when object 

recognition techniques are used in practical applications. This discussion is 

particularly relevant in the context of  the work presented in chapters 4 and 5. 

2.1.1 Outline 

In section 2.2, we present basic concepts related to understanding of  visual 

content and users. In section 2.3 we address issues related to the construction of  
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flexible computational methods that learn. Finally, in section 2.4, we address 

integration of  generic visual detectors in specific domains.   

2.2 

                                               

UNDERSTANDING OF VISUAL CONTENT 

AND USERS 

In this section, we define some basic concepts that involve users and visual 

content. Related work and issues about understanding of  visual information and 

users are dealt with in detail in chapters 3 and 4. 

2.2.1 Percept vs. Concept 

Images are multi-dimensional representations of  information, but at the most 

basic level they simply cause a response to light (tonal-light or absence of  light) 

[12].  At the most complex level images represent abstract ideas that largely 

depend on individual knowledge, experience, and even particular mood. We can 

make distinctions between percept and concept [1].  The percept refers to what our 

senses perceive, which in the visual system is light.  These patterns of  light 

produce the perception of  different elements, such as a specific texture and a 

particular color.  No interpretation process takes place when we refer to the 

percept: no knowledge is required.  A concept6, on the other hand, refers to a 

 

    

 

6 Definition from Merriam-Webster dictionary. 
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representation, an abstract or generic idea generalized from particular instances.  

As such, it implies the use of  background knowledge and an inherent 

interpretation of  what is perceived. Concepts, which can be described in different 

ways, can be very abstract and subjective in the sense that they depend on an 

individual’s knowledge and interpretation.  

2.2.2 Syntax vs. Semantics 

While a percept refers to what we perceive through our senses (e.g., visual 

elements), syntax refers to the way in which those visual elements are arranged.  

When referring to syntax, no consideration is given to the meaning of  the 

elements, or to the meaning of  their arrangements. Semantics, on the other hand, 

deals with the meaning of  those elements and of  their arrangements. As will be 

shown in chapter 3, syntax can refer to several perceptual levels— from simple 

global color and texture to local geometric forms, such as lines and circles. 

Semantics can also be treated at different levels.  

2.2.3 General vs. Visual Concept 

Here we wish to emphasize that general concepts and visual concepts are 

different. A visual concept includes only visual attributes, while a general concept 

can include any kind of  attribute. We use a ball as an example. One possible 

general concept can represent a ball as a round mass. Concepts for similar objects 

may vary between individuals. For example, a volleyball player’s concept of  a ball 
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may be different from a basketball player’s concept of  a ball because, as described 

earlier, a concept implies background knowledge and interpretation. In Figure 5, 

we see that the attributes used for the general and visual concepts of  a ball can 

differ. Each box represents a universe of  attributes7, and each circle, the set of  

attributes observers A and B choose to describe a ball. Attributes outside the 

circles are not chosen by the observers to describe this particular concept.  

Observer A is a volleyball player, and when asked to describe a ball, she chooses 

soft, yellow, round, leather, and light-weight attributes. Observer B is a baseball 

player, and when asked to give describe a ball, she chooses hard, heavy, white, 

round, and leather attributes. Note that, naturally, there is also a correlation 

between some general and visual attributes (e.g., big) and visual attributes are a 

subset of  general attributes. 

Visual Attribute Space General Attribute Space 

Figure 5. We divide attributes into those that are general (a) and those that are visual 
(b). Attributes in each set (A, B) are used by different individuals to describe the same 

object in this example (a ball). 

leather hard 
heavy 

round 

Light-weight 

soft 

yellow A B B A

round 
yellow 

                                                

    

 

7 In this section, we use the word attribute to refer to a characteristic or quality of an object (e.g., blue, 
big, heavy). We do not make a distinction between attribute name and attribute type (e.g., color: blue). 
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These basic definitions are useful since they point out very important issues in 

indexing visual information: different users have different concepts (of  even simple 

objects), and even simple objects can be seen at different conceptual levels. 

Specifically, there is an important distinction between general concept (i.e., helps 

answer the question: what is it?) and visual concept (i.e., helps answer the question: 

what does it look like?). We apply these ideas to the construction of  our 

conceptual indexing structures in chapter 3, and to the development of  

techniques for automatically learning visual detectors in chapter 4.  

2.3 

                                               

FLEXIBLE COMPUTATIONAL METHODS 

THAT LEARN  

We present an overview of  the main search approaches in current VIR systems. 

We emphasize differences between the query formulation paradigm8 (e.g., query-

by-example, or similarity), and the indexing technique (e.g., placing items in 

semantic categories or indexing using low-level features). Then we describe 

interactive techniques which are directly related to the work of  chapter 4. 

 

    

 

8 We will use the terms query formulation, and interface interchangeably. 
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2.3.1 Basic Components of  Visual Information Retrieval 

Practically all current systems to retrieve visual information can be characterized 

by the interface and the indexing mechanism. The Multi-level Indexing Pyramid presented 

in chapter 3 is particularly useful in our analysis. The pyramid, depicted in Figure 

16 contains ten levels. The first four levels, (1) type or technique,(2)  global distribution, 

(3) local structure, and (4) global composition, are used to classify syntactic visual 

attributes. The remaining levels, (5) generic object, (6) generic scene, (7) specific object, (8) 

specific scene, (9) abstract object, and (10) abstract scene, are used to classify semantic 

descriptions of  visual information. In the discussions below we will refer to 

different levels of  the structure. 

2.3.1.1 The Interface 

When users perform a search, they interact with a system to express what they 

are looking for (Figure 6). This is done by providing the system with a 

representation for a query. The system must then interpret the query and, using 

the database’s indexing information, return relevant images to the user. In some 

cases, the query representation is fairly straightforward because the interface 

allows the user and the system to “speak the same language.” In other words, the 

interface lets the users express exactly what they want to express, and the index 

contains enough information to represent a user’s interests. For example, a user is 

looking for any image that contains a horizontal line and performs a query by 
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drawing a sketch of  a horizontal line. The system can then return images that 

have a horizontal line. For this query to be successful, it is necessary for the user 

to be able to express his request unambiguously using the interface, and for the 

index to have enough information to satisfy that query. In this particular case, the 

representation used for the query (i.e., the straight line) matches the query itself  

very well since the user is actually searching for a straight line. When the user is 

looking for semantics, however, it might be difficult for the system to interpret 

the representation used to specify the query. The line in the example may 

represent the surface of  the ocean, or a landscape. 

Figure 6. A Visual Information Retrieval system consists of 3 basic components: the 
database (e.g., images), the index (e.g., color histograms, or textual labels), and the 

interface (e.g., query-by-example). 

Index Database InterfaceUser 

The interface allows the user and the system to communicate. Ideally this 

communication will take place using a common language9. Two important aspects 

of  the language used to perform the query are its expressive power and its ease of  use. 

By expressive power we mean what can be expressed using the language. The 

second aspect refers to how difficult it is for the users to formulate the desired 

query using the language. Of  course, such language should be common to system 

                                                

    

 

9 Note that the strict definition of language requires the existence of symbols, syntax, and semantics.  
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and user, otherwise, misunderstandings will occur— in other words, the index 

must represent information that is not very different from what the user 

expresses using the query. In Figure 7 we classify the different interface 

modalities available in most existing VIR systems10, and show how they relate to 

the conceptual structure of  chapter 3.  

Similarity queries – levels two and four 

Query-by-sketch – levels two through four Query interfaces 

Keyword and category browsing – levels five through ten 

 

Figure 7.  Types of query interfaces and relation to the levels of the conceptual 
structure in Figure 16. 

As the previous example suggests, it is important when developing approaches 

for indexing and organizing visual information to be aware of  the way in which 

indexing structures represent information (i.e., structures in chapter 3). Similarly, 

the query interface modalities play an important role. Each of  these interface 

modalities (similarity, sketch, and keyword) will be further explained in Section 

2.3.2. 

2.3.1.2 Indexing 

The interface is the mechanism through which the user and the system 

communicate. The index, on the other hand, is data that provides the access point 

                                                

    

 

10 We use the terms similarity query and query-by-example interchangeably. 
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to the information in the database. Different modalities to index visual content 

provide access to the images at different levels. As depicted in Figure 8, indexing 

techniques in most current Visual Information Retrieval can be roughly divided 

into two groups, depending on the types of  features they use: (1) local and global 

syntax features; and (2) local and global semantic features.  

Local and global syntax features – levels two through four 

Scenes 

Objects 
Local and global semantics features  

Indexing modalities 

Automatic Classification - levels five and six 

Automatic or manual annotation – levels five through ten 

 

Figure 8. VIR indexing modalities and their relation to the structure in Figure 16. 

In the first modality, indexing is usually performed automatically, using color, 

texture, and other features, at levels two through four of  the pyramid of  chapter 

3 (Figure 16). In the second one, images are classified according to the objects 

they contain, or according to the scene they represent (e.g., indoor/outdoor). 

Currently manual annotation is mostly used at levels five through ten of  Figure 

16, but it can be used at any level, while automatic indexing at semantic levels 

(classification) currently occurs only at levels five and six. 
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Low-level features can be very powerful, but they are often not suitable for 

indexing at the semantic levels. For example, Figure 9 shows two images having 

very different color histograms, but very similar semantic content.  

  
Figure 9.  Two images having very distinct color histograms, but identical subject 

matter (photographs A. Jaimes). 

In chapter 3 (and [48]) it was shown that users employ emotive attributes (e.g., 

sad or happy) to describe and access images.  Some attempts have been made to 

automatically index images at emotive levels (e.g., [98]), but most focus on 

recognition of  objects and scenes.  

Manual annotation continues to play a very important role in many practical 

applications. In the future, we envision systems that facilitate manual annotation 

of  visual information, and allow users to exploit that information when 

searching. We discuss this further in chapter 6. 

2.3.2 Query Interfaces 

We identify three different interface modalities (Figure 7): query by example, query-

by-sketch, and keyword/category browsing. We also discuss interactive techniques: 

relevance feedback, and learning.   
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2.3.2.1 Query by Example and Issues of  Similarity 

In query-by-example (similarity query) interfaces, the user selects one or more 

images (or portions of  them as in the SPIRE system [81]) and queries the system 

for images that are similar. Typically, low-level features (e.g., color, texture, etc.) 

are used to represent the example images and to perform the query. While this 

approach is very useful for certain types of  databases (e.g., textile fabrics, wall 

paper, etc.), it suffers from major disadvantages when users are interested in 

semantic content.  This is because low-level features used by current systems do 

not capture the semantics of  the query image, and because the concept of  

similarity is particularly complex with visual information.  While this type of  

interface is easy to use, the expressive power of  such queries is limited.  In certain 

cases, however, it is possible to use query-by-example interfaces to search for 

semantics.  In the SPIRE system [81], for instance, higher level objects can be 

constructed from portions of  images. Similarly, in QBIC [200], semantically 

meaningful regions are manually selected when the database is populated. For 

example, if  the image is from an on-line catalog, and represents a person wearing 

a sweater, only the region corresponding to the sweater would be indexed, and 

the rest of  the image ignored. When a user performs a query-by-example using 

the image or a portion of  the image, semantic information (e.g., the region from 

the sweater) is used to search for meaningful results. Of  interest is also the VEVA 

    

 



37
 
 

 

query interface language [105], which is a visual language based on a set-theoretic 

formal model of  functional databases.   

As shown by the Multi-level Indexing Pyramid of  chapter 3, semantics can be 

considered at many different levels. Images (a) and (b) in Figure 10, for example, 

could be considered similar because they show a complete object at some 

distance. Images (c) and (d) in the same figure are similar because they are close-

ups of  objects. At the same time, we could say that images (a) and (c) are very 

similar because they contain the same object. They are dissimilar, however, in 

terms of  colors and composition (syntactic attributes).   

  
(a) (b) 

   
(c) (d) 

Figure 10.  An example of images that could be considered similar/dissimilar depending 
on the basis used to measure similarity (photographs by A. Jaimes).  

Another important issue with similarity is that it often depends on context. For 

example, an observer given 3 circles and 2 squares is asked to group the most 

similar items. If  she uses shape, the 3 circles would be in one group and the 
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squares in a different group. If  size is used, however, 2 small squares and a small 

circle would be grouped together.  Note that "small" depends on how objects are 

compared, in other words, on the metric used to measure similarity. Another 

alternative would be to group the elements based on overall similarity (where 

shape and size are equally weighted).  This is shown in Figure 11.   

Dimension 1 

C 
D 

B 
A 

D
im

en
si

on
 2

 

 

Figure 11. An example from [28] of how four elements can be grouped depending on 
the feature used to determine similarity. If we consider overall similarity (measured, in 

the example, by the Euclidean distance between representative points), reasonable groups 
would be AB and CD. If we consider dimension 1 the groups would be AC and BD. 

Considering dimension 2 the groups would be AB and CD.  

It is apparent from the figure that similarity of  the objects depends on the 

context. If  A and B were the only elements, there could be little doubt about 

placing them in the same group.  

Context, semantic information, and the features used to measure similarity play a 

crucial role in VIR systems and have a strong impact in the problems we address 

in this thesis. As we will see in chapter 5, many of  the difficulties encountered in 

building computational frameworks to organize visual information can be 

attributed to these issues. 
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2.3.2.2 Query by sketch 

In query-by-sketch systems, users typically draw a sketch corresponding to the 

image or video they are interested in (Figure 12). In addition to drawing a sketch, 

the user is usually required to determine which features are important for each 

query (e.g., color, texture).  

 

Figure 12.  A query-by-sketch example from VideoQ [89].  In this example, the user has 
drawn a sketch to represent a water skier. The user has given the water a particular 

texture, and has placed the highest importance on motion and texture features (followed 
by size, color, and shape, which is unimportant in this query). 

Regardless of  whether the user is able to draw a “good” example to perform the 

query, the success of  the system depends on how the query is interpreted. In Figure 

13, a naïve user performs a sketch query hoping to retrieve an image of  a person 

standing in front of  a building. The photograph is conceptually similar to the 

sketch, but very different in terms of  the drawing itself. Current query-by-sketch 

approaches [89][136] focus on the form of  the sketch (i.e., syntax), and not on 
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what the sketch may represent (i.e., semantics).  Their expressive power is limited to 

syntax— the language used by the system expresses only syntax.  

In spite of  that limitation, users that understand such systems well and have 

enough practice/abilities in drawing their queries can use query-by-sketch systems 

effectively. Although unsuitable at the semantic level, this approach supports 

queries that retrieve images based on local structure (i.e., level 3 of  Figure 16). In 

the example of  Figure 13, a more accurate sketch could be effective in retrieving 

the desired image, but users must know exactly what they are looking for and 

have exceptional visual memory to remember important details (e.g., size, 

location, 3D perspective, etc.). 

Figure 13. A sketch used to represent a concept (a person in front of a building), and the 
image the user may actually want to retrieve (photograph A.B. Benitez).  

 

2.3.2.3 Keyword and Category Browsing 

As discussed earlier, text provides an excellent way to communicate with the 

system at levels five through ten of  the structure of  Figure 16. This is particularly 
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true at the abstract levels. It is well known, however, that there are serious 

limitations to the use of  text alone. 

Some information is easily accessible using text. A query for a “car” is easily 

formulated by typing in that keyword or browsing in that category. In some 

applications, (e.g., medical systems), some of  the information can only be 

accessed using text: it would be difficult to find a particular patient’s x-ray 

otherwise. Text annotations can also carry important image content information 

that would be difficult to find using a different mechanism (e.g., a medical term to 

explain an anomaly in an x-ray image).  

2.3.3 Interactive Techniques 

Several techniques have been developed to reduce the limitations of  sketch and 

similarity interfaces. The main goal of  such techniques is to increase the 

expressive power and ease of  use of  those interfaces. In this section, we discuss 

approaches in which the results obtained with query interfaces (query by example 

and query by sketch) are utilized in a feedback loop by the user. The framework 

we present in chapter 4 requires fairly straightforward and simple input. 

Nevertheless, it is possible to use the same concepts of  that chapter with more 

complex types of  input, such as the ones we describe here. Relevance feedback, 

for instance, could be easily integrated, and the interface types just described 

could be used. 
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Relevance Feedback 

In Relevance Feedback [224][219], a user performs an initial query and the system 

returns the best matches. The user can then label as positive matches those 

images that are most similar to the ones in which she is interested, and as negative 

matches the ones most dissimilar. The system then performs a new search 

utilizing the user’s feedback. The process repeats as many times as needed as the 

user continues the search.  

Many different relevance feedback approaches have been proposed 

[244][99][182][95][166][224].  In particular, feedback can be categorical (i.e., the user 

indicates what items are in the same category as the target), or relative (i.e., item A 

is more relevant than item B) [99].  For example, in [224], the user marks each 

returned image with one of  the following labels: highly relevant, relevant, no-opinion, 

non-relevant, or highly non-relevant.  In [99], however, the user simply selects the 

images that are closer to the target concept than the unselected images. 

The main advantage of  relevance feedback is that the search is guided by the user.  

A drawback of  these techniques, however, is that they assume that the database is 

rich enough to return “good matches” that can guide the search process. This 

may not always be the case. In addition, the problems (and benefits) associated 

with different types of  interfaces outlined in section 2.3.2 should still be 

considered (e.g., ways to express similarity, etc.). 
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Learning 

An alternative to performing relevance feedback at the time of  the query is to 

learn what the user wants allowing her to assign class labels to the objects/image 

classes in which she is interested.  In other words, the user may label some image 

regions with a name such as “sky” and others with a name such as “not sky.”  

The system can then use that information to learn the concept in which the user 

is interested (e.g., sky), and construct a classifier— a program that, given an input 

(e.g., a region), makes a decision to determine the class of  that input (e.g., sky, not 

sky).  The classifier learned can then be used to automatically label content (e.g., 

indoor, outdoor image). Once the content is labeled, it can be accessed using the 

keyword/category browsing approach discussed in section 2.3.2.3. 

The learning of  classifiers is closely related to indexing and classification (section 

2.3.1.2), to object recognition (section 2.4.2), and to learning visual detectors 

(chapter 4). The process of  learning from the user, however, often requires some 

form of  user interaction, which is related to the other techniques discussed in this 

chapter. We discuss this further in the next section.  
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2.4 INTEGRATION OF VISUAL DETECTORS IN 

SPECIFIC DOMAINS  

In the previous section we discussed different query and indexing approaches, 

including some interactive frameworks. In this section we focus specifically on 

the construction of  Visual Detectors (i.e., programs that automatically label objects 

or scenes in images or videos). These discussions are relevant to the framework 

of  chapter 4 for building visual detectors from user input, and to the problem 

addressed in chapter 5.   

We make a distinction between scene classification approaches and work in object 

recognition.  

2.4.1 Scene Classification 

Classification seeks to place images into specific semantic categories (i.e., a 

classifier is a function that, given an input, assigns it to one of  k classes). 

Typically, this is performed at the scene level (e.g., indoor, outdoor, etc.), and the 

object level (e.g., objects in the image are labeled, or the image is labeled with the 

names of  objects it contains).   

In many classification approaches, a training set is used to build the classifier.  For 

example, a training set for an indoor/outdoor scene classifier would consist of  a 
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set of  indoor images and a set of  outdoor images. Each of  the approaches 

described below uses training sets in different ways. 

Content-based classification using visual features can be scene-based (e.g., using 

global low-level features [254][265]; region configuration-based [243][171][86]) or 

object-based (e.g., detection of  faces in [114], naked people and horses in [113], 

objects defined by the user in [145]).  

In scene-based classification, the image as a whole is given a semantic label. 

Examples include indoor vs. outdoor [254], city vs. landscape [117][265][264], 

beach, sunsets [243][171], etc.  

In the particular approach presented in [254], the image is first divided into a 4x4 

grid of  16 blocks. Low-level features are then computed for each block and for 

the whole image. Features for color (Otha color histogram [204]), and texture 

(Multiresolution Simultaneous Autoregressive Model [177] and DCT coefficients) 

are computed for each image and for each block.  Using a multi-stage 

classification approach, the blocks are classified independently and the results are 

used to classify the images.  More specifically, for each image, each of  the 16 

blocks is classified using a nearest-neighbor classifier.  The classification results 

of  each block for each image are concatenated into a feature vector.  In the 

second classification stage, a majority vote classifier is applied to the vectors, 

yielding a final result for the image. 
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The division of  the image into blocks is useful because it tends to capture spatial 

characteristics of  images belonging to the same class. For example, in outdoor 

images the sky appears at the top, while in indoor images sections of  wall are 

common in the upper part of  the images. Features, such as color and texture, also 

capture characteristics of  images in each class. Indoor images tend to have 

textures that are formed mostly by horizontal and vertical edges. The colors and 

texture of  elements that appear in outdoor images are quite different from those 

in indoor images. 

Other approaches similar to the one in [254] have been developed to classify 

images.  In [264], for example, images are divided into 10x10 sub-blocks for 

classification.  Features, such as edge direction histograms, are used to 

discriminate between city and landscape images.  

In  [243] images are classified using Composite Region Templates (CRT).  The basic 

idea in CRTs is that images that belong to the same semantic class show a similar 

configuration of  regions.  For example, in a beach scene, the top region is blue 

(sky), with a yellow region (sand) beneath it.  Initially, a string is generated which 

represents the configuration of  regions in an image in a vertical scan (e.g., Blue 

followed by yellow, etc.).  Instead of  directly comparing the strings, region 

configurations called Composite Region Templates are created.  A CRT is a relative 

ordering of  M symbols from the string (e.g., “Blue Yellow” for M=2). For 

example, suppose we have two strings that represent two images and their 
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respective regions: Sa=s0s1s2s3 and Sb=s0s1s3. The CRT  T=s0s3 occurs once in 

each image.   Note that if  regions s0 and s3 are important for that semantic class 

(e.g., sky and sand in a beach class), they will be accounted for in Sa and Sb, 

regardless of  other regions in the image (like s1 and s2) that would be taken into 

account if  the strings were compared directly. The system classifies images by 

first extracting regions and generating a CRT. A decision is then made based on 

the frequencies of  the image's CRT with respect to the training set (e.g., the 

probability that the image is a beach scene given that there is a blue patch 

followed by a yellow patch). The use of  CRTs is similar to the work presented in 

[171] in which region configurations are also used to perform scene classification. 

Approaches to perform scene-level classification can be very effective, and thus 

demonstrate that semantic classification can be achieved using low-level features. 

Building such classifiers usually requires little user input (e.g., only labeling of  the 

images at the scene level). The accuracy of  these techniques, however, is limited 

by how well the selected features can be used to discriminate between the classes 

of  interest.  Additionally, the size and nature of  the training (if  a training set is 

required) and test sets directly affect the accuracy.  

2.4.1.1 V sual Information and Text i

It is also possible to combine textual and visual information to build classifiers.  

In [243], text classification is performed first, followed by classification using 
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visual features.  In [247], textual information augments the result of  visual 

classification (face detection).  Lastly, in [206], the benefits of  combining visual 

and textual features were explored for indoor vs. outdoor classification.  

In addition to improving performance, text can help in indexing images at higher 

semantic levels (i.e., levels 5 through 10 in Figure 16). One of  the common 

problems, however, is that the use of  both modalities is not always possible 

because text is not always available.  When it is available, it can often be unreliable 

(e.g., text accompanying web documents in [244]).  Additionally, it may come 

from different sources, and have strong variations in style and quality. 

In spite of  some of  the technical difficulties associated with the use of  features 

from different modalities (e.g., visual and textual), their use is of  extreme 

importance for indexing visual content in terms of  semantics (see the news 

application in [66]). Research in this direction is likely to increase and continue to 

contribute to better retrieval systems.   

2.4.2 The Object Recognition Problem 

Object Recognition is perhaps the largest area within Computer Vision. However, 

it is closely related to the framework of  chapter 5 and so in this section we give a 

brief  overview of  some techniques for two-dimensional object recognition.  A 

complete review and classification of  all the approaches would be a very difficult 

task.  The goal here is to give the reader a general understanding of  some of  the 
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main techniques. There are many ways in which different techniques can be 

grouped, and the divisions below are presented to aid in the explanations rather 

than to classify different approaches.  Extensive reviews can be found throughout 

the computer vision literature (e.g., [222][82]).  

First, we give a brief  overview of  object recognition. Then, we outline important 

knowledge representation techniques, and discuss the differences between object 

recognition and VIR. 

The goal of  object recognition is to determine which objects are present in a 

scene, and where they are located [178].   

There are many approaches to the object recognition problem in the computer 

vision literature.  In general, however, recognition involves three basic 

components (Figure 14): (1) the image; (2) the features extracted from the image 

(e.g., geometric features, etc.); and (3) a decision process based on those features.  

The features can be pixel intensity values, or complex geometric representations, 

among others.  The decision process depends not only on the features extracted 

from the image, but also on the type of  knowledge the system uses in making a 

decision.  There are many variations in how a decision is made, what knowledge 

is included, and how such knowledge is represented internally.  
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Recognition 

Decision 

Knowledge 

and  

decision process 
FeaturesImage 

Figure 14.  Basic components of an object recognition system.  

One possible strategy for recognition is to have a detailed model (e.g., with 

detailed geometric constraints) for each object (or type of  object) to be 

recognized and to try to match image features to each model.  Traditionally, this 

approach is referred to as model-based recognition, described next.  

2.4.2.1 Model-based Recognition 

In the framework of  chapter 4 the user explicitly constructs a model and labels 

training examples. A model is an internal representation for each object that is to 

be recognized. The recognition process consists of  a search for correspondences 

between components of  a model and observations in an image. For example, to 

recognize a square using the simple model of  a square in Figure 15, the object 

recognition process would entail finding two corners, as determined by the model 

in the model database. 

Given a set of  models in a model database, the search strategy used to find a 

match between a model and the observed features can be classified into either 

model-driven or data-driven [119].  In the model-driven approach, a model is selected 

from the database, and the image is searched in order to find components that 
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match that model.  In the data-driven approach, the system picks a component 

from the image (e.g., one of  the lines) and tries to find the model that best 

matches that component.  In both cases, recognition is complete when a 

correspondence is found between all of  the components of  a model and the 

observations in the image.  

Model Database Image 

 

Figure 15.  An image and a database of models.  

 

Regardless of  whether the recognition strategy is model or data driven (or a 

combination of  both), the recognition process can be formulated as having three 

stages [118]: selection, indexing, and matching.  For example, in the work presented in 

[118], object recognition is performed by selecting a subset of  the image data; 

indexing (i.e., searching) the object models from a model database; and matching 

of  the models and the image data.  Many systems have followed this three-stage 

process.  

    

 

As the number of  models and the complexity of  each model increases, the model 

indexing process becomes more complex, requiring the use of  special structures 

and techniques for efficient recognition.  Efficient indexing of  the models is 
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important in supporting scalability of  model-based approaches.  One technique, 

the data-driven indexed hypotheses technique [119], provides a data structure for 

the model-related data so that during recognition, models can be efficiently added 

to a database, and the search for a model component that best matches a given 

image feature can be efficiently performed.  

In general, many techniques use hypothesize-and-test algorithms to find 

correspondence.  A hypothesis is formed first (e.g., there is a square in the image). 

Then, tests are performed to determine whether that hypothesis is correct or not 

(i.e., find a correspondence between the model and the elements in the image). 

As the example suggests, the features used to represent the image, the model 

used, and the decision process can be treated independently, although they are 

closely related.  

Model Representation 

    

 

The discussion in section 2.4.2 emphasized that recognition implies the use of  

knowledge during the process (unknown objects cannot be recognized). In this 

section, we give a brief  overview of  some of  the major knowledge representation 

techniques [111] used in object recognition [109]. We argue that even though 

some of  these techniques have not been widely used in object recognition/VIR, 

their use and importance is likely to increase due to the significance of  knowledge 

representation in future VIR systems. This is specially likely in systems that 

integrate different types of  data (audio, text, video, etc.). 
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Over the last few years the number of  ways in which models can be represented 

has grown significantly.  Some of  the earlier techniques discussed here have been 

applied to recognizing 2D as well as 3D objects, under different types of  

constraints and for different applications. 

Template Matching  

One of  the simplest ways to model an object is to have a template of  a particular 

view of  the object.  During recognition, the template is simply swept over the 

image in an attempt to maximize cross-correlation (e.g., find the best match 

between the template and the image features).  Template matching tries to find 

the best embedding of  a template sub-image to an observed image, over all 

translations and rotations.  In some cases, multiple two-dimensional views of  the 

same object are stored as templates, and the recognition process tries to find the 

best pixel-level matches between the template and the image. 

In the work presented in [120], template matching was used to index news video 

(e.g., recognize news anchor scenes).  

Template matching is simple, but can be computationally expensive, and it is very 

restrictive in the sense that the templates must closely match the observed 

objects.  
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Production Systems 

In this paradigm, a model is represented by a set of  production (“if-then”) 

rules11, which are usually constructed manually.  During the recognition process, 

an if-then rule is executed only when the “if ” part of  the rule is matched. Using 

this mechanism, the designer of  the system can control the way in which the 

rules are applied, and thus, the search for correspondence between the models 

and the image components. 

Production systems were very successful in the medical domain (text only), where 

diseases could be diagnosed based on a set of  rules obtained from an expert.  In 

the MYCIN system [111], for example, it was found that the production system 

could actually outperform experts in diagnostic tasks. 

The same principle has been applied, less successfully, to recognizing objects in 

2D images, in aerial image interpretation and in other tasks.  For example, in one 

of  the earliest rule-based image analysis systems [204], semantic labels are 

assigned to regions in color images of  outdoors scenes. The initial image is 

segmented and a symbolic top-down analysis of  the regions is performed using 

production rules— each region is labeled according to the set of  rules. In that 

system, rules included the following relations: the sky touches the upper edge of  

                                                

    

 

11 Rules in an expert systems are called production rules because new information is produced when the 
rules fire. The term production itself is used in psychology to describe the relationship between situations 
and actions, and more commonly referred to as a rule [111]  
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the picture; the road touches the lower edge of  the picture, etc. The system is 

capable of  recognizing four objects and four sub-objects. 

In another early rule-based system [180], a similar approach is used to recognize 

objects in aerial images. In that system, the number of  rules is close to 500. This 

exemplifies one of  the drawbacks of  this technique: although rules in these 

systems are easily understood by humans, as the number of  rules grows, the 

maintenance and understanding of  the rules becomes more complex. Generation 

of  the rules is often a difficult task as well. The same authors present a set of  

tools for knowledge acquisition in that domain in [181].  In spite of  some 

disadvantages, rule-based systems, cane be powerful since they allow modularity, 

easy expansion, and natural expression (i.e., human readable rules).  

Semantic Networks 

    

 

Representing topological and inclusion relationships with rules tends to be very 

cumbersome. In contrast, semantic networks allow for richer representations of  

knowledge (an important advantage of  semantic networks).  A semantic network 

is a method of  knowledge representation using a graph made up of  nodes and 

arcs where nodes represent objects (and their parts) and arcs represent the 

relationship between the objects [111]. Examples of  relationships include 

part/subpart, specialization, and adjacency. Little work has been done in object 

recognition using semantic networks, but their use is likely to gain importance in 

VIR systems.  
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Blackboard Systems 

The goal of  blackboard systems [83] is to integrate knowledge of  different 

“experts” (e.g., a sky recognizer, a grass recognizer) into a single framework. Each 

expert is called a knowledge source (KS), which is basically a procedural module, 

and the experts act independently but interact and exchange information by using 

a blackboard. A blackboard usually consists of  an area in memory which  the 

different experts can write to and read from. A separate entity, called the 

scheduler (usually a set of  if-then rules), decides when to use each knowledge 

source. Examples of  systems that use this paradigm include [122] and [71]. 

The main difference between production and blackboard systems is that 

production systems handle simple if-then declarative statements, whereas in 

blackboard systems knowledge sources may be complex software modules. The 

drawbacks, however, are the same: manually constructed rules are difficult to 

generate and maintain.  

    

 

An alternative that allows the combination of  different experts is belief  networks 

[226]. A belief  network represents the joint probability distribution for a set of  

variables. This is represented by a directed graph in which nodes represent 

variables and arcs represent conditional dependency.  Each variable (node) is 

associated with a conditional probability table that specifies the conditional 

distribution of  the variable given its immediate parents in the graph.  Belief  

networks can be used to represent causal dependence and to integrate the inputs 
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[205] of  different classifiers (e.g., the value of  a variable could be determined by a 

classifier).  In the work presented in [205], different object detectors (i.e., experts) 

are combined to classify images.  The probability that an image is an outdoor 

image, for example, is computed from the probability scores produced by 

different classifiers (for example, a classifier that detects sky, a classifier that 

detects vegetation, etc.).  In this case, the “rules” correspond to a network of  

nodes, and the directed arcs determine the order of  evaluation.  One of  the 

advantages is that the network can in principle be learned automatically from the 

training set provided by the user, in other words, the network structure does not 

have to be manually constructed.  In practice, however, this is not the case: 

finding an optimal network structure given a data set is an NP-complete problem, 

and suboptimal network structures often have very poor performance (in the 

example above, the learning algorithm could produce a network where the 

outdoor/indoor variable is a precursor of  both sky and vegetation nodes). The 

structure, then, is usually constructed manually, but the conditional probability 

tables associated with each node are computed automatically.  

Transform Methods 

As discussed earlier, we can characterize the object recognition problem as a 

classification problem. The majority of  model-based systems have relied heavily 

on shape-based descriptions to represent the geometry of  the objects. The goal 
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in many of  those systems is to recognize objects from any viewing angle, both in 

two and three-dimensional scenarios.  

A different set of  techniques, however, has focused on appearance matching. Under 

this paradigm, object models are constructed as collections of  images of  the 

object in various positions, orientations, and lighting conditions. Features are 

extracted from the images in one domain (e.g., spatial) and in some cases 

transformed to other domains (e.g., frequency). A very successful technique 

consists of  representing images using an eigen (function, image) decomposition, 

and performing classification using the decomposition coefficients. In many of  

these techniques, though, either the existence of  a single object on a uniform, 

known background, or good automatic segmentation results are assumed (e.g., 

[262][194]).  

2.4.3 Object Recognition in Specific Domains 

Object recognition in specific domains can be formulated the same way as the 

traditional object recognition problem: determining which objects appear in an 

image and where they appear.  
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Several approaches have been devised to perform object-level classification12.  In 

the Body-plans approach presented in [113], specialized filters (e.g., skin for 

humans, hide for horses) are first applied to the image to detect naked people or 

horses.  Once the filters detect the presence of  skin/hide, the extraction of  

cylinder-like primitives occurs, and their configurations are matched against a 

Body-plan.  A Body-plan is a sequence of  groups constructed to mirror the 

layout of  body segments in people and animals.  For example, a horse has four 

legs, a trunk, a neck, a head, etc.  In order to detect a person or horse, the system 

tries to construct a sequence of  groups according to the Body-plan.  In the case 

of  a horse, it would try to collect body, neck, and leg segments.  Then, it would 

try to construct body-neck or body-leg pairs, and so on. Note that each model 

representation includes a combination of  constraints on color and texture, and 

constraints on geometric properties, such as the structure of  individual parts and 

the relationships between parts.  Each segment (e.g., body, neck) is found by a 

classifier (which, in this case, is a routine that decides if  a segment is present or 

not). The naked-people Body-plan is built manually and, although a learning 

component is used in the horse classifier, its topology is given in advance. 

Learning is achieved by constructing an augmented feature vector that all 

                                                

    

 

12 In some cases, we will use the word detection. Classification assigns an object to a category, whereas 
detection determines the presence of an object. 
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classifiers (for the segments) use for training. Once individual classifiers are 

learned, their decisions are used to obtain sub-classifiers. 

One disadvantage of  this approach is that various components of  the models are 

built manually.  The filters for skin and hide, for example, are very specific to the 

naked people/horses application, and applying the same techniques to other 

classes would require building new filters.  Another drawback of  this approach is 

that it is based on cylinder-like primitives – detecting them is often a difficult task 

due to occlusion, changes in lighting, etc. (see section 2.4.3).  The Body-plans 

technique, however, demonstrates that models for object recognition can be 

effectively used in Visual Information Retrieval applications.   It also stresses the 

importance of  including real-world constraints on the models (e.g., body-leg 

pairs), and the possibility of  combining manually constructed components with 

automatic ones.  The framework we present in chapter 4 addresses some of  the 

disadvantages of  the Body-plans technique. 

Other approaches (e.g., detection of  faces in [269]) have been successfully applied 

to VIR.  The WebSeer system [114], for example, uses the face detection 

technique developed in [220] to index images collected from the World Wide 

Web.  In Section 2.4.3 we explore the area of  object recognition and discuss how 

it relates to VIR. 
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2.4.4 Differences Between Object Recognition and VIR 

Although research in object recognition goes back more than 30 years, most of  

the work in this area has focused on the recognition of  simple isolated objects in 

highly constrained environments, where factors such as viewpoint, occlusion, 

scale, lighting, noise, sensor quality (e.g., cameras, etc.), are carefully controlled.  

In Visual Information Retrieval, however, few of  theses constraints hold; many 

of  the traditional object recognition techniques have limited applicability for VIR.  

While most of  the work on object recognition has focused on use of  knowledge-

based systems for finding correspondence (e.g., model-based recognition), the 

majority of  VIR techniques have focused on similarity: images are searched or 

classified according to how similar they are to a set of  examples.  Although this is 

rapidly changing, little domain knowledge is usually included in VIR systems.  

