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Internalobject-part structural information was not used in these tests, but detailed results are provided in [14].
The results above suggest that the framework presented here is suitable for performingvisual classification when the
elements in the class present a strong consistency in terms of regions (e.g., elephants). In cases where that consistency is
limited to a very small subset of the conceptual definition of a class (e.g., skater), we say that our approach is suitable for
detection- The Visual Apprentice learns from the examples it is provided, therefore, the definition of skater in the system is
limited to skaters with very similar visual characteristics to the one in the examples.

In other classes, such as cocktails, for instance, there is a wide variation in terms of the color, size and location of the
regions. Our approach is not suitable in such cases.

6. CONCLUSIONS AND FUTURE WORK

We have presented a different approach to content-based retrieval in which distinct users can utilize anobject definition
hierarchy to define their ownvisual classes. Classes are defined inThe Visual Apprentice, an implementation of our
approach, which learns classifiers that can be used to automatically organize the contents of a database. Our novel
framework for classification of visual information incorporates multiple fuzzy classifiers and learning techniques according
to the levels of theobject definition hierarchy: (1) region, (2) perceptual, (3) object-part, (4) object and(5) scene. The use of
generic and task-specific classifiers is possible, and our approach is flexible since each user can have his ownvisual
classifiers.

Future research directions include placing a feedback loop in theThe Visual Apprentice so that learning is performed
incrementally, allowing the user to place additional restrictions on the visual classes. This will require more sophisticated
interface tools. In addition, we are working on integratingvisual classificationresults with information provided by other
media accompanying the visual information. In particular, we are working on usingThe Visual Apprentice to build
classifiers for news images/video making use of text information. Motion information is also being included in our model
and we plan to integrate the work from [26] to assist labeling of video objects. Our system forms part of Columbia’s Mpeg-7
testbed [20].

Table 1: Classification performance results

Image Set Image Set Recall Precision

Ships A 94 % 70 %

Roses A 94 % 75 %

Elephants A 91 % 77 %

Cocktails A 95 % 36 %

Skater B 100 % 62 %

Faces C 70 % 89 %

Image set A: images of ships, roses, elephants, and cocktails.

Image set B: the skater sequence contains 120 frames.

Training set:  30 of each class for a total of 120.
Testing set:   Remaining 70 of each class, for a total of 280.

Training set: first 30 frames of the skater sequence.
Testing set:  remaining 90 frames from skater sequence and the 400 images from set A, for a total of 490 images.

Image set C: news images from an internet newsgroup.
Training set: 70 news images that contain 86 faces in total (only faces used for training).
Testing set: 181 images with one face, 137 with two faces and 60 with no faces for a total of 378 images.
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4.2.4 Objects and scenes

The process described above for learning structural relationships is also used at this level, with the difference that each
element in theARGs corresponds to anobject-part instead of aperceptual-area. Scenes, as structured sets of objects, can be
given the same treatment.

5. APPLICATIONS AND PERFORMANCE

5.1 Applications

In this section we briefly discuss the visual domains in which our framework is suitable and possible applications of our
techniques.

Strong visual consistency across images/videos of the same class can take on many forms: consistent motion, overall color,
texture, etc. Our approach is based on regions, therefore, it is suitable for cases in which similar regions are obtained for
elements in the samevisual class (e.g., some animals, people, nature, etc.). Classes may consist of objects or scenes- figure 9
shows examples of how scene structure may be defined as a visual class in our framework.

The cases in which our framework can be applied toclassification depend on the definition of the specific class. In general,
visual classes can be built when elements of the class have similar regions- when that is not the case, we can refer to the
process asdetection. The skater of figure 1 is a good example for adetection application. A television viewer watching a
program in which the skater appears, may want to build a classifier that will automatically filter other programs being
transmitted that contain the same skater. This type of application can be very useful in such scenario and particularly in news
domains because often a story is repeated by different sources (e.g. Dolly the sheep).

5.2 Performance

A good performance analysis of the implementation of our framework requires testing at each individual level of the
hierarchy as well as for each individual classifier. This analysis is presented in detail in [14]. In this paper, however, since
the focus is on the presentation of our framework, we only present a few cases in order to demonstrate the feasibility of this
approach.

Centered object Horizontal
Figure 9: Scene structure can be defined in terms of regions. In the first case, for instance, the visual class can be defined as one having
a flat background, independently of the regions that appear in the center.
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tuple (ai, mi), ai is aperceptual-areaand mi its membership value for that class. The goal at this step is to find combinations
of these that may correspond toobject-parts.