In object recognition, the goal has often been to precisely determine which objects 

appear in a scene and where they are located. In an industrial inspection system 

or a robotics system, for example, there is a computable cost for errors in 

recognizing an object and its exact location, and requirements are often posed in 

terms of  system accuracy.  In contrast, in most VIR applications, the accuracy 

requirements vary widely, and performance is measured differently (in terms of  

precision/recall).  
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Another major difference is the involvement of  the user: in traditional object 

recognition, the goal is to build systems that work without user input.  In VIR, 

humans are the final users of  the systems developed.  This has many 

implications, not only in terms of  performance, but also in terms of  the 

subjectivity involved. 

2.4.5 The New Challenges 

In spite of  the recent advances in object recognition, and the successful 

application of  techniques in certain domains, many of  the recognition systems 

developed to date have serious limitations if  they are to be applied to the general 

problem of  Visual Information Retrieval. Of  course, the success of  the 

techniques depends largely on the contents of  the database, the user, and the 

purpose. A database of  simple objects with controlled lighting conditions and 

uncluttered background, for example, can benefit greatly from many of  the 

traditional object recognition approaches.  

Traditional object recognition techniques, however, face new challenges when 

applied in the context of  VIR. We outline some of  the major difficulties, which 

cannot usually be controlled in VIR applications.  

• Illumination: the appearance of objects can vary significantly under 

different lighting conditions. 

• Extraneous features: shadows and specular reflections make feature 
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extraction more difficult. 

• Occlusion: parts of objects are often covered by other objects, 

complicating the recognition process. 

• Viewpoint: large variations of viewpoint occur. 

• Scale: objects and textures appear in many different sizes. 

• Noise: color variations and other imperfections. 

• Clutter: presence of numerous unmodeled objects in the scene. 

• Background: foreground-background separation is non-trivial. 

• Types of objects: rigid, deformable, and flexible objects. Existence of 

non-traditional objects, such as the sky, water, and trees.  

• Types of models: geometric models typically used in object recognition 

do not necessarily coincide with “models” used by humans. For 

example, a car jack is usually thought of in terms of its function, not its 

geometric characteristics.  Novel model representations may be 

necessary.  

• Ability to adapt: there is a large number of objects in realistic scenes, 

therefore it is desirable to have systems that can learn to detect new 

objects (instead of having an expert construct a detector for each 

object), and easily adapt to variations in realistic scenes (lighting, etc.). 
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In order for object recognition approaches to be applicable to general VIR (face 

detection is a good example), they must more closely resemble general vision 

systems [82]. They should be able to adapt to different conditions (e.g., lighting, 

occlusion, etc.), make more use of  world knowledge, and be suitable for 

application under fewer constraints. Those three aspects-adaptability, knowledge, 

and constraints represent the major limitations of  current systems. For example, 

most of  the systems described in [82], “know” a limited set of  objects: 4 objects 

and sub-objects in outdoor scenes [204], area classes (vegetation, buildings, etc.) 

[196], airplanes [84], lamps, desks, etc. These systems use limited sets of  objects, 

top-down interpretation, and rely heavily on prediction. Although the inclusion 

of  specific knowledge is beneficial, future systems for VIR must be scalable in 

the number of  objects they can recognize, and must be easily adaptable to the 

many variations encountered in domains with few constraints.  

2.5 SUMMARY 

In this chapter we gave an overview of  basic concepts and existing approaches 

related to the three areas discussed in chapter 1: understanding of  visual content 

and users, construction of  flexible computational methods that learn, and 

integration of  generic visual detectors in solving practical tasks in specific 

domains. 
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In particular, we presented basic visual information concepts, discussed the main 

components of  VIR systems, and gave an overview of  object recognition 

highlighting the advantages and limitations of  different techniques. We made 

distinctions between the interface and indexing components of  VIR systems, 

discussed the differences between various interface modalities, and outlined the 

benefits of  different indexing mechanisms.  

Our overview of  some of  the major object recognition strategies was presented 

with an emphasis on its relation to VIR. We identified the differences between 

traditional object recognition and object recognition for VIR, and outlined the 

challenges that object recognition techniques face if  they are to be applied to the 

general VIR problem.  

The topics covered in this chapter are very important in addressing the problem 

of  indexing and organization of  visual information through user interaction at 

multiple levels. The different types of  indexing schemes are clearly related to the 

way that information can be accessed, as are the different query interfaces. 

Understanding the benefits and limitations of  these current approaches is 

fundamental to the work presented in the rest of  the thesis and to the 

development of  the visual information indexing systems of  the future. 
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3 THE MULTI-LEVEL 

INDEXING PYRAMID  

3.1 INTRODUCTION 

In this chapter we present a novel conceptual framework for the classification of  

visual attributes.  

The Multi-Level Indexing Pyramid we introduce classifies visual attributes into ten 

levels stressing the differences between syntax and semantics. Our discussions show 

that different techniques, discussed in chapter 2, are useful for different purposes, 

and that the level of  indexing depends on the application. For example, it makes 

no sense to look for pictures of  Bill Clinton using texture. Similarly, there are 

many instances in medical imaging in which textual search is not nearly as 

powerful as query-by-example.  
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We present various experiments13, which address the Pyramid's ability to achieve 

the following tasks: (1) classification of  terms describing image attributes 

generated in a formal and an informal description task, (2) classification of  terms 

that result from a structured approach to indexing, (3) guidance in the indexing 

process. Several descriptions, generated by naïve users and indexers were used in 

experiments that included two image collections: a random web sample, and a set 

of  news images. To test descriptions generated in a structured setting, an Image 

Indexing Template [50] was also used. The results of  the experiments suggest that 

the Pyramid is conceptually robust (i.e., can classify a full range of  attributes) and 

that it can be used to organize visual content for retrieval, to guide the indexing 

process, and to classify descriptions obtained manually and automatically. 

The pyramid has several important applications supported by our experiments. It 

can be used to classify visual descriptors generated manually or automatically, to 

guide the manual annotation process or the creation of  automatic feature 

extraction algorithms, and to improve retrieval in visual information systems by 

eliminating the ambiguity between attributes that could refer to the image at 

different levels (e.g., color blue vs. emotion blue).  

                                                

13 The experiments presented in this chapter were performed jointly with Corinne Jorgensen of the State 
University of New York at Buffalo and Ana B. Benitez from Columbia University. 
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3.1.1 Related Work 

Discourses on imagery have arisen in many different academic fields. Studies in 

art have focused on interpretation and perception [1][9], aesthetics and formal 

analysis [4], visual communication [12], levels of  meaning [16], etc. Studies in 

cognitive psychology have dealt with issues such as perception [26][27][34], visual 

similarity [36], mental categories (i.e., concepts) [23], distinctions between 

perceptual and conceptual category structure [24][25][33], internal category 

structure (i.e., levels of  categorization) [29][30][32][35][28], etc. In the field of  

information sciences, work has been performed on analyzing the subject of  an image 

[46][59][61][62], and on general issues related to manually assigning indexing 

terms to images [42][56][58][63]. Work has also been done on analyzing the types 

of  attributes that can be used to describe images [47][48]. Two sets of  proposed 

attributes have been widely disseminated: The Dublin Core [39] and the VRA Core 

[64]. The Art Information Task Force has also proposed the Categories for the 

Description of  Works of  Art [43]. Work in that field has also been done in 

classification [49][56] and query analysis [40][41]. In addition, there have been 

efforts to construct thesauri (often called ontologies or taxonomies) [57] and 

other tools to facilitate manual indexing tasks. TGM I/II [57], for example, 

consists of  a list of  terms and relationships specifically constructed for describing 

visual information, and the template in [37] consists of  a list of  description 

categories so that people manually indexing images can “fill in” the template in a 
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structured, consistent way. Other related work includes [55] and [50], among 

others.  

There have also been many efforts related to the organization of  multimedia data. 

Some of  that work includes [78][127][131][173][248], and [215]. The MPEG-7 

standard [176], for example, standardizes a set of  descriptors for multimedia 

information, some of  which focuses exclusively on visual content [192].  

The Multi-level Indexing Pyramid was proposed to MPEG-7 [76][77][143]. Many of  

the concepts and components in the pyramid are included in the standard (e.g., 

syntax, semantics, abstract concepts, etc.).  

The authors of  [187][188] have performed studies to investigate the semantic 

categories that guide the human perception of  image similarity. The authors have 

suggested several levels of  semantics (abstract, semantic templates, semantic 

indicators, low-level primitives and their perceptual groupings).  

3.1.2 Outline 

In section 3.2, we discuss conceptual structures to classify visual attributes into 

different levels. In section 3.3 we describe how the pyramid can be applied. In 

section 3.4 we present experiments to test the multi-level indexing pyramid. We 

discuss our results in section 3.5 and summarize in section 3.6. 

 



70
 
 

 

3.2 

                                               

INDEXING VISUAL INFORMATION AT 

MULTIPLE LEVELS 

In this section, we focus on the problem of  multiple levels of  description when 

indexing visual information. We present a conceptual framework, which draws on 

concepts from the literature in diverse fields, such as cognitive psychology, library 

sciences, art, and Visual Information Retrieval. We make distinctions between 

visual and non-visual information and provide the appropriate structures.  We 

describe a ten-level visual structure, which provides a systematic way of  indexing 

visual information based on syntax (e.g., color, texture, etc.) and semantics (e.g., 

objects, events, etc.), and includes distinctions between general concepts and visual 

concepts. We define different types of  relations (e.g., syntactic, semantic) at different 

levels of  the visual structure, and also use a semantic information table to summarize 

important aspects of  an image14.  

One crucial aspect of  building a VIR system is understanding the data that will be 

included in the system so that it can be appropriately indexed. Appropriate 

indexing of  visual information is a challenging task because there is a large 

amount of  information present in a single image (e.g., what to index?), and 

different levels of  description are possible (e.g., how to index?).  Consider, for 

 

14 For simplicity, throughout the chapter we use the term image to refer to visual information in general. 
In section 3.3 we discuss some of the issues that may arise if the structure is applied to video. 
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example, a portrait of  a man wearing a suit. It would be possible to label the 

image with the terms “suit” or “man”. The term “man”, in turn, could carry 

information at multiple levels: conceptual (e.g., definition of  man in the dictionary), 

physical (size, weight) and visual (hair color, clothing), among others. A semantic 

label, then, implies explicit (e.g., the person in the image is a man, not a woman), 

and implicit or undefined information (e.g., from that term alone it is not possible 

to know what the man is wearing). 

The research on visual information that has been carried out in different fields 

shows that indexing such information can be particularly complex for several 

reasons. First, visual content carries information at many different levels (e.g., 

syntactic: the colors in the image; semantic: the objects in the image). Second, 

descriptions of  visual content can be highly subjective, varying both across 

indexers and users, and for a single user over time. Such descriptions depend on 

other factors that include, for example, the indexer’s knowledge (e.g., art 

historian), purpose of  the database (e.g., education), database content (e.g., fine 

art images; commercial images), and the task of  the user (find a specific image or 

a “meaningful” image). 

The structure presented in this chapter places state-of-the art content-based 

retrieval techniques in perspective, relating them to real user-needs and research 

in other fields. Using structures such as these is beneficial not only in terms of  

understanding the users and their interests, but also in characterizing the Visual 
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Information Retrieval problem according to the levels of  description used to 

access visual information.  

Visual And Non-Visual Content  

The first step in creating conceptual indexing structures is to make a distinction 

between visual and non-visual content. The visual content of  an image corresponds to 

what is directly perceived when the image is observed (the lines, shapes, colors, 

objects, etc). The non-visual content corresponds to information that is closely 

related to the image, but that is not present in the image. In a painting, for 

example, the price, current owner, etc. belong to the non-visual category. Next we 

present a novel indexing structure for the visual content of  the image and for 

completeness follow with a structure for non-visual content. Non-visual content 

constitutes the metadata that accompanies visual information. 

3.2.1 Visual content 

Our visual structure contains ten levels, all of  which are obtained from the image 

alone: the first four refer to syntax, and the remaining six refer to semantics. In 

addition, levels one to four are directly related to percept, and levels five through 

ten to visual concept (see chapter 2).  While some of  these divisions may not be 

strict, they should be considered because they have a direct impact on 

understanding what users are searching for and how they try to find it. They also 

emphasize the limitations of  different indexing techniques (manual and 
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automatic) in terms of  the knowledge required. An overview of  the structure is 

given in Figure 16.   

A pyramid is an immaterial structure built on a broad supporting base and 

narrowing gradually to an apex15. We choose this structure because visually it 

provides an intuitive representation of  the knowledge required to perform 

classification at different levels. In our Multi-level Indexing Pyramid more knowledge 

is necessary to index at the lower levels than at the higher levels. For example, 

more knowledge is required to recognize a specific scene (e.g., Central Park in 

New York City) than to recognize a generic scene (e.g., park). There may be 

exceptions, however. An average observer may not be able to determine the 

technique or materials (e.g., oil, watercolor) that were used to produce a painting, 

but an expert would.  In general the structure implies that computational analysis 

at the lower levels of  the pyramid requires more complex knowledge. Face 

recognition (specific object) versus face detection (generic object) constitutes just one 

example. 

 

                                                

15 Definition from Merriam-Webster dictionary. 
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Type 

Technique 

Global Distribution 

Local Structure 

Global Composition 

Generic Objects 

Generic Scene 
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Specific Scene 

Abstract Objects 
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Semantics,  

Visual Concept 

Syntax, 

Percept 

Knowledge 

9. 
8. 

7. 
6. 

5. 
4. 

3. 

2. 

10. 

1. 

Figure 16. The indexing structure is represented by a pyramid.  

  

The way we order the levels follows this rationale and therefore, it makes more 

sense to place the higher semantic levels at the bottom. An alternative way to 

think of  the structure is as an iceberg: the simplest syntactic attributes at the top 

represent only “the tip of  the iceberg”, the earliest, most obvious, or most 

superficial manifestation of  some phenomenon16.  

Each level, which is independent of  the other levels, can be used to classify an 

image’s attributes, effectively providing access points to the image at different 

                                                

16 Definition from Merriam-Webster dictionary. 
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levels. For example, an image can be searched based on similarity at the 

type/technique level, or on the generic objects it contains. It is important to keep 

in mind that the levels chosen for a particular application will depend on the data 

being indexed and on the way it is used.   

The pyramid does not depend on any particular database model, visual 

information type, user type, or purpose; therefore, not every level of  the structure 

would be necessary in every case. Different projects demonstrate that while many 

researchers are addressing various levels of  the “puzzle,” there has not heretofore 

been a conceptual structure which can unite these diverse efforts and 

demonstrate the relationships among the pieces of  this puzzle. 

We demonstrate the applicability of  the structure to a wide range of  attributes, 

and show that the pyramid can also facilitate searching by disambiguating among 

attributes that could appear at several different levels of  the structure.  

Three main factors entered into the construction of  the proposed model: (1) 

range of  descriptions; (2) related research in various fields; and (3) generality. In 

considering the range of  descriptions, the focus was only on visual content (i.e., any 

descriptors stimulated by the visual content of  the image or video in question; the 

price of  a painting would not be part of  visual content). Since such content can be 

described in terms of  syntax or semantics the structure contains a division that 

groups descriptors based on those two categories. This division is of  paramount 

importance, particularly when we observe research in different fields. Most of  the 
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work on Visual Information Retrieval, for example, supports syntactic-level indexing, 

while work in art places strong emphasis on composition (i.e., relationships 

between elements) both at the syntactic (i.e.., how colors, lines, and patterns are 

laid out) and semantic levels (i.e., the meaning of  objects and their interactions). 

Most of  the work in information science, on the other hand, focuses on 

semantics. The structure was developed based on research and existing systems in 

different fields. 

3.2.1.1 Type/Technique 

At the most basic level, we are interested in the general visual characteristics of  

the image or the video sequence.  Descriptions of  the type of  image or video 

sequence or the technique used to produce it are very general, but are very 

frequently used and are therefore of  great importance. Images, for example, may 

be placed in categories, such as painting, black and white photograph, color 

photograph, and drawing.  Although Type/Technique attributes are not strictly 

syntactic, they do directly impact the visual elements. For simplicity, therefore, it 

is appropriate to group this level with the other levels that refer to syntax.  

Related classification schemes at this level have been done conceptually in 

[127][173], and automatically in WebSEEk [244].  

In the case of  digital photographs, the two main categories could be color and 

grayscale, with additional categories/descriptions, such as number of  colors, 

compression scheme, resolution, etc.  We note that some of  these may have some 
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overlap with the non-visual indexing aspects described in Section 3.2.3.  Figure 

17a (page 85) shows an interesting example.  

3.2.1.2 Global Distribution 

The type/technique in the previous level gives general information about the visual 

characteristics of  the image or the video sequence, but gives little information 

about the visual content.  An image (or video sequence) is characterized at the 

global distribution level using low-level perceptual features, such as spectral 

sensitivity (color), and frequency sensitivity (texture).  Individual components of  

the content are not processed at this level: the low-level perceptual features are 

extracted from the image as a whole.  Global distribution features may include 

global color (measured, for instance, as dominant color, average color or color 

histogram), global texture (using one of  the descriptors such as coarseness, 

directionality, contrast), global shape (e.g., aspect ratio), and, for video data, global 

motion (e.g., speed, acceleration, and trajectory), camera motion, global 

deformation (e.g., growing speed), and temporal/spatial dimensions (e.g., spatial 

area and temporal dimension), among others.  The example in Figure 17b shows 

images of  two buttons that have similar texture/color.  Notice that the global 

distribution attributes of  the example could be quite useful for retrieving visually 

similar images, but they would probably be useless for retrieving images 

containing specific objects. 
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Although some global measures are less intuitive than others (e.g., it is difficult 

for a human to imagine what the color histogram of  an image looks like), these 

global low-level features have been successfully used in various Visual 

Information Retrieval systems to perform query by example (QBIC [200], 

WebSEEk [244], Virage [72]) and to organize the contents of  a database for 

browsing (see discussions in [92]). An interesting comparison of  human and 

machine assessments of  image similarity based on global features at this level can 

be found in [179].  

3.2.1.3 Local Structure 

Local Structure is concerned with image components. At the most basic level, those 

components result from low-level processing and include elements such as dots, 

lines, tone, color, and texture, extracted from the images. In the Visual Literacy 

literature [12], some of  these are referred to as the “basic elements” of  visual 

communication and are regarded as the basic syntax symbols.  Other examples of  

local structure attributes are temporal/spatial position, local color, local motion, 

local deformation, and local shape/2D geometry. Figure 17c (page 85) shows 

images in which attributes of  this type may be of  importance. In the x-ray image 

of  a tooth, the shape and location of  a cavity are of  great importance. Likewise, 

identification of  local components in microscopic images can be more important 

than the image as a whole.  
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Such elements have also been used in Visual Information Retrieval systems, 

mainly in query by user sketch interfaces, such as those in [136][89][217] and 

[246].  The concern here is not with objects, but rather with the basic elements 

that represent them and with combinations of  such elements: four lines, for 

example, form a square.   In that sense, we can include here some “basic shapes” 

such as circle, ellipse and polygon.  

3.2.1.4 Global Composition 

Local Structure is characterized by basic elements.  Global Composition refers to the 

arrangement, or spatial layout of  these basic elements.  Traditional analysis in art 

describes composition concepts, such as balance, symmetry, center of  interest (e.g., 

center of  attention or focus), leading line, viewing angle, etc. [1]. At this level, 

however, there is no notion of  specific objects; only basic elements (i.e. dot, line, 

etc.) or groups of  basic elements are considered. In that sense, the view of  an 

image is simplified to an entity that contains only basic syntax symbols: an image 

is represented by a structured set of  lines, circles, squares, etc. Figure 17d 

presents images with similar composition (both images have objects in the center, 

and the leading line is diagonal). The composition of  the images in Figure 17f  is 

also similar, where the leading line is horizontal.  A composition similarity-search 

was implemented in Virage [72]. 
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3.2.1.5 Generic Objects 

In the first four levels, the emphasis is on the perceptual (percept-related) aspects 

of  the image, thus, no knowledge of  actual objects is required (i.e. recognition is 

not necessary) to perform indexing, and automatic techniques rely only on low-

level processing. While this is an advantage for automatic indexing and 

classification, studies have demonstrated that humans mainly use higher-level 

attributes to describe, classify and search for images [47][48][49]. Objects are of  

particular interest, and they can also be placed in categories at different levels: an 

apple can be classified as a fruit, as an apple, or as a Macintosh apple.   

When referring to Generic Objects, we are interested in what Rosch [32] calls the 

basic level categories: the level at which there are attributes common to all or most 

members of  a category— the highest level of  abstraction at which clusters of  

features are assigned to categories.  In other words, it is the level at which there 

are attributes common to all or most members of  a category. In the study of  art, 

this level corresponds to pre-Iconography [16], and in information sciences [61] is 

called the generic of level. Only general everyday knowledge is necessary to 

recognize the objects at this level.  When viewed as a Generic Object, a 

Macintosh apple would be classified as an apple: that is the level at which the 

object's attributes are common to all or most members of  the category. In the 

experiments reported in [32], for example, the authors found that a large number 

of  features were listed as common to most elements of  a basic category such as 
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“apple”, whereas few if  any features were listed as common to elements in a 

superordinate category one level higher such as “fruit”.  The general guideline is 

that only everyday knowledge is required at this level.  Techniques to 

automatically detect objects at this level include a significant amount of  work in 

object recognition (see Section 2.4.2), and techniques in VIR (e.g., [113][145]).  

A possible difference between our definition and those in [16][61] is that our 

generic objects include objects that may traditionally not be considered objects (e.g., 

the sky or the ocean). Examples of  generic objects “car,” and “woman” are 

shown in Figure 17e.  Figure 17g shows a “building,” but note that in that figure 

the name of  the building is used, so that particular attribute is a specific object 

attribute. 

3.2.1.6 Generic Scene 

Just as an image can be indexed according to the individual objects that appear in 

it, it can also be indexed as a whole based on the set of  all of  the objects it 

contains (i.e., what the image is of). Examples of  scene classes include city, 

landscape, indoor, outdoor, still life, portrait, etc. Some work in automatic scene 

classification has been performed by [254][264][206] and studies in basic scene 

categories include [35][29]. 

The guideline for this level is that only general knowledge is required. It is not 

necessary to know a specific street or building name in order to determine that it 
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is a city scene, nor is it necessary to know the name of  an individual to know that 

it is a portrait. Figure 17f  shows two images whose attributes correspond to 

generic scene.  Other generic scene attributes for the same pair of  images could 

be “mountain scene”, “beach”, etc. 

3.2.1.7 Specific Objects 

Specific Objects can be identified and named. Shatford refers to this level as specific of 

[61].  Specific knowledge of  the objects in the image is required, and such 

knowledge is usually objective since it relies on known facts.  Examples include 

individual persons (e.g., Bill Clinton in Figure 21), and objects (e.g., “Alex” and 

“Chrysler building” in Figure 17g).  In [247], automatic indexing at this level is 

performed: names in captions are mapped to faces detected automatically.  

When observing the difference between the generic and specific levels, it is 

important to note that there are issues of  indexing consistency that should be 

taken into account.  For example, assume we have an image of  a Siamese cat 

named Fluffy. Indexer A may decide to label this object as “generic object cat”, 

“specific object Siamese cat”.  Indexer B may decide to label this object as 

“generic object cat”, “specific object Fluffy”.  Indexer C, on the other hand, may 

decide to label the object as “generic object Siamese cat”, “specific object Fluffy”. 

All three approaches are correct since the relationship between the generic and specific 

labels is maintained: the specific description is more specific than the generic one 

in all three cases. The level of  specificity chosen, then, depends on the 
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application. In many indexing systems in information sciences, issues of  indexer 

consistency are addressed by the use of  templates (e.g., indexers fill in the fields 

of  a template specially designed for the application or type of  data) and 

vocabularies (e.g., indexers can only use certain words).  In spite of  these 

mechanisms, however, indexer consistency is always an issue that should be 

addressed.  In Section 3.4 we discuss some experiments comparing the use of  the 

pyramid with the use of  a template developed specifically for indexing images.   

3.2.1.8 Specific Scene 

This level is analogous to Generic Scene, but specific knowledge about the scene is 

used.  A picture that clearly shows the Eiffel Tower, for example, can be classified 

as a scene of  Paris (see Figure 17h). The other image in the same figure shows a 

similar example for Washington D.C.  

3.2.1.9  Abstract Objects 

At this level, specialized or interpretative knowledge about what the objects 

represent is applied.  This is related to Iconology in art [16], or the about level 

presented in [61] (i.e., what the object is about).  This is the most difficult 

indexing level since it is completely subjective, and assessments among different 

users vary greatly.  The work in ref. [49] showed that users sometimes describe 

images in affective (e.g. emotion) or abstract (e.g. atmosphere, theme) terms. 

Examples at the abstract scene level include sadness, happiness, power, heaven, 
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and paradise. For example, a woman in a picture may represent anger to one 

observer, but pensiveness to another observer.  Other examples of  abstract 

object descriptions appear in Figure 17i as “arts” and “law”. 

3.2.1.10 Abstract Scene 

The Abstract Scene level refers to what the image as a whole represents (i.e., what the 

image is about).  It was shown in [48], for example, that users sometimes describe 

images in affective (e.g., emotional) or abstract (e.g., atmospheric, thematic) terms. 

Examples at the abstract scene level include sadness, happiness, power, heaven, 

and paradise. Examples of  abstract scene descriptions for the images in Figure 

17j are “Agreement”, and “Industry”. 
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a) Type/Technique b) Global Distribution 

Similar texture, color 
histogram 

Color graphic Color Photograph  

d) Global Composition c) Local Structure

Centered object, diagonal 
leading line Dark spots in x-ray Lines in microscopic 

f) Generic Scene e) Generic Object

Car Woman Outdoors Outdoors, beach 

h) Specific Scene g) Specific Object

Alex Chrysler building Washington D.C. Paris 

i) Abstract Object j) Abstract Scene 

Law Arts Industry, 
Pollution 

Agreement 

Figure 17.  Example images for each level of the visual structure presented. Each image, 
or part of an image can be described at any of the levels of the pyramid. 
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3.2.2 Visual Content Relationships 

As shown in Figure 18, the structure presented can be used to classify elements17 

within each level according to two types of  relationships: syntactic (i.e., related to 

perception) and semantic (i.e., related to meaning). Syntactic relationships can occur 

between elements at any of  the levels of  the pyramid shown in Figure 16, but 

semantic relationships occur only between elements of  levels 5 through 10.   

Semantic relationships between syntactic components could be determined (e.g., 

a specific combination of  colors can be described as warm [98]), but we do not 

include them in our analysis. 

Syntactic relationships include spatial (e.g., next to), temporal (e.g., before), and/or 

visual (e.g., darker than) relationships. Elements at the semantic levels (e.g., objects) 

of  the pyramid can have both syntactic and semantic relationships (e.g., two people 

are next to each other, and they are friends).  Additionally, each relationship can 

be described at different levels (generic, specific, and abstract). Figure 19, shows an 

example of  how relationships at different levels can be used to describe an 

image— relationships between objects can be expressed at the syntactic and 

semantic levels.  

                                                

17 We use the word element here to refer to any image component (e.g., dot, line, object, etc.), depending 
on the level of analysis used. 
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We note that relationships that take place between the syntactic levels of  the visual 

structure can only occur in 2D space18 since no knowledge of  the objects exist (i.e., 

relationships in 3D space cannot be determined).  At the local structure level, for 

example, only the basic elements of  visual literacy are considered, so relationships 

at that level are only described between such elements.  Relationships between 

elements of  levels 5 through 10, however, can be described in terms of  2D or 

3D. 

Type 

Technique 

Global Distribution 

Local Structure 

Global Composition 

Generic Objects 

Generic Scene 

Specific Objects 

Specific Scene 

Abstract Objects 

Abstract Scene

3D 

2D 

Syntactic 

Relations 

Knowledge 

9. 
8. 

7. 
6. 

5. 
4. 

3. 

2. 

10. 

1. 

Semantic  

Relations 

 

Figure 18. Relationships are based on the visual structure 

                                                

18 In some cases, we could have depth information associated with each pixel, without having knowledge 
of the objects. Here we make the assumption that depth information is not available. 
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Figure 19. Syntactic (spatial) (left) and sem ntic (right) relationships that could describe 

Following the work of  [128], we tial relationships into the following 

classes: (1) topological (i.e., how the boundaries of  elements relate) and (2) 

orientational (i.e., where the elements are placed relative to each other). Topological 

relationships include near, far, touching, etc., and orientation relationships include 

diagonal to, in front of, etc. 

Temporal relationships connect elements with respect to time (e.g., in video these 

include before, after, between, etc.), while visual relationships refer only to visual 

features (e.g., bluer, darker, etc.). A more detailed explanation of  relationships is 

provided in [76]. These relationships are included in the MPEG-7 standard [176]. 

.

Syntactic (spatial) Semantic 

Ana Alex Alex Ana 

Generic: standing near Generic: near 

Specific: shaking hands Specific: 0.5 feet from

Abstract: agreeing 
a

this image. 

 divide spa
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3.2.3  Non-visual content 

The focus of  our work is on visual content. For completeness, however, we 

briefly describe some aspects of  non-visual content. 

Non-visual information (Figure 20) refers to information that is not directly depicted 

in the image, but is associated with it in some way. While it is possible for non-

visual information to consist of  sound, text, hyperlinked text, etc., our goal here 

is to present a simple structure that gives general guidelines for indexing.  

Non-visual structure 

Figure 20. Non-visual information. 

Associated information
Text (article, caption, etc.), audio (voice, sound, etc.), 

Author, title, date, 

Location, owner, etc. Physical attributes 

Biographical 
information 

Often, there is biographical information including author, date, title, material, etc.  

This information may relate to the image as a whole, or any of  the items 

contained within the image.  

Associated Information is directly related to the image in some way and may include 

a caption, article, a sound recording, etc. Physical attributes simply refer to those 

that have to do with the image as a physical object. These include location of  the 

image, location of  the original source, storage (e.g., size, compression), etc. As an 
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alternative to our division of  non-visual attributes, similar attributes in [61] were 

divided into biographical and relationship attributes. 

3.2.3.1 Semantic Info mation Table r

Following the work of  [61], we define a Semantic Information Table to gather high-

level information about the image (Figure 21). The table can be used for 

individual objects, groups of  objects, the entire image, or parts of  the image. In 

most cases both visual (i.e., levels 5 through 10 in Figure 16) and non-visual 

information (i.e., associated information in Figure 20) contribute to populating 

the table.  Although the way in which visual/non-visual content contributes to 

populate the fields in the semantic table may vary depending on the specific image, 

the table does help answer questions such as: “What is the subject 

(person/object, etc.)? What is the subject doing? Where is the subject? When? 

How? Why?”  

While the table provides a compact representation for some information related 

to the image, it does not replace the indexing structures presented in previous 

sections. It does point out, however, that the pyramid can be applied to metadata 

as well. In the experiments of  section 3.4, for example, we use the pyramid to 

classify attributes that are generated manually.  
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Figure 21. Visual and non-visual information can be used to semantically characterize 
an image or its parts.  

   Specific  Generic  Abstract 

Who  A. Jaimes, Ana  Man, woman Happy 

What action Discussing MPEG-7 Meeting  
   Research 

What object Monitor VR3230 Video Monitor Hi-tech 

3.3 APPLYING THE PYRAMID 

The pyramid has several important applications. It can be used to classify visual 

descriptors generated manually or automatically, to guide the manual annotation 

process or the creation of  automatic feature extraction algorithms, and to 

improve retrieval in visual information systems by eliminating the ambiguity 

between attributes that could refer to the image at different levels (e.g., color blue 

vs. emotion blue).  

Figure 22. Recursive application of the pyramid. 
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The Multi-level Indexing Pyramid can be applied to any type of  image. In fact, it can 

be applied recursively as illustrated in Figure 22. Any portion of  the image, of  

arbitrary shape, can be described by any number of  attributes, which can be 

classified using the pyramid. 

Specific object attributes (placement, texture, size, etc.) are syntactic. The 

pyramid's specific object level is semantic. The specific objects (e.g., Bill Clinton) 

have syntactic attributes, but levels 5-10 deal only with semantics, so to determine 

the position/other of  a specific object like Bill Clinton, a local structure 

(syntactic) attribute would be used. In other words, the specific object attributes 

in the template are mapped to the syntactic local structure level, not the semantic 

specific object. 

The pyramid can also be used to classify visual attributes in video. It can be 

applied to the entire video or to arbitrary sections of  the video. The main issue in 

the application of  the pyramid to video is the persistence of  the attributes. 

Attribute values will change over time possibly changing the level of  description 

they belong to. Consider an attribute that describes an object in an image that 

contains several objects. If  the camera zooms in so that the object being 

described now occupies the entire frame, the attribute may in effect be describing 

the scene and no longer just an object in the scene. In such case, the attribute for 

the object has become a scene level attribute instead of  an object level attribute. 

It would make more sense, therefore, to have two separate descriptions for the 
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video shot, one before the zoom and one after the zoom. In other words, the same 

classification of  attributes can be applied to several frames in a video as long as 

the attribute values do not change significantly. If  they do the video or shot can 

be divided and the pyramid can be used to classify the attributes of  the individual 

parts. 

3.4  EXPERIMENTS 

Recall that in chapter 2 we defined an index as the data that provides the access 

point to the information in a database. In the experiments that follow, those 

indices are created manually; and indexing refers to manually assigning textual 

attributes to images (i.e., textual descriptions).  

3.4.1 Research Questions 

We performed several experiments using the multi-level indexing pyramid to 

determine if  the pyramid is complete, that is, if  it can unambiguously classify a 

full range of  visual content descriptions for an image in at least one level of  its 

structure, and if  it can improve results in an image retrieval system. The image 

descriptions were primarily produced by two groups of  participants: naïve users 

(i.e., no prior training in indexing of  visual information) and indexers (i.e., trained 

in library science methods in image indexing). We addressed the following 

questions. 
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I. How well can the Pyramid classify terms describing images generated 

by naïve participants, both in a spontaneous19 informal description and a 

structured formal description for retrieval? 

II. How well can the Pyramid classify the attributes generated, by 

participants experienced in indexing visual information, using a 

structured approach? 

III. How well can the Pyramid guide the process of  generating and 

assigning a full range of  indexing attributes to images? 

IV. How well can the Pyramid classify varying conceptual levels of  

information at the semantic level such as specific, generic, and abstract? 

V. Can the Pyramid be used in a retrieval system to improve 

performance? 

For the first four questions completeness and non-ambiguity were used as 

goodness criteria. We performed a qualitative analysis of  the data that resulted 

from several manual indexing experiments to determine if  all of  the descriptions 

could be unambiguously classified into at least one level of  the pyramid.  

                                                

19  Spontaneous descriptions, unlike structured ones, are generated without a controlled vocabulary, 
template, or any other guidance. 
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For the fifth question we implemented an image retrieval system and 

quantitatively compared the results of  using free text queries and text queries that 

specified the desired level in the pyramid.  

In the sections that follow first we give a brief  overview of  the experiments. 

Then we describe an Image Indexing Template [50], which was used in the 

experiments. The Image Indexing Template is useful in analyzing the completeness 

of  the pyramid because it was developed independently by another researcher 

based on empirical data from image indexing experiments.  

After describing the template, we explain the images, the descriptions, and each 

of  the experiments in detail.  

3.4.2 Overview 

In the first group of  experiments, in section 3.4.6.1 to section 3.4.6.3, we obtained 

spontaneous and structured image descriptions by naïve and experienced 

indexers. We classified the descriptions into levels of  the pyramid, and in separate 

experiments used the pyramid to guide the indexing process.  

In the second group of  experiments, in section 3.4.6.4, we mapped the Image Indexing 

Template to the pyramid.  

In the third group of  experiments in section 3.4.6.6 we built a keyword retrieval 

system using the pyramid.  
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3.4.3 The Image Indexing Template 

An Indexing Template was developed independently over several years of  research 

using a data-driven approach from an information sciences perspective by 

Corinne Jörgensen [47][50][53]. The template was developed directly from image 

descriptions generated in several image indexing experiments with the purpose of  

providing a structured approach to indexing. In other words, the template was 

developed so that individuals could use it to manually describe visual content. 

The pyramid, on the other hand, was developed conceptually based on research 

in several fields related to visual information, mainly with the purpose of  

classifying visual attributes for different purposes, including the construction of  

better visual information organization systems.  

Since the template has been tested in image description tasks, it is natural to use it 

experimentally to address the research questions for the pyramid that we have 

posed. Some of  the fields in the template, and their brief  description, are shown 

in Table 1. A person using the template would describe an image to fill in the 

corresponding fields (e..g, describe the personal reaction to the image). 
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Table 1. Image Indexing Template from [47][50] 

1. LITERAL OBJECT (perceptual).  

This class contains items which are classified as being literal (visually perceived) objects.  

2. PEOPLE (perceptual).  

The presence of a human form.  

3. PEOPLE QUALITIES (interpretive).  

Interpretive qualities such as the nature of the relationship among people depicted in an 
image, their mental or emotional state, or their occupation.  

4. ART HISTORICAL INFORMATION (interpretive).  

Information which is related to the production context of the representation, such as Artist, 
Medium, Style, and Type.  

5. COLOR (perceptual).  

Includes both specific named colors and terms relating to various aspects of color value, 
hue, and tint.  

6. LOCATION (perceptual).  

Includes attributes relating to both general and specific locations of picture components.  