An object-part, by definition, may or may not contain more than oneperceptual-area. When only oneperceptual-area is
present, it is equivalent to the correspondingobject-part, thus perceptual-areaclassification alone yields the result for the
object-part(as is the case with the faceobject-part of the skater). In cases where more than oneperceptual-areais present,
spatial relationships between those areas must be considered. If they are ignored, twoobject-parts having similarperceptual-
areas, but very distinct spatial layout would be incorrectly placed in the same class.

To represent the structural relationships betweenperceptual-areas within object-parts, we first buildAttributed Relational
Graphs (ARG)[5] based on the spatial relationships of figure 7. In anARG, each node represents anobject and an arc
between two nodes represents a relationship between them. Instead of using a relational representation (e.g.,ARG) directly,
we convert eachARG to an attribute-value representation: objects in theARG are ordered and a feature vector is generated,
as explained in figure 8.

Attribute-value representations for structural relationships have been used in some learning systems [19]. One of the
advantages of such transformation is that existing learning techniques that use feature vector representations can be applied.
This avoids the difficult search in the space of more complex representations (e.g., Horn clauses). One of the disadvantages,
however, is that the number of attributes can grow very quickly. We avoid this problem by usingARGs after perceptual-
areas have been found- this is equivalent to having labeled objects in the nodes of theARGs and a very small set of object
attribute features (e.g., as opposed toregion feature vectors). Another advantage of having labeled nodes (provided by our
multi-stage classification framework) is that we do not deal with matching of graphs (ARGs) that contain unlabeled objects,
which is a hard combinatorial problem.

A problem with the feature vector representation is that the number of nodes in theARGs (in our caseperceptual-areas) may
vary between images/videos. Three possibilities to deal with this may be considered: (1) use set-valued attributes as in [2],
(2) use wild card (unknown) attribute values when nodes are not present, and (3) build several representations for a given
ARG [5]- i.e., if it contains n nodes, build separate feature vectors for n, n-1, ... 2 nodes. For figure 8, for example, feature
vectors could be generated corresponding to theARGs for (A,B,C,D), (A,B,C), (A,B), etc.

Feature vectors obtained from the transformation are used by a decision tree [19] to learn the relationships for the given
class. We use the closed-world assumption to generate negative examples for theARG feature vectors. During classification,
ARGs are generated for all possible sets ofperceptual-areas found by the previous stage. Those feature vectors are then
classified by the decision tree associated with the correspondingobject-part class.

Figure 7: Structural relationships used in The Visual Apprentice. Bounding boxes are used, as seen above.
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Using the regions in Rop, groups that may belong toperceptual-areas must be found by applying the corresponding
perceptual-area classifier. The first step is to use aregion classification algorithm analogous to the one in the previous
section (with the difference that the classification function will produce a binary result), to obtain a new set of regions,

 where each region in Ropg is likely to form part of theperceptual-area in question. Considering the skater of

figure 1 again:regions that are likely to belong to the skater body will be in the set Rop. This set may include white, and blue
regions, so the first step in finding a blue bodyperceptual-area will be selecting the blueregions from the set Rop and
placing those in the set Ropg.

Since aperceptual-area by definition is an area of connectedpixels in the image, we must findgroups (i.e., adjoining
regions) in the setRopg. We apply a grouping functiong (as defined in 4.1) to Ropg, to obtain a setPG = {g1, g2, .., gn}

where every  is agroup of adjoiningregions(e.g.group of blue regions). The goal then becomes to find the most

likely perceptual-area candidates from the set PG. Since each elementgi, however, comprises a set ofregions it is possible
for a subgroup ofgi to be a better candidate for theperceptual-area class than gi itself.

In this sense, we must perform a search over the space of possible groupsof regions from the setPG to find the best possible
ones (i.e., those that are more likely to beperceptual-areas). This can be treated as a classical search problem in Artificial
Intelligence [12], and therefore, we can use heuristic techniques to reduce the search space. One of such techniques is
Evolution Algorithms [17]. We treat each elementgi in the set PG as an individual in a population P (e.g., P=PG).
Individuals evolve from one generation to the next through genetic operations such as mutation (an individual’s
characteristics are changed) and cross-over (two or more individuals combined to produce a new one). During the evolution
process (generation to generation), only "strong" individuals survive- that is, individuals that meet certain fitness criteria.

What follows is a description of our algorithm (figure 6):

1. Initialize population (P = Ropg set ofstrong regions that are candidates for the currentperceptual-area).
2. Preliminary cross-over (PG =groups of adjoiningregions from P).
3. Secondary cross-over (PS =groups formed by individuals from PG and adjoining weakregions from P), only
population PS is kept.
4. Fitness function (perceptual-area classifier) used to evaluate fit individuals in current population.
5. Selected individuals are mutated.
6. Go to step 4.