7. VISUAL ELEMENTS (perceptual).  

Includes those percepts such as Orientation, Shape, Visual Component (line, details, 
lighting) or Texture.  

8. DESCRIPTION (perceptual).  

Includes descriptive adjectives and words referring to size or quantity.  

9. ABSTRACT CONCEPTS (interpretive).  

Abstract, thematic, and symbolic image descriptors.  

10. CONTENT/STORY (interpretive).  

Attributes relating to a specific instance being depicted, such as Activity, Event, and 
Setting.  

11. PERSONAL REACTION  

Personal reactions to the image.  

12. EXTERNAL RELATIONSHIP  

Comparison of attributes within a picture or among pictures or reference to an external 
entity. 
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3.4.4 Images 

Two groups of  images were used for the experiments (Table 2). The first set, set 

A, consisted of  a random set of  700 images taken from the World Wide Web by 

an automated process. Since images were produced by different institutions and 

individuals for a wide range of  purposes, they included photographs, cartoons, 

illustrations, graphics, and animations, among others. The images in this first set 

did not have any text associated with them. This was problematic for some of  the 

experiments because generating semantic attributes for the images was often not 

possible (e.g., how do you assign an abstract level attribute to a graphic of  a 

button?). Therefore, we sought a second set of  images that would be useful for 

creating semantic descriptions, particularly at the specific and abstract levels. Set 

B consisted of  twelve color photographs of  current news events in different 

parts of  the world and was obtained randomly from an Internet news newsgroup 

[96]. Each image in set B was accompanied by a short descriptive caption. 

Table 2. Summary of image collections used in the experiments. 

Set Description 

Web 
images 
(set A) 

700 images collected randomly from the Internet. Images in this set 
were not accompanied by any text. Images included photographs, 

cartoons, illustrations, graphics, animations, etc. 

News 
images 
(set B) 

12 color photographs collected randomly from an Internet news 
newsgroup. Each image was accompanied by a caption. 

Example caption: US special envoy to the former Yugoslavia Robert 
Gelbard (R) talks to the press as the leader of Kosovo Albanians, 

Ibrahim Rugova (L w/ glasses), listens following their talks in Pristina, 
Yugoslavia March 10. Gelbard came to Pristina March 10 to seek 

peace between Serbian police and ethnic Albanians. 
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3.4.5 Generation of  Image Descriptions 

An image description is a set of  terms or sentences that describe the visual 

contents of  an image. 

The naïve users were forty one beginning Master of  Library Science students20 from a 

variety of  backgrounds who had no previous experience with image indexing, 

retrieval nor with more general indexing and classification procedures. The 

indexers were twenty-two students that had received training in the theory and 

practice of  indexing images in Corinne Jörgensen's “Indexing and Surrogation” 

class. 

Additional descriptions were generated by the author and his colleagues Corinne 

Jörgensen and Ana B. Benitez (Table 3). 

Table 3. Summary of experiment participants. 

Participants Description 

41 Naïve participants No training in indexing of images. 

22 Indexers Trained in Library Science, specifically on image 
indexing. 

3 Researchers 
One of the researchers is an expert on image indexing. 

The other two do not have a background in Library 
Sciences. 

 

                                                

20 Students in Corinne Jörgensen’s class at the Department of Library and Information Studies at the State 
University of New York at Buffalo. 
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Naïve Participants 

Using the methodology reported in [48], forty-one naïve users viewed projected 

images and produced both spontaneous (informal), and retrieval-oriented 

(formal) image descriptions. Each image was projected for two minutes in a 

classroom setting. For the spontaneous descriptions the subjects were asked to 

write the words or phrases that came to their mind as they viewed the images. 

The informal descriptions were lists of  words or short phrases describing the 

images. For the formal descriptions the setup was the same but the participants 

were asked to describe each image as if  they wanted to retrieve it. The formal 

descriptions, therefore, were more complete sentences or long phrases describing 

an image to be retrieved. Four images from set A were randomly selected and each 

image was described by the same individual using both methods. The descriptions 

generated by six of  the forty-one individuals were then randomly selected for the 

experiments.  Since each individual described four images using two methods, we 

obtained a total of  48 image descriptions. This resulted in approximately 500 

terms, 242 from spontaneous descriptions and 241 from retrieval-oriented 

descriptions, with an average of  10.4 terms per image (Table 4).  
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Table 4. Summary of descriptions generated by naïve indexers for the experiments. 

Original 
Participants Indexing methods Images Indexed Images 

Selected 

41 Naïve indexers. Spontaneous and 
retrieval oriented. 

Each individual 
indexed 4 randomly 

selected images 
from Set A using 

both methods. 

Descriptions 
of 6 

individuals 
were selected 

randomly, 
for a total of 

48 image 
descriptions. 

 

Indexers 

The indexers (twenty-two students that had received training in the theory and 

practice of  indexing images) produced structured indexing records using the 

Indexing Template described above for the two sets of  images (Sets A and B). The 

indexers used a controlled vocabulary which they developed for the project using 

manually selected terms from existing thesauri (AAT [44] and TGM I [54]). The 

terms were selected based on their appropriateness for describing visual content 

and indexers were able to add free-text terms when no appropriate thesaurus 

term was present. After a class discussion these terms were added to the 

thesaurus. Images were indexed online through a web-browser interface with 

multiple frames displaying the image to be indexed, the Indexing Template, and the 

controlled vocabulary. Indexers were presented with a random selection from the 
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image collection and were not allowed to “choose” which images they indexed; 

they indexed a total of  approximately 550 images. 

Table 5. Summary of descriptions generated by indexers. 

Original Participants Indexing Methods Images Indexed 

22 persons trained in 
Library Sciences, 

particularly in image 
indexing. 

Structured indexing using 
the Indexing Template 

Sets A and B; approx. 
550 images. 

Indexers were instructed to index the “visually relevant” and “visually striking” 

content of  the images, rather than attempting to fill each slot of  the Indexing 

Template. Indexers spent an average of  ten to twenty minutes indexing each image. 

Inter-indexer consistency was developed through discussion of  the indexing 

process and comparison of  practice indexing records in class, and was assisted by 

the controlled vocabulary. 

Researchers 

The author and his colleagues Corinne Jörgensen and Ana B. Benitez generated 

spontaneous descriptions for the twelve images of  set B. In addition, they 

generated descriptions for the images of  set B using the Pyramid as a guide for 

indexing (Table 6).  

Table 6. Summary of descriptions generated by the researchers. 

Participants Description 

3 researchers. 
12 images from set B using the pyramid 

to guide the indexing and generating 
spontaneous descriptions. 
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3.4.6 Experimental Results 

As was mentioned earlier, three groups of  experiments were performed. The first 

group consisted of  several experiments that used the image descriptions 

generated by the three groups of  participants (naïve, indexers, researchers). These 

experiments, described in detail below, are summarized in Table 7. 

Table 7. Summary of the experiments. 

 Naïve  Indexers Researchers 

Spontaneous 
descriptions Experiment IA None Experiment IIA  

Spontaneous for 
retrieval Experiment IB None None 

Structured 
descriptions None Experiment III None 

Using pyramid None None Experiment IV 

Using captions only None None Experiment IIB 

The results for the second group of  experiments, in which the Indexing Template 

was mapped to the pyramid are presented in section 3.4.6.5. The results for the 

third group of  experiments, in which we build a retrieval system using the 

pyramid are presented in section 3.4.6.6. 

The data sets for the first two groups of  experiments are somewhat small, so 

those experiments can be considered preliminary and exploratory. However, the 

results as aggregated across the experiments suggest that further work in 

developing a conceptual approach to image indexing (such as that instantiated in 

the Pyramid) would be beneficial. The dataset for the last experiment is large 
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enough to demonstrate the benefits of  using the pyramid structure in a retrieval 

system. 

3.4.6.1 Classifying Spontaneous Descriptions 

Experiment I addressed research question I by determining how well the Pyramid 

classifies terms from naïve participants’ descriptions. The author and his 

colleagues Corinne Jörgensen and Ana B. Benitez classified the six participants’ 

242 terms from spontaneous descriptions and 241 terms from retrieval-oriented 

descriptions for the same four images from image set A into levels of  the 

Pyramid. 

As column IA in Table 8 indicates, attributes were generated for all levels of  the 

pyramid except for the lowest syntactic levels for spontaneous descriptions (Global 

Distribution and Global Composition). This is in agreement with previous 

analysis of  spontaneous descriptions demonstrating that lower-level descriptors 

are used less frequently in spontaneous description tasks [51].  

When naïve participants were asked to describe images more formally in a retrieval 

context (column IB in Table 8), we see that attributes occur at the lower syntactic 

levels as well as with descriptions generated by indexers. It should be noted that 

the terms from the spontaneous and retrieval-oriented descriptions were not 

necessarily the same; different terms at different levels of  the Pyramid were used 

in the spontaneous and structured descriptions. Comparative analysis of  the two 
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describing tasks data is interesting but not directly relevant to the questions 

presented here, which focus on whether a range of  attributes for each task is 

accommodated at all ten levels of  the Pyramid. The results indicate that the 

Pyramid is able to classify a variety of  attributes as described by naïve users in 

both a spontaneous describing task and in a more formal, retrieval-oriented task.  

Table 8. Mapping of image attributes to the pyramid levels as generated by different 
methods. The X in the table indicates that attributes were generated at the corresponding 
pyramid level for the corresponding experiment. Blank boxes indicate that no attributes 

were generated at that level. 

Pyramid 
Level/Experiment 

IA 

Spontaneous 

IB 

Retrieval 

IIA 

Researcher 

IIB 

Caption 

III 

Struc-
tured 

1. Type/Technique X X   X 

2. Global 
Distribution  X X  X 

3. Local Structure X X X  X 

4. Global 
Composition  X X  X 

5. Generic Objects X X X X X 

6. Specific Objects X X X X X 

7. Abstract 
Objects X X X X X 

8. Generic Scene X X X X X 

9. Specific Scene X X X X X 

10. Abstract Scene X X X X X 
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The news images in set B were used in experiment II. Corinne Jörgensen and 

Ana B. Benitez spontaneously described a set of  five randomly selected images each 

and the descriptions were classified into the pyramid levels by the author, who did 

not describe those images (column IIA in Table 8). The Pyramid and the 

Template were not used. Although Corinne has extensive experience in image 

indexing and Ana does not, no major differences in the overall range and types 

of  attributes generated between the two were found. Both described objects, 

events, people, as well as emotions and themes. Note that terms were present in 

all levels except that of  Type/Technique. Example descriptions are shown in 

Table 9. 

Table 9. Sample spontaneous descriptions of news images by one participant 
experienced in image indexing (1) and one participant not experienced in the task (2). 

Researcher 1 Researcher 2 

Airport 

Greek policeman 

Guns 

Outdoor 

Duty 

Terrorism 

Protection 

Death 

Interview 

Outdoors 

Three men 

Reporters 

Grim expressions 

Microphones thrust in face 
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In an additional experiment, we mapped the words from the captions of  each of  

the images in set B to the pyramid. Not surprisingly, the captions had attributes at 

the semantic levels (column IIB in Table 8), but none at the syntactic levels. An 

example caption is presented in Table 2.  

Information appeared on all of  the semantic levels of  the Pyramid across both 

the authors’ descriptions and the captions; however, with the caption information 

there were more terms which belong in the specific levels (again, a not 

unexpected result). Specific level information depends on the observer’s prior 

familiarity with the particular object, person, or place depicted. Interestingly, the 

mapping results for the captions are more closely related to the “spontaneous” 

descriptions than to descriptions in a retrieval context. 

Overall, the experiments with spontaneous and caption descriptions show 

support for the ten-level Pyramid. We were able to uniquely classify all of  the 

attributes generated into at least one level of  the pyramid. 

3.4.6.2 Classifying Structured Descriptions 

Experiment III addressed how well the Pyramid can classify the attributes that 

result from a structured approach to indexing. Structured indexing implies the use 

of  indexing tools such as a metadata structure and a controlled vocabulary, as 

well as training in the process of  indexing. For this experiment, structured image 

descriptions generated using the Indexing Template were used. Although the 
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indexers were instructed to index only “salient” aspects of  each image, a large 

number of  attributes were generated in each case. There seemed to be an overall 

tendency to “over-index” the image using the template. Additionally, students’ 

indexing was being graded, prompting them to be very thorough. This, however, 

produced in-depth indexing for each image. Thirty-three randomly-selected 

indexing records for 33 unique images generated by the 22 student indexers for 

images from Set A were mapped to the Pyramid by the author and his colleagues 

(approximately 1,050 terms). Each of  the researchers performed mapping for a 

different set of  images. 

Overall, the attributes from the Indexing Template were mapped at all levels of  

the Pyramid, and each indexer used attributes from several levels of  the Pyramid 

(Table 10). However, only one term occurs at the Specific Scene level across all of  

the indexers. This is to be expected since there was no descriptive text attached to 

these images, without which it is often not possible to derive those types of  

attributes. In the case of  the naïve users’ descriptions, however, “accuracy” was 

not such a concern and they did in fact supply specific terms with no concrete 

knowledge of  the correctness of  these terms. 

It is interesting to compare the mapping to the pyramid of  the indexers’ 

descriptions with the mapping of  the spontaneous descriptions of  the naïve users 

(Table 8 columns IA and III). Note that the mapping for naïve participants in the 

retrieval task (column IA) occupies the same levels of  the pyramid as mapping 

 



109
 
 

 

for the indexers in the structured indexing task (column III). This consistency in 

the descriptor levels in the pyramid in the two tasks suggests that when 

respondents were asked to describe the images as if  they wanted to find them 

(retrieval mode), their descriptions become more “formal” or structured, as was 

shown previously in [50]. This also suggests that the needs of  image searchers 

may be more closely suited by a structured method (e.g., the Pyramid being 

tested) to classify image descriptions. Other interesting dimensions include the 

consistency in the levels of  description between different types of  images 

(photographs, graphics, etc.). 

This preliminary analysis demonstrates good correspondence between the index 

terms and the levels of  the Pyramid. This suggests that the Pyramid’s conceptual 

structure can be used to classify a wide variety of  attributes produced as a result 

of  a structured indexing process such as that using the Indexing Template. While 

mapping of  the descriptors to the levels of  the Pyramid was straightforward in 

most cases, some further guidelines would be beneficial for performing such 

mappings. The Pyramid is designed both to describe an entire image and to be 

used recursively to describe specific areas of  an image. In the mapping process, 

the capability of  the Pyramid to be used recursively resolved some of  the issues 

encountered during the mapping. For example, an individual object in an image 

could be described using several attributes (e.g., color); with respect to the object, 

the color is a global distribution measure, but with respect to the image it is an 
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attribute at the local structure level. These results suggest that the Pyramid itself  

may be a candidate for guiding the image indexing process. 

Table 10. Sample image indexing record terms from the Indexing Template mapped to 
the Pyramid levels. 

IMAGE TERM PYRAMID LEVEL 

painting  1. Type/Technique 

oil  1. Type/Technique 

cracked  2. Global Distribution 

Red, white 3. Local Structure 

background  3. Local Structure 

rectangle  3. Local Structure 

center  3. Local Structure 

eye level  2. Global Composition

flag  5. Generic Object 

historical landscape 6. Generic Scene 

patriotism  9. Abstract Object 

Pride 10. Abstract Scene 

 

 

 



111
 
 

 

3.4.6.3 Generation of  Indexing Based On The Pyramid 

Experiment IV tested how well the Pyramid guides the process of  generating and 

assigning a full range of  indexing attributes to images. In this experiment, two 

image sets were indexed using the Pyramid. 

For the first part of  the experiment, we (the author and Ana B. Benitez) 

independently indexed a total of  31 images of  Set A. The indexing of  this set of  

images was performed on randomly selected, unseen images, not used by the same 

author in previous mapping work or seen in any other context. This indexing of  

web images produced 287 terms. In contrast to the indexing performed by the 

student indexers, no controlled vocabulary was used.  

Sample image descriptions for this work using the Pyramid as a guideline are 

shown in Table 11. The major conclusion from this experiment is that 

descriptions for each level of  the Pyramid were easily generated. Although the 

examples do not contain Specific Object and Specific Scene descriptions, some of  

these were populated based on the researchers’ general knowledge about the 

content depicted in the images. It should be noted that the descriptions generated 

here are shorter than the descriptions generated by student indexers using the 

Indexing Template (on average 9.3 terms per image for the authors versus 10.4 

for the student indexers), perhaps as a result of  a lack of  a controlled vocabulary. 

However, the goal here was not to demonstrate the completeness of  indexing 

done using the Pyramid but to demonstrate that the levels of  the Pyramid can 
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suggest adequate conceptual guidance for the process of  indexing and that all 

Pyramid levels are relevant to the visual content of  an image. Indeed, the results 

suggest that this is the case.  

Table 11. Sample image descriptions generated using the Pyramid as a guideline. 

Pyramid Level Image 1 terms Image 2 terms 

1. Type/Technique color photograph color photograph 

2. Global Distribution white, brown clear 

3. Local Structure curves curves, lines 

4. Global Composition centered, eye level, 
close-up leading line 

5. Generic Object person, man, head, 
neck, shirt 

ducks, lake, mountain, 
bridge, vegetation 

6. Generic Scene portrait, indoors outdoor, daytime, 
landscape 

7. Specific Object None None 

8. Specific Scene None None 

9. Abstract Object efficiency family 

10. Abstract Scene None vacation dream 

The second part of  Experiment IV followed the procedures for the web image 

indexing using the Pyramid. Two researchers (one of  whom also participated in 

the web image indexing) indexed five images each from Set B (news images), 

using the Pyramid again to guide the indexing (135 terms or 13.5 terms per 
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image). Results of  the mapping were identical to the mapping of  spontaneous 

descriptions for the previous Set A, with information lacking only in the Specific 

Object and Specific Scene Levels. When captions are used, these levels are 

populated as well (e.g., Mirage 2000 Jet Fighter; Aden, Yemen).  

Using the pyramid, the participants generated descriptions relevant to more levels 

of  visual content description than those that were generated by naïve indexers in 

the spontaneous tasks without the pyramid (i.e., global distribution and global 

composition descriptions were entered). This is similar to results reported in [50], 

which increases the images’ utility and their access points for retrieval. Therefore, 

the Pyramid is capable of  generating attributes in the same areas covered by the 

image Indexing Template. 

3.4.6.4 Levels of  Indexing 

The fourth research question concerns how well the Pyramid structure can 

classify varying levels of  information at the semantic level. The results from the 

news image indexing using the Pyramid are most instructive for this question 

because the web images that we collected did not include any textual information 

useful for assigning semantic level attributes. In contrast, the news images were 

accompanied by captions (see examples in Table 2) that provided a lot of  

information that could be used to assign semantic labels to the images.  
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The generic and specific levels of  data are handled well by this conceptual 

structure, although we did find important open issues. One of  the significant 

questions was the level at which a description should be placed. The choice 

between generic and specific, for example, was sometimes difficult since 

annotations at these levels may depend on the specific application or context (e.g., 

generic object: cat; specific object: Siamese cat, or generic object: Siamese cat; 

specific object: Felix). The distinction between object and scene, at the abstract 

level, also proved to be challenging in some cases, since the same abstract term 

could apply to a single object or the entire scene (e.g., flag or scene representing 

patriotism). Although it is perfectly valid to have the same term at two different 

levels, we found that indexers were sometimes unsure about the assignment. As 

for the type of  terms to use, the Indexing Template seemed to provide a more 

comfortable fit in some cases since it elicits terms in more detailed categories 

(e.g., abstract theme, symbol, and emotion at the abstract levels). For example, the 

Pyramid does not make a distinction between object and event, which is made by 

the template. Lastly, we found that syntactic level descriptions (e.g., global 

distribution) were easier to generate for some images than others (e.g., the global 

color blue in a texture image from the web vs. the global color of  a news image). 

In many applications, however, indexing at the syntactic levels can be performed 

using automatic techniques. 

Abstract qualities were slightly more problematic for indexers to distinguish and 

in some cases these were not felt to be particularly intuitive. The Pyramid 
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structure defines an Abstract Object as a localized entity with abstract meaning 

(e.g. flag = patriotism); if  the abstraction cannot be localized it becomes an 

Abstract Scene (e.g. democracy).  

3.4.6.5 Mapping from the Template 

We manually mapped attribute types from the Indexing Template to the Pyramid. 

Some types mapped easily on a one-to-one basis (e.g. Visual Elements attributes 

to Local Structure). In other cases though, attributes from several different facets 

in the Indexing Template populate the same Pyramid levels. This was primarily a 

matter of  resolving different levels of  analysis. For instance, the Indexing 

Template distinguishes between “Living Things” and “Objects,” while the 

Pyramid includes both of  these as “Objects.” The Pyramid describes the generic 

and specific naming levels explicitly, while the Indexing Template left this 

component to standard online bibliographic system implementation using 

“descriptors” (general keywords) and some attributes at the specific level are 

included in the template as identifiers (proper nouns).  

The Indexing Template seemed to provide a more comfortable “fit” for some of  

these more abstract terms. For instance, term such as “democracy,” “patriotism,” 

and “respect,” are perhaps more easily characterized by the more finely 

distinguished theme, symbol, and emotion of  the Indexing Template than 

abstract object or scene. It may be that at the “abstract” level the object or scene 

distinction is less useful than a finer-grained analysis, or perhaps than a 
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unitaryapproach (a single “abstract” level). Additionally, the Pyramid does not 

make a distinction between object and event, which is a natural part of  

descriptive language; this distinction is usefully made by the template. Both of  

these are open issues and bear further consideration and testing. 

Mapping the template to the pyramid demonstrated that the pyramid is able to 

classify the wide variety of  attributes that appear in empirical research. 

Table 12. Image indexing template attributes mapped to pyramid levels. 

INDEXING 
TEMPLATE 

(GROUP & 
ATTRIBUTE 

TYPE) 

INDEXING 
TEMPLATE 

(ATTRIBUTE) 
EXAMPLE PYRAMID LEVEL 

EXTERNAL 
INFORMATION  

 > Image ID  NA 

 > Creator/Author  NA 

 > Title  NA 

 > Publisher  NA 

 > Date  NA 

 > Image Type color, X-ray, 
graphics, etc. Type/Technique 

 > Access Conditions  NA 

 > Technical 
Specifications  

resolution, file 
size, etc. NA 

INFERRED 
INFORMATION  
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  >  “Environment”  >> When - time in 
image  

Middle Ages, 
summer Generic Scene 

 >> Where - General city, rural, 
indoor, office Generic Scene 

 >> Where - Specific Paris, Chrysler 
Building Specific Scene 

  > Subject/Topic   
overall 

subject/theme: 
nature 

Abstract 
Object/Scene 

  > Medium   oil, watercolor, 
digital image Type/Technique 

  > Symbolism  Garden of Eden, 
afterlife 

Abstract 
Object/Scene 

  > “Why” >> Emotions/Mental 
States  sadness, laughter Abstract 

Object/Scene 

 >> Relationships brothers, 
romance 

Abstract 
Object/Scene 

  > “Miscellaneous” >> Point of 
view/Perspective 

bird’s-eye, close-
up Global Composition 

 >> Style abstract, realism, 
etc. Abstract Scene 

 >> Genre landscape, 
portrait Generic Scene 

 
>> 

Atmosphere/overall 
mood 

gloomy, 
mysterious 

Abstract 
Object/Scene 

VISUAL 
ELEMENTS  

  > Color >>  Color Red, blue Global Dist/Local 
Strc.  Structure 

 >>  Color Quality dark, bright Global Dist/Local 
Strc.  Structure 
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 >> Placement  center, overall, 
foreground Local Structure 

  > Shape  (>> Placement) Square, 
elongated, curved 

Global Dist/Local 
Strc. Structure 

  > Texture  (>> Placement) smooth, shiny, 
fuzzy 

Global Distribution, 
Local Structure 

LITERAL OBJECTS  

  > Category - 
General  What group; tool Generic/Specific 

Objects 

  > Type - Specific (>> Placement) What it is - 
hammer 

Generic/Specific 
Objects 

 >> Shape   

 >> Texture   

 >> Size   

 >> Number   

 >> Color   

LIVING THINGS  

 > Type human or what 
animal Generic Object 

 (>> Placement)   

 >>  Size large, very small  

 >> Gender male, female, 
undetermined Specific Objects 

 >> Age  Specific Objects 

 >> Number   

 >> Pose seated, standing, 
lying down 

Generic/Specific 
Scene 
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 >> Name Ghandi Specific 
Object/Scene 

 >> Physical 
Action/Event  

running, talking, 
football 

Generic/Specific 
Scene 

 >> Status  occupation, 
social status 

Abstract 
Object/Scene 

COLLATERAL 
INFORMATION > Caption   

 > Related Text   

 > Voice Annotations   

 

3.4.6.6 The Pyramid in a Retrieval System 

We built a retrieval system to determine if  access to images improves when the 

pyramid structure is used. In the following sections we discuss these experiments.  

Images 

Three sets of  images were used for the experiment. The first set of  images is the 

same set A of  section 3.4.4 (703 images collected randomly from the internet). 

The second set of  98 images was a sample drawn from the MPEG-7 content set 

(CDs 6-8) [193]. Finally, the third set of  images (49 images) was a sample drawn 

from the MPEG-7 Melbourne Photo Database. Different sets of  images were 

used in order to achieve a full range of  image types and content. 
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Indexing 

The images were indexed using the indexing template of  section 3.4.3. The 

indexing was done with the same web-based tool described in section 3.4.5 by 

student indexers at the State University of  New York at Buffalo, and by the 

researchers (Ana B. Benitez, Corinne Jörgensen, and the author). A limited 

Controlled Vocabulary was used to improve indexing consistency but terms could 

be added which were not in the Controlled Vocabulary. In order to improve 

consistency in the indexing terms, one of  the researchers reviewed the terms 

added by the participants and made minor corrections (e.g., if  two similar terms 

were added by the participants, only one was used). 

Indexing terms from the template were mapped to each level of  the pyramid. A 

new indexing attribute was added to the template to accommodate Genre indexing 

terms at a finer indexing level. Terms that had been placed in Genre included 

overall types such as still life and portrait, and general genre classification of  the 

image, such as “science fiction” or “action and adventure.” Within the template, 

these latter terms were moved to a separate indexing group called Category. The 

pyramid structure, however, was not changed in any way and indexing terms in 

the Category group of  the template were mapped to the pyramid in the same way 

that other terms were mapped. Most of  the terms in the template’s Category 

group mapped to the abstract scene level of  the pyramid. 
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The images from the Melbourne Photo Database were indexed using the pyramid 

as the starting point, mainly to complement the set that was indexed using the 

template. 

Searching 

In total 850 images were indexed. In order to use the multi-level indexing 

pyramid for retrieval, we constructed a search engine to allow searching using 

terms at any level of  the pyramid: Type/Technique, Global Distribution, Local 

Structure, Global Composition, Generic Object, Specific Object, Abstract Object, Generic 

Scene, Specific Scene, and Abstract Scene. 

A search with a term in the Local Structure field, for example, would only search 

for images that contain that term at the same pyramid level (i.e., Local Structure). 

In order to perform the comparisons with keyword search, we also implemented 

a second search engine which did not use the pyramid structure. The interface of  

this search engine, then, contains only a keyword search field. In this scenario, a 

search for a term will search all the terms for each image, without considering the 

levels of  the pyramid.  

Evaluation 

In both search engines implemented, we used the same database of  images, with 

the same terms. One of  the advantages that became very evident is that if  an 

image has the same term in more than one level, ambiguity will occur if  the 
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pyramid structure is not used. For example, an image with a small blue circle in 

the center may have the attribute "blue" at the local structure level. The same 

image, may have an overall blue color, so it may have a "blue" attribute at the 

Global Distribution level. A second image may have an overall blue, but not a 

blue circle (or local blue element). A person searching for images that contain a 

blue area, might want to use the "Local Structure: blue" query. This query will 

specifically target an image with a local blue. Using the second search interface, 

with a single field, will produce all images that have blue, whether it is local or 

global. This can significantly increase the number of  errors: many images that 

should not be retrieved will be returned by the system.  

To see whether this ambiguity is common, we computed the number of  times 

that terms repeat for the same image at different levels (e.g., the blue circle/blue 

image case). The set of  850 images contained a total of  18,975 terms. 3,216, or 

17% of  those terms occur more than once, at different levels in the same images. 

In total, approximately 700 images contained terms that repeated at different 

levels. In other words, in searching 700 out of  850 images, there is ambiguity if  

the pyramid is not used, because the same term is used to describe visual 

attributes at different levels. This ambiguity in 83% of  the images is quite 

significant and underlines the importance of  structures such as the one presented. 
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For the purposes of  understanding visual information and users, it is important 

to analyze the reasons for these ambiguities. The same term is used to describe 

the same image at different levels in the following scenarios: 

• A term that can be used to describe an object is used at the abstract 

level. For example, a portrait of a basketball player might be labeled as 

“basketball” even though a basketball is not shown in the picture.  

• The term blue could be abstract or syntactic. This shows why those two 

levels are important. If the distinction is not provided, a query for 

"blue" will be ambiguous (i.e., the color blue or the feeling?). Using the 

pyramid level, the meaning would be unambiguous. 

 

Some examples of  terms that repeat at different levels for the same image are 

shown in the Table 13. There are syntactic as well as semantic terms. In addition, 

note that terms at different levels of  the pyramid repeat, meaning that each level 

proposed helps disambiguate between such terms.  
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Table 13. Example of terms that repeat at different levels of description of the same 
image. 

No. 
appearances 

in a 
description 

Keywords 

10 Foreground 

9 center, left, upper, foreground, right 

8 center, left, upper, foreground, lower 

7 center, right, left, one, bottom , GREY 

6 bright, center, background, left, upper, right, bust, one, small, grey 

5 
curved, large, right, left, metallic, rectangle, center, grainy, floating, 
foreground, smooth, lower, citizen, smooth, interior, front, dull, one, 

floating, grey 

4 

bright, blue, flowery, right, center, red, left, circle, flat, foreground, 
ground, background, black, white, building, sports, faint, tennis, 

clear, male, bright, smooth, dull, signs, river, glasses, irregular, large, 
adult, human, standing, clothing, grainy, black, white, green , grey, 

overall, top, upper 

3 

adult, smiling, young, pink, bluish, heart, aircraft, airplane, silver, 
ark, male, blurred, irregular, map, ship, space, bright, pale, roost, 
basketball, sports, miniature, dog, view, glossy, slot, tree, leafy, 

theater, clothing, straight, space, sports, christmas, many, 
accessories, wooden, house, tableware, scuba, tram 

2 

female, standing, friendship, chair, cartoon, fantasy, furnishing, 
furry, clouds, confusion, airplane, hostility, university, lasalle, lake, 

landscape, light, vegas, carnival, lights, student, teacher, writing, 
brown, seated, aircraft, class, equipment, olive, sandy, starbust, 

farming, watery, death, fantasy, dimensional, age, hell, trees, islands, 
child, house, pebbled, etc. 

 

In the retrieval experiment that follows we are not measuring the accuracy of  the 

indexing terms, but rather the retrieval performance improvements obtained 

when queries include a keyword and the level of  the pyramid they refer to. In 
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other words, we make the assumption that all indexing terms have been correctly 

assigned. In Table 14, we compare "free text" query results not using the pyramid 

with “pyramid queries” in which the pyramid is used to specify a level of  retrieval. 

Precision measures the percentage of  retrieved images that are relevant and recall 

measures the percentage of  relevant images that are retrieved. The recall for free 

text and pyramid queries is 100% in both cases. All of  the relevant images are 

retrieved using both approaches since we assumed that the terms were correctly 

assigned.  The precision, therefore, is 100% for the pyramid queries, but varies 

with the free text queries as indicated in the table above. This occurs because 

images that are not relevant are returned when the pyramid level is not used. As 

shown in the table, precision can be as low as 20% if  the pyramid is not used; the 

pyramid disambiguates those terms that may be used to describe visual content at 

different levels.   

The database we used contained a significant amount of  variation, and the 

experiments show the possible improvements if  the pyramid is used. It is again 

important to note that not all the levels are necessary in every application or for 

every image. 
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Table 14. Comparison of free text and pyramid queries. 

Indexing 
Term 

Free Text 
Matches 

Pyramid 
Matches 

Pyramid 
Level 

Free Text 
Errors 

Free 
Text 
Precision

Geometric 11 7 Loc Struct 4 63% 

Friendship 26 22 Abs Scene 4 85% 

Coarse 6 3 Glob Distrib 3 50% 

Cartoon 29 19 Type/Tech 10 65% 

Clouds 4 3 Gen Obj 1 75% 

Shiny 36 34 Loc Struct 2 94% 

University 10 5 Gen Scene 5 50% 

Lake 18 1 Gen Scene 17 94% 

Landscape 61 58 Gen Scene 3 95% 

University 10 5 Gen Scene 5 50% 

Landscape 61 58 Gen Scene 3 95% 

River 7 6 Gen Obj 1 85% 

Sculpture 16 6 Type/Tech 10 62% 

Gold  26 4 Glob Distrib 22 84% 

Pale 57 12 Glob Distrib 45 78% 

Moon 5 1 Spec Scene 4 20% 

Happiness 91 79 Spec Scene 12 86% 

Desire 7 4 Abs Obj 3 57% 

 

An interesting option, which we did not test, is to combine terms from different 

levels of  the pyramid to perform the queries. For example, a term for Local 

Structure could be used in conjunction with a term for Generic Object.  
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3.5 DISCUSSION 

We presented a Multi-Level Indexing Pyramid and results on qualitative analysis of  

data from several experiments. While the research demonstrated that the 

distribution of  attributes among the levels of  the Pyramid varies depending upon 

who generated them (indexers, researchers, naïve participants) and upon the task 

(describing, indexing, retrieval), we found no instances where an attribute could not 

be classified into a level of  the Pyramid. In addition, the Pyramid provides 

guidance to indexers by making explicit specific, generic, and abstract levels of  

description. Especially useful is the recursive nature of  the Pyramid, which 

permits associations among objects and attributes (e.g., can be applied to a scene, 

object, section of  an image, etc.). 

The limitations of  the experiments are the small number of  images used and the 

use of  student indexers. However, the limited number of  images still produced a 

large number of  terms, which were mapped in the experiments and were more 

than adequate to demonstrate that the Pyramid levels can be used to classify a 

wide range of  terms. The student indexers produced high-quality indexing 

records, and the data generated by the non-student participants did not differ 

from data gathered by other methods. Although we would not expect a change in 

the outcome of  the analysis if  we used data from professional indexers, it would 

certainly be useful to perform more experiments using records generated by 

groups of  experts.  
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Our analysis of  the results shows that all of  the levels of  the pyramid were used 

in at least one of  the tasks, and that the pyramid was able to unambiguously 

classify all of  the descriptions that were generated. Given the wide range in the 

types of  images utilized, and the variety of  the tasks and participants we can 

argue that the Pyramid is a robust conceptualization of  visual image content. The 

results of  these experiments support the use of  the Pyramid both as a method of  

organizing visual content information for retrieval and as a method for 

stimulating additional attributes, which could be added to existing records. 

Additionally, the Pyramid’s ten-level structure could be used to represent 

attributes generated by both manual and automatic techniques. 

Some of  other key issues in applying the pyramid include whether the distinction 

between the different levels is clear and if  the definition of  the levels is 

independent of  the user, domain, and task, among others. Although we did not 

perform experiments specifically to answer these questions, we did analyze data 

from a fairly wide variety for several distinct tasks. Our analysis suggests that in 

some cases the distinctions between the levels can be difficult (e.g., difference 

between abstract and generic levels), particularly if  the person using the pyramid 

is unfamiliar with those concepts.  However, we argue that with a clear 

understanding of  the concepts that define the pyramid and the ways in which it 

can be applied, those difficulties can be overcome. Furthermore, in our 

experiments we did not find anything to suggest that the definition of  the levels 

depends in any way on external factors such as the user, domain, or task. This 
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might be partly due to the fact that the structure was developed considering the 

work in different fields, but without relying on any specific model, domain, or 

task. 

A different, but related and very important issue has to do with indexer 

consistency. Even if  the levels of  the pyramid are clearly defined for several 

indexers, their interpretation might be subjective and vary over time, or errors 

might be made during the indexing process. As with the Image Indexing Template, 

one common practice way to alleviate the problem is to use controlled term 

vocabularies for the indexing and or search process.  

3.5.1 Extensions to the Framework and Future Work 

Future research includes testing the Pyramid more widely, using additional 

material and more experienced indexers to generate descriptors, as well as 

exploring indexer training using the Pyramid. Other important work should focus 

on determining whether some combination of  the pyramid with another 

structure such as the Indexing Template would be useful, and the circumstances 

under which each may be a more appropriate choice to guide indexing.  

The goal of  these experiments was not to test one against the other but rather to 

substantiate that the range of  attributes addressed by the Pyramid is adequate. 

The experimental work pointed to some differences, as discussed earlier, between 

the Pyramid and the Indexing Template. Differences that could fruitfully be 
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explored between the two structures concern the range of  attributes produced by 

each, the differences among the attribute types generated and the levels 

populated, and the number of  attributes produced by each, as well as the 

communities that would find these structures most useful.  

One very interesting question to investigate is whether the Pyramid can serve as 

an entry point in providing access to images within a specific domain. While we 

tested the range of  attributes classifiable within a generalized domain (the web 

images), levels of  the Pyramid may be populated differently across different 

domains. For example, in a collection of  satellite photographs syntactic level 

attributes, even if  assigned manually, could be of  great importance. In contrast, in 

a collection of  news images the syntactic levels of  the pyramid may not be 

necessary and most or all of  the descriptions will be at the semantic levels.  

As image collections become even more diverse and accessible, refinements to 

target specific types of  images, video, and audio will become even more 

important. The current research has produced data that would aid in exploring 

these questions as well. 

Additional experiments worth pursuing include determining if  using the pyramid 

causes a time reduction in indexing, and if  it can be used to facilitate browsing. 

Testing the pyramid, in a retrieval framework, against other structures (not only 

keyword search) would be worthwhile. 
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Finally, the pyramid can be extended to other aspects of  multimedia. In [142] we 

proposed the application of  the pyramid to audio without finding any important 

limitations. No experiments have been performed with audio descriptions, 

however. The application of  the pyramid to video was described in section 3.3, 

but no experiments have been performed to identify the open issues.  

3.6 SUMMARY 

In this chapter we presented a novel ten level pyramid structure for indexing 

visual information at multiple levels. The structure is suitable for making syntactic 

and semantic as well as perceptual and conceptual distinctions. For completeness, we 

presented the semantic information table, which represents semantic information 

extracted from visual and non-visual data. The multi-level pyramid allows 

classification of  visual attributes and relationships at multiple levels.  

Several experiments were performed to evaluate the application of  the pyramid 

presented in this chapter. First, descriptions were generated manually, using the 

pyramid and using an image-indexing template developed independently over 

several years of  research into image indexing [50]. The descriptions were 

generated by individuals trained in indexing (i.e., with an information sciences 

background) and also by individuals without any prior indexing experience (i.e., 

naïve users). Experiments were performed to answer several questions: (1) How 

well can the Pyramid classify terms describing image attributes generated by naïve 

users for retrieval? (2) How well can the Pyramid classify the attributes that result 
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from a structured approach to indexing? (3) How well can the Pyramid guide the 

process of  generating and assigning a full range of  indexing attributes to images? 

(4) How well can the Pyramid classify varying semantic levels of  information 

(specific, generic, and abstract)?  

The experiments presented suggest that the Pyramid is conceptually complete 

(i.e., can be used to classify a full range of  attributes), that it can be used to 

organize visual content for retrieval, to guide the indexing process, and to classify 

descriptions generated manually. In a related set of  experiments, it was shown 

that using the pyramid for retrieval tasks was more effective than using keyword 

search alone. This improvement occurs because a search in which the level of  the 

pyramid is specified helps eliminate ambiguous results. For example, a query with 

the word “blue” could refer to the color (a syntactic level attribute), or to the 

emotion (a semantic level attribute). A simple “blue” query can easily return the 

wrong results if  the user is interested in the semantic blue, and not in the 

syntactic blue. Were examined 29 keywords from descriptions generated by 

different individuals for 850 images, and found that using the pyramid resulted in 

improvements in precision between 5% and 80%. 
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4 LEARNING STRUCTURED 

VISUAL DETECTORS  

4.1 INTRODUCTION 

In this chapter, we present a new framework for the dynamic construction of  

structured visual object and scene detectors from user input at multiple levels. We 

also present a study of  human observer’s eye tracking patterns when observing 

images of  different semantic categories.  

    

 

 

In the Visual Apprentice, a user defines visual object or scene models via a 

multiple-level definition hierarchy: a scene consists of  objects, which consist of  object-

parts, which consist of  perceptual-areas, which consist of  regions. The user trains the 

system by providing example images or videos and labeling components 

according to the hierarchy she defines (e.g., image of  two people shaking hands 

contains two faces and a handshake). As the user trains the system, visual features 

(e.g., color, texture, motion, etc.) are extracted from each example provided, for 

each node of  the hierarchy (defined by the user). Various machine learning 

algorithms are then applied to the training data, at each node, to learn classifiers. 

The best classifiers and features are then automatically selected for each node 
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(using cross-validation on the training data). The process yields a Visual Object or 

scene Detector (e.g., for a handshake), which consists of  an hierarchy of  classifiers as 

it was defined by the user. The Visual Detector classifies new images or videos by 

first automatically segmenting them, and applying the classifiers according to the 

hierarchy: regions are classified first, followed by the classification of  perceptual-

areas, object-parts, and objects. We discuss how the concept of  Recurrent Visual 

Semantics can be used to identify domains in which learning techniques such as the 

one presented can be applied. We then present experimental results using several 

hierarchies for classifying images and video shots (e.g., Baseball video, images that 

contain handshakes, skies, etc.). These results, which show good performance, 

demonstrate the feasibility, and usefulness of  dynamic approaches for 

constructing structured visual object or scene detectors from user input at 

multiple levels.  

In addition to the Visual Apprentice, we present a study in which we analyze 

human eye tracking patterns when observing images from 5 different semantic 

categories (two people shaking hands, crowd, landscape, centered object, and miscellaneous). 

The results of  our study are important because finding similar eye tracking 

patterns for images within the same category allows the direct linking of  eye 

tracking and automatic classifiers. For instance, instead of  asking users to 

manually label examples in the Visual Apprentice, it could be possible to passively 

train the system by directly using eye tracking patterns for some image categories. 
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4.1.1 Why Learning At Multiple Levels? 

It is desirable to construct systems that can automatically examine visual content, 

and label it based on the semantic information it contains. Many of  the current 

systems perform this task by classifying images or video and assigning them 

semantic labels. Typically such classifiers are built (by experts) to perform specific 

tasks (e.g., indoor vs. outdoor image classification). The classifiers index image or 

video data, and users can then utilize the corresponding labels for searching and 

browsing.  Different users, however, search for information in different ways, and 

their search criterion may change over time. Therefore, many of  the current 

automatic classification approaches suffer from two disadvantages: (1) they do 

not accommodate subjectivity (i.e., the expert decides which classifiers to 

construct), (2) they do not allow the construction of  structured models from user 

input at multiple-levels.  

Manual construction of  image or video classifiers can produce systems that are 

accurate and work well in specific domains. If  the number of  objects or scenes to 

classify is large, however, such approach becomes impractical. Furthermore, class 

definitions depend on the experts that build the systems, and any modification to 

the class definitions must be performed by the experts themselves. In addition, 

users may have interests that are different from those of  the experts building 

such systems. The definition of  a “handshake image class,” for example, may vary 

among different individuals: for one user the class may include images that show 
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the hands of  two individuals, but nothing else. For another user, it may include 

only images in which people are pictured, from a certain distance, shaking hands. 

While specialized algorithms can be very useful in some domains (e.g., face 

recognition), we argue that successful Visual Information Retrieval systems 

should be dynamic, to allow construction of  classifiers that cater to different users’ 

needs. Algorithms should be as general as possible so that they can be applied in 

several domains, and they must exhibit enough flexibility to allow users to 

determine the classes in which they are interested. In addition, they should allow 

the definition of  complex multiple-level models that can accurately represent 

(and capture) real world structures. One way to enhance the capability of  such 

systems is to construct flexible frameworks that use machine learning techniques 

[186][83][108][65]. 

4.1.2 Related Work 

Research in VIR has grown tremendously in the last few years (for recent reviews 

and references see [80][241][223][273][102][93][92]). Many of  the systems (e.g., 

QBIC [200], VisualSEEk [246], VideoQ [89], Virage [72], Spire [80], etc.) have 

used query-by-example (“show me images like this one”), and query-by-sketch  

(“show me images that look like this sketch”). Some systems have enhanced 

capabilities for query formulation (e.g., in Spire, users can perform queries using 

examples from different images; in Semantic Visual Templates [93] the system 

tries to help the user formulate queries, using relevance feedback). Others have 
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focused on classification, using visual features only, textual features only (e.g., 

WebSEEk [244]), or combinations of  different types of  features (e.g., textual and 

visual in news images; [206] visual and audio in [197]). Distinctions between 

different approaches can be made in many different ways. In chapter 2, for 

example, distinctions were made based on the level of  description used, interface, 

type of  features, etc. 

Approaches that perform classification of  visual content based on visual features, 

like the VA, can be divided into those that perform automatic classification at the 

scene level (indoor vs. outdoor [254][206], city vs. landscape [264]), and at the 

object level (faces [114], and naked people and horses [113]).  

Scene level classifiers determine the class of  the input image as a whole 

[264][254][206]. In many of  the approaches the image is divided into blocks and 

the final classification decision is using feature extracted from all of  the blocks. In 

the work of  [254], for example, the image is divided into a 4x4 grid of  16 blocks. 

Features are computed for each of  the blocks and each block is classified 

independently (indoor/outdoor). The final decision is made by concatenating the 

feature vectors for all of  the blocks and applying a majority vote classifier. These 

approaches differ from the VA since images are classified based on their global 

features— not on the structure of  local components (i.e., a user defined model 

of  scene structure). In addition, the algorithms proposed in many of  those 

systems are specific to the classifiers being built. For example, in the work of  
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[264] the features that the algorithms use were chosen by the authors, based on 

the different classes being considered (indoor, outdoor, city, landscape, sunset, 

forest, and mountain).  

Other related approaches perform scene level classification based on regions 

obtained from automatic segmentation [243][171]. The configuration of  regions 

in different scene classes is used during classification. A typical beach scene, for 

example, contains blue regions at the top (sky), and yellow regions at the bottom 

(sand). This type of  information is used in a training stage, and the configuration 

of  regions in new images is used to determine the images’ class. The structure, 

however, is limited to the global configuration regions in the images, and 

structured object (or scene) models are not used. 

A related approach for object classification uses body-plans [113] in the 

construction of  object models. Specialized filters, for detection of  naked people 

and horses, are used first to select relevant regions in the image. A search for 

groups that match the body-plan is then performed over those regions. Although 

this approach allows the construction of  multiple-level composition models (like 

the VA), the system differs from the VA because it uses specialized algorithms 

(e.g., filters), and object models built by experts. Likewise, the approach in [114] 

utilizes a specialized face detection algorithm [220] 

    

 

 

Some related work has also been done in the area of  Computer Vision 

[134][109][118]. The main difference between the VA approach and previous 
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work in Computer Vision is the role the user plays in defining objects, and the 

lack of  constraints imposed by the VA system (e.g., no constraints on lighting 

conditions, etc.). Other differences range from the representation of  the data 

(e.g., features used), to the learning algorithms, application domain, and 

operational requirements (e.g., speed, computational complexity). The discussion 

in chapter 2 outlines differences between VIR and object recognition.  

The FourEyes system [185] learns from labels assigned by a user. User input, 

however, consists of  labeling of  regions (not definition of  models based on 

multiple levels like in the VA). Although multiple feature models (for feature 

extraction) are incorporated in that system, different learning algorithms are not 

used. 

In FourEyes the system begins by creating groupings21 of  data using different 

features (regions are grouped based on color, texture, etc.). The way in which 

features are extracted, in turn, depends on different models (e.g., texture features 

can be extracted using MSAR texture [212], or other models). The user then 

creates semantically meaningful groupings by labeling regions in images, and the 

system learns to select and combine existing groupings of  the data (generated 

automatically or constructed manually) in accordance with the input provided by 

the user.   This way, different features can be used for forming different 

                                                

    

 

 
21 A grouping in FourEyes is a “set of image regions (patches) which are associated in some way” [185]. 
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semantically meaningful groupings (e.g., skies are grouped by color features, trees 

are grouped by texture features). For example, blue skies could easily be grouped 

using color and texture, but other objects (e.g., cars) may be better grouped using 

shape information.  The underlying principles in the system are that models (i.e., 

used to extract the features used to form groupings) are data-dependent, 

groupings may vary across users, and groupings may also change depending on 

the task (e.g., the same user may want to group regions differently at different 

times). Therefore, the system aims to form groupings in many different ways 

(based on user input), and combine the appropriate groupings so that they 

represent semantically meaningful concepts (e.g., sky).   

FourEyes receives as input a set of  images to be labeled by the user.  In the first 

stage, within-image groupings are formed automatically, resulting in a hierarchical 

set of  image regions for each image for each model.  For example, if  image A 

contains trees and a house, the first stage may place all tree pixels in the same 

group (similarly for the house pixels; thus two different models are used, one for 

trees and one for houses). Pixels that were used in the tree grouping may also be 

used in a grouping of  leaves (thus resulting in a hierarchical set of  regions for 

each image). In the second stage, the groupings obtained in the first stage are 

grouped, but this time across the images of  the database. In other words, for a 

given image, the groupings of  the first stage are themselves grouped in the 

second stage with similar groupings of  other images. For instance, trees from 
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different images would be grouped together, and houses from different images 

would also be grouped together.    

The first two stages in FourEyes are performed off-line. The third stage 

corresponds to the actual learning process in which the user labels image regions 

as positive (e.g., sky) and negative examples (not sky) of  a concept. The system 

then tries to select or combine the existing groupings into compound groupings 

that cover all of  the positive examples but none of  the negative examples labeled 

by the user. The selection and combination of  existing groupings constitutes the 

learning stage of  the system, since the goal is actually to find (and combine) the 

models or features that group the regions according to the labels provided by the 

user.  The groupings learned by the system, that cover the positive (and none of  

the negative) examples labeled by the user, are utilized to classify new regions. 

Regions that have not been labeled by the user, then, are automatically labeled by 

the system according to the examples the user has provided (and therefore the 

groupings the system has found to be adequate). In this stage (when the system 

labels new regions based on what it has learned), the user can correct the labels 

assigned by the system in an interactive process. The system then uses this 

information to modify the groupings it had learned, making learning 

incremental— the system learns constantly from user input, as opposed to 

learning in a single training session (referred to as batch learning; see [83]).  
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The approach taken in FourEyes has several advantages: (1) several models are 

incorporated; (2) user feedback is allowed; and (3) user subjectivity [211] is 

considered. Inclusion of  several models is important, because as the discussion in 

[185][212] demonstrates, no single model is best for all tasks (e.g., different ways 

of  extracting texture features may be useful for different types of  texture).  User 

feedback and subjectivity are also very important, because as the discussion in 

Section 3.2 showed, multiple levels of  indexing can be performed. This, however, 

can be a drawback in the FourEyes system: finding the right concept, given the 

groupings provided by the user and those generated automatically, can be 

difficult.  The system performs grouping based solely on low-level features, while 

the groupings (examples) provided by the user may be based on higher-level 

semantic attributes.  One way to improve this is to require more structured 

examples (i.e., not just regions, but hierarchies), and to constrain the application 

domain so that only appropriate features are used in the different grouping 

stages.  Some of  these issues are addressed by VA framework presented in this 

chapter.  

Another approach to detect events of  scenes in specific domains consists of  

exploring the unique structures and knowledge in the domain. A system 

developed in [275] includes multiple models (for handling color variations within 

the same type of  sport game— e.g., different colors of  sand in tennis) and uses 

manually constructed region-level rules (for exploring the scene structure). High 
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accuracy was reported in detecting batting scenes in baseball, and tennis serving 

scenes. This work differs from the VA framework in several aspects. In particular, 

that approach uses domain knowledge programmed by an expert (specific rules 

for baseball/tennis). In addition, it includes an initial filtering stage based on a 

global color measure. In other words, the video scene is first analyzed at the 

global level using color histograms, and then detailed scene analysis is performed. 

The detailed scene analysis differs in the two approaches (use of  rules 

constructed by experts [275] vs. no expert input in the construction of  classifiers 

in the VA). The initial filtering, however, could complement the VA framework 

(e.g., like in [275], a filtering stage could be used to select different detectors, to 

deal with variations across different games, as outlined in section 4.4.1). 

Alternative models that represent objects and scenes in terms of  their parts have 

also been proposed in the VIR community [110][248][192]. The definition of  

Composite Visual Objects [110], for example, is similar to the definition hierarchy of  

the VA framework, with the difference that classifiers in the Visual Apprentice are 

learned automatically. The authors of  [107] propose the use of  Object-Process 

diagrams for content-based retrieval. Although the representation is hierarchical 

there is no learning component. Finally, it is also useful to note the similarity 

between the definition hierarchy and structures used in MPEG-7.  
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4.1.3 Outline 

The rest of  the chapter is organized as follows. In section 4.2 we discuss 

structure and the application of  machine learning in VIR. In section 4.3 we 

discuss the Visual Apprentice framework. In particular, we discuss user input, 

feature extraction and learning, and classification. In section 4.4 we present 

experimental results. A general discussion of  important issues within the 

framework, and possible extensions are discussed in section 4.5. Finally, in section 

4 we present eye tracking experiments and discuss ways in which eye tracking 

results can be integrated with automatic approaches such as the VA. 

4.2 LEARNING AND STRUCTURE IN VISUAL 

INFORMATION RETRIEVAL 

As discussed earlier, different users may have different interests, and those 

interests (for a single user) may vary over time [211]. Using this premise, it is 

preferable to construct systems that can adapt to users’ interests. One possibility 

is to build systems that can adapt by learning from users. An important issue, 

therefore, in the application of  learning techniques in VIR, is deciding where 

learning techniques are suitable.   
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4.2.1 Recurrent Visual Semantics 

The concept of  Recurrent Visual Semantics (RVS) is helpful in identifying domains 

in which to apply learning techniques in the context of  VIR. 

We define RVS as the repetitive appearance of  elements (e.g., objects, scenes, or 

shots) that are visually similar and have a common level of  meaning within a 

specific context. Examples of  domains in which Recurrent Visual Semantics can be 

easily identified include news, consumer photography [141], and sports. In 

professional Baseball television broadcast, for example, repetition occurs at 

various levels: objects (e.g., players), scenes (e.g., a batting scene), shots (e.g., the 

camera motion after a homerun occurs), and shot sequence structure (e.g., a homerun 

shot sequence often includes a batting scene, a scene of  the player running, etc.).  

The existence of  RVS motivates the approach of  using learning techniques in 

Visual Information Retrieval. Using this concept, it is possible to identify 

domains in which learning techniques can be used to build automatic classifiers 

(for objects or scenes). The existence of  repetition facilitates training, and the 

domain constrains the future data inputs to the classifiers learned. Once a domain 

is selected, identification of  its repetitive (but semantically meaningful) elements 

increases the possibilities of  successfully applying machine learning techniques in 

the specific domain. At the same time, application of  learning within the domain 
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(e.g., baseball video only, versus all types of  video) decreases the possibility of  

errors. 

4.3 THE VISUAL APPRENTICE  

4.3.1 Overview 

The Visual Apprentice (VA) framework consists of  three stages: (1) user input, (2) 

feature extraction and learning, and (3) classification. In the first stage, the user 

explicitly defines object or scene models according to her interests, and labels 

training examples (images or videos). In particular, each example image or video 

is segmented automatically by the system, and the results of  the segmentation are 

manually labeled by the user according to an hierarchy defined by the user. In the 

second stage, the system extracts features (e.g., color, texture, motion, etc.) from 

each image or video example provided by the user. Then it learns classifiers based 

on those examples producing an hierarchy of  classifiers (a Visual Object or scene 

Detector— VOD). In the third stage, the classifier (the VOD) is applied to 

unseen images or videos. The Visual Object or scene Detector performs 

automatic classification by first automatically segmenting the image or video, and 

then combining classifiers and grouping image areas at different levels.  
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4.3.2 The Definition Hierarchy 

Studies in cognition and human vision have shown that during visual recognition, 

humans perform grouping of  features at different levels [174][70].  The highest 

level of  grouping is semantic: areas that belong to an object are grouped together. 

An object, however, can be separated into object-parts, which consist of  perceptual-

areas: areas that we perceive categorically.  Categorical perception refers to the 

qualitative difference of  elements across different categories. Colors, for example, 

are often “grouped” [253][126]— we say the shirt is green, although it may have 

different shades of  green. These different levels of  grouping motivate the model-

based approach to the construction of  Visual Object Detectors (VOD) 22  in the 

Visual Apprentice. In this framework, a VOD is defined as a collection of  

classifiers organized in a definition hierarchy23  consisting of  the following levels 

(Figure 23):  (1) region; (2) perceptual; (3) object-part; (4) object and (5) scene.  

                                                

22 The detectors we describe refer to objects and scenes. We use the name VOD, however, for simplicity 
and to emphasize the local structure of the classifiers. 

    

 

 

23 We have chosen only five levels for the hierarchy because they provide an intuitive representation that 
is useful in practice. 
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Level 2: Perceptual 

Level 3: Object-part 

Level 1: Region Region 2 Region 1 

Perceptual-area nPerceptual-area 1

Object-part 2 Object-part m Object-part 1

ObjectLevel 4: Object 

Figure 23.  Definition Hierarchy. Note that a scene (not shown in the figure) is a 
collection of objects and corresponds to the highest level. 

More specifically, a definition hierarchy is defined in terms of  the following 

elements:  

(5) Scene: structured24 set of objects.  
(4) Object: structured set of adjoining object-parts. 
(3) Object-part: structured set of perceptual-areas.                                                        
(2) Perceptual-area: set of regions that are contiguous to each other and homogeneous within the 

set. 
(1) Region: set of connected25 pixels 
 

According to this definition, every node e in our definition-hierarchy has a 

conceptual interpretation (e.g., “object”), and represents a set of  connected pixels 

in an image or video. Nodes are image areas and arcs indicate parent-child 

relationships (from top to bottom)— a node is composed of  all of  its children.  

For example, in Figure 23 object-part1 is an area composed of  n perceptual areas, 

each of  which is composed of  a number of  regions.  

                                                

24 The word structured is used to emphasize the importance of spatial relationships between elements in 
the particular set.  

    

 

 

25 Regions, which are at the lowest level of the hierarchy, constitute the basic units in the framework and 
can be extracted using any segmentation algorithm based on low-level features such as color, texture, or 
motion.  
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In addition, the following restrictions are placed on the construction of  valid 

hierarchies (please refer to Figure 23, where each node represents a set): (1) a set of  

level i (i≠5) is a subset of  only one set of  level i+1 (e.g., an object-part can only 

belong to one object; a node in the hierarchy can only have one parent); (2) a set of  

level i cannot be a subset of  a set of  level i-1, unless the two sets are equal (e.g. an 

object cannot be part of  a perceptual-area; a face can be equal to a single perceptual 

area); (3) sets at the same level are disjoint (i.e., intersection of  two sets of  the 

same level is empty; two object-parts cannot intersect); (4) regions do not contain 

subsets (i.e. regions are the basic units and cannot be separated); (5) No. sets at 

level i <= No. sets at level i-1; (6) all sets are finite and can contain one or more 

elements; (7) every set is equal to the union of  its children.  

Figure 24 shows a batting scene as defined by a user. Note that every node in an 

hierarchy has a conceptual meaning (e.g., pitcher), corresponds to an image area 

in a training example (e.g., a set of  connected pixels in each image), and, as will be 

shown later, corresponds to a classifier (e.g., pitcher object-part classifier). The user, 

in this case, has decided to model the scene using only four levels (region, 

perceptual-area, object-part, and object): it is not necessary for a detector to have every 

level or every node of  the hierarchy of  Figure 23.  

    

 

 



150
 
 

 

Regions Regions Regions 

Batting 

Regions 

SandGrass

Pitcher Batter Field

 

Figure 24. Automatically segmented Baseball image. This example shows how a scene 
can be modeled using the hierarchy. The white outlines were drawn manually to illustrate 
how the regions map to the hierarchy. Note that the user decided to model the scene using 

only four levels.  

After the user defines an hierarchy and provides the training examples, features 

are extracted and classifiers are learned (stage 2). Classification (stage 3) occurs at 

the levels of  Figure 23: regions are classified first and combined to obtain perceptual-

areas, which are used by object-part classifiers. Object-parts, in turn, are combined and 

the results are used by object classifiers, etc. 

The framework allows the construction of  diverse hierarchies that depend on a 

specific user’s interests and the specific application. The user can choose the 

number of  nodes in the hierarchy and the number of  training examples. The 

specific features and learning algorithms used depend on the implementation and 

application domain. The computational complexity of  a particular VA detector 

will depend on the features, learning algorithms, and in some cases number of  

examples used to construct the detectors. In the best case complexity can be 
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constant but it can be exponential or hyper-exponential depending on the factors 

just mentioned.  

In the sections that follow we discuss, in detail, each of  the three stages of  the 

VA (user input, feature extraction and learning, and classification). 

4.3.3 User Input 

Different users have different interests. In order to accommodate this subjectivity 

we allow users to build different models (i.e., definition hierarchies) based on their 

individual preferences. The way in which VODs are constructed, therefore, is 

subjective and may vary between users (or for a single user over time). The main 

goal of  this stage is to let the user construct a Visual Object Detector, without any 

low-level knowledge about features, or learning algorithms26. 

During training, the user performs the following tasks: (1) creation of  a definition 

hierarchy by defining the labels to be used for each node; (2) labeling of  areas (e.g., 

regions, perceptual-areas, etc.) in each training image or video according to the 

hierarchy.  

Using the interface, the user defines the hierarchy by creating labels for nodes and 

expressing the connections between them. The label “batter region of  batter 

                                                

    

 

 

26 In section 4.5 we discuss possibilities of additional user input (e.g., decisions on learning algorithms to 
use, etc.). 
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object-part,” (Figure 24) for example, clearly defines the connections between the 

batter region, the batter object-part, and the batting object. Using a simple user 

interface (Figure 25), the user can set the corresponding labels (e.g., the “object-

part” field would say “batter”, the “scene” field would say batting, etc.). Once the 

labels are created, during training, the user labels regions, perceptual-areas, object-parts, 

and objects, in each training image or video. In the current implementation an image 

or video example corresponding to a particular hierarchy must contain all of  the 

nodes defined in the hierarchy (e.g., all batting scene examples must contain a 

field, a pitcher, a batter, etc.). 

 

 

Figure 25. Visual Apprentice Graphical User Interface. 
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Labeling of  image or video examples according to the hierarchy can be done in 

several ways: (1) by clicking on regions obtained from automatic segmentation, 

(2) by outlining areas in the segmented/original images or videos. Usually, 

labeling is almost exclusively done on the segmented images directly. 

Furthermore, in most cases it is only necessary to label individual regions 

(without outlining areas), because the interface of  the VA facilitates training by 

automatically grouping regions that are connected and have the same label. The 

groups generated are assigned the label of  the parent node of  the regions used in 

the grouping. For example, in Figure 24, the user labels all of  the pitcher regions 

(from automatic segmentation) with the name “pitcher region”. Then the system 

automatically groups all contiguous “pitcher regions” (those that are connected) 

and labels that group “pitcher object-part” (since the parent of  the “pitcher 

regions” label is “pitcher object-part”). In some cases, however, the user may wish 

to manually outline objects, object-parts or perceptual areas (note manual outlines in 

white in Figure 24) and bypass the automatic grouping algorithm. The difference 

between using the automatic grouping provided by the system and manually 

outlining components is that manual outlining eliminates segmentation errors 

that would otherwise be incorporated. Again in Figure 24, note that in the 

segmented image a pitcher region contains some pixels that belong to the 

background. Manually outlining the pitcher eliminates that error, since the user 

drawn outline excludes those background pixels in the “pitcher object-part” 

example.  
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User input for video is similar since only the first frame, in each example video 

shot, must be labeled— in the segmentation algorithm used [274], regions are 

automatically segmented and tracked in each video frame. On that first frame, the 

user identifies regions that correspond to each node in her definition hierarchy: all of  

the sand regions, all of  the sand perceptual-areas, object-parts, etc. The labeled region is 

tracked by the system in subsequent frames. For each region, then, it is possible 

to extract motion-related features (discussed below). It is important to note, 

however, that this is a simple approach to deal with video. A more sophisticated 

technique would consider all of  the temporal changes in the definition hierarchy. 

As a result of  user interaction, we obtain the following sets for a defined class j 

(e.g., batting scene of  Figure 24): 

• Conceptual definition hierarchy: Hj. 

• Example Element Set: EESj = {{(e11, l11), (e12, l12), ..., (e1n, l1n)}, ..., {(ek1, 

lk1), (ek2, lk2), ..., (ekp, lkp)}, ..., {(em1, lm1), ..., (emq, lmq)} where in each tuple, 

eki corresponds to the ith element (i.e., an area of a training image) of level 

k and lki is a label of level k associated with the element (e.g., (op31, l31) = 

(pitcher object-part, pitcher label)). Label level distinctions emphasize that 

labels must be different at different levels of the hierarchy. Regions in the 

example images or videos that are not labeled by the user are 

automatically assigned the label “unknown” and included in the set EESj. 
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This way, using the closed-world assumption [83], those regions can be 

used as negative examples during training. 

 

Note that the user also has the option of  including additional images or 

videos/regions to be used as negative examples, and that each image or video 

example for a given hierarchy must contain all the nodes in the hierarchy defined 

by the user. In other words an image or video example corresponding to a 

particular hierarchy must contain all of  the nodes defined in the hierarchy (e.g., all 

batting scene examples must contain a field, a pitcher, a batter, etc.). As discussed 

in section 4.5, it would be possible to modify this constraint to provide further 

flexibility.   

In the training stage, then, user input consists solely of  defining the definition 

hierarchy (by creating the appropriate labels), and labeling example image or video 

areas according to the hierarchy. The labeling is done by clicking on image 

regions, or outlining image areas in each image or video example. 

4.3.4 Feature Extraction And Learning  

4.3.5 Feature Extraction 

As discussed earlier, an element eki of  our model (node in the hierarchy) is a set of  

connected pixels (i.e., an area of  the image). Therefore, user input produces, for 

each example image or video, a set of  image or video areas, labeled according to 
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the hierarchy defined by the user. For each element in the Example Element Set, 

we compute a feature vector, which is an attribute-value tuple representation of  the 

features of  the element (e.g., color, shape, etc.). By computing feature vectors for 

all elements in the set EESj, we obtain a training set of  examples (attribute value 

pairs) for each class j (e.g., batting scene of  Figure 24): 

• TSj = {{(fv11, l11), (fv12, l12), ..., (fv1n, l1n)}, ..., {(fvk1, lk1), (fvk2, lk2), ..., (fvkp, 

lkp)}, ..., {(fvm1, lm1), ..., fvmq, lmq)} where fvki corresponds to the ith feature 

vector element of level k and lki is a label of level k associated with the 

feature vector (e.g., (op31, l31) = (pitcher object-part feature vector, pitcher 

label)). Note that all examples for a particular node in the hierarchy (e.g., 

pitcher region) will have the same label. 

Two types of  feature vectors are used in the framework, those that contain raw 

features, and those that contain spatial relationships (described below). The raw 

vectors in our current implementation consist of  a superset of  43 features. These 

features can be placed into five different groups. 

• Area and location: area, bounding box center (x, and y), orientation, major 

axis length, major axis angle, minor axis length. [225] 

• Color: average L, U, and V, dominant L, U, and V (LUV quantized to 

166 colors [246]). 

• Shape: perimeter, form factor, roundness, bounding box aspect ratio, 
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compactness, extent. [225]  

• Texture: mean Maximum Difference, mean Minimum Total Variation 

(MTV), horizontal, vertical, diagonal, and anti-diagonal Mean Local 

Directed Standard Deviation (MLDSD), edge direction histogram (see 

[218][264]). 

• Motion trajectory: maximum/minimum horizontal and vertical 

displacement, absolute horizontal/vertical displacement, trajectory 

length, displacement distance, average motion angle, average 

horizontal/vertical speed/acceleration. 

 

Feature extraction occurs for all nodes, according to the hierarchy defined by the 

user. By computing feature vectors for each element, a training set is obtained for 

every node of  the hierarchy. Recall that during user input (section 4.3.3), grouping 

occurs between regions that are connected and have the same label (e.g., in Figure 

24 pitcher regions form a pitcher object-part; sand regions are grouped at the sand 

perceptual-area node). For each image example, when the grouping is performed 

(or a manual outline is used), a new area of  the image is used for feature 

extraction. In other words, the features of  the regions of  the pitcher are used at 

the pitcher region node, but at the parent node (pitcher object-part in this case) a 

new set of  features is computed from the image area that results from merging all 

connected pitcher regions together.  The connected (labeled) pitcher regions, 

then, serve as a mask that is used to extract new features for the parent node of  
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the region node used in the grouping (again in Figure 24, pitcher object-part for 

pitcher regions, sand perceptual-area for sand regions, and so on).   

Elements of  the hierarchy that are structured (i.e., scenes, objects, and object-parts in 

the definition hierarchy of  section 4.3.2), and have more than one element (i.e., 

field object-part and batting object in Figure 24) are treated differently during feature 

extraction in the sense that they are characterized in terms of  the elements they 

contain and the spatial relationships between those elements. For example, in 

Figure 24, the feature vector for the field object-part does not contain the 43 

features discussed earlier. Instead, it contains two elements (grass, sand), and their 

spatial relationships. Note the difference between the following feature vectors: 

Pitcher region = {label = pitcher, color = white, texture = coarse, etc.} (i.e., a 

region and its 43 features from the set described above) 

Field object-part = {label = field_object_part, grass perceptual-area contains sand 

perceptual-area} (e.g., an object-part in terms of  its perceptual areas and their 

spatial relationships) 

 

To represent the structural relationships in structured sets that have more than 

one element, (e.g., between perceptual-areas within object-parts, or object-parts within 

objects, etc.), Attributed Relational Graphs (ARG) [209][186][226] are constructed.  In 

an ARG, nodes represent elements and arcs between nodes represent 
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relationships between elements.  In the VA, nodes in the ARGs correspond to 

labeled elements from the hierarchy being considered, and arcs represent simple 

spatial relationships between those elements. In particular, the following 

relationships are used: above/below; right of/left of; near; far; touching; 

inside/contains. 

It is important to note that using this representation an ARG will contain labeled 

elements only (see Field feature vector above), and their relationships. This is 

important because in the classification stage matching of  graphs that contain 

unlabeled objects, which is a hard combinatorial problem, is avoided.  

Additionally, to avoid the difficulties of  searching in complex relational 

representations (e.g., Horn clauses), the ARG is converted from its original 

relational representation to an attribute-value representation: [186] elements in 

the ARG are ordered (according to their label) and a feature vector is generated. 

With such transformation, existing learning techniques that use feature vector 

representations can be applied directly (e.g., decision trees, lazy learners, etc.).  

The result of  the feature extraction stage, then, is a set of  feature vectors for each 

node of  the corresponding hierarchy. Note that in the set TSj the positive examples 

for a particular node are those feature vectors in TSj that have the label for the 

corresponding node.  The rest of  feature vectors in the set TSj are negative 

examples, for that node, under the closed-world assumption [83].  In essence, if  

there are n nodes in the hierarchy, there will be n+1 different labels (including the 
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“unknown” label) in the set TSj. This means that there will be n different classes 

(one for each node), and therefore n different classification problems, each of  

which contains a set of  positive and negative examples. This is important because 

it emphasizes that the result of  the training stage is a set of  different classification 

problems, one for each node. 

4.3.6 Learning of  Classifiers and Feature Selection 

A classifier is a function that, given an input feature vector, assigns it to one of  k 

classes. A learning algorithm is a function that, given a set of  examples and their 

classes, constructs a classifier [103].  These two definitions are of  extreme 

importance in Machine Learning and in particular in the framework of  the VA. 

Using the labeled feature vectors, learning algorithms are applied at each node of  

the hierarchy defined by the user to obtain classifiers. This is done for each node 

at the five levels defined above: (1) region, (2) perceptual, (3) object-part, (4) object and 

(5) scene. 

As depicted in Figure 26, all classifiers in an hierarchy could be constructed 

independently using a single learning algorithm. For example, it would be possible 

to choose one of  the most widely used learning algorithms [83][186] (e.g., 

decision trees, lazy learners [65], neural networks, etc.) and apply it at each node 

to obtain the corresponding classifiers. The difficulty with this approach is that 

no algorithm will outperform (in terms of  classification accuracy) all other 
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algorithms in all tasks. In other words, since the VA is meant to allow users to 

define their own classes, it is not possible to choose, a priori, a learning algorithm 

that will produce classifiers that will always perform better than classifiers 

produced by any other learning algorithm. Of  course, other factors could be 

considered (discussed further in section 4.5), including availability of  resources 

(computational, number of  training examples, etc.), speed requirements (during 

training and during classification), and desired accuracy.  

Visual Detector Definition Hierarchy 

Stage 2: 
training 

Stage 3: classifiers  Stage 1: training data 
obtained and feature 
vectors computed. 

 

Machine 

Learning 

Algorithm 

Figure 26. Overview of the learning process for each node in the hierarchy. A learning 
algorithm, applied to the training data for each node, produces a classifier for the 

corresponding node. 

In order to allow flexibility, we propose a different approach (discussed in the 

next section), which consists of  applying several learning algorithms to the same 

training data (at each node), to obtain a collection of  binary classifiers for each 

node. 
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Regardless of  the approach chosen to construct classifiers (using one or several 

learning algorithms), it is well known that selection of  features can have a strong 

impact on classifier performance, even with learning algorithms that incorporate 

some form of  feature selection. The justification and benefits in performance of  

selecting features in decision trees, for example, is given in [199][162][154]. This is 

because different features may be better for representing different concepts. For 

example, “good” features to represent a field might be color and texture, but 

good features to represent pitcher might be spatial location and aspect ratio (see 

Figure 24).  Therefore, using the same features for all hierarchies (or for all nodes 

within a given hierarchy) may not yield the best results.  