As illustrated in figure 6, strongregion candidates are first grouped and then merged with adjoining weak candidates. This
eliminates from consideration isolated weak candidateregions. The evolution program then considers eachgroup of regions
as aperceptual-area candidate: at every generation step, eachgroup is mutated, thus generating a new individual. A new
individual’s fitness in the population is measured by aperceptual-areaclassifier, thus the features for the new individual
must be computed. Current features forperceptual-areas are the same as forregions andperceptual-areaclassifiers are lazy
classifiers (similar to those in section 4.2.1).

4.2.3 Object-part

The result of the previous step is a set Pg of perceptual-area candidates Pg = {(a1, m1), (a2, m2), ..., (an, mn)} where in each

Ropg Rop⊆

gi PG∈

Figure 6: Evolution process for a set of regions. Groupingweakregions with existing groups ofstrong regions avoids forming groups

Strong candidates Groups of strong regions Groups +weak regions Initial population Generation 1 Generation 2 ...

of isolated weak regions. At every generation, individuals are mutated to form new ones and new features are computed. A fitness
function is used to determine whether an individual survives into the next generation.
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The input to each lazy-classifier is an instance (feature vector) and the output a fuzzy-membership value for that instance.
The currentregion feature vectors contain the following attributes [14]: color (average Hue, Saturation, Value), location (x,
y center location, orientation), size (area), shape (aspect ratio, formfactor, roundness, compactness, extent) and texture
(coarseness, contrast). Since performance of most learning algorithms is strongly affected by irrelevant features, for each
lazy-classifier, the Branch and Bound algorithm is used for feature selection. Each classifier consists of the following:

• Concept description:set of instances that belong to the class (i.e., positive examples).
CD = {t1, t2, ..., tn} where ti is a training instance (e.g.,region feature vector)

• Similarity function: computes similarity between the new instance (feature vector) and instances in the concept
description (K-Nearest Neighbor, Weighted Euclidean Distance). Between an input instancex and a training instancey:

Whereωi is a constant that weights the role of theith attribute in the similarity function, andyi is the value of featurei of
elementy andn is the total number of features.

The feature weightωi for each feature is obtained from the variance of that feature, measured independently of other
features over the training set:

Whereyj is the value of featurei of the jth element in the training set and  is the mean value for that feature over the
training set (which containsm elements).

• Classification function:uses the similarity function result to compute a fuzzy-membership value for the input, using the
parametersht (hard boundary threshold) and st (soft boundary threshold), whereht<st.

          ifsimk(x)>st thenmx = 0,sx = 0
          else ifsimk(x)>ht thensx = 0,mx = simk(x)
                 elsesx = 1,mx = simk(x)

Wheresimk(x) is the result of computing the similarity value of the inputx with its k nearest neighbors in the training
set;mx is the membership value assigned to the inputx andsx = 1 if x is considered astrong member of the class and 0 if
it is considered aweak member.

In summary, the similarity functionsim(x,y)produces a value for each input instance, which represents how similar it is to
the training examples. The classification function, which provides the output of the classifier, uses this information to
determine the input instance’s membership value in the class, thus producing a fuzzy-set when the classifier is applied to a
set of instances. In addition, the classifier determines whether the input instance is astrong member or aweak one. This is
useful when performing grouping, as will be seen in the next section.

Classification at this level produces for eachregion in the incoming image a value that determines theregion’s degree of
membership in the current region class.

4.2.2 Perceptual grouping, search and evolution programs

The previous step results in a set of region-membership tuples Rop = {(r1, m1, s1), (r2, m2, s2), ..., (rn, mn, sn)} where in each
tuple (ri, mi, si), ri is aregion that belongs to the currentregion class with degree of membershipmi andsi=0 if it is aweak

member and 1 if it is astrongmember.Regions from the original image whose classification produces a membership value
of zero are not included in the set Rop (as defined in the classification function above).

sim x y,( ) xi yi–( )2 ωi
2×

i 1=

n

∑=

ωi 1 yj µ–( )2

j 1=

m

∑–=

µ
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the next section we describe the classification process in more detail and the specific classification approach used at each
level in the current implementation ofThe Visual Apprentice.

4.2 Classification process

The first step in the classification of a new image/video is its automatic segmentation. This is done using the segmentation
parameters provided by the user during the class definition and training phase.

Classification follows the bottom up order of theobject definition hierarchy. In classes where more than one classifier is
present at the same level, those classifiers are ordered from best to worst according to their performance, therefore setting the
Focus of Attention for classification at each level. This is useful since in order for an element to pass a classification test, all
of its components (i.e., descendants in thehierarchy) must exist, and it may be unnecessary to use a classifier at a given level
if other classifiers at the same level have failed (e.g., a skater must contain twoobject-parts;if no face is found it is not
necessary to search for a bodyobject-part). Performance is computed by calculating error estimates for each classifier
independently using leave-one-out error cross-validation [27] on the training data.