In many content-based approaches, specifically in interactive ones (query-by-

sketch and query by example techniques [89][246][200]), users typically select the 

features to use. This, however, is often a difficult task. Automatic feature 

selection, used in the VA framework, serves to shield the user from the 

difficulties inherent in deciding which features are more important for a specific 

task (i.e., node in a hierarchy, or VOD). Given a set of  features A (e.g., the superset 

described in section 4.3.4) with cardinality n, we wish to find a set B such that 

, and where B is a better feature set than A [151]. The criterion for a 

“better” feature set S can be defined in terms of  a criterion function C(S), which 

gives high values for better feature sets and lower values for worse feature sets. 

One possibility is to define the function as (1-P

AB ⊆

e), where Pe is the probability of  
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error of  a classifier.  In such case, the value of  the function C(S) depends on the 

learning algorithm, the training set, and test set used.  

Since the goal is to find a set B, such that B , feature subset selection (FSS) [151] 

can be characterized as a search problem. The search for a better feature set can 

be conducted using several heuristics that aim to avoid exhaustively analyzing all 

possible feature sets. In particular, the search can look for optimal or sub-optimal 

results, and can be based on a filter or wrapper approach [159]. In the filter 

approach, the search for best features is independent of  the learning algorithm 

and classifier that will be used. In the wrapper approach, which is used in the VA, 

the criterion function (1- P

A⊆

e) is dependent on the learning algorithm and data used. 

Feature selection, therefore, is performed with respect to a particular algorithm 

and data set. In particular, a learning algorithm is repeatedly run on a data set 

using various feature subsets so that each run produces a classifier that uses a 

different set of  features (Figure 27). The performance of  the classifiers learned 

using each feature set is measured (using k-fold cross-validation, described 

below), and the best feature subset is chosen according to the performance. Once 

the features are chosen, the learning algorithm is used to construct a classifier 

using only those features. In the VA, best-first forward search [226] (a sub-

optimal non-exhaustive technique) is used to find the best features. 
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Training 
set 

Feature 
set 

Learning algorithm 

Feature evaluation 

Feature selection set 

 

Figure 27. Feature selection in the wrapper model. Features are selected using different 
learning algorithms. 

The search for a better feature set is performed, using a given learning algorithm, 

by building different classifiers using different subsets of  the original feature set. 

Once the best feature set is found (for that particular algorithm), a classifier, 

using that algorithm is constructed. Since we use several algorithms (next 

section), it is then necessary to compare the different classifiers constructed by 

the different algorithms, at each node. 

4.3.7 Selection and Combination of  Classifiers 

In the machine-learning community, an important goal is often to compare the 

performance of  different learning algorithms [103][229]. The criterion in those 

cases is often the performance of  the algorithms on standard data sets (e.g., UC 

Irvine repository [195]), or in particular domains. Instead of  trying to find the 

best algorithms for classifying visual information, the goals in the VA framework 
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center on determining the best classifiers for specific tasks (e.g., nodes of  the 

hierarchy). The goal of  the training stage is to obtain the best possible classifier (not 

learning algorithm) for each node. Since different learning algorithms may 

produce classifiers that perform differently on the same training data, the system 

simultaneously trains several algorithms (ID3, Naïve-Bayes, IB, MC4) [161] and 

selects the classifier that produces the best results. Note that, as discussed in the 

previous section, FSS is performed with respect to each algorithm, so when the 

system compares classifiers (this stage) it is already using the best features found, 

for each algorithm, in the previous step. 

The performance of  each classifier is measured using k-fold cross-validation: 

[160][189] the set of  training examples is randomly split into k mutually exclusive 

sets (folds) of  approximately equal size. The learning algorithm is trained and 

tested k times; each time tested on a fold and trained on the data set minus the 

fold. The cross-validation estimate of  accuracy is the average of  the estimated 

accuracies from the k folds. In the VA accuracy is determined as the overall 

number of  correct classifications, divided by the number of  instances in the data 

set.  The process is repeated for each classifier being considered. 

The best classifier is chosen according to its performance estimate given by the 

cross-validation accuracy: for each node, the classifier with the highest accuracy is 

selected. The process occurs for every node of  the hierarchy defined by the user. 
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An alternative to selecting the best classifier is to combine all or some of  the 

classifiers resulting from the cross validation process. In [146] other ways in which 

classifiers can interact in the VA framework were presented (also see [205] for a 

different combination strategy in a different framework).   

Object Definition Hierarchy 

Performance 

Estimator 

Stage 2: 
learning 

Stage 1: training data 
obtained and feature 
vectors computed. 

Learning

Learning

Learning Feature subset and 
classifier  

Figure 28. Overview of the learning process for each node in the hierarchy. Note that 
each classifier is produced with the best feature set for the particular learning algorithm 

being applied. 

4.3.8  Classification  

When a VOD is applied to a new image or video, the first step is automatic 

segmentation of  the image or video. Classification then follows the bottom up 

order of  the hierarchy defined by the user (Figure 25). First, individual regions are 

classified (in a selection process similar to [253]) and, then, perceptual-areas formed 

(i.e., regions are classified perceptually and groups are found). Those groups are then 

combined to form prospective object-parts, which form objects that form scenes. 

Classification, however, depends on the specific hierarchy defined by the user. To 
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detect a pitcher object-part (Figure 24), for example, the corresponding VOD 

would find pitcher regions first, and then try to find groups of  pitcher regions 

that may correspond to the pitcher object-part. The process would be similar for 

grass and sand perceptual areas— regions are selected and groups of  regions are 

used by the parent classifier (of  the corresponding region classifier). Note that 

this is similar to the grouping performed by the system in the training phase 

(section 4.3.3). During training, regions are labeled by the user, so the system 

knows exactly which regions (those labeled) must be taken as a group at the 

parent node. In the classification stage, the labels are assigned by a region 

classifier. The classifier of  the parent node, therefore, must search the space of  

possible groups.  

In the first step, then, regions are selected by a region classifier.  Given a universe 

U of  elements, a function cj(i) is a classifier for class j that determines 

membership of  i (i∈U) in the set j. In binary classifiers, cj:U→{0,1}  where,  ∀ 

i∈U , cj(i) = 1 if   i∈j and cj(i) =0 if  i∉j. In fuzzy-classifiers [157] the function is 

not binary, but continuous, thus cj:U→[0,1]. In this case, j is a fuzzy-set since each 

element in j has been assigned a degree of  membership in that set (e.g., if  cj(i) 

=0.75 and cj(l) =0.68 we say that i is a stronger member of  class j than l).   

Region classification results in a set of  region-membership tuples Rop = {(r1, m1, 

s1), (r2, m2, s2), ..., (rn, mn, sn)} where in each tuple (ri, mi, si), ri is a region that 

belongs to the current region class with degree of  membership mi. The variable si is 
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used to differentiate weak (si=0) and strong members of  the class (si=1) where the 

value of  si depends on mi and is determined using a threshold over the region 

membership values. This is useful because weak isolated regions can be discarded. 

We apply a grouping function g to Rop, to obtain a set PG = {g1, g2, .., gn} where 

every element gi is a group of  adjoining regions (e.g. group of  pitcher regions). The 

goal then becomes to find the most likely group candidates from the set PG (e.g., 

determine which group of  pitcher regions is more likely to be a pitcher object-part). 

Each group gi may contain strong and weak region candidates, or just strong 

candidates. Groups of  only weak regions are not considered because it is very 

unlikely for such groups to be important (e.g., unlikely pitcher regions are unlikely 

to form a pitcher object-part). 

A search, then, must be performed over the space of  possible groups of  regions 

from the set PG to find the best possible ones. This can be treated as a classical 

search problem in Artificial Intelligence [118][226], and therefore, we can use 

heuristic techniques to reduce the search space. In particular, we use an Evolution 

Algorithm [184], treating each element gi in the set PG as an individual in a 

population. Individuals evolve from one generation to the next through genetic 

operations such as mutation (an individual’s characteristics are changed) and 

cross-over (two or more individuals combined to produce a new one). During the 

evolution process (generation to generation), only “strong” individuals survive— 

that is, individuals that meet certain fitness criteria.  
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What follows is a description of  our algorithm: 

1. Initialize population (P = PG). 

2. Evaluate individuals in P using as a fitness function, the classifier of  

the parent node of  the function used to select the regions to form PG. 

If  the maximum number of  iterations has been reached, or an 

element in P satisfies the criterion function, stop. Otherwise, continue 

to step 3. 

3. Select and mutate individuals (e.g., remove a region from a selected 

group, etc.). 

4. Go to step 2. 

Figure 29.  Evolution process. 

To summarize, strong region candidates are first grouped and then merged with 

regions) corresponds to an area in the image or video being considered. 

 Strong candidates Groups of  strong  regions Groups + weak regions Initial population Generation 1 Generation 2 ...

adjoining weak candidates. This eliminates from consideration isolated weak 

candidate regions. The evolution program then considers each group of  regions. At 

every generation step, each group is mutated, thus generating a new individual. A 

new individual’s fitness in the population is measured by the region candidate’s 

parent node classifier. Note that each individual in the population (a group of  
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Therefore, features (recall raw feature set of  section 4.3.4) are extracted from that 

area, and the classifier that was learned during training is applied. Examining the 

example of  Figure 24 again, region classifiers for the following nodes are applied: 

grass, sand, pitcher, and batter. The grouping using the evolution program is 

performed for each of  these, and the groups are judged by the corresponding 

parent classifiers (grass and sand perceptual-areas; pitcher and batter object-

parts). The field classifier, then, receives as input a feature vector that contains 

the grass and sand perceptual areas found (with their spatial relationships, as 

explained in section 4.3.4). The batting classifier, then, receives as input three 

elements and their spatial relationships (field, pitcher, and batter). 

A final decision is made by the Visual Object Detector (VOD), then, based on the 

decisions of  all of  its classifiers. In particular, all elements of  the hierarchy must 

4.4 EXPERIMENTS 

Applying VIR techniques, and in particular those that use learning, in a real world 

scenario can be a challenging task for many different reasons. Therefore, we will 

be present for a VOD to detect the object. For the batting scene of  Figure 24 to 

be found, all elements must be found (i.e., pitcher, field and its parts, etc.).      

describe some of  the issues we encountered applying the VA, and experimental 

results. In each of  the experiments reported in this section (baseball, handshakes, 

skies) the amount of  time required to complete the training stage was less than 
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two hours. Classification times varied across the different sets, but did not exceed 

3 seconds on UNIX and PCs. The classifiers were constructed using the MLC++ 

software library [161] and the 43 features of  section 4.3.5 (motion features were 

only used for Baseball video). We used the following learning algorithms 

[83][186][161]: ID3, MC4, Naïve-Bayes, and k-Nearest Neighbor (with k=1, 3, 

and 5). 

4.4.1 Baseball Video 

Television broadcasts of  professional Baseball games were selected for these 

experiments because, as suggested by the concept of  RVS of  section 4.2, it was 

In constructing a classifier for the batting scene of  Figure 24, we encountered 

several issues of  importance (see Table 15 discussed in previous work [147]). We 

possible to identify meaningful objects and scenes that are visually similar and 

repeat. First, we identified the batting scene of  Figure 24 as a meaningful 

candidate for a VOD. Then we collected and examined data.  

divided such factors into those that are related to visual appearance (i.e., 

independent of  the signal), and those that are related to the broadcast signal 

itself. 
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Table 15. Some quality factors found in professional Baseball broadcast. 

Visual Appearance 

Time of game (day: natural light, 
evening: artificial light) 

Daytime weather (sunny, cloudy, 
raining, etc.) 

Evening weather (raining, foggy, 
etc.) 

Stadium (natural vs. artificial field, 
sand color)  

Teams (color of uniforms) 

Broadcast Network (camera angles, 
text-on-screen, etc.) 

 

Signal Quality 

Reception (from Cable TV, antenna, 
satellite, etc.) 

Origin (live game, videotaped game) 

Internal-network transmission (via 
satellite, etc.) 

Analog recording (VHS, S-VHS, 
EP/SP mode, etc.) 

Digital encoding (MPEG-1,2, 
parameters, etc.) 

Noise, human error 

These factors cause variations in the visual appearance of  the content used by the 

algorithms, and therefore on the value of  the features (segmentation, color, shape, 

etc.) used. The effect varies from minor to significant. For example, the time of  

day (morning, afternoon, night) can significantly affect the lighting conditions, 

which have an impact on the perception (and encoding) of  color and texture. It is 
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interesting to note that, due to the length of  some Baseball games (several hours), 

it is possible to observe significant variations in weather (from sunny to overcast 

to rainy) and lighting (it is not uncommon for a game to start in the afternoon 

and end in the evening). Other elements, such as the players’ uniform and the 

field remain constant within a game, but can vary significantly across different 

games. The way the games are broadcast (e.g., number of  cameras, angles, etc.), 

on the other hand, is fairly standard within a game and across different 

broadcasters in a given country. Analyzing the data carefully, however, it is easy to 

observe variations that although minor for humans, can have a severe impact on 

VIR algorithms. Examples include “small” variations in camera angles (or camera 

distance), text on the screen, and others.   

The second set of  factors was also surprisingly important. Variations in the 

signal, even within the same game were sometimes significant. Colors changed, 

and noise was visible in many cases. Some of  these are due to human error at 

origin, while others are related to the broadcast mechanism itself  (live over 

satellite, etc.). Of  course, variations in digitization of  the signals can also have a 

strong impact. 

For humans, most of  those factors have no impact on the ability to recognize 

different scenes. Issues such as clutter (i.e., presence of  unknown/unmodeled 

objects), occlusion, variations in lighting, and others, [138] are well known in 

Computer Vision and can have a strong impact on automatic algorithms. Most of  
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these issues, however, are ignored in most of  the experiments reported in VIR, 

mainly because in most cases the data used for training/testing comes from a 

single “collection” (e.g., a particular news source, etc.). 

In order to test the framework with a batting scene detector, we used videos from 

several broadcasters. The set used in the experiments included games played in 

different stadiums (natural and artificial turf), times of  day (night/day), weather 

conditions (overcast, sunny), etc. 

Innings from 6 different games were digitized in MPEG1 format at 1.5 Mbps (30 

frames/sec, at resolution 352x240 pixels). All scene cuts were obtained manually 

(scene cuts could be detected automatically using [183]), and each shot was forced 

to a length of  30 frames, which is long enough to represent a batting (pitching) 

action. The batting (or pitching scene) lasts approximately 1 second in a television 

broadcast.  

    

 

 

A set of  376 baseball video shots (of  30 frames each) was used for the 

experiments. The set contained 125 batting scene shots (Figure 24). The set of  

376 was divided into independent training and testing sets. The training set 

consisted of  60 batting scene shots. The test set, then, consisted of  316 shots (65 

batting scenes and 251 other types of  scenes), and different games were used in the 

training and test sets. The definition hierarchy used differed slightly from the one 

in Figure 24: the field object-part was divided into three perceptual areas: mound, 

top grass, and bottom grass.  
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Since classification starts at the region level, we examine classification results for 

different region classes. As discussed in section 4.3.7, different classifiers may 

perform differently on the same training data, and therefore it may be beneficial 

to use different algorithms for different classification problems. For our particular 

experiments, this is illustrated in Figure 30. The figure shows the learning curves 

for region node classifiers constructed using the ID3 algorithm [186], and a k-

Nearest Neighbor classifier, also known as Instance Based (IB5 for k=5). In the 

VA framework, cross-validation accuracy is used, over the training set, to select the 

best features and classifiers. For illustration purposes here (in Figure 30 only), we 

show the learning performance over the entire set (training and testing sets 

together). The overall batting scene classifier does not have access to the test set during 

training, but we show it here because the differences between the curves are 

easier to observe than on the training set alone— the point of  this discussion is 

to emphasize that an algorithm will perform differently on different sets of  data. 

The curve for ID3, for example, suggests that an ID3 classifier will perform 

better on pitcher and grass nodes. An IB-5 classifier shows similar performance 

variations on different sets of  data. At the same time, the plots show that the ID3 

algorithm is more likely to perform better for the batter regions than the IB5 

classifier. In the actual cross-validation experiments over the training set (not 

shown), different algorithms and features were selected for the construction of  

classifiers at different nodes (some examples are presented in [147]). Performance 
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variations over the training set varied depending on the node, and most of  the 

region level classifiers achieved around 80% accuracy on the independent test set.   
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Figure 30. Learning curves that show number of training examples vs. error rate, for 
two different algorithms (top: ID3 and bottom: K-Nearest Neighbor, K=5) on the same 

set of data. The error bars represent 95% confidence intervals, and the error corresponds 
to the total percentage of misclassifications.  

    

 

 



177
 
 

 

Detection of  video shots of  the batting scene (Figure 24) using the entire 

hierarchy resulted in an overall accuracy of  92% (overall % of  correct 

classifications) with 64% recall, and 100% precision on the independent test set 

of  316 shots (65 batting scenes and 251 non-batting scenes).  High precision was 

achieved in the VA in these experiments because the current implementation of  

the framework requires the detection of  all nodes in the hierarchy. In other 

words, a batting scene can only be detected if  all components of  the hierarchy are 

found in the scene/shot. Therefore, a detector for this scene is unlikely to 

encounter false positives for all of  the components of  the hierarchy within a 

single scene. This mechanism, however, also causes a drop in recall: a 

classification error (miss) in one node of  the hierarchy can cause a dismissal of  a 

batting scene shot. In general, therefore, a hierarchy with more nodes is likely to 

yield higher precision and lower recall. Fewer nodes are more likely to yield lower 

precision and higher recall. Indeed, the shots that were missed by the classifier 

were missed because not all of  the nodes were present. In particular, in most of  

the misclassifications the smaller elements (e.g., mound, batter) could not be 

found. This was due to segmentation errors, and errors at different levels of  the 

hierarchy. In some cases text (and borders) surrounding the scene caused the 

errors— it is not uncommon for the entire scene to be reduced by a border with 

text (e.g., statistics or information from other games being played at the same 

time), making detection difficult without a pre-processing step. 
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Detection of  the batting scene across different games (with the variations 

outlined in Table 15) is a difficult problem on which the VA has performed well. 

Preliminary experiments using global features (quantized LUV color histogram 

and coarseness) as well as block-based global scene classification (breaking up 

each image into 16 blocks, classifying the blocks and assigning the image the 

majority of  the block labels [254]) produced poor performance. Although more 

experiments are required to compare the VA’s performance with other 

approaches (e.g., using the same features as in [254][264] and testing the 

implementation with a set of  similar images), an analysis of  the data and the 

preliminary experiments suggest that scene-level classification (i.e., not using 

structure information) may not yield good results for this particular problem.  

One of  the biggest difficulties is the variation that occurs across different games. 

The important components of  the batting scene (i.e., those included in the 

hierarchy of  Figure 24) usually occupy around one third of  the image (scene). A 

global approach to classification, therefore, is likely to be affected by the 

remaining two thirds of  each scene. Because of  variations in the stadium, for 

example, the background (e.g., wall behind the pitcher) can be significantly 

different across different scenes. The VA framework takes this into account in 

the sense that if  the background is not included in the hierarchy, it may not have 

a direct impact on the detection of  the object or scene. A related observation is 

that, in this particular application, there are many similar scenes that do not 
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match the model. There are many scenes that show a field and a crowd in the 

background. Such scenes, however, do not contain a batter (and pitcher), so a 

VOD that includes such elements would be able to differentiate between one of  

those “field” shots and a batting scene. It would be more unlikely for a global (or 

block-based) classifier, on the other hand, to be able to make such distinctions. 

A possibility to alleviate the problem of  variation present in the data, is to 

perform a filtering of  the shots [275]. In that approach, incoming video scenes 

are first automatically assigned to a “color model” based on unsupervised 

learning (e.g., different models for different games— night, sunny, etc.), and a 

subsequent process uses manually constructed rules at the segmented region level 

(to account for local scene structure) to perform classification. Promising 

preliminary results (precision 96%, recall 97%) were reported in detecting batting 

scenes in broadcast videos [275]. However, note that unlike the VA the approach 

uses manually constructed region-level rules, and adaptive filtering that 

automatically selects the global color model depending on color variations of  the 

new video. Indeed, it seems promising to incorporate the adaptive filtering as a 

pre-filter before applying the VA detector. 

4.4.2 Handshakes and skies 

We have also constructed classifiers for handshake, and sky images (see object 

hierarchies for handshakes and skies in Figure 31). For the handshake tests, 80 
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training images, and an independent test set of  733 news images were used. Out 

of  the 733 images, 85 were handshakes. An overall accuracy of  94% (94% of  the 

set of  733 images, were correctly classified) was achieved (74% recall, 70% 

precision) with 89 images automatically labeled as handshake by the system. Sky 

detection was performed on a set of  1,300 images that contained 128 skies (with 

an independent training set of  40 images, see [206]). An accuracy of  94% was 

achieved (50% recall, 87% precision), in a set of  134 images retrieved.  

The results reported for the different types of  hierarchies show that the Visual 

Apprentice framework is flexible, allowing the construction of  different types of  

detectors. More importantly, performance in each case was similar to 

performance reported for similar classifiers using other techniques (overall 

accuracy around 90% and higher). The experiments show encouraging results for 

the construction of  dynamic approaches to classification. Next we describe some 

possible extensions, and improvements.   

Figure 31. Example object definition hierarchies. The first hierarchy was not used in 
experiments, but shows how the close-up of a player could be modeled. The other two 

hierarchies were used in the experiments reported. 

Batting 

RegionsRegionsRegions Regions 

SanGrass 

PitcherField Batter

Regions

Handshake

Regions Regions

Handshake Face 2 Face 1

Regions 

Sky 

    

 

 



181
 
 

 

4.5 DISCUSSION 

4.5.1 Extensions to the framework 

The framework of  the VA shows several desirable characteristics of  VIR 

systems. The system uses learning techniques to automatically build classifiers, 

and therefore detectors can be easily constructed without the need for specialized 

algorithms. Since classifiers are built independently (for each node of  the 

hierarchy), however, specialized algorithms can be easily incorporated. For 

example, in the handshake classifier, a face detection module could be used 

instead of  the face node classifiers. Similarly, a domain-specific segmentation 

algorithm could be used to improve performance. In the current implementation 

a “standard” set of  parameters is used with the segmentation algorithm. The 

parameters, however, could depend on the specific class (and hierarchy) being 

constructed by the user, or even learned by the system based on correct/incorrect 

segmentation results (labeled by the user). 

The construction of  the hierarchy, as discussed earlier, is subjective and will 

depend on the user. Therefore, two hierarchies for the same class (e.g., batting 

scene) may lead to different classification results. It is conceptually possible to 

build an hierarchy automatically, or semi-automatically. This issue is somewhat 

related to the learning of  belief  networks [205], and research in which the goal is 

to automatically detect Regions of  Interest (ROIs). ROIs are areas that would 
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roughly correspond to nodes in an hierarchy (i.e., areas of  the image which are 

more important than others [214]). In this chapter, for example, experiments 

were presented to explore the use of  eye-tracking results for automatic 

classification.  Potentially this type of  interaction could replace the current mode 

of  interaction in the training stage of  the VA, and help in the automatic or semi-

automatic construction of  hierarchies. A related issue is flexibility in the 

construction of  hierarchies, and the application of  the VODs. For example, 

instead of  requiring all nodes to be labeled (and present during classification), it 

would be possible to extend the framework to allow the omission of  nodes. A 

batting scene, then, could be detected (with a smaller confidence score), even if  a 

pitcher is not detected. 

Another possible extension of  the VA, could include (at the user’s expense) 

additional input parameters that could be used by the system to guide the training 

process. Information on issues such as desired computational efficiency (e.g., 

training/classification speed), for example, could be used internally in the 

selection of  classifiers, and in providing training guidelines (e.g., size of  training 

set, etc.).  

Future work includes further research into classifier combination, semi-automatic 

hierarchy construction, and active learning for facilitating the annotation process. 

Other topics of  future research also include feature and classifier selection with a 

small number of  samples, the development of  a theoretical framework for the 
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hierarchical classification scheme we propose, and the inclusion of  additional 

multimedia features (e.g., audio).  

4.5.2 On Applications 

With the VA it is possible to construct classifiers for objects/scenes that are 

visually similar and have a structure that can be clearly defined. Applications in 

sports commercial domains (e.g., databases of  retail objects) seem promising. The 

approach, however, may be unsuitable for classes in which variation in visual 

appearance is too significant, or in which a well-defined structure is not easily 

identified (e.g., indoor, outdoor images). Although it is conceivably possible to 

build several disjoint hierarchies for such classes (rather than having a single one), 

it is likely for other approaches that have produced promising results (e.g., [254], 

[206]) to be more suitable.  

It is also important to point out that in some domains, specialized algorithms may 

be better than flexible frameworks (e.g., the VA). An interesting possibility, 

however, is the combination of  approaches like the VA with approaches that use 

expert knowledge. The VA, for example, could be used by an expert to construct 

rule-based classifiers, and those classifiers could be manually refined by the expert 

to improve their performance in a specific application. The framework could also 

be used to quickly examine feature variations for different types of  objects (e.g., 

analyzing the training data), and to construct basic components to use in expert-
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constructed systems (e.g., use of  a sky detector in a larger framework). The 

batting scene rules in the sports event detection discussed earlier, [275] for 

example, were constructed by an expert by analyzing features extracted by the 

VA during training. High accuracy was achieved in that system using this 

approach, suggesting that the VA framework can also be a useful tool for experts 

constructing domain-specific classifiers.  

Some of  the issues encountered in the VA framework are common to many VIR 

systems, particularly to those that use learning techniques. More specifically, we 

discussed some of  the following issues: user subjectivity, feature and classifier 

selection, choice of  training data, and problems that arise when applying such 

techniques in real-world scenarios. 

4.5.3 Visual Apprentice Summary 

We presented a new approach to the construction of  dynamic classifiers for VIR. 

In the Visual Apprentice (VA), a user defines visual object or scene models, that 

depend on the classes in which she is interested, via a multiple-level definition 

hierarchy (region, perceptual-area, object part, object, and scene). As the user provides 

examples from images or video, visual features are extracted and classifiers are 

learned for each node of  the hierarchy. At each node, the best features and 

classifiers are selected based on their performance, using k-fold cross-validation 

over the training set. The resulting structured collection of  classifiers (a Visual 
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Scene/Object Detector) can then be applied to new images or videos. A new image or 

video is first segmented automatically, and then the classifiers (region, perceptual-

area, object part, object, scene) are applied according to the hierarchy. 

The concept of  Recurrent Visual Semantics (RVS) was also discussed. RVS is 

defined as the repetitive appearance of  elements (e.g., objects, scenes, or shots) 

that are visually similar and have a common level of  meaning within a specific 

context. Using that concept, it is possible to identify where and when learning 

techniques can be used in VIR. We used baseball video as an example of  the 

existence of  structure and RVS.  

Experimental results were presented in the detection of  baseball batting scenes, 

handshake images, and skies. The results of  the experiments are promising. The 

framework is flexible (users are allowed to construct their own classifiers, 

accommodating subjectivity); no input is required on difficult issues, such as the 

importance of  low-level features, and selection of  learning algorithms; and 

performance is comparable to that of  other approaches. One of  the main 

advantages of  our framework is the flexibility of  defining object or scene 

hierarchies and detailed user input at multiple levels. The approach allows users to 

specify multiple level composition models, which are absent in most existing 

approaches to VIR. 

    

 

 

The framework presented in this chapter can be used to index visual content at 

several levels of  the pyramid presented in chapter 3. The labels generated by the 
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VODs can be used to index images or videos at the generic scene and generic object 

levels (please refer to Figure 16). Furthermore, the framework can be extended to 

index visual information at the specific scene and specific object levels. For example, a 

face recognition module can be used for a face node classifier to produce a label 

for the scene (“this is a picture of  Bill Clinton”) or a specific object in the scene 

(“the person in the image is Bill Clinton”). In addition, during the application of  

the VODs syntactic features are extracted at the local structure level. Given the 

structure represented by the VODs, it is conceivably possible to also assign 

abstract labels to the images or videos, based on the combination of  structured 

syntactic and semantic elements. 

In the section that follows we study the viewing patterns of  human observers in 

still images within and across different categories. This work is directly related to 

chapter 3 in that one of  the goals with the eye tracking study is understanding 

visual information and users. Eye tracking patters are also strongly related to the 

construction of  VODs in relation to the training stage in the VA (labeling of  

regions) and the classification stage (selection of  important regions and 

grouping). 
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4.6 

                                               

STUDYING HUMAN OBSERVERS' EYE 

MOVEMENTS FOR DETECTING VISUAL 

STRUCTURE 

In this section we present a study of  human observer’s eye tracking patterns 

when observing images of  different semantic categories (i.e., handshake, 

landscape, centered object, crowd, and miscellaneous). We discuss ways in which 

the eye tracking results can be used in the Visual Apprentice framework. 

Our hypothesis is that the eye movements of  human observers differ for images 

of  different semantic categories, and that this information can be effectively used 

in automatic content-based classifiers27. We present eye tracking experiments that 

show the variations in eye movements (i.e., fixations and saccades) across 

different individuals for images of  5 different categories: handshakes (two people 

shaking hands), crowd (cluttered scenes with many people), landscapes (nature 

scenes without people), main object in uncluttered background (e.g., an airplane flying), 

and miscellaneous (people and still lives). The eye tracking results suggest that 

similar viewing patterns occur when different subjects view different images in 

the same semantic category. Using these results, we examine how empirical data 

obtained from eye tracking experiments across different semantic categories can 

 

    

 

 

27 This is joint work with Jeff Pelz at the Rochester Institute of Technology and his students, Tim 
Grabowski, and Jason Babcock. Diane Kucharczyk and Amy Silver from R.I.T. also contributed. 
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be integrated with existing computational frameworks, or used to construct new 

ones. In particular, we examine how such results could be used in the Visual 

Apprentice. In the VA a user manually selects and labels regions to construct a 

classifier. Instead, it could be possible to automatically track a subject’s eye 

movements as he observes example images from the category of  interest and use 

the eye tracking results to automatically select regions for training.  

Although many eye tracking experiments have been performed, to our 

knowledge, this is the first study that specifically compares eye movements across 

categories, and that explores the links between category-specific eye tracking 

patterns and automatic image classification techniques. 

Overview 

Eye movement traces of  ten subjects were recorded as they viewed a series of  

250 randomly interleaved images from the following categories: handshake (two 

people shaking hands), crowd (e.g., many people), landscape (no people), main object 

in uncluttered background (e.g., an airplane flying), and miscellaneous (people and still 

lives). We analyze, in the viewing patterns: (1) within image variations 

(similar/dissimilar patterns for an image, across several subjects); (2) across image 

variations (subject’s pattern depends strongly on the image); and (3) within/across 

image category variations (similar/dissimilar patterns for images in the same category, 

across several subjects). In addition, we explore different ways in which these 
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results can be used directly in the construction of  automatic classifiers in a 

framework like the Visual Apprentice.  

Related work 

Eye tracking experiments have been performed for a many years. Several studies 

have examined eye movements of  individuals as they perform natural tasks (e.g., 

[279][285][288]).  Others have focused on the way humans observe pictures (e.g., 

photographs in [283], paintings in [294]). Many of  these types of  studies have 

been very useful in the development of  theories of  visual perception and 

recognition (e.g., [285][297]). For example, it has been suggested that humans 

move their eyes over the most informative parts of  an image [294], and that eye 

movements (i.e., fixations and saccades, discussed later) are strongly influenced by 

the visual content of  the image [282], and by the task being performed by the 

observer (e.g., describe image; search for an object [297]). No studies, to the best 

of  our knowledge, have tried to compare differences in eye movements across 

different semantic categories. 

    

 

 

Computational techniques that use information from eye movements include 

[292] and [293]. Unlike the work presented in [292], and [293], we focus on 

studying the differences in the way humans look at images across different categories, 

and on the usefulness of  those differences to construct automatic classifiers for 

the same categories. The relation between computational (i.e., by computer 

algorithms), and human selection of  Regions of  Interest (i.e., areas of  an image 
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deemed important by an observer) was studied in [290]. Our work differs from 

[290], since our goal is to explore ways in which the results of  category-specific 

eye tracking experiments can be used to construct classifiers.  

Outline 

In section 4.6.1 we discuss the motivation behind our approach. In section 4.6.2 

we discuss important aspects of  eye movements. In section 4.6.3 we explain our 

eye tracking set up. In section 4.6.4 we present the human observer experiments 

we performed, and in section 4.6.5 we discuss ways in which those results could 

be used in automatic classifiers (e.g., the Visual Apprentice). We conclude in 

section 4.6.6.  

4.6.1 Why Study Eye Movements? 

Eye tracking studies have been performed for many years (e.g., one of  the earliest 

reported in [278]), for many different purposes. One of  the main goals of  such 

studies has been to understand the human visual system and, in particular, the 

visual process itself. It is now well understood that humans move their eyes, in 

part, because visual acuity falls by an order of  magnitude within degrees of  

central vision [277]. Therefore, for some tasks, eyes must be moved to shift the 

point of  regard to regions requiring high spatial resolution. Humans, however, 

also move their eyes to objects or regions of  interest even when foveal acuity is 

not required by the immediate task. Because people move their eyes to targets of  
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interest, monitoring the eye movements of  observers can provide an externally 

observable marker of  subjects' visual strategies while performing tasks such as 

manual image indexing or passive image viewing. Analyzing eye movements for 

these tasks can be useful in understanding how humans look at images, not only 

in terms of  the recognition strategy used (e.g., which areas are observed and in 

which order; how much time person spends looking at certain types of  objects, 

etc.), but also in determining what is deemed as important during the process (i.e., 

areas looked at are probably more important than areas not looked at).  

Automatically classifying images (e.g., photographs) and video is an important 

task since it facilitates indexing, which allows searching and browsing in large 

image collections (e.g., images on the internet). Various computational 

approaches that perform automatic classification (mostly in the field of  

Computer Vision) have drawn on theories of  the functionality of  the human 

visual system [286]. In order to limit the amount of  information to be processed, 

for example, some techniques detect Regions of  Interest (ROIs) so that only regions 

that may be relevant to the problem at hand are selected for analysis. Therefore, 

understanding the selection performed by humans, and the visual process, is very 

useful in the construction of  algorithms to perform classification.  

In spite of  the similarities between human processing and automatic techniques, 

most computational approaches are based on general theories that do not directly 

link the specific problem with the information obtained from experiments 

    

 

 



192
 
 

 

involving human subjects. For example, when we observe an image of  two 

people shaking hands, perhaps we always move our eyes in a specific path to 

fixate on areas that we deem important (e.g., two faces, handshake). The areas 

that we observe, and the order in which we make those observations depend 

highly on the content of  the image (e.g., handshake vs. landscape), and the task 

(e.g., recognize a person; find an object in the image). It may be possible, 

however, to find patterns in the way different individuals look at images in the 

same category. Nonetheless, information on how humans perform these specific 

tasks is seldom included in computational approaches. Analyzing the way humans 

look at images, however, could lead to important improvements in the 

construction of  such classifiers because, if  class specific observation patterns 

exist, decisions regarding the computational recognition process could be made 

based on data collected from human observers. 

4.6.2 Eye Movements  

The photoreceptor array in the image plane of  the human eye (the retina) is 

highly anisotropic; the effective receptor density falls dramatically within one 

degree of  the central fovea.  The acuity demands of  most visual tasks requires 

the high resolution of  the fovea, but observers move their eyes to objects or 

regions of  interest even when foveal acuity is not required by the immediate task.  

People make well over 100,000 eye movements every day. When humans move 

their eyes they either hold their gaze at a stationary point (fixations) or move them 
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quickly between those fixations (saccades). While observers could gather a great 

deal of  information from images while holding fixation, subjects free to view 

images without instruction regarding movements of  the eyes typically make 

several eye movements per second.  It has been known for some time that eye 

movement patterns are image dependent and to some degree idiosyncratic 

[277][287].  In addition to image-dependence, the pattern of  eye movements and 

spatial distribution of  fixation points also varies with the instructed task.  Yarbus 

([297]) demonstrated that subjects adopted dramatically different eye movement 

patterns when viewing one image when the instructions were changed.  For 

example, the pattern seen under free-viewing was different when a subject was 

asked to remember the location of  objects in the image, or to estimate the ages 

of  people in the image.  

The eye movements necessitated by the limitations of  the peripheral visual field 

are driven by the scene and task, but in general make approximately three to four 

saccadic eye movements per second. In between those eye movements that are 

made to shift the point of  gaze from one point in the scene to another, the 

retinal image must be stabilized to ensure high acuity.  When the observer and 

scene are static, the eyes are stationary in the orbit, resulting in a static image 

projected on the retina.  These fixations allow high acuity vision.  When the 

observer and/or the scene are in motion, other mechanisms are necessary to 

stabilize the retinal image.  A number of  oculomotor mechanisms provide this 
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stabilization.  Objects moving through the field can be tracked with smooth pursuit 

eye movements.  Large-field motion also elicits smooth eye movements to 

stabilize the image on the retina.  Image motion due to movement of  the head 

and body are cancelled by the vestibular-ocular reflex, which produces rotation of  

the eyes to compensate for head and body movements [284].  The saccades are 

rapid, ballistic movements that reach velocities of  over 500 degrees/second.  

Saccades from less than one degree in extent to over 90 degrees are seen in 

subjects performing a number of  tasks.  The duration of  the saccades varies, but 

are typically completed in less than 50 msec.  Because of  the speed with which 

the eyes move during a saccade, the retinal image is blurred during the eye 

movement.  Subjects are not aware of  the blurring caused during saccades 

because of  a slight reduction in the systems sensitivity, but the effect is due 

primarily to a phenomenon termed backwards masking, in which the retinal image 

captured at the end of  the saccade tends to mask the blur that would otherwise 

be evident.  

4.6.3 Eye Tracking 

Several methods can be used to track a subject’s gaze.  Several systems are in use 

today, each offering advantages and disadvantages.  One system uses coils of  fine 

wire held in place on the eye with tight-fitting annular contact lenses [291].  Eye 

position is tracked by monitoring the signals induced in the coils by large 

transmitting coils in a frame surrounding the subject.  Scleral coil eyetrackers offer 
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high spatial and temporal resolution, but limit movement and require the cornea 

to be anesthetized to prevent pain due to the annular contact lens.  Another 

system offering high spatial and temporal resolution is the dual-Purkinje eyetracker 

[280]. Purkinje eyetrackers shine an infrared illuminator at the eye, and monitor 

the reflections from the first surface of  the cornea and the rear surface of  the 

eyelens (the second optical element in the eye). Monitoring both images allows 

eye movements to be detected independently of  head translations, which 

otherwise cause artifacts.  Another type of  eyetracker is the limbus tracker. Limbus 

trackers track horizontal eye movements by measuring the differential reflectance 

at the left and right boundaries between the sclera (the ‘white of  the eye’) and the 

pupil.  Vertical eye movements are measured by tracking the position of  the lower 

eyelid.  While the limbus tracker provides high temporal resolution, the eye 

position signal suffers from inaccuracy, and there is significant cross-talk between 

horizontal and vertical eye movements.  The class of  eyetrackers used in this 

study illuminates the eye with infrared illumination, and images the eye with a 

video camera.  Gaze position is then determined by analyzing the video fields 

collected at 60 Hz.  Eye position data was collected with an Applied Science 

Laboratories Model ASL 504 Remote eyetracker.  The system monitors eye 

position without any contact with the subject, an important factor to consider 

(Figure 32). The camera lens used to image the eye is surrounded by infrared 

emitting diodes (IREDs) providing illumination coaxial with the optical axis.  The 

infrared, video-based eyetracker determines the point-of-gaze by using a video 
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camera to extract the center of  the subject’s pupil and a point of  reflection on the 

cornea. Tracking both pupil and first-surface reflections (i.e., on the cornea) 

allows the image-processing algorithms to distinguish between eye-in-head 

movements and motion of  the head with respect to the eyetracker.  This 

infrared/video eyetracker is limited to 60 Hz sampling rate and provides accuracy 

of  approximately one degree across the field.  The system automatically tracks 

subjects’ head movements over a range of  approximately 25 cm.  Beyond that 

range, the tracker must be manually reset.  The eyetracker signals such a track loss 

by setting the horizontal and vertical eye positions to zero.   

 

     

 

Figure 32. The ‘remote’ eye camera (left) is placed just below the subject’s line of sight 
(right).  The lens is surrounded by infrared emitting diodes to provide coaxial 

illumination. 

 

While the retina absorbs most light that enters the pupil, the retina is highly 

reflective in the far-red and infrared regions of  the spectrum.  This phenomenon, 

which leads to ‘red-eye’ in photographs taken with a flash near the camera lens, 
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produces a ‘bright-pupil’ eye image.  In this image, the iris and sclera are the 

darkest regions; the pupil is intermediate, and the first-surface reflection of  the 

IR source off  the cornea is the brightest.  The eye image is processed in real-time 

to determine the pupil and corneal reflection centroids, which are in turn used to 

determine the line-of-sight of  the eye with respect to the head. Figure 33 shows 

an eye image captured with the ASL bright-pupil system.  The image on the left 

shows the raw IR illuminated image; the image on the right shows the image with 

the superimposed cursors indicating pupil and first-surface reflection centroids 

determined by thresholding the image and fitting a circle to the pupil and corneal 

reflection. As the observer moves his eyes, the shape of  the pupil reflection 

changes, and so does its centroid. The difference between the centroid of  the 

pupil and the centroid of  the corneal reflection (two points indicated in Figure 

33) is used to determine the actual eye movement.  

    

Figure 33. Image of the eye captured by the ASL eyetracking system (left); pupil 
centroid (white cross, right); and corneal reflection centroid (black cross, right) 

Eye position is reported as a horizontal and vertical point of  regard every 16.7 

msec.  The raw data is in arbitrary units based on display scaling, viewing 

distance, and subject calibration.  The data is converted to image pixel units by 
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scaling the output to the calibration points in pixel coordinates.  The 

transformation corrected horizontal and vertical scaling, and offset the data to 

the center of  the image display (i.e., [0,0] is the center of  each image). 
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Figure 34. Horizontal and vertical eye position during a 9-point calibration sequence in 
image pixel units. 

-200

-100

0

100

200

-200 -100 0 100 200

Ve
rt

Horiz

Figure 35. Horizontal and vertical position during the 9-point calibration sequence, in 
image pixel coordinates (left), and. fixation density mask overlaid on calibration grid 

(rescaled) (right). 

 

Figure 34 represents the horizontal (top of  the figure) and vertical (bottom of  

the figure) eye position of  a subject reviewing nine calibration points (see also 

Figure 35). Calibration is necessary to determine the observer's position in space, 

and must be performed once for each subject as long as the general setup does 
    

 

 



199
 
 

 

not change (e.g., observer's physical location with respect to the camera). The 

fixation sequence was left-to-right, top to bottom.  The repeated ‘step’ pattern in 

the horizontal trace shows the sequence of  three horizontal fixation points on 

each line of  the calibration target.  The vertical record indicates the three rows 

that are scanned in turn.  The zero-slope portions of  the graphs (Figure 34) 

represent fixations on the calibration points; the transitions between fixations 

represent the rapid saccadic eye movements between the calibration points. 

Figure 35 (left) shows the same data as in Figure 34 plotted in two dimensions to 

show the spatial distribution of  the scanpath.  Horizontal and vertical eye 

position during the 9-point calibration sequence are seen scaled to image display 

coordinates.  The fixation pattern can also be visualized as an image in which the 

lightness of  a given pixel is proportional to the fixation density in that region. 

Figure 35 (right) shows the data from Figure 34 displayed as an image mask.  The 

fixated regions of  the calibration target are visible through the mask; the dark 

regions are image locations that were not fixated by the subject during the data 

collection, and the x's correspond to the actual nine calibration points. 
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4.6.4 Experiments 

The goal of  the eye tracking experiments was to determine whether individuals 

scan images of  the same category in similar ways (and if  there are differences 

across different categories)28.  

4.6.4.1 Image Data set 

For the experiments we selected 50 color images from each of  five different 

mutually exclusive categories (Figure 36): handshake (two people standing near 

each other, shaking hands); main object in uncluttered background (a prominent object 

around the center of  the image, on an uncluttered background); crowd (cluttered 

scenes with many people); landscape (natural landscapes, without people); and 

miscellaneous (still lives, and people). The handshake, crowd, and main object images 

were collected from an on-line news service. The landscape and miscellaneous images 

were obtained from the collection of  a photographer (the author). The main 

object category contained images without visible faces or people and had a 

variety of  objects in the foreground (center) and background. No assumptions 

were made on the influence on viewing patterns of  the types of  objects in that 

category or the miscellaneous category. The landscape category also included 

only images without faces or people; the handshake category included only 

                                                

    

 

 

28 The images were selected and collected by the author and the eye tracking was performed at the 
Rochester Institute of Technology by his colleagues Jeff Pelz, Tim Grabowski, and Jason Babcock. 
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images in which people’s faces and the corresponding handshake were visible. 

The miscellaneous category only included images that could not be placed in any 

of  the other categories. All of  the images used in the experiments had a 

resolution of  approximately 240 x 160 pixels. Note however, that the important 

parameter is the angle subtended by each image (discussed in the next section). 

 

 

Figure 36. Example images from each of the five categories used in the experiments, 
from left to right: handshake, main object, crowd, landscape, and miscellaneous.  

4.6.4.2 Subjects 

Ten volunteers (four females and six males, all undergraduate students) 

participated in the experiment.  All subjects were native English speakers, naïve as 

to the goals of  the experiment, and had not participated in eyetracking 

experiments in the past.  Before beginning the experiment, subjects read and 
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signed an informed consent form describing the eyetracking apparatus. The 

observers were told to observe the images, but no explanations were given 

regarding the goal of  the experiment, or the number of  image categories. Since 

some of  the images were obtained from a news source, it is possible that some of  

the subjects had familiarity with the persons and places in the photographs. 

However, no distinctions were made in this regard. The subjects viewed a total of  

250 images.  The images were interleaved in random order, and each was viewed 

for four seconds.  The experiment was broken down into two sessions, each 

consisting of  125 images and lasting approximately 8.5 minutes.  While subjects' 

heads were not restrained during the sessions, they were instructed to maintain 

their gaze on the TV display.  Subjects took a self-timed break in between the 

sessions, typically lasting ~5 minutes before beginning the second set of  125 

images. 

The goal was to determine the primary areas of  interest in the image, so a 

viewing time was selected that was sufficient to allow several fixations (typically 8-

12 fixations), yet not long enough to encourage the subject to scan the entire 

image.  Pilot experiments indicated that a four-second exposure was appropriate.  

For visual examination of  an image, the important viewing variable is the visual 

angle subtended by the image.  The angular subtense of  the image was selected to 

approximate that of  an observer viewing a photograph in a magazine or 

newspaper (e.g., ~15 cm wide image field viewed at a distance of  33 cm). 
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Subjects were seated about 1 meter from an NTSC television monitor with screen 

dimensions ~53 cm x 40 cm.  The images subtended a mean of  25 x 19 degrees 

of  visual angle (the exact value varied with head position, but was within 10% of  

the stated value).  The remote eyetracker system was adjusted to be just below the 

line-of-sight to get the best view of  the eye without obscuring any portion of  the 

monitor (Figure 32).   Thresholds for pupil and corneal reflection discrimination 

were set for each subject to optimize the thresholding that is used to determine 

the pupil and corneal reflection centroids, as seen in Figure 33.  The system was 

calibrated to each subject by instructing the subject to fixate each point in a 

rectangular calibration grid on the display.  The raw pupil and corneal reflection 

centroids recorded at each calibration point, along with the location of  those 

points in image coordinate space, are used to establish the relationship between 

measured pupil and corneal reflection position and point-of-gaze in the image 

plane. 

Figure 37 is a sample image from the ‘miscellaneous’ image class. Figure 38 shows 

the eye position as a function of  time (left panel) and in two dimensions (right 

panel) for subject 6.  While the pattern is less regular than the calibration set seen 

in Figure 34, it is clearly still made up of  relatively long fixations separated by 

rapid saccadic eye movements.  The two-dimensional plot also shows how the 

fixation patterns are tied to image content; while the eyes are moved across a 

broad area of  the image, the majority of  the trial is spent looking in a small 
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number of  image regions.  The left panel of  Figure 39 shows the fixation pattern 

superimposed over the target image, where each point represents gaze position at 

each video field (every 16.7 msec).  The right panel shows the data mapped onto 

the image with one-degree circles indicating each fixation, defined as one-degree 

regions containing at least three data points (50 msec).  Multiple fixations evident 

in the left panel result in larger indicators. 

 

Figure 37. Example of image from ‘misc’ class (images were viewed in color) 
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Figure 38. Eye position trace for one subject for the image in Figure 37 in time (left) 
and image pixel units (right). Each point on the right represents a 16.7 msec sample 
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Figure 39. Scanpath overlay on display.  Left panel indicates gaze position at 16.7 msec 
intervals.  Individual fixations are indicated in the right panel with circles approximately 

one degree in diameter. 

4.6.4.3 Eye T acking Results r

The experiments resulted in a fairly large amount of  data, specifically eye tracking 

results for 10 subjects on 250 images in 5 categories. Since each subject viewed 

each image for approximately 4 seconds and the sampling rate of  the eye tracker 

used is 60 Hz., we have an average of  250 data points per subject, per image, for 

a total of  approximately 630,000 data points for the entire experiment.  

It is possible to mathematically process the acquired data (e.g., mathematically 

compare fixations of  different subjects within an image category, etc.), as 

discussed in section 4.6.5. In this section, however, we focus on our own 

observations about the viewing patterns observed (i.e., scanpath, including 

fixations and saccades). In particular, we discuss the following viewing patterns: 

(1) within image variations (similar/dissimilar patterns for an image, across several 

subjects); (2) across image variations (subject’s pattern depends strongly on the image 

content); and (3) within/across image category variations (similar/dissimilar patterns 

for images in the same category, across several subjects).  
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In general, viewing patterns were similar between subjects viewing the same 

image, though idiosyncratic behavior was evident. Figure 40 shows fixation plots 

for four subjects as they viewed the same image.  All four subjects fixated on the 

two main figures in the image, but each made a number of  other fixations not 

common with the other subjects. This example shows an image for which 

consistent patterns were found, across different individuals. Note that in all cases 

the observers fixated on the people in the images, notably near the head. 

 

  

Figure 40. Fixation mask overlay for subjects 2, 3, 5, and 6. 

Figure 41 shows similar data for a another image.  Again, the fixation density 

plots for the four subjects are similar.  
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Figure 41. Fixation mask overlay for subjects 2, 3, 5, and 6. Note that all subjects 
fixated on the faces. 

As the two previous examples suggest, there are cases in which it is possible to 

find consistent viewing patterns, across different individuals, for a given image. The viewing 

patterns themselves, however, varied, for a single individual, depending on the 

specific image being observed. For example, Figure 42 shows the fixation 

patterns of  a single subject viewing four different images, highlighting the strong 

image-dependency of  viewing patterns. 
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Figure 42. Fixation mask overlays for Subject 6 with (a pattern was used on the bottom 

right image to make the mask visible). 

In some cases, it was also evident that wide variations in viewing patterns 

occurred, for different subjects viewing the same image. Figure 43 illustrates one of  

those images for which there was a wide variation. In terms of  categories, we 

found the most consistency in the handshake and main object classes (Figure 44), 

while there was very little consistency in viewing patterns in the remaining three 

categories (landscape, crowd, and miscellaneous). Note that in Figure 44, for 

illustration purposes, we plotted all data points for all subjects, for all images within 

each of  the two categories. No distinction is made between saccades and 

fixations in these plots, but fixation concentrations are readily seen where there is 

a higher concentration of  points. Note, for example, that for the handshake class 

there are two visible clusters, resulting from the two faces that appear in each 

image in that class, and that patterns are different across categories. 
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Figure 43. Dissimilar viewing patterns for a given image. Fixations of four subjects on 

the same image. 

 

Figure 44. Data points for six subjects, for all images in the handshake category (left) 
and main object (right) category. 

It is interesting to note that, in general, in the handshake class, subjects spent 

more time looking at the face on the left than at the face on the right. 

Additionally, it was somewhat surprising to find that in many cases the observers 

did not fixate (i.e., no data points occurred) at the handshake at all.  

To summarize, we found images with consistent viewing patterns (several subjects 

viewed the same image in a similar way), images with inconsistent viewing patterns 

(several subjects viewed the same image in different ways), and strong image 

dependence (the same subject used different patterns on different images). In 
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addition, we found the most consistent viewing patterns in the handshake and main 

object image categories, and that there were differences across categories. 

The results suggest that human observers frequently fixate on faces (thus the 

patterns in the handshake category). When faces are not present, however, 

fixations are strongly influenced by composition, as the viewing patterns in the 

centered object and miscellaneous categories suggest. These results agree with 

the observations in [188] in which human subjects manually described images in 

semantic categories. The authors found that when people appeared in images the 

participants selected them as the most important cue in describing the images’ 

category, and that color and composition play an important role in comparing 

natural scenes. The impact of  differences between foreground and background 

objects was not examined in our work: in many of  the images it is difficult to 

make such distinctions (see landscape and miscellaneous images in Figure 36).  

4.6.5 Applications In Automatic Classification 

In the previous section we discussed eye movement variations for a subject, across 

images, and within/across categories. One of  the goals of  this study was to determine 

whether results of  eye tracking experiments like this one can be used in the 

construction of  automatic classifiers. Therefore, data analysis across categories 

may be more useful because it could be used to construct classifiers for the 

classes studied (e.g., handshake).  
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In the Visual Apprentice, during training, the user manually clicks on regions that 

correspond to the definition hierarchy he defined. Therefore, one possible use of  the 

eye tracking data for each class (instead of  manual labeling), consists of  using the 

fixation points (e.g., for all subjects for each image) to select the relevant training 

regions. In the handshake class, for example, we would expect the observers to 

fixate their gaze on the faces of  the people shaking hands, and possibly on the 

handshake itself. A preliminary analysis of  the data, however, showed that 

selecting regions for training that are obtained from automatic segmentation is 

not trivial.  

In the current VA setup, the user manually clicks anywhere inside the regions that 

he wants to label, so a single pixel location (in x,y image coordinates) is sufficient 

to accurately select and label regions. Since a fixation point in the eye tracking 

experiments corresponds to several data points from the eye tracker (e.g., a 

fixation point might be defined as lasting 167 msecs, or 10 data points), those 

points must be clustered in some way and a fixation center (or fixation area) must 

be computed. Figure 42 shows an example of  fixation areas that were obtained 

from the eye tracking results, and Figure 45 shows a set of  image regions 

(obtained from automatic segmentation) automatically selected by the fixations 

points of  6 of  the subjects. In other words, regions obtained from the automatic 

segmentation, that overlap (on the image) with fixations, are selected and shown 

in Figure 45. As the figure shows, some of  the relevant regions are not selected 
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(i.e., those that would be selected by a human training the system, like the 

handshake regions missing from the image in Figure 45), while some irrelevant 

regions are selected. Using the eye tracking results directly, therefore, may not be 

sufficient for region selection. Nevertheless, if  viewing patterns are found within 

image categories, it is possible to train classifiers using the fixations (with 

additional processing to address the issues just described) to select important 

areas to be used during training. These areas need not correspond to regions 

obtained directly from automatic segmentation. In [289], for example, the authors 

compared automatically selected regions of  interest with regions selected by 

human observers’ eye movements, and proposed a technique to cluster fixations 

and compare them across different viewers.  

In our experiments it is possible to apply the same approach to cluster points, but 

decisions regarding the use of  the data (e.g., clustering algorithm, criteria to 

group fixations of  different observers, etc.) are not trivial and can have a strong 

impact on the construction of  automatic classifiers. One of  the factors is that 

humans may fixate on certain areas of  objects (e.g., a person’s hair), but those 

areas may not yield the best results in terms of  selecting the relevant regions for a 

particular detector (e.g., a face detector). 
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Figure 45. An example of the regions selected by the fixations of the human observers. 

In addition to selecting regions automatically, based on fixations, it is possible to 

modify the algorithm of  the VA and use the additional information provided by 

the eye tracking experiments. In that case, fixations could be used to give certain 

regions more weight than others (this could be easily included in the VA 

framework), and more importantly to also include regions selected by the 

saccades. Furthermore, scanpath order could be included in the classification 

strategy (i.e., classifiers would be applied according to scanpath order). 

Alternatively, entirely new regions could be extracted from the training data (not 

using automatically segmented regions, but instead masks produced by the eye 

tracking experiments) and used to construct the classifiers. The actual 

classification approach, in that case, would also have to be modified so at the 

classification stage the regions would be extracted according to the training data 

(instead of  extracting regions without any class-specific knowledge and then 

trying to classify them). 
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4.6.6 Eye Tracking Summary 

We presented eye tracking experiments that show the variations in eye 

movements (i.e., fixations and saccades) across ten different individuals for color 

photographs of  5 different categories: handshakes (two people shaking hands), 

crowds (cluttered scenes with many people), landscapes (nature scenes without 

people), main object in uncluttered background (e.g., an airplane flying), and miscellaneous 

(people and still lives). In the viewing patterns we found the following: (1) within 

image variations (similar/dissimilar patterns for an image, across several subjects); 

(2) across image variations (subject’s pattern depends strongly on the image); and (3) 

within/across image category variations (similar/dissimilar patterns for images in the 

same category, across several subjects). Specifically, we found more consistent 

patterns within the handshake, and main object categories. More importantly, we 

found the patterns were different between those categories (handshake/main object). 

Using results from the experiments, we discussed ways in which this type of  data 

can be used in the construction of  automatic image classifiers in the Visual 

Apprentice. 

The results of  the experiments are encouraging since the existence of  patterns 

allow eye tracking data to be used in the construction of  automatic classifiers. In 

future applications it is feasible to consider a scenario in which a system learns 

classifiers directly from the viewing patterns of  passive observers. Analysis of  the 

    

 

 



215
 
 

 

data (e.g., selection and clustering of  fixation points, use of  scan order, etc.), 

however, plays a very important role since the criteria used can have a strong 

effect on the classifiers being built. Our future work includes more analysis of  the 

data, and construction of  automatic classifiers using these eye tracking results.  

In chapter 5 we integrate some of  the concepts of  the previous chapters within 

the consumer photography domain. In particular, we develop an approach to 

cluster images based on composition (level 4 of  the pyramid in Figure 16 of  

chapter 3) and develop a framework for the detection of  non-identical 

photographs.
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5 ORGANIZATION OF 

PERSONAL PHOTOGRAPHY 

COLLECTIONS 

5.1 

                                               

INTRODUCTION 

In this chapter we address the problem of  integration of  generic visual detectors 

in solving practical tasks in a specific domain29. In particular, we present a system 

for semi-automatically organizing personal consumer photographs and a novel 

framework for the detection of  non-identical duplicate consumer images.  

In the multimedia applications of  the future that we envision, consumers will 

more actively use their personal photography collections in exciting and 

innovative ways. Such applications will be driven by the core technologies that we 

develop today to deal with the fundamental problems of  visual information 

organization. 

 

    

 

 

29 The work in this chapter was performed in conjunction with Alexander C. Loui and his colleagues at 
Kodak. Ana B. Benitez from Columbia University contributed to the clustering experiments and Enrico 
Bounanno, also from Columbia worked on the development of the STELLA interface.  



217 

In the consumer domain one of  the most important goals should be to develop 

systems that help users subjectively manipulate and organize their own personal 

collections. Regardless of  what those future applications will be, it is clear that 

certain trends will continue. 

Consumers of  the future will, undoubtedly, produce exponentially larger amounts 

of  digital imagery. Consider the emergence of  new applications and devices for 

digital visual memory [167] and wearable computing. Already many cellular 

telephones and other portable devices come with digital cameras, therefore 

personal collections are rapidly growing. 

Two immediate implications, which we address in this chapter, clearly arise: (1) 

people will continue to want to organize their personal photography collections, 

and (2) the ease with which images are created will increase the number of  similar 

images that people produce (Figure 46). 
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Figure 46. Non-identical duplicate images (top two rows) and similar non-duplicates 
(bottom row). 

Developing techniques to help users organize their personal collections is clearly 

a goal many are trying to achieve. One important problem which has not yet been 

addressed, however, is the construction of  computational frameworks to 

specifically help users organize similar images. These very similar images (non-

identical duplicates) are important because, as we will show, they occur frequently 
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in current consumer collections, and often they are made when important events 

are photographed (e.g., the group portraits we usually make one after the other). 

In this chapter we use many of  the concepts and techniques of  the previous 

chapters to construct a specific application in which the fundamental issues of  

organization of  personal digital collections play a key role. In particular, we 

present a system for semi-automatically organizing personal photography 

collections and a new framework for automatically detecting non-identical 

duplicate photographs.  

We present a comprehensive study on a database of  non-identical duplicate 

consumer images. This study is the first one of  it’s kind (on non-identical 

duplicates) and this is the first time the problem of  non-identical duplicate 

consumer photographs is introduced. The computational framework we propose 

to detect non-identical consumer images is new and important because it 

integrates our knowledge of  the geometry of  multiple images of  the same scene, 

generic visual detectors built with a flexible computational framework, and 

domain knowledge about the duplicate detection problem we are addressing. 

5.1.1 Overview 

In STELLA (Story TELLing and Album creation application, Figure 47), a system we 

have built for semi-automatically organizing consumer images, photographs are 

input into the system and automatically clustered hierarchically based on visual 
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similarity and sequence information (i.e., the order in which they were made 

which corresponds to their sequence location in the roll of  film). The resulting 

clusters are presented to the user so that he can subjectively organize his personal 

digital collection. Functionality in STELLA allows the user to easily browse the 

cluster hierarchy, select or modify individual clusters or groups of  clusters, and 

add metadata to individual images or clusters at the levels of  the pyramid of  

chapter 3.  

One very important problem in a consumer photography application like 

STELLA is the existence of  images that are considered “duplicates.” These are 

images that are not identical, but that are very similar, such as those depicted in 

Figure 46.  

Almost everyone who photographs has at least once (and most likely many times) 

made more than one photograph of  the same scene, object, or event. Typically these 

duplicates are created in special occasions, for the most part because the 

photographer does not want to “miss the moment.” We want to make sure we 

have at least one of  those photographs. 

Consequently, when we organize our images one of  the first steps is to examine 

those non-identical duplicates either to select the best one or simply to put them 

in the same group and continue organizing the rest. 
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Duplicates should be  

in the same cluster 

 
and add metadata  

 

User can modify clusters 

  

Figure 47. STELLA application 

In  Figure 46 we show two sets of  images from our duplicate database. The 

images in this example were consistently labeled as “duplicates” (top) and “non-

duplicates” (bottom) by ten participants in the experiments we present in section 
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5.4.  As the example shows, the differences between “duplicates” can be visually 

significant, and the similarity between “non-duplicates” can be very high.  

These characteristics of  “duplicates” and “non-duplicates,” discussed in more 

detail below, requires us to build a computational framework that is specific to the 

duplicate detection problem in consumer photography. Clustering techniques that 

use standard similarity metrics in Visual Information Retrieval are not sufficient. 

Duplicate detection is necessary in current systems along with other basic 

functionality and could be used in innovative ways: for example, we can argue 

that duplicates are made only when there are important events and therefore 

could be used to automatically find those meaningful moments. It is very likely 

that if  you retrieve all of  the duplicate candidates in your own personal collection 

you will find many of  the events that were most significant at the time the 

photographs were made.  

In STELLA we introduce a novel image composition feature based on automatic 

region segmentation and a novel but simple variation of  Ward’s hierarchical 

clustering algorithm. In our clustering method, each photograph’s location in the 

film is used in addition to visual content to create the clusters. 

We develop a model of  non-identical duplicate consumer photographs and 

introduce a new classification of  different types of  duplicates. Then, we 

introduce a novel framework that automatically distinguishes between non-
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identical duplicate and very similar non-duplicate images. Our approach is based 

on a multiple strategy framework that combines our knowledge about the 

geometry of  multiple views of  the same scene, the extraction of  low-level 

features, the detection of  a limited number of  semantic objects, and domain 

knowledge. The approach consists of  three stages: (1) global alignment, (2) 

detection of  change areas, and (3) local analysis of  change areas.  

We present a novel and extensive image duplicate database30 (255 image pairs 

from 60 rolls from 54 real consumers, labeled by 10 other people).  We analyze 

labeling subjectivity in detail and present experiments using our approach. 

5.1.2 Generic Objects in the Consumer Domain 

Recurrent Visual Semantics (chapter 4), the repetitive appearance of  elements (e.g., 

objects, scenes, or shots) that are visually similar and have a common level of  

meaning within a specific context, occurs in consumer photography at several 

levels. For example (Figure 48), in photos of  a trip to New York, it is common to 

find photographs of  the statue of  liberty. Likewise, birthday photographs taken 

by different individuals often include similar scenes. 

                                                

30  The duplicate database we use was created from actual consumer photographs and labeled by 
researchers at Kodak. The analysis of the data  was done by the author. 
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Let us consider a particular roll of  film and determine, using the pyramid of  

chapter 3, what kind of  repetition at the semantic level we can identify.   

• Generic Object: trees, cars, buildings, etc.  

• Specific Object: family members, friends, etc. 

• Generic Scene: photograph on a beach, etc. 

• Specific Scene: a specific scene repeats. 

As we argued in chapter 4, such repetition lends itself  to the application of  

flexible computational frameworks that learn to detect objects and scenes. Given 

enough training data, it could be very feasible to construct a library of  detectors 

for consumer domains, perhaps specific to particular cities, locations within cities, 

or even individuals. Imagine a scenario in which your software, or your digital 

camera automatically “learns” from all of  the photographs you make. 

Alternatively, consider constructing a set of  generic visual detectors using the 

framework of  chapter 4 and applying them in systems for semi-automatically 

organizing personal image collections.  

In this chapter we use the concept of  Recurrent Visual Semantics to identify objects 

that repeat in the consumer photography domain and that can be integrated in 

the detection of  non-identical duplicate consumer photographs.  
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Figure 48.  Examples of Recurrent Visual Semantics in consumer photography. The 
objects in these images frequently appear in consumer photographs of New York City. 

Another level of  repetition is described next. 

5.1.3 Why Duplicates are Important 

Consumers very often make images that are almost identical because they 

photograph the same scene, creating non-identical “duplicates” and similar “non-

duplicates” (Figure 49). This repetitive consumer behavior is so prevalent that in 

Kodak’s consumer photography database [168], for example, 19% of  the images 

fall into the category of  non-identical duplicate and similar non-duplicate images.  
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Clearly, consumers will often want to keep only one of  those “duplicates” based 

on their own subjective judgments (e.g., this picture is nicer, she looks prettier in 

this picture, this one captured the right moment, etc.). Selection of  these images, 

with an interface such as STELLA’s (Figure 47), could easily and quickly be done 

only if  these “duplicate” images are clustered independently at the lowest level of  

the hierarchy. 

5.1.4 Metadata Does Not Solve the Problem 

 the digital images when 

they are created. This includes the time stamp and often other information such 

as Global Positioning System (GPS) location.  

 detecting duplicate images because it 

could eliminate from consideration image pairs that, for example, were made at 

very different times. The assumption would be that images taken at 

approximately the same time are likely to be duplicates, and images taken at 

sufficiently different times are unlikely to be duplicates. Time and GPS metadata, 

therefore, could be used to filter out some of  the duplicate candidate pairs that 

Figure 49. Almost identical images. 

Most digital devices automatically save metadata with

This information could be very useful in
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are either far apart in time, or were made from different locations. This could 

potentially improve the performance of  duplicate detection algorithms 

significantly because, as we will show, the most challenging image pairs are very 

similar non-duplicates. Eliminating these candidates from consideration would 

reduce the error rate of  the algorithm to detect duplicate images using visual 

content analysis.  

Unfortunately, as we will also show, many of  the non-duplicates are photographs 

of  the same scene, object, or event, and therefore are likely to be made at around the 

In any case, the use of  metadata as a pre-processing step should surely be 

investigated as there is no doubt that it will have a positive impact on the 

same time just like duplicates are. In other words, time and GPS information 

might eliminate from consideration some obvious non-duplicates (made far apart 

in time), but it will not be able to eliminate many of  the non-duplicates that are 

visually similar (made at approximately the same time). We can safely assume that 

most of  the images taken far apart in time are sufficiently different visually to be 

less challenging to the problem we are addressing.  

performance of  the algorithms to detect non-identical duplicates. This is 

especially true with newer cameras and future capturing devices that store 

additional information such as camera parameters, and annotations generated 

directly by the consumer at the time the photographs are made. We can certainly 

foresee a time in the future in which such capture devices will save the exact 
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camera location (3D coordinates in a world coordinate system) and parameters 

(e.g., focus, aperture, speed). Having access to this kind of  metadata will be 

extremely useful.  

In spite of  having access to all of  the metadata just described, it is clear that to 

determine if  two images are duplicates, analysis of  their visual content must still 

Therefore, we focus on developing a framework for detecting non-identical 

duplicate consumer photographs based only on visual content. This, in essence, is 

5.1.5 Related work 

Many approaches have been proposed to organize personal digital image 

collections [235][164][168][213][295][296]. However, none of  them exploit the 

be performed.  

the core problem in determining if  two images are duplicates of  each other. We 

do discuss, however, how time stamp and GPS information could be easily 

incorporated in our framework.  

sequence information available when images are scanned directly from film. In the 

DejaVideo framework [104] access to video segments is based on remembering 

clues from the currently viewed video segment. This is done by automatically 

extracting associations between video segments and other multimedia documents. 

In [168] and [213], the authors use time stamp information to perform the 

clustering. Time information is related to sequence information, but it provides 
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significantly more useful detail for this task. However, images do not always have 

this kind of  metadata associated with them.  

The clustering algorithm we present, therefore, is novel because it uses this 

information and a new feature to measure similarity based on composition. In 

In [235], the authors present impressive results on wide baseline stereo view 

matching. Images are spatially clustered so that images of  the same scene from 

The authors of  [67] construct mosaics from video to cluster scenes into physical 

settings. This approach could potentially be applied to collections of  consumer 

addition, none of  the previous approaches have addressed the duplicate problem. 

An exception is the system in [250], which performs duplicate detection. No 

details of  the approach have been published to this date, however.  

similar views are close together. The focus of  that work is on efficiently performing 

wide baseline stereo view matching of  multiple images. That approach could be 

used within the alignment stage of  our framework (section 5.3.5.1), but the 

additional stages to analyze the differences between the images would still be 

required. In [235], the evaluation focuses on computational cost and complexity; 

no analysis or evaluation is performed on the overall quality of  the matching, 

although the authors’ examples in [235] and [236] suggest that the algorithm 

works well with the particular sets of  images used in the experiments.  

photographs. For example, a children’s party may take place partly indoors and 

partly outdoors. The approach proposed in [67] could be used on such sets of  
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images to find the two clusters. This could potentially be useful within our 

framework because clusters always occur in the same physical setting. Detailed 

analysis of  the difference areas, however, would still be required. 

Previous approaches that do detect duplicate images do not handle viewpoint and 

scene changes and are not specific to consumer photography [121][88]. In [121], 

In the field of  Computer Vision two related areas are registration [237][85][73][175], 

and change detection [170]. Registration aims at finding correspondences 

for example, the authors focus on TV commercials with variations due only to 

media encoding. Duplicate detection in 2-D binary image document databases 

has also been addressed [106].  

between points in two images and change detection aims at identifying 

differences between two images. In registration a coordinate transformation is 

sought which maps the points in image I1 to the points in image I2. Registration, 

or search for correspondence is a required step in stereo matching [237][112]. 

Registration is also necessary in video motion estimation [249] and for estimating 

coordinate transformations in the construction of  mosaics [68][221]. Change 

detection algorithms are used in medical image analysis [175], target detection, 

and surveillance, among others. Although many of  these approaches are related 

to the duplicate detection problem, they assume either very specific domain 

constraints or minor variations between the images. In video motion estimation, 

for example, the differences between frames in a video sequence are assumed to 
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be small and strong assumptions are made about the type of  motion, the amount 

of  motion and the scene. In medical image registration high accuracy is desired 

and techniques are often developed for specific types of  images (e.g., X-ray, PET, 

etc. [175]). In consumer photography changes between potential duplicates are 

often significant and unconstrained making this a very challenging problem.  

In the area of  Visual Information Retrieval many approaches have been developed 

to measure image similarity (e.g., using color histograms, regions from 

Other applications of  duplicate detection include media tracking [121], copyright 

infringement detection [88], database integrity, security, and filtering, among 

The framework we present differs from previous work in several aspects: (1) use 

of  multiple-view geometry; (2) integration of  generic visual detectors; (3) use of  

5.1.6 Outline 

In section 5.2 we present the STELLA system, new composition features, and 

clustering. In section 5.3 we present a model of  the duplicate problem and a 

classification of  different types of  duplicates. In section 5.3.5 we present our 

segmentation, etc.). However, since duplicates can be very different and non-

duplicates can be very similar, similarity techniques not specifically developed for 

non-identical duplicate detection are not suitable.  

others. 

domain-specific knowledge to detect duplicates.  
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framework for detecting non-identical duplicate images. In section 5.3.6 we 

discuss the construction of  our duplicate consumer image database and in 

section 5.4 we present experiments and discuss future work. 

Our goal is to provide the user with a preliminary organization of  the images in 

his collection so that he can subjectively organize them according to his interests. 

In order to achieve this, first, duplicate images are detected. Then, the images in 

each roll o stered using color and composition features. We will 

present our novel composition features and clustering algorithm before 

addressing the duplicate problem. 

As described in section 3.2.1.4, Global Composition refers to the arrangement, or 

spatial layout of  basic elements (i.e. dot, line, etc.). There is no notion of  objects and 

only basic elements or groups of  basic elements are considered.  

Our novel measure of  composition is computed as follows. First, we 

components. In 

particular, we extract the following set of  visual features (section 4.3.5), for each 

of  the n regions of  the image: d = {extent, roundness, aspect ratio, orientation, location, 

5.2 STELLA 

f  film are clu

5.2.1 Color and Composition Features 

automatically segment the image based on color and edges using the approach of  

[274], which was also used in chapter 4. Next, we extract features to represent the 

overall shape, orientation, location, color, and texture of  image 
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dominant color, minmax difference}. We then compute a weighted average Region 

Feature Vector (RFV) for each of  the features extracted, as follows:  

Where n denotes the number of  regions in each image and fi, and ai are the 

feature value (i.e., for a feature from set d above), and size of  the area of  region i, 

n
RFV i

ii
= 0

n

af∑
=

)*(

 

respectively. Region sizes are used to weight the features because larger regions 

have a stronger impact on composition.  To perform clustering, we create a 

feature vector that concatenates verages for each of  the features in 

d, with a “number of  regions” feature, and a color histogram ch. The color 

istogram is computed converting the image to the LUV color space and 

quantizing it into 166 levels as described in [242]. The number of  regions is 

important because it may vary considerably for images with distinct 

compositions, and the histogram is useful in representing the image’s color 

distribution.  

 the weighted a

h
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For each image, therefore, we extract the following Composition Feature Vector 

(CFV): 

),,( chnRFVCFV =  

The composition feature vectors are then used to cluster the images. Images with 

similar and distinct composition feature vectors are depicted in Figure 50. 

5.2.2 Sequence-weighted Clustering 

The goal of  STELLA is to serve as a tool that helps users organize their 

personal image collections. Therefore, the images are first clustered automatically 

and then presented to the user who may subjectively manipulate the clusters 

according to his interests.  

Figure 50. Images that have similar and dissimilar composition feature vectors. 
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Photographs from a single lens camera are always created in a sequence and 

therefore this sequential ordering information is always available in film because 

the frames are numbered. In digital cameras the number of  the frame is also 

sequential and time information is often available.  

Since photographs are created sequentially, it is natural to assume that some 

photographs that are close to each other in the sequence are related: proximity 

can imply similarity because often the photographs might be of  the same scene, 

object, or event. We exploit this sequential structure with a novel algorithm to 

perform sequence-weighted hierarchical clustering on the photographs in each 

roll of  film. Our approach is general in the sense that it does not rely on time 

stamp information. Instead, in our clustering algorithm we use only the sequence 

number of  each picture. However, the algorithm could be easily modified to use 

time instead of  just sequence information.  

Although there are many clustering algorithms they are often placed in one of  

two categories: (1) hierarchical; (2) non-hierarchical. Hierarchical clustering 

algorithms partition the data into a multiple-level hierarchy, producing a 

erge them iteratively until the entire set becomes a 

dendogram, while non-hierarchical algorithms partition the data at only one level. 

Hierarchical clustering algorithms are further subdivided into agglomerative and 

divisive. Agglomerative algorithms start with all elements, where each element is 

considered a cluster, and m
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single cluster. Divisive algorithms start with the full set of  elements and divide it 

iteratively until all elements are single clusters.  

For our application, hierarchical clustering is advantageous over non-hierarchical 

clustering because it can be very useful for visualization and for manipulating 

every step of  the algorithm the two clusters with the minimum squared error are 

different groups that contain the same image. Based on the advantages of  

hierarchical clustering we propose a modified version of  Ward's hierarchical 

clustering algorithm [150]. Even though we emphasize the difficulties of  selecting 

an algorithm for a general data set, several comparative studies have shown that 

Ward's method outperforms other hierarchical clustering methods [150].  

Figure 51. Hierarchical clustering in Ward’s algorithm. 

In Ward’s algorithm, the within-cluster squared error is used to merge clusters. 

The algorithm starts with a set of  n data points, each of  which is considered a 

cluster with one element and is represented by its within-cluster squared error. At 
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merged to form a new cluster so that if  the data set contains n points, the 

resulting hierarchy will have n levels. This is depicted in Figure 51. Note that in 

such hierarchy the images that are most similar (e.g., duplicates) should be in the 

same cluster and should be merged at the lowest levels of  the hierarchy. As we 

discussed in section 5.1.1, detecting duplicates requires a specialized algorithm 

because many non-duplicates are very similar. It is possible, therefore, to use the 

clustering algorithm proposed here to cluster all of  the images, and to use the 

duplicate detection algorithm (section 5.3) to place duplicates in separate clusters. 

a being 

clustered, and in particular of  the distribution of  the data (i.e., desired cluster 

shapes), so in general it is not possible to select a priori the best clustering 

algorithm without any knowledge of  the data. The selection can be made, 

however, based on general algorithm characteristics, or computational 

requirements, among others. 

We have modified Ward's algorithm to be sequence-weighted so that it accounts 

for the location of  each image within the sequence (i.e., roll of  film). In Ward’s 

algorithm the  of  squared 

The quality of  a clustering algorithm is highly dependent on the dat

squared error for a cluster is computed as the sum

distances to the centroid for all elements in the cluster. In our algorithm we 

penalize images that are far apart in the film using two additional variables in the 

calculation of  the cluster’s squared error. Consider the sequence of  images 

depicted in Figure 52. Between two images (or two clusters), the number of  times 
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a skip occurs is nskip, and tskip, is the total number of  frames skipped. In our 

algorithm the calculation of  the within cluster squared error is modified to 

include the nskip and tskip variables as follows:  

2 Skips

sqerr += ( (sqerr + tskip * penalty1) + (nskip * penalty2) )  

Figure 52. Num ber of skips in a cluster. 

These nskip and tskip values are used to modify the cluster’s squared error, so the 

resulting clusters tend to group images that are closer in the film sequence. This 

approach differs from the clustering method presented in [272] in which images 

outside a pre-determined time window are not allowed to belong to the same 

cluster. The “hard” window criterion used in [272], however, could be replaced 

with a soft one (e.g., using an exponential decay weight function to define the 

ber of times a skip occurs and total num

3 Frames skipped

1 X X 4 5 X 7

window boundaries). It also differs from the work in [213], in which an image is 

added to a cluster only if  it is contiguous in the film or sequence to an image 

already in the cluster.  
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The approach we propose has strong benefits over the previous ones because it 

allows very similar images to be in the same cluster (even if  they are very far apart 

in the film), at the same time that it discourages non-contiguous images in the 

same cluster. Figure 53 shows an example of  clustering results using our 

approach in comparison with Ward’s algorithm (not sequence-weighted). 

clustering (cluster 2). The number below each image indicates its location in the roll of 
film. 

Figure 53. Comparison of original Ward clustering (cluster 1) and sequence-weighted 

22 12 26 

Cluster 1 

Cluster 2 

12 13 14
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5.2.3 Cluster Analysis  

We analyzed the clustering results of  our algorithm qualitatively by applying it to 

a set of  approximately 1,700 professional and amateur travel photographs (over 

45 rolls of  film) and visually examining the results. The collection included 

images from the MPEG-7 content collection [193], photographs by Philip 

Greenspun [210], and by the author (made independently of  this project). Several 

parameter values (for penalty1 and penalty2) were used in the analysis— we found 

that different values worked well for different rolls of  film.  

5.2.3.1 Cluster Evaluation Strategies 

We decided to analyze the clustering results qualitatively after exploring several 

quantitative options. In particular, we explored three different strategies for 

evaluating the clusters generated automatically by our system: (1) comparison 

with a human-constructed clustering ground truth; (2) use of  cluster validation 

techniques; and (3) evaluation through user interaction.  

In the first strategy, 16 rolls of  film (approximately 570 images) of  the 

photographs made by the author, from the collection described above, were 

randomly chosen and images in each of  the rolls of  film (of  approximately 36 

photographs each) were independently clustered by the author and his colleague 

Ana B. Benitez. As a result of  this process, we obtained a ground truth similar to 

t  he one obtained by a single person in [213] (see Figure 54 for some example
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images). No similarity or clustering guidelines were set: the two participants 

clustered each roll of  film independently and subjectively.  

s and discussing the 

criteria that each participant had used, we agreed that for the collection of  images 

we were using, it was very difficult to decide how to cluster the images.  In other 

It is important to note that one of  the participants was the author of  the 

photographs. This had an important implication, which motivated the final 

implementation of  our system: the author of  the photographs has knowledge 

Although we did not quantitatively compare the resulting clusters, we found little 

agreement between the two participants. The clusters themselves were quite 

distinct and the number of  clusters generated by each of  the two participants for 

the same rolls differed substantially. For a set of  8 rolls, for example, the average 

number of  clusters for one participant was 19 and the average for the other one 

for the same images was 10. After comparing the cluster

words, the individual criteria were not well defined. There is no single correct way 

of  clustering the images in Figure 54, for example.  

about the events and places depicted in the photographs. Therefore, clusters 

formed by the author of  the photographs are based on semantic information that 

may not even be depicted in the images (i.e., what the images are about; which 

corresponds to the abstract levels of  Figure 16). Based on this implication, we 

conclude that unless our algorithm is able to at least cluster the images at the 

generic semantic levels of  the Multi-level Indexing Pyramid of  chapter 3, it does not 

    

 

 



242 

make sense to evaluate the algorithm against a ground truth, for this particular set 

of  images. Creating the ground truth here, was found to be very difficult in part 

for the following reasons, which prevent us from using this strategy: (1) 

subjectivity in creating the clusters, (2) disagreement between the two 

participants, (3) use of  semantic level information in the creation of  the clusters.  

As discussed in [179], clustering of  images is a subjective task, in which often 

there is little agreement between users (in the experiments reported there, 34.6% 

higher than agreement expected by chance). In some cases [168], however, 

creating a ground truth is possible and very useful, particularly if  the goal is to 

evaluate fully automatic techniques. Other authors [75] have used cluster 

evaluation approaches from a ground truth given by the collection’s textual 

annotations.  

 

    

 

 



243 

 

Figure 54. Example images used in the clustering experiment. It was not possible to find 
consistent clusters. 
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The second strategy to evaluate our algorithm was to use cluster validation 

techniques [150]. However, external criteria (i.e., does the cluster hierarchy match 

an expected hierarchy?) are difficult to implement, particularly for hierarchical 

clusters, because expected hierarchies are not usually available, as is the case here. 

Internal (i.e., does the hierarchy fit the data well?), and relative criteria (i.e., which 

of  two hierarchical clusterings fits the data better?), on the other hand, usually 

require a baseline distribution. Such distribution is difficult to obtain for general 

consumer photographs. Therefore, it is difficult to apply cluster validation 

techniques with these types of  photographs.  

The third strategy, evaluation through user interaction consists of  providing 

functionality in STELLA to track the changes made by a user as he modifies the 

clusters that are automatically generated. Recall that in STELLA the user inputs 

one or more rolls of  film, and the system creates a cluster hierarchy based on the 

techniques just presented. A considerable advantage of  using hierarchical 

methods is that the results can be easily used for browsing. As the user browses 

an hierarchy, he is able to perform several operations to organize and select images. 

The user can move and modify existing clusters, eliminate clusters, or select 

satisfactory clusters at different levels (see Figure 55). 
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The user can also add metadata to individual images or clusters at any level, 

effectively generating the full range of  semantic attributes of  the multi-level 

indexing pyramid and semantic information table of  chapter 3. The environment 

provided in STELLA is flexible enough to facilitate such operations. 

Root

A1A2A3 

A1A2A3 

B1  B2C1 

A1A2 
B2C1 

B2C1 B1 

B1 A3 

Figure 55. User operations on the output produced by STELLA. “Good” clusters are 
circled, “bad” clusters are crossed out, and others edited (square).  

 

The success of  the system can be measured in terms of  the user’s interaction (not 

the clustering accuracy). For example, the user performs some of  the operations 

described above and weights are assigned to each operation (e.g., corrections to 

existing clusters), using measures that are task, content, and user-specific. 

Although this is an interesting direction, we did not perform any user studies with 

this approach. The functionality was implemented in STELLA, but a meaningful 

udy here would have required input from several subjects and careful design and 

valuation of  the graphical user interface, among others. We discuss other 

possibilities in section 5.5. 

st
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5.2.3.2 Analysis of  the Results 

Given the difficulties in cluster evaluation just described, we decided not to 

explicitly measure the performance of  our clustering algorithm. Instead, we 

performed several clustering experiments, using different features and 

qualitatively analyzed the results at different levels of  the clustering hierarchies. 

Our analysis suggests th ing: (1) the combination of  histogram and 

composition featur lts than either one of  those features 

alone; (2) sequence-weighted clustering produces better results than it’s non-

weighted equi .   

E o 

entify some of  the open issues that prevented this evaluation and suggested 

possible directions to carry it out. 

5.3 NON-IDENTICAL DUPLICATES 

e follow

es provides better resu

valent

ven though we did not evaluate our algorithms quantitatively, we were able t

id

In the next section we present our work on non-identical duplicate detection. 

In this part of  the chapter, we introduce the problem of  non-identical duplicate 

consumer image detection, present a novel framework to address it, and present a 

new comprehensive study of  non-identical duplicates using a consumer image 

database. We conclude with experiments to evaluate our framework. 
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I m n to have one or more photographs of  the 

same scene. In Kodak’s consumer image database [168], on average, 19% of  the 

images, per roll, are perceived to be either “duplicates” or similar “non-

duplicates,” making this an important problem for the development of  systems 

that help users organize their photographs [164][213][295][296], and other 

consumer imaging applications [240].   

The majority of  the “duplicate” images, however, are not identical, but look 

identical or almost identical to the human eye. Figure 56 shows two pairs of  

images used in our experiments in which we asked 10 people to label image pairs 

as “duplicates” or “non-duplicates”. In the pair labeled “duplicate”, there are 

lly significant, and similarities between non-

duplicates can be very high. In fact, often high-level semantic information is used 

to decide if  two images are duplicates or not.  

Although much work has been done in several related areas in Computer Vision, 

n consu er photography it is commo

differences in viewpoint, subject, and exposure. The “non-duplicate” pair 

contains images of  two different people. As this example shows, differences 

between duplicates can be visua

Image Processing, and Visual Information Retrieval, the challenging problem of  non-
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identical duplicate consumer image detection has not been previously 

addressed31. 

 (a) 

 (b) 

Figure 56.  The pair in (a) was labeled “duplicate” eight out of ten people. The pair in 

 

(b) was labeled “non-duplicate” by ten out of ten people.  

often visually dissimilar, and image pairs that are labeled “non-duplicates” are 

                                               

5.3.1 Do we need special algorithms? 

As we show throughout this chapter, image pairs that are labeled “duplicates” are 

    

 

 

 

31 The system in [250] has a duplicate detection function. Details of the approach, however, have not 
been published to this date. 
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often very similar. Therefore small differences must be carefully analyzed and 

consequently traditional, non-specialized approaches to measure similarity (e.g., 

based on histograms or simple block-matching) are unsuitable.  

Consider the color segmentations in Figure 57 (using the approach of  chapter 4 

from [274]), and the luminance histograms in Figure 58. Each pair corresponds 

to the duplicate and non-duplicate pairs of  Figure 56. Differences between non-

duplicate images cannot be distinguished in the global histograms and the results 

of  segmentation vary widely between two images of  the same scene. Even for 

minor lighting variations or changes in the scene, the segmentation results can 

vary significantly.  

5.3.2 Can this problem be solved? 

Issues of  subjectivity and the need for igh level semantic information make the 

detection o  

problem. Although it is not possible to solve the problem for the entire range of  

es the problem can be solved. We 

aim, rather than to provide a complete solution, to present a general framework 

h

f  non-identical duplicate consumer images a very challenging

duplicate images, we argue that for some class

for further research, that can integrate algorithms that address some of  important 

issues. 
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Figure 57. Color segmentation maps for the pair of duplicate (top) and non-duplicate 
(bottom) images of Figure 56. 
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Figure 58.  Histograms for a pair of non-duplicate (top) and duplicate images (bottom). 
These correspond to duplicate and non-duplicate pairs of Figure 56. 

5.3.3 Overview 

F  

photographs of  approximately the same scene and present a new classification of  

different types of  duplicates. Then, we present a novel framework for 

automatically differentiating between non-identical duplicate and very similar 

non-duplicate images. Finally, we present a new duplicate image database, detailed 

analysis, and experimental results. 

irst we present a simple model that accounts for the changes between two
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5.3.4 A Duplicate Model 

As our experiments show, determining if  two images are duplicates is a subjective 

task. The definition that follows, which was created by researchers at Kodak and 

used to instruct the participants in the experiments below, however, serves as an 

initial guideline. 

Duplicates: Two photographs are duplicates if  they have the same content and 

composition, and were taken from the same angle and range. 

We can expand on Kodak’s definition as follows32: an image is a duplicate of  

another if  it looks the same and does not contain new and important information

Two images (i1, i2), therefore, do not have to be identical (pixel by pixel) to be 

duplicates y on the 

m. These differences can be measured at the levels of  the 

nd one (sad). In this chapter we are concerned 

                                               

. 

. Whether two images are duplicates or not depends entirel

differences between the

pyramid of  chapter 3. The syntactic level: type (color/B/W), global distribution (e.g., 

histograms), local elements (e.g., regions), or composition (e.g., arrangement of  

regions), and the semantic level: generic (e.g., face), specific (e.g., Bill), or abstract or 

affective objects and scenes (e.g., sad). Two almost identical portraits of  a person 

might be considered non-duplicates only because in one image the person is 

smiling (happy), but not in the seco

    

 

 

 

32 In the construction of the database, the participants were only given the Kodak definition, not the 
analysis we present. 
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primarily with the syntactic level, particularly with respect to local elements, and 

with a limited set of  generic objects (e.g., sky, face, vegetation) at the semantic 

level.  

capturing device), and the image 33  (the digital representation) 

(Figure 59). The scene may change due to movements of  the subject, change of  

the subject (i.e., a subject is added, removed, or replaced), and the existence of  

non-stationary elements (clouds, water, etc.).  

                                               

We can characterize the differences in terms of  the scene (what is photographed), 

the camera (the 

Figure 59. A simple camera model. 

 

Scene 

Camera

Image
Lighting

    

 

 

 

a surface. 
33 The image does not in fact need to be digital. In a camera obscura, for example, the image is the 
projection of light on 
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The Scene 

The physical layout of  the scene itself  may change due to movements of  the 

subject, change of  the subject (i.e., a subject is added, removed, or replaced), and 

Lighting 

The scene is affected by lighting, and from a specific perspective (the camera’s) can 

often be divided into s d background. Although the subject and background 

distinction is subjective and not always desired, it can account for important 

differences between the images. Changes in lighting occur due to quick changes 

in weather (e.g., sunny or overcast), the use of  flash, and locally due to reflections. 

The Image 

In the simplest case, there are no changes in scene, the location, or the 

parameters of  the capturing device. Differences between two images, therefore, 

are due to noise or differences in encoding (e.g., work in [121][88]). 

The Camera 

The photographer can create changes in internal and external camera parameters. 

Internal parameters include exposure, focal length, and aspect ratio. External 

the existence of  non-stationary elements (e.g., clouds, water, etc.). Subject change 

or movement often results in occlusion or cropping (e.g., one area is covered and 

another one is uncovered; a person moves and is partly left out of  the image).  

ubject, an
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parameters include changes in viewpoint (i.e., viewpoint translation) and viewing 

direction (e.g., rotations such as pan, tilt, and roll). Note that a viewpoint change is a 

change in the location of  the optical center of  the camera. 

ad 

to significant exposure changes, leading to differences in color and luminance.  

As our discussions will show, there are three important scenarios to consider in 

modeling the differences between the external parameters of  a camera used to 

photograph the same scene: (1) the camera’s viewpoint and viewing direction do 

not change (no zoom, no rotations); (2) the camera undergoes a rotation (about 

its optical center); (3) the camera undergoes a translation. 

Changes Between Images 

We can state the problem of  determining if  two images are duplicates as a two 

step process: (1) measuring the differences between two images i1 and i2, and (2) 

deciding if  the images are duplicates based on those differences. According to 

our model (Figure 59) those differences depend on three components: (1) the 

era; (3) the image. Table 16 lists specific types of  changes within 

Changes in the exposure parameters of  the camera are common, mainly because 

the majority of  consumers use point and shoot cameras that automatically change 

aperture and shutter speed. Therefore, small changes in the scene can sometimes le

scene; (2) the cam

each component. 
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Table 16. Changes between images 

-Flash/no flash/Light/Dark - Move/Replace

Component   

Scene  Lighting  

- Sunny/overcast 

Subject/Background  

ment 

-Non-stationary 

Camera  Exposure  

- Shutter speed 

Viewpoint 

zoom  

- Luminosity 

- Aperture - Rotation (pan, tilt, roll) and 

- Translation  

Image - Noise  

- Color 

- Overlayed text (unusual) 

Using this model, it is possible to divide duplicate candidate pairs into several 

categories, each of  which represents the largest visible change between the two 

candidate images (Table 17): zoom, angle change, framing, horizontal translation, vertical 

translation, subject move, subject change, different background, several changes, and no change. 

A duplicate candidate pair is placed in a given category when the category label’s 

parameter undergoes the largest change. For example, if  the biggest difference 

to the image itself  (e.g., color variations in video). Also note 

between two images is the framing, they can be placed in the framing category. 

Images in the several changes category are visually similar, but cannot be easily 

classified into any other category because they undergo various significant 

changes. Images in the no change category are almost identical. Note that we’ve 

focused on the camera and the scene, but it is also possible to include additional 

categories related 

    

 

 



257 

that the distinction betw  be eliminated without 

significant impact. 

. Duplicat

Category 

een subject and background could

Table 17 e categories 

Different background 

Framing  

Horizontal shift  

Vertical shift  

Subject move  

Angle  

No change  

Subject change  

Several changes  

Zoom 

It is possible to strictly characterize duplicates in terms of  the parameters of  our 

model. In practice, however, the distinction between different classes may not be 

that strict and some assumptions can be made. For example, in the first image 

pair in the examples of  Figure 60 there is subject movement (notice the position 

of  the fish relative to the body) and the camera motion in the images in the zoom 

example is not only a zoom. 

 

    

 

 



258 

  
Almost identical 
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Almost iden

 
tical 

Bracketing 

 
Zoom 
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Viewpoint change 

 
Subject replacement 

 
Miscellaneous changes 

 

Figure 60.  Duplicate examples. 
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Each component of  Table 16, can be viewed as an independent dimension and 

whether two images are duplicates or not depends on where in that n-

dimensional space they reside. For simplicity we show a 2-dimensional space in 

Figure 61 in which duplicate candidate pairs are represented by circles. Intuitively, 

those pairs closer to the origin are more likely to be duplicates.  

In some cases it is beneficial, from a computational standpoint, to consider 

independent dimensions. Next we discuss a special case that occurs when only 

exposure changes and cases in which the camera’ changes.  

Figure 61. Each com
dimension. Image pairs are represented by circles in this 2D space.   

The case in which only the camera’s aperture and or shutter speed change(s) is 

referred to a “bracketing.” Bracketing is not common in consumer photography 

because most consumers use point and shoot cameras that automatically set 

exposure parameters. Bracketing, however, is very common in amateur and 

professional photography. In the work presented in [141], for example, bracketing 

occurred in 20 out of  45 rolls of  film (3.25 average number of  bracketing cases 

per roll) in the collection of  approximately 1,700 images from amateur and 

professional photographers (this is the same set used in section 5.2.3). For these 
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The case in which only the camera’s aperture and or shutter speed change(s) is 

referred to a “bracketing.” Bracketing is not common in consumer photography 

because most consumers use point and shoot cameras that automatically set 

exposure parameters. Bracketing, however, is very common in amateur and 

professional photography. In the work presented in [141], for example, bracketing 

occurred in 20 out of  45 rolls of  film (3.25 average number of  bracketing cases 

per roll) in the collectio ages from amateur and 

rofessional photographers (this is the same set used in section 5.2.3). For these 

ponent (camera, scene) can be viewed as an independent ponent (camera, scene) can be viewed as an independent 

C
am

er
a 

Scene

n of  approximately 1,700 im

p
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duplicates, the element that visibly changes is the exposure (see camera in Table 

16). 

In terms of  a computational approach we know from multiple view geometry 

that two images of  the same scene can be related by a homography or by the 

Fundamental matrix (explained below). Therefore, we can examine duplicates from 

e same scene: 

• Zooms and changes in viewing direction that are only pure rotations 

about the optical center of  the camera. These images are related by a 

homography.  

• Arbitrary viewpoint changes including translation, but no scene changes. 

 be 

Much of  the work in Computer Vision may be used to deal with aspects of  some 

duplicate types (e.g., [235] for view matching related to viewpoint changes). We 

aim at constructing a general framework to accommodate different types of  

duplicates. 

the perspective of  projective geometry, and the properties of  images of  the same 

scene from multiple viewpoints. As will be evident in the discussion that follows, 

two cases are important when we consider two images of  th

The images are related by the Fundamental matrix. If  the scene can

assumed to lie on a plane (or lies at infinity), however, these images are 

related by a homography. 
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Multiple-View Geometry 

Differences in camera parameters have been studied at length in multiple view 

One of  the important considerations is the geometry that we choose to model 

these differences, particularly for finding correspondences between points in the 

scene and points in the image, or between points in multiple images. When we 

photograph a frontal planar scene, for example, and translate the camera by 1 

inc

geom

model the difference as a translation transformation.  

Dif e

prop

Euc

othe , on the other hand, distance and angles do not 

remain invariant: in general, parallel lines in 3D space are not parallel under 

perspective projection; parallel lines may convert towards a vanishing point 

depending on the observer’s viewpoint. Table 18 from [112] summarizes the 

particular transformations in each geometry and also the properties that are left 

invariant by the transformations. 

geometry and computer vision [112][125]. Therefore, it is useful to utilize existing 

concepts and techniques in our model of  non-identical duplicate images. 

h, we can model the difference between the two images using Euclidean 

etry. The second image is a translated version of  the second one so we can 

fer nt geometries describe different types of  transformations and different 

erties remain invariant to specific transformations. For example, the 

lidean transformation we just described preserves distance, and angles, among 

rs. In projective geometry
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Table 18. Ordering of geometries [112]. Particular transformations and properties left 

transformations mean weaker invariants.  
invariant by the transformations. Each geometry is a subset of the next and more general 

 euclidean similarity affine projective 

Transformations     

Rotation, translation X X X X 

Isotropic scaling  X X X 

Scaling along axes, shear   X X 

Invariants     

Distance X    

Parallelism, center of mass X X X  

Incidence, cross-ratio X X X X 

 

Perspective projections    X 

Angles, ratios of distances X X   

As we will later show, of  particular importance for our purposes are projective 

transformations. A planar projective transformation is a linear transformation on 

homogeneous 3-vectors represented by a non-singular 3x3 matrix [124], x’=Hx: 
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where x’ and x are points in 2D. 
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Projective transformations, which form a projective linear group consist of  

several specializations, or subgroups. Each of  these subgroups has specific 

Table ariant to common planar transforma ons [124] The matrix 
A=[aij 2 matrix, R=[rij  is a 2D rotation matrix, and (tx ty) is a 2D 

translation. 

 Euclidean Similarity Affine ojective 

invariant properties and degrees of  freedom (Table 19). 
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Now, if  we assume a pinhole camera and projective geometry, we can represent 

the projection from a 3D scene to the 2D image plane as a linear transformation 

given by a 3x4 camera projection matrix P such that x≅PX so a point X in 3D space 

is projected onto point x in the image. P can be written as the product of  

intrinsic and extrinsic camera matrices P≅K[R t] [112]. The intrinsic matrix K 

gives the internal geometry of  the camera. If  we assume no shear in the axes and 

no radial and tangential grees of  freedom (focal 

length 1/f, aspect ratio a, principal point Px, Py). The focal length is expressed in pixel 

units in each dimension and describes the total magnification of  the imaging 

distortions, the matrix has four de
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system resulting from both optics and image sampling. Their ratio, which is 

usually fixed, is called the aspect ratio (a). The extrinsic matrix gives the camera’s 

external orientation and position {R, t}, where R is a 3x3 rotation matrix and t is 

a translation 2-vector. The general projection matrix can be written as follows:  

x=
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Which can be written as: 

≅ PX  and P = Po[R|t] , K = 

 0001  11r
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oing back to the differences between two images of  the same scene, recall that 

the external camera parameters can change due to a change in viewing direction or a 

change in viewpoint.  

G

When changes are due to viewing direction only (not viewpoint) we can relate the 

two views by a homography, which is a planar projective transformation which 

maps points in one image to points in another image. If  an image is a rotated 

version of  another image, for example, a homography can be used.  

When there is a change in viewpoint (e.g., translation, rotation and translation) we can 

no longer find a transformation that maps points in one image to points in the 

other image (unless the scene is approximately planar). Instead, we can use epilolar 
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geometry (described below) to find correspondences between points on one image 

and lines in the other. This will become clear in the discussion below. 

The important issue is that in the duplicate problem we have three scenarios 

concerning the camera: (1) no change in viewpoint, zoom, or viewing direction; 

(2) change in viewing rection; (3) change in viewpoint. To handle changes in 

viewing direction (and zooms) we use a homography, and to handle changes in 

viewpoint we use the Fundamental matrix. The Fundamental matrix, which is 

explained below, maps points in one image to lines in the other image. 

As we will see in se and the F ndamental matrix 

to reduce the search for correspondences between two duplicate candidates.  

A homography is a planar projective transformation that can be used to map 

points from one image to points in another image. It is defined as follows:   

x’ = Hx 

ar equations, 

as long as there are four correspondences between [x, y, z]T and [X, Y, Z]T and no 

three points are collinear (so that the equations are linearly independent).  

 di

ction 5.3.5, we use a homography u

5.3.4.1 Homography and Fundamental Matrix 

Where H is a non-singular 3x3 matrix and x’ is the image of  x. From this 

equation, H can be determined uniquely by solving a system of  line
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A homography, then, is a linear transformation of  Ρ2. In other words, we can 

perform the mapping between two planes using just linear operations and four 

reference points, without the need to use more complicated representations such 

as rotations, translations, and camera parameters. 

The Fundamental Matrix F, on the other hand is a 3x3 matrix that defines the 

epipolar constraint which maps points in one image to lines in another image. If  p2, 

C  o  with optical centers O 

and O’. Point M will project to point m in the image plane of  the left camera. 

Note, however, that all points along the line OM project to points along the line 

that connects e’ and m’ (in the right image). This can be readily observed in the 

figure and occurs because there is formation about the scene, so the 

. If  we 

are able to find correspondences between several points in the images (e.g., points 

Once we find the homography, we can map the points from image i1 to image i2 

and vice versa simply by using the equation x’ = Hx, where x is in i1 and x’ is in i2. 

is a point in I2 corresponding to p1, a point in I1, it must lie on the epipolar line 

l'=Fp1.. 

onsider the 3D p int M in Figure 62 and two cameras

no 3D in

exact location in 3D space, of  point M, is not known.  

As can be observed in the figure, correspondence between m and m’ constraints 

a point m in the left image to be on the epipolar line of  the other image. This is 

known as the epipolar constraint, and the points e and e’ are called the epipoles
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m and m’) we can estimate the Fundamental matrix, which determines the 

epipolar geometry. Once we have the fundamental matrix, for any point m in one 

image, we can find its corresponding epilpolar line in the other image. Therefore, 

the search for correspondence between the point m and the point in the other 

image that is a projection of  point M is constrained to one dimension.  

 

ts (camera, image, scene) and 

 

Figure 62. Epipolar Geometry. 

Next we present a model based on the three componen

e e’ 
O’ 

m 
m’ 

O 

M 

the knowledge that we can use a homography to map points between planes (e.g., 

camera rotation) and the Fundamental matrix to find correspondences between 

points in one image and lines in the other one when there is a change in 

viewpoint. 
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5.3.5 A Duplicate Framework 

We propose a multiple strategy framework that combines our knowledge about 

the geometry of  multiple views of  the same scene, the extraction of  low-level 

features, the detection of  a limited number of  objects, and domain knowledge 

about the types of  objects that appear in consumer photography and their role in 

deciding if  two images are duplicates (e.g., differences between people’s faces and 

clothing in portraits are more important than differences between vegetation). 

As we discussed in section 5.1.4, metadata can play a useful role in detecting 

duplicate images. Our focus, however, is on visual content, so in our framework 

metadata can be used as a pre-processing step to select the duplicate candidate pairs. 

The database ed in our experiments in section 5.4, for example, contains only 

images that are very similar. Almost all of  the pairs are contiguous in the rolls of  

film from which they were selected. Even though this selection was manual (the 

oal was to collect construct a duplicate database), the metadata could easily be 

incorporated automatically

es color and edges for matching. Once significant change areas are 

detected, local analysis of  those areas is performed using interest points, object 

 us

g

. 

The basic steps in our framework (Figure 63) are alignment, change area detection, and 

local analysis. Alignment is performed using multiple strategies, namely estimation 

of  a homography and the Fundamental matrix, and, if  those fail, 2D translation 

estimation. Detection of  change areas is performed using a block-based approach 

that combin
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detectors (face, sky, vegetation), and domain specific rules (e.g., image regions 

below faces correspond to clothing). The final decision is made based on the 

analysis of  the change areas, which is largely influenced by the results of  

detecting generic objects. We present a novel and extensive image duplicate 

database (255 image pairs labeled by 10 people).  We analyze the subjectivity in 

the labeling results in detail, discuss the variations in the images in terms of  our 

model, and present experiments based on our framework. 

areas, (3) local analysis of change areas. 

Our algorithm is depicted in Figure 64. The input to the algorithm consists of  

two duplicate candidates I1 and I2.  First interest points [123] are detected in the 

two images. Then interest point matches between I1 and I2 are found. If  the 

A homography will find correspondences between points in the two images if  the 

difference between them is due to a zoom or a change in the viewing direction of  

Figure 63. Three basic steps in our framework: (1) alignment, (2) detection of change 

number of  matches m is above a threshold t1, a Homography H and the 

Fundamental matrix F relating I1 and I2 are computed independently. Otherwise a 

simple translation is estimated. 
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the camera (rotation of  the camera about its optical center or an arbitrary 

viewpoint change when the scene is approximately planar). The homography can 

be used to align the images by applying an inverse global transformation (e.g., the 

images in Figure 63). Once the images are aligned we can detect the change areas. 

In the ideal case, a simple subtraction of  the aligned images would yield the 

difference areas. But perfect alignment is usually not possible so we use a block-

based correlation approach to measure the quality of  the alignment and to find 

the areas that differ the most between the two aligned images. 

If  the difference in viewpoint is due to a translation, we can no longer find point-

to-point correspondences between the two images (unless the scene is 

approximately planar). In this case, computing the fundamental matrix F will 

yield correspondences between points in one image and lines in the other. In 

other words, a point in olar line in the other 

Computing F and H in our framework is important because they make the 

matching more efficient and because they are useful in handling cases that the 

simple block-based matching algorithm cannot handle well. For example, if  an 

image is a 90o rotated version of  another one, the search for correspondences 

using a block-based algorithm would have to consider rotations. This can easily 

 the first image must lie along its epip

image. 

be handled by the homography instead.   
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The quality of  the estimates of  F and H are measured using a block based 

correlation approach. If  the correlation score s is below a threshold t2, the 

algorithm discards those estimates and performs a simple translation estimate 

instead. The step after alignment consists of  obtaining a mask of  significant 

global change areas (Figure 63).  The mask is computed by thresholding the 

global registration results obtained from block correlation. The local analysis of  

the change areas then uses the original interest points, a self-saliency map (used to 

obtain important areas in each image independently), and results of  object 

detection (face, sky, and vegetation). The final duplicate similarity score is 

assigned using a set of  rules based the local analysis of  the change areas. 

ges are oriented correctly, so the width and height of  the images can be 

used trivially for this task. Of  course, this step could also be performed using the 

homography. 

Sometimes the differences between I1 and I2 include a 90◦ rotation of  the camera 

or cropping of  the scene (e.g., panoramic views in APS cameras). The 

corresponding normalization is applied before any processing. We assume that 

the ima
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Figure 64. Algorithm overview. 

   

First interest p

Local Analysis 

Interest point detection 

Fundamental Matrix 

Block correlation 

Self correlation 

Block correlation 

Interest point matching 

Homography 

Alignment 

Block matching 

Alignment 

Global change areas 

m>t1 m<=t1 

s<t2 

5.3.5.1 Step I: Global Alignment 

oints are computed in each image using a Harris corner detector 

[123] from [258]. Then, for each interest point pi in image I1 we find its 

corresponding point p2 in image I2 using Sum of  Squared Differences (SSD) [85][237] 

also from [258].  

As is shown in Figure 64 the next step depends on a threshold of  the number of  

matching interest points. If  the number of  matches is above a threshold t1, a 
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homography and the fundamental matrix are computed. Otherwise 2D 

correlation alignment is performed.  

When there are no changes in the scene and the difference in viewpoint or 

viewing direction is not too large, the number of  matches m will be

 by a Homography 

 above a 

threshold t1. T s might therefore be related H or by 

the Fundamental matrix F [112].  

Without any prior knowledge about the camera or the scene, however, it is not 

possible to know in advance whether H or F should be estimated (as pointed out 

in [259], the geometric model is nually). The more robust 

alternative, then, is to estimate both. We use the RANSAC algorithm 

[135][258][124][112] to estimate H and F. Once the Fundamental matrix is 

computed we can obtain, for any given point in image i1, its corresponding 

epipolar line, and for any set of  epipolar lines, a common intersection point called 

t f  the Fundamental matrix is not correctly 

computed, of  course, epipolar lines will not meet at a common epipole. However, 

having a commong epipole is not sufficient to determine that the Fundamental 

matrix has been correctly computed. 

he epipoles in the images and the orientation of  epipolar lines 

depend on the relative position of  the two cameras (see [112] for a detailed 

analysis). In what is referred to as the “rectified” case, the epipolar lines 

he two image

usually selected ma

he epipole  (please refer to Figure 62). I

The location of  t
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correspond to the horizontal image scanlines. This occurs only if  one camera has 

translated, in parallel to the image plane. 

will cause undesired transformations to the 

images [116]. 

At this stage we have already computed the fundamental matrix F and have 

found the epipoles e and e’ in the two images. We outline one possible algorithm 

to compute rectification [124]: 

g the epipole e’ to a point (f,0,1)T on the x-

axis and G is the following mapping, which takes (f,0,1)T  to infinity: 

If  the difference between the two photographs is due to a movement of  the 

camera along its optical axis, the epipole will appear inside the image plane. In 

this case, when the epipoles are inside the images, rectification is avoided because 

mapping the epipole to infinity 

If  the F estimate yields epipoles outside the images, image rectification is applied 

to make the epipolar lines parallel to the horizontal axis.  

(1) Apply a projective transformation S’ that maps the epipole e’ in one 

image to the point at infinity (1,0,0)T. In particular use S’=GRT where T 

is a translation taking an arbitrary point of  interest xo’ to the origin, R is a 

rotation about the origin takin
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(2) Apply a mapping to the second image to match its eipolar lines with the 

epipolar lines of  the first image. In particular, find the matching projective 

transformation S that minimizes the following least-squares distance: 

)'',( ii xHHxd∑  

where xi and x’i  are matching points that were computed earlier between the 

two 

i

images. This is done by minimizing the following expression: 

which is equivalent to minimizing the following expression ((yi-y’i)2 is 

constant): 

2

22 )'()'( iiiii yyxcbxax −+−++∑  
i

)'( i
i

ii xcbyax −++∑  

(3) Resample the fist image according to the projective transformation S and 

the second image according to the projective transformation S’. 

we have 


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The

in the 

the cor g in 

the corresponding scan lines (i.e., a point p in image I1 will lie on somewhere on 

the corresponding scan line in image I2). 

The

a 3x3 mat

Once fundamental matrix F and a homography H are applied globally to the 

images and they are rectified, the block-based method of  section 5.3.5.2 is used 

to glob ges, 

therefore, we obtain a match score s ove a threshold t2 the algorithm 

detects the change areas as explained in section 5.3.5.2. It is important to note 

that the parameters of  the block-matching algorithm are different for the two 

cases: when the images are rectified u e y coordinates of  corresponding 

points will be equal, but the x coordinates will differ.  

Since the two geometric transformations model the camera motion, it would not 

make much sense to determine different matrices from local areas (e.g., a 

hom

would e patches 

using a homography estimated from correspondences in the matches. The 

advantages of  this kind of  approach in our duplicate problem, however, are not 

 process just described, then, rectifies the two input images: the epipolar lines 

two images coincide and are parallel to the x-axis. With this result, finding 

respondences between points in the two images requires only searchin

 homograpy H, which is estimated using the RANSAC algorithm [124] yields 

rix that can be applied to align the two images.  

ally match the rectified images. For each pair of  transformed ima

. If  s is ab

sing F, th

ography for every block in the image), except in special cases. For example, it 

be possible to find planar patches in the images and match thos
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immediately apparent. In general, we are interested in matching the entire scene 

and then finding the local differences between the two images.  

When there are changes in the scene, the

Translation Estimation 

 images are similar but not of  the same 

scene, or the differences in viewpoint are large, the number of  interest point 

matches will be small or the estimate of  H and F will not align the images well. 

In either case the block-based correlation approach of  section 5.3.5.2 is used to 

5.3.5.2 Step II: Detection of  Change Areas 

The block-based correlation we present in this section is used for three different 

purposes (Figure 64): (1) estimation of  2D translation, (2) detection of  significant 

change area areas, (3) self-correlation. 

find individual block displacements. Each block is assigned a weight given by its 

self-saliency score (explained below) and a global coordinate Euclidean 

transformation (2D translation) is computed using a weighted average of  the 

individual block displacements. The inverse of  this transformation is applied to 

one of  the images to “roughly” align I1 and I2. The next step consists of  

matching the images to find areas in which they differ. 

As explained in the previous section, we use the technique we describe here to 

estimate 2D translations when the computation of  a homography and the 

Fundamental matrix fail, and to detect the change areas once the images have 

    

 

 



279 

been rectified (either by applying an inverse 2D translation operation, a 

homography, or using the Fundamental matrix). Before we describe the algorithm 

we should point out that many similar, more robust techniques for stereo 

correspondence [237], registration [85], and motion estimation [249] could be 

Since we wish to find differences between the images that result from object 

movements or replacements, it is reasonable to rely on a joint color-edge based 

correlation approach. We make the following assumptions about the invariance 

of  edges. 

edge patterns appear in 

• Non-stationary subjects are likely to maintain similar edge structure. 

• Camera location changes, if not too significant, preserve approximate 

edge structure. 

We combine the approach of  [130] with color average in LUV color space. The 

images I1 and I2 are divided into mxn blocks and their edge intensity images E1 

and E2 are obtained using a Sobel operator (Figure 65). For each image pair, each 

used here.  

• Strong edges (object boundaries/texture) remain approximately 

constant under lighting variations. 

• Changes in exposure are approximately like changes in lighting. 

• When subject movement occurs, similar 

different locations. 
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block B1i from the edge map E1 is shifted over edge map E2. For each block 

displacement δ, ε, we count the number of  edge and space matches and 

mismatches between B1i and the corresponding area in E2. The edge correlation 

score for each block is the normalized maximum correlation value over all of  the 

block’s shifts. For each displacement we also compute the Euclidean distance 

between the LUV color averages of  the B  and the area in I . The joint 

correlation score for each block is a weighted linear combination of  the edge 

correlation score and the LUV color correlation score.  

i 2
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ε 

Block Correlation =   w1(Edge Correlation)  δ 

Correlation = Max correlation for all ε, δ  (b)  

               + w2 (Color Correlation) (a) 

Self-similarity=Σ correlation scores for all blocks (c) 

Figure 65. Block based correlation. 

This produces an NxM matrix Q of  values [0,1], where N and M are the width 

and height of  the image for which the correlation is being performed. Lower 

values in Q represent areas in which changes may have occurred. The average of  

Q, determines the quality of  an alignment (Figure 64). If  the images are aligned 

well (e.g., the scene is approximately constant), the correlation score will be high. 

It is also used, with a pre-determined threshold t2 to obtain a mask of  significant 

change areas (Figure 66, Figure 63). In these examples the threshold is low, 

therefore minor changes are selected. Note the minor rotation of  the boat in 

Figure 66.  
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Figure 66. Two images, a change area mask (c), and a self-saliency map (d). 

Using a slight modification of  the approach to obtain Q we compute a self-saliency 

map for ea nc ap S is simply an NxM matrix 

whose entry is to its neighbors. 

Areas that are ient a therefore 

deemed to be more important. Similar ideas have been used for registration and 

tracking [94][100]. We use the block correlation approach to compute self-

similarity for each block, but we don’t select each block’s maximum correlation 

of  

 

(Figure 66) and the approach is able to select the salient areas. In Figure 67 we 

(d) (a) (b) (c) 

 ch image independently. A self-salie y m

 values indicate how similar the particular pixel 

less similar to their neighbors are more sal nd 

score over the block’s displacements. Instead, for each block, we accumulate all 

the block’s correlation scores over all of  the block’s displacements (Figure 

65(c)). Note that in smooth areas (like the sky) all neighboring blocks are similar

show several examples of  change areas detected between duplicate candidates. 

Note that the algorithm is capable of  roughly detecting the appropriate change 

areas. In Figure 67(d), for instance, it is able to detect the difference in the 
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location of  the plane. Deciding whether those differences are important, 

however, is often difficult.  

 (a) 

 (b) 
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 (c) 

 (d) 

Figure 67. Example of change areas obtained by the block-based correlation algorithm. 
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5.3.5.3 Step III: Analysis of  Change Areas 

Recall from Figure 64 that after the global change areas are found (previous 

stage) we perform a local analysis of  the images in the areas inside the change area 

mask computed in the previous section. 

The local analysis process consists of  two steps: (1) growing of  feature point 

matches, and (2) area matching using visual detectors.  

Growing Interest Points 

The previous stage (section 5.3.5.2) produces a binary change area mask. Since the 

images have been aligned, the mask can be placed directly over each of  the 

images to select those pixel areas that differ the most between the two images.  

At the same time, within the change area mask we might have a number of  interest 

point matches pi and pj, which were found in section 5.3.5.1. 

The goal of  this stage is to use the interest point matches inside the change area 

mask to reduce the areas that do not match inside it. In other words, we wish to 

find other areas inside the change area, which match between the two images, and 

We search the neighborhood around the matches in both images. In particular, if  

the 2D Euclidean distance between the interest points that match is below a 

threshold t3, it is assumed that they come from the same object and the object 

we use the matching points already found to perform the search. 
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m  possibilities: (1) the points 

correspond to the same object and the object has moved, or  (2) the points 

correspond to a different object. We search the neighborhood of  the points in each 

of  the images.  

11, 

y12)  in image i1 and p1(x21, y22) in image i2, the goal is to determine if  the areas 

around those points also match.  

The blocks are shifted along the direction of  the 2D line that connects p1 and p2. 

Since we assume the feature points belong to the same object, there should not 

be discontinuities in the similarity scores of  adjoining blocks in each of  the 

images. Therefore, a search for correspondences is performed along the line 

connecting p1 and p2 and the search is stopped if  the similarity value falls below a 

ovement is negligible. Otherwise there are two

Search areas 

ρ 
Image I 

 

Image II 

 

Figure 68. Processing of interest point matches. 

Matching around interest point neighborhoods is computed using the block-

based correlation method of  section 5.3.5.2. Given two matching points, p1(x

threshold t. The similarity is measured by both comparing the self-saliency maps 

of  the images and by using the block-based similarity metric described in section 

5.3.5.2.  
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In essence what this process does is attempt to match the areas that connect the 

matching interest points. The interest point for a given object, however, may be at 

the edge of  the object or somewhere inside the object, as depicted in Figure 69. 

In the figure, the object has moved to the right and the two images, the duplicate 

candidates, have been overlaid. In both images the interest points detected 

correspond to the same poi  space of  the object. In Figure 69(a) the 

interest point is on the edge of  the object, so only the areas to the right of  the 

interest points should match in the two images (the area connecting the two 

points, as was just described). In Figure 69(b) the interest points are in the middle 

of  the object, so the neighborhoods to the right and left of  the images will 

match. To handle the second case, the search extends to both sides of  the 

corresponding interest points. 

nt in 3D

Figure 69. Possible locations of the matched interest points. 

(a) (b) 
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Rules and object detectors 

Object detectors are learned from a set of  training examples using a collection of  

machine learning algorithms in the Visual Apprentice described in chapter 4. 

Images are automatically segmented and objects are detected in the following 

categories: sky, vegetation, and face. A sky object, for example, is detected by 

grouping several contiguous sky regions obtained from segmentation. Some 

examples are shown in Figure 70. Note that the algorithm is not always capable 

of  correctly detecting the app

After the previous stage there will still be areas in the two images that do not 

match well. Here we combine domain knowledge with object detectors to analyze 

those changes. 

ropriate objects. Most of  the faces are correctly 

detected in pair (a), as are the vegetation areas in pairs (b) and (c). Incorrect faces 

are detected in pair (c). 
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(a) 

  

(b) 
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Vegetation  

 

Faces 
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(c)

 

Figure 70. Examples of duplicate candidates and object areas (faces and vegetation) 
detected automatically. 

Manually constructed domain-knowledge heuristic rules use the output of  the 

classifiers to determine the significance of  the change areas that remain after the 

previous stage. For example, if  faces are found in the change areas, and faces 

appear in both images, the algorithm tries to match the areas of  the two images 

below the faces. The matching is done again using the al rithm of  section 

5.3.5.2, but the weights for color and edges are set by the rules. For areas below 

faces the difference in color is more important, so more weight is given to that 

feature. A low matching score may indicate that a different person is in the scene. 

Figure 71 shows additional examples of  detected areas. Note that the faces in 

Figure 71 and in Figure 70(b) are missed so the rules for clothing are not applied.  

go
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Figure 71. Detected areas. 

We outline rules in our system in Table 20. Rules for sky, vegetation, and greenery 

relax the matching constraints, meaning that those areas do not need to match 

too closely. This is intuitive since such object areas often contain non-stationary 

elements such as clouds and trees that may not be identical in two images that are 

considered duplicates. 
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Table 20. Domain-specific rules used in the duplicate decision process. 

Objects Rules 

Face 

If face_match(face1, face2) then 

     If clothes_match(face1, face2) then same 
person=1. 

face_match: two face areas match only if 
their similarity score is below a threshold f. 
Object similarity is based on location, area, 
aspect ratio, and color. In face_match all 
four have equal weights. 

clothes_match: matching of a rectangular 
area 3 times the width of the largest face 
width (of face1 and face2) and the same 
height as the largest face height. In the 
similarity score color is given a weight wc 
and edges given a weight we, where wc=0.9 
and we=0.1. The clothes area is 
immediately below each face. 

 Sky 

If sky_match(sky1, sky2) then 

Same_sky=1 

The similarity between sky objects is 
analogous to face_match’s. The following 
weights are used: color (0.5), area (0.4), 

location (0.3), aspect ration (0.2). 

Vegetation This rule is identical to the rule for sky. 

The knowledge-based rules, then, are basically used to modify the similarity 

thresholds used to determine if  two areas are from the same object (Figure 72). 

The self-saliency maps are also included in the similarity computation of  the 

rules: if  two image areas have very distinct saliency values they do not likely 

correspond to the same object. 
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Figure 72. Schematic diagra

5.3.5.4 Final Step: Duplicate Deci

The duplicate similarity score is computed tep 

I, and the rules that make use of  object d

is based on the change area mask, the m terest point 

growing and those found using the rules, and the misma

In some cases, for example, objects will n

the case the heuristic rules cannot be applied and therefore the duplicate decision 

is based on the mismatched areas and self-saliency maps. Mismatched areas are 

those that remain after the global change area mask is computed and interest 

point growing is performed.  

When objects are detected and rules are applied, these may only cover a subset of  

the areas inside the change area mask. This is depicted in Figure 73. The final 

decision is made based on a weighted linear combination of  the average 

correlation scores of  the areas in Figure 73: those handled by the rules (objects 

and areas near objects), the mismatched areas, and the overall change area mask. 

m of the way rules are used. 

sion 

 based on the change area mask of  s

etectors. In particular, the final decision 

atched areas found using in

tched areas.  

ot be detected in the images. If  that is 

 faces 

lor more 
ight 

If two

Give co
we
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Note that these steps depend on the objects found and the rules, which 

determine the matching score between areas near those objects. 

 

Figure 73. Areas used in final decision.  

 

Mismatched Area Handled 

If two faces 

Give color more 
weight 

Areas 

Change Area 

Face 

By Rules 

Area Outside 

Mask 

Object 

Matched areas and mismatched areas are treated separately because, as shown in 

Figure 73, they may not necessarily be covered by the rules or the global change 

area mask.  
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5.3.6 Ground Truth Construction And Analysis 

    

 

 

A duplicate and similar non-duplicate database of  consumer photographs was 

constructed and labeled by 10 people. Detailed analysis of  this data is extremely 

important for understanding the duplicate problem, for testing the computational 

approach, and for identifying open issues. 

We randomly chose 60 rolls of  color APS and 35 mm film, from 54 real 

consumers34. Then, 255 image pairs (430 images) were manually selected from 

these rolls for inclusion in the database. We included only obvious duplicates, 

ver duplicates, and pairs that could be labeled as either duplicates or 

non-duplicates. Image pairs that were clearly non-duplicates were excluded 

(Figu  the image pairs in our database, theref ally very 

similar (please see other figures throughout the chapter).  

                                                

34 The database we described was constructed and labeled by researchers at Kodak.  The analysis of the 
database was done by the author at Columbia. 

ore, are visure 74). All of

y similar non-
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(a) 

  

(b) 

  
(c) 

Figure 74. An obvious duplicate (a), a “borderline” duplicate (b), a non-duplicate (c). 

The initial selection of  255 duplicate candidate pairs was printed in color, each 

pair on a separate sheet, and given individually in random order to 10 people for 

labeling. Each individual was given the definition of  duplicates at the beginning 
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of  section 5.3 and required to label each pair as either “duplicate” or “non-

duplicate”: 

Duplicates: two photographs are duplicates if  they have the same content and composition, 

and were taken from the same angle and range. 

Consequently, each pair received 10 “v .” These results are summarized in 

Table 21. The number of  pairs which 0 subjects classified as “duplicate,” for 

example, is 65, while only 43 of  the pairs were classified as “non-duplicates” by 

all 10 subjects.  

The table clearly indicates considerable subjectivity. Only in 43% of  the pairs 

there was 100% agreement between all subjects (65 duplicates, 43 non-

duplicates). In 4% of  the cases there is no agreement at all on whether the pairs 

are duplicates or not. Where there is a non-unanimous majority agreement about 

the classification, in 23% of  the cases the agreement is on duplicates, versus 43% 

of  agreement for the non-duplicates. In other words, the number of  overall 

agreements for duplicates and non-duplicates is roughly the same, but within the 

non-duplicate category there is less agreement. 

otes

all 1
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Table 21. Database label distribution.  

Positive duplicate votes No. of pairs

9 
 

10 65 

1

8 14 

5 7 

3 14 

2 26 

0 43 

 

(26%) 

8 (7%) 

(5%) 

7 14 (5%) 

6 13 (5%) 

4 15 (6%) 

(4%) 

(5%) 

(10%) 

1 26 (10%) 

(17%) 

TOTAL 255 (100%)

 

Each candidate pair was manually classified by the author (independently of  the 

ground truth labels) according to categories derived from Table 16. The name of  

each category indicates the most visible change in the image pair with the other 

elements approximately constant (angle: changes in angle only; no change: almost 

identical duplicates; framing: vertical vs. horizontal framing only, horizontal shift: 

camera rotation or translation, etc.). This is an approximate classification— it is 

often difficult to determine the type of  change in viewpoint with the naked eye 

and several minor changes often occur at once. The first column in Table 22 

shows the number of  duplicates in the database that are in the respective 
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category. The 100% positive and 100% negative columns show the number of  

image pairs within each category for which there was full agreement by the 10 

subjects who labeled th airs that received the 

same vote within each category are shown in pare .g., 30% of  the images 

with a 10 to 0 positive vote are in the “No change” y).  

Image pairs for which there are no major visible no 

change) account for 30% of  the plicates in th nd truth. Using these 

statistics, the most important cases for duplicates are no change (30%), 

horizontal/vertical shift (22% combined), subject move d zoom (15%). Solving 

the duplicate problem for only these types of  cases accounts for 84% of  the 

duplicates in the ground truth. 

mages with “several changes” account for 44% of  the non-duplicates. The most 

e ground truth. The percentage of  p

nthesis (e

 categor

 changes in the parameters (

du e grou

(17%), an

I

important non-duplicates are several changes (44%), and subject change (42%). Pairs in 

these categories account for 86% of  the non-duplicates. 
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Category No. 

In category

100% 100% 

Different background 3 (2%) 1 (2%) 0 

Table 22. Database categories. 

Positive Negative 

Angle  9 (4%) 4 (6%) 0 

No change  24 (9%) 20 (30%) 0  

Framing  13 (5%) 2 (4%) 2 (5%) 

Horizontal shift  18 (7%) 8 (12%) 1 (2%) 

Subject move  43 (17%) 11 (17%) 0 

Subject change  37 (14%) 1 (2%) 18 (42%) 

Zoom 36 (14%) 10 (15%) 3 (7%) 

TOTAL 

Vertical shift  8 (3%) 7 (10%) 0 

Several changes  64 (25%) 1 (2%) 19 (44%) 

255 65 43 

 

Deciding if  two images are duplicates is highly subjective. In addition, when there 

is 100% agreement duplicate images can be visually different and non-duplicate 

images can be visually very similar. The pairs in Figure 75, for example, are 

visually dissimilar (note foreground/background parallax, which makes it 

impossible to align both simultaneously). The non-duplicate pairs in Figure 74 (c) 

and Figure 65, on the other hand, are visually very similar— high level semantic 

information is most likely used to decide that the images are not duplicates in 

those two cases. Figure 56 (b) also shows similar non-duplicates with 100% 

agreement. Very similar non-duplicates are more common than very dissimilar 

duplicates. 
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Figure 

ults on th cult datab . Clearl etection

y is not attain ithout ing seve

he experimen owever, rve to in iga

RE S 

(a) 

75. Non-identical duplicates.  

Next we present res is diffi ase y, d  of  duplicates 

with high accurac able w solv ral open issues in image 

understanding. T ts, h se vest te some of  the 

limitations. 

5.4 EXPERIMENTAL SULT

The database we chose for the experiments is a very difficult one because it 

contains only very similar photographs from real consumers. Therefore, high 

performance, even on the cases that may seem simple is unattainable. 

Consequently, we focus on a detailed analysis of  the results in order to identify 

the open issues, strengths, and weaknesses of  the approach we have presented. 

First we present the overall detection results. Then we show the performance of  

the object detectors.  
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5.4.1 Setup and Overall Performance 

Each duplicate candidate pair was labeled by 10 subjects, therefore each duplicate 

candidate has 10 “votes” that determine its label. We used two thresholds, l1 and 

l2, to partition the database into duplicates, non-duplicates, and unknowns. First  

tested our approach on % labeling agreement 

 achieved 64% precision and 97% recall.   

In experim ages from the duplicate 

database. The images in this set had different partition thresholds (t1=3, t2=7). If  

a pair of  images had 7 or more “duplicate” labels, we labeled that pair as a 

duplicate (non-duplicate if  it had 3 or less and unknown if  it had 4, 5, or 6 

“duplicate” votes). We obtained 52% precision and 70% recall.   

 we

ly on pairs for which there was 100

between all subjects. This subset of  the database (set A) contains 108 images (65 

duplicates and 43 non-duplicates). The framework was implemented using 

various available algorithms in [258][135]. 

For set A we

ent B, we selected only 100 pairs of  im

Table 23 shows the number of  false positives, misses, and hits in each of  the 

categories for experiment B.  
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Table 23. Distribution of false positives, misses, and hits. 

False Positives  

Category No. 

Several changes 12  

No change 3  

Zoom 1 

Subject Replacement 5  

Horizontal Shift 1 

Subject Move 2  

 

Misses  

Category No.  

Several changes 3  

Zoom 1 

No change 2 

Subject Move 1  

Vertical Shift 1 

Horizontal Shift 1  

Framing 1 
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Hits  

Category No. 

No Change    8

Subject Move 5  

Several changes 3  

Zoom 3

Framing 1 

Angle 3

  

Different Background 1  

 

Horizontal Shift 1 

Vertical Shift 1  

 

Most false positives are in the se s and subject replacement categories. False 

positives occur mainly in the ios: ( luttered scenes; (2) changes 

in a small part of  the image; (3) changes not specific to an image area— the 

images are very similar but not quite the same. It is clear that most of  the errors 

can be expected due to the subjectivity of  the labeling. 

False negatives, on the other hand, occur when there are semantically 

unimportant changes. 

The classification results on this difficult database are not surprising. Achieving 

high performance requires solving several open issues in image understanding. In 

some of  the non-duplicates the changes are very small, while in some of  the 

duplicates the changes are large. Rejecting images with very small variations 

veral change

 following scenar 1) c
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results in a higher number of  misses. On the other hand, eliminating images that 

are very similar eliminates several t uplicates with mall variations.  

5.4.2 Object Detectors 

We constructed several Visu  the framework of  chapter 4. For 

each of  the detectors we used the number of  training examples indicated in Table 

24. In total we obtained 2,270 examples the region level and 686 

positive examples of  groups of  regions. 

We used different sets of  images from ges, images from the 

etectors. 

No. 

Examples 

No. Positive 

Examples 

No. Positive 

Images 

rue d  s

al Detectors using

 positive at 

training: news ima

MPGE-7 collection, and images from a personal collection. In other words, the 

images in the duplicate database were not used at all for the construction of  the 

detectors. Table 24 shows the baseline performance for different classifiers using a 

nearest neighbor algorithm.  

Table 24. Training sets for each of the d

Class Positive No. Positive 
Images Group Group 

Face 578 223 196 170 

Sky 641 360 179 157 

Vegetation 1051 155 311 136 

 

    

 

 



307 

 

Table 25. Performance of region level classifiers. 

Class Positive Negative Total Precision Recall 

Face 578 578 1156 84% 94% 

Vegetation 1051 1082 2133 80% 84% 

Sky 641 672 1313 95% 96% 

  

Class Positive Negative Total Precision Recall 

Table 26. Performance of groups of regions. 

Face 196 196 392 90% 97% 

Vegetation 311 311 622 81% 88% 

Sky 179 179 358 93% 92% 

 

The duplicate image databas

5.4.3 Analysis of  the Results 

e that we used for our experiments contained only 

images from real consumers. The set included a wide variety of  photographs: 

landscapes, group , close-ups of  ob Th ght 

differences betwe plicat significa een duplicates. 

In addition, we found significant subjectivity in the labeling results. 

On evaluating our computational framework, two obstacles played an important 

le: (1) subjectivity in the labeling results, and (2) use of  semantic information in 

labeling.  

portraits

en non-du

jects, etc.  

nt changes betw

ere were sli

es, and 

ro
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We tested our framework on image pairs for which we found significant labeling 

agreement, and on image pairs for which we found full agreement. In other 

words, cuse a for  la ult  more 

consiste hen th els are sistent ver, w nd th h level 

semantic information is used to decide if  a ge is a icate o ther or 

not. 

Solving oble ve r t set  w sistent 

labels midable challe Within r fram k, tw

limitation n be hi hted: ( mber o ject de s, and (2) accuracy 

f  object detectors. Increasing the number of  detectors and their accuracy could 

be very helpful for particular types of  duplicates. Having face recognition 

capability, for example, would certainly help eliminate many similar non-

The biggest limitation, however, concerns the way in which similarity between 

images should be measured. In other words, even if  we have all of  the possible 

detectors available, we still need similarity models that help us decide when two 

objects are “duplicates” and when they are not. The duplicate decision, therefore, 

s, therefore, is not sufficient: models of  similarity between types of  

we fo d on im ge pairs which beling res s were

nt. W e lab  con , howe e fou at hig

n ima  dupl f  ano

the pr m, howe r, even fo he sub of  images ith con

, is a for nge.  ou ewor o immediate 

s ca ghlig 1) nu f  ob tector

o

duplicates. 

depends on the semantic content of  the two images, particularly on the specific 

types of  objects that appear in the images. Having detectors for an unlimited set 

of  object
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objects are needed. The application of  these models depend on contextual 

information and domain knowledge. 

In chapter 1 we argued that consumers are very likely to drive the most important 

multi

5.5 DISCUSSION 

media applications of  the future. Building such applications requires not 

, textures, etc.) or semantics (e.g., events, objects, etc.). Such grouping 

often depends on specific knowledge about the subjects, or events that were 

only understanding visual information and its many levels of  indexing (see 

chapters 2 and 3), but also understanding consumers, the types of  images they 

produce, and ultimately how they are used. 

In the particular problem studied in this chapter, we found that many factors play 

a role in organizing consumer photographs. Images can be grouped in multiple 

ways, according to any of  the levels of  the pyramid of  chapter 3, based on syntax 

(e.g., colors

photographed. Consequently, providing tools for users to subjectively organize their 

own images remains an important research area. 

Two of  the biggest challenges in developing approaches to semi-automatically 

organize personal collections are the user’s subjectivity and the use of  high-level 

semantics in making decisions about how images should be organized. In 

addition, knowledge often goes beyond what is represented in the pictures alone 
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and depends on contextual information. This information is often known only by 

the photographer, or by people who participated in the events photographed.  

These issue oth in trying to evaluate our clustering algorithm 

and in applying our framework to detect non-identical duplicate images. 

res, among others.  

In this chapter we presented STELLA, a system for semi-automatically 

organizing personal photography collections. We introduced a simple variation of  

Ward’s hierarchical clustering algorithm that uses sequence information (e.g., the 

order in which photographs are made) to perform hierarchical clustering, and a 

new feature based on composition.  

s were encountered b

In STELLA, future work includes performing a study of  the way in which 

people organize their images (using the system’s capability to track user 

operations), clustering images based on the output of  visual detectors, and 

developing more complex composition featu

In the duplicate framework, future work includes expanding the set of  object 

detectors and using scene classifiers (e.g., applying face detection; landscape 

classifiers), incorporating more domain knowledge, and investigating ways to 

automatically choose the right transformation (e.g., Homography) depending on 

the type of  image (e.g., portrait vs. landscape). 

5.6 SUMMARY 
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We also introduced the challenging problem of  non-identical duplicate image 

detection in consumer photography. First, we modeled this difficult problem in 

terms of  the components that cause changes between two images (scene, camera, 

and image) and presented a classification of  duplicates based on the model. Then, 

we presented a novel framework for automatically detecting duplicate images. 

ted experiments 

ates (3) combination of  low-level 

features (i.e., corners), object detection, and domain knowledge, and (4) 

construction and detailed analysis of  a novel duplicate consumer image database. 

 

Our framework is based on the combination of  low-level features, object 

detectors, and domain knowledge. Finally, we constructed a novel and extensive 

image duplicate database of  255 image pairs from real consumers labeled by 10 

other people. We analyzed the labeling results in detail and presen

using our framework.   

The main contributions of  the chapter can be summarized as follows: (1) 

formulation of  the duplicate problem using a new model of  duplicates based on 

multiple view geometry (scene, camera, and image), (2) presentation of  a novel 

framework to detect different types of  duplic
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6 CONCLUSIONS AND FUTURE 

DIRECTIONS  

  

 

automatic indexing and organization of  visual information. We focused on 

understanding visual information and the ways that people search it, on building 

omputational frameworks that learn from user input, and on applying visual 

detectors in the domain of  consumer photography. 

 

6.1 INTRODUCTION 

In this chapter we summarize the work presented in this thesis and discuss 

extensions to our work.

We have addressed several challenging problems in automatic indexing and 

organization of  visual information through user interaction at multiple levels. 

Our work is based on the hypothesis that the future of  multimedia will bring 

about many novel and exciting applications in which consumers will be involved, 

much more than today, in organizing and using their images after they are created. 

This has required us to address three fundamental aspects of  the problem of

c
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6.1.1 Outline 

In section 6.2 of  we briefly summarize the content of  the thesis and in section 

6.3 we outline possible extensions to our work.  

6.2 SUMMARY OF THESIS 

In this thesis we addressed the problem of  automatic indexing and organization 

rtant areas: (1) understanding of  visual content and the 

onsumer image organization 

stem; (5) a detailed study of  duplicate consumer photographs.  

of  visual information through user interaction at multiple levels. We focused on 

the following three impo

way users search and index it; (2) construction of  flexible computational methods 

that learn how to automatically classify images and videos from user input at 

multiple levels; (3) integration of  generic visual detectors in solving practical tasks 

in a specific domain (consumer photography). 

In particular, we presented the following: (1) novel conceptual structures for 

classifying visual attributes (the Multi-Level Indexing Pyramid); (2) a novel 

framework for learning structured visual detectors from user input (the Visual 

Apprentice); (3) a new study of  human eye movements in observing images of  

different visual categories; (4) a new framework for the detection of  non-identical 

duplicate consumer photographs in an interactive c

sy
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The Multiple-Level Indexing Pyramid we presented classifies visual attributes into ten 

levels. The first four levels are used for syntactic attributes and the remaining six 

for semantic attributes. The following ten levels are defined by the pyramid: 

., leading angle), generic object (e.g., 

person), generic scene (e.g., indoors), specific object (e.g., Alex Jaimes), specific scene (e.g., 

central park in New York), abstract object (e.g., a dove represents peace), and abstract 

 to index images) and improves 

retrieval (we found up to 80% improvement in precision when images are 

retrieved using keywords and a pyramid level is specified when compared against 

keyword retrieval alone). The pyramid has also been found to be complete by 

other researchers [37] in the sense that it is able to classify all of  the visual 

attributes generated in manual image indexing tasks.  

reas, and regions). 

Then, the user labels example images or videos based on the hierarchy (a 

type/technique (e.g., color, black and white), global distribution (e.g., color histogram), 

local structure (e.g., lines and circles), composition (e.g

scene (e.g., paradise). We presented experiments to test the pyramid’s ability to 

classify a full range of  visual attributes generated in different tasks, to guide the 

image indexing process (i.e., manually describe images for future retrieval), and to 

improve retrieval in an image database (i.e., using keyword search). Our 

experiments showed that the pyramid is complete (classifies the full range of  

attributes generated), is useful in guiding the indexing task  (more attributes were 

generated when individuals used the pyramid

In the Visual Apprentice (VA), first a user defines a model via a multiple-level 

definition hierarchy (a scene consists of  objects, object-parts, perceptual a
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handshake image contains two faces and a handshake) and visual features are 

extracted from each example. Finally, several machine learning algorithms are 

used to learn classifiers for different nodes of  the hierarchy. The best classifiers 

and features are automatically selected to produce a Visual Detector (e.g., for a 

handshake), which is applied to new images or videos. We tested the Visual 

Apprentice framework in the construction of  several detectors (handshake, 

baseball batting scene, face, sky, greenery, etc.) and applied the resulting detectors 

to different sets of  images and videos (baseball video, news images, and 

consumer photographs in chapter 5). Our experiments demonstrate that the 

framework is flexible (can be easily applied to construct detectors with different 

hierarchies in different domains), and can produce reasonably good performance 

(92% accuracy in baseball batting scenes, 94% in handshake images in a news 

data set, 94% accuracy in detecting skies, etc.). Furthermore, the classifiers 

produced by the framework can be easily used by experts to construct highly 

accurate detectors for specific applications (e.g., in [275] rules were manually 

constructed based on detectors constructed using the Visual Apprentice).  

In the human eye tracking experiments we examined variations in the way people 

look at images within and across different visual categories. We found consistency 

in the way people view images of  handshakes and centered objects, and we found 

inconsistent patterns in the way that people view images of  crowds, landscapes and 

images in a miscellaneous category. This finding is extremely important because it 

suggests that computational approaches could make use of  eye tracking results 
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within specific image categories. Although many eye tracking experiments have 

been performed in the past, to our knowledge, this is the first study that 

specifically compares eye movements across categories.  

Finally, we presented STELLA, a system we have developed to help users semi-

automatically organize their collections. In STELLA we introduced a simple 

composition-based feature and a hierarchical clustering algorithm (a simple 

variation of  Ward’s algorithm) that uses image sequence information to group 

similar images. Within STELLA we addressed the problem of  automatic 

detection of  non-identical consumer images. In particular, we presented a model 

of  changes between non-identical duplicate photographs, a novel framework for 

the detection of  non-identical duplicate consumer photographs, and a detailed 

analysis of  a duplicate image database of  consumer photographs (255 image pairs 

from 60 rolls of  film from 54 real consumers). Our approach to automatically 

detect non-identical duplicate images is based on a multiple strategy that 

combines knowledge about the geometry of  multiple views of  the same scene, 

the extraction of  low-level features, the detection of  objects using the VA and 

domain knowledge about the duplicate problem in the consumer domain. We 

discussed different strategies to evaluate the clustering of  consumer photographs 

and presented experiments using our framework to detect non-identical duplicate 

images. Although high performance in the duplicate database that we used is not 

achievable with the current state of  the art, our analysis suggests that the 

framework presented is suitable for the non-identical duplicate detection 
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problem.  Furthermore, we were able to identify the main open issues in 

detecting non-identical duplicates, namely subjectivity and the use of  high-level 

semantic analysis when decisions are made.  

6.3 EXTENSIONS TO OUR WORK 

directions. Further details can be found in the discussion sections of  the 

corresponding chapters. 

Multi-level Indexing Pyramid 

In [142] we proposed applying the Multi-level Indexing Pyramid for classifying audio 

descriptors. Audio, however, can present additional challenges in particular for 

dividing sound sources into different levels. It is possible, for example, to 

describe sounds using abstract attributes (e.g., emotive attributes such as sad 

melody) to entire pieces. But separating the sounds, for instance, of  particular 

In this section we provide a brief  summary of  open issues and future research 

We argued that the pyramid could be easily applied to video in a way that is 

similar to how it is applied to images. One of  the differences brought about by 

the temporal nature of  video is that descriptions change over time. A camera 

zoom, for example, can close in on an object so that the attributes that describe it 

are no longer local attributes but rather global ones. Such changes could be 

considered in extending the framework. How can we define time-varying 

structures to handle these cases?   
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musical performances might be difficult. We believe that future research on 

applying the pyramid to audio signals can be beneficial in helping us identify the 

structure of  the signals for audio information retrieval. 

The Visua

 examples. Applying the VA to video has additional 

implications that we have not explored. For example, dynamic definition 

hierarchies that change over time could be formulated. Another interesting 

 Eye Tracking 

ic classifiers from eye tracking input is an 

interesting possibility. A system like the VA could potentially be integrated with 

l Apprentice 

There are many interesting ways in which the VA framework can be expanded. 

Active learning could be implemented so that, as the system learns, it helps the 

user find and label new

possibility is to include time information in the construction of  the models. 

Certain nodes, for example, could only appear after other nodes or events. 

Experiments on eye tracking could be clearly expanded to many more categories. 

In addition, we could conduct similar experiments using video and other types of  

images. Construction of  automat

an eye tracker so that, for example, it would automatically learn to detect relevant 

objects and scenes as a user passively watches TV programs. Further research 

could investigate dependency of  viewing patterns on age, gender, and nationality, 

among others. The effect of  familiarity with the elements depicted could also be 
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investigated, as well as the effect of  lighting and location of  the objects in the 

scene (e.g., foreground vs. background). 

Duplicate Framework 

Automatic detection of  non-identical duplicate consumer photographs is a very 

 

challenging problem and the framework we proposed can be extended in many 

ways to address it. Clearly, constructing additional object and scene detectors 

would be very valuable. New similarity metrics based on “families” of  objects 

could have a potentially important impact on duplicate detection. The way that 

we judge similarity between two people, for example, is quite different from the 

way we judge similarities between trees.  
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