Once the input image/video has been segmented, aregion level classifier is applied, according to the specific focus of
attention for the given class. This yields a fuzzy-set of candidateregions that belong to a particularobject-part. A perceptual-
area classifier is then applied to that set ofregions: groupsof adjoining regions are found and passed to the evolution
program, which finds the best combinations. The focus of attention is set again (at theperceptual-area level) and the process
is repeated.

In the next sections we describe classification and grouping at each level in the order that it is performed:(1) region, (2)
perceptual, (3) object-part, (4) object and(5) scene.

4.2.1 Region

Region classification serves as an initial selection process similar to the one in [23]. Currentregion classifiers are similar to
IB1, a lazy learning algorithm [1] which is a variation of K-Nearest-Neighbor classification.

Lazy learning algorithms perform classification by combining their stored data (i.e., the training set) when an input occurs.
This makes it possible to have dynamic models that can be changed by the user over time since the examples provided are
not discarded after training (e.g., for the skater of figure 1, the user may, at a later time, change the features of the classifier
so that it accommodates red skaters). In addition to providing this flexibility, Lazy-learners1 have significant advantages
over other learning algorithms when the target function is very complex [19].

1. Also referred to as memory-based or instance-based learners.

Image

Segmentation

Regions

Feature
Extraction

Focus of
Attention

Region
Classifier

Evolution
Program

Object-part
Classifier

Object
Classifier

Perceptual Group
generator

Focus of
Attention

Start

Figure 5: Overview of the classification process. Steps 1-4 are performed once and yield the features for the input image. First (steps 5,6),
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a region classifier corresponding to a an object-part is selected. Regions are classified (7) and a choice to find perceptual areas is made
(8; e.g., blue). The evolution program extracts new features for the generated groups and performs a loop to find best possible groups (10,
11 repeat). Once those groups are found, if the object-part contains more perceptual areas, the process repeats at step 13. If not, the object
part classifier yields a result to the object classifier. Again, the process repeats from step 5 for a new object-part if one was defined.
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(e.g.,groups of regions: prospective bodyregions aregrouped and the bestgroups found by the correspondingperceptual-
area classifier).

Using a binary classifier for a classj implies absolute certainty about the membership of the elements in the setj. In that
case, when applying a grouping functiong to the setj, we can have a guarantee that the best possiblegroups from j are inS.
The use of fuzzy-classifiers, on the other hand, allows the grouping functiong to select elements fromj according to their
degrees of membership in classj (rather than blindly) and improves the possibility for grouping functions to find the best
groups in j.

Classification and grouping are performed in order according to the structure of ourobject definition hierarchy(figure 3).
First, individual regions are classified and, then,perceptual-areas formed (i.e.,regions are classifiedperceptually and
groups are found). Thosegroups are then combined to form prospectiveobject-parts, which formobjects that formscenes.
Each fuzzy-classifier acts like a "black box", permitting the incorporation of specialized classifiers (e.g., faceobject-part
classifier below replaced by a face recognition module) or generic classifiers (e.g., each classifier as a specific instance of a
decision tree learning algorithm). It is important to note that the structure of figure 3 is not identical to theobject definition
hierarchy of figure 2; we have chosen to have only oneregion classifier as a descendant to eachobject-part classifier.

Classifiers interact across levels, but not within levels: a classifierCjl  for classj and levell is a function of the classifiers it
uses from levell-1, but not of another classifier from levell (in figure 3, no horizontal connections exist between classifiers,
thus face and bodyobject-part classifiers, for instance, do not exchange information).

As defined earlier, given a universeU and a set , a classifiercj(i) is a characteristic function for the setj (e.g.,cj is an
equivalent way of definingj). Taking this into consideration, we can visualize the interaction between classifiers at different
levels in terms of sets. Figure 4 is useful in interpreting the flow of information and in particular when reading section 4.2.

In

Body Region
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Body Object-part

Skater Object

Skater Scene

Face Region

Blue Perceptual

Figure 3: Multiple level classifiers make up models. Each classifier acts as a "black box" passing its results to the next level, thus
allowing the incorporation of different learning and grouping strategies. This diagram corresponds to the skater of figure 1 as
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an element of leveli-1, unless they are equal (e.g.an object cannot be part of aperceptual-area; a face can be equal to a
single perceptual area); (3) elements of the same level are disjoint (e.g. intersection of two elements of the same level = null;
two object-parts cannot intersect); (4)regions do not contain subsets (i.e.regions are the basic units and cannot be
separated); (5) No. elements level i <= No. elements at level i-1.

During training, the user performs the following tasks: (1) selection of the best segmentation1 for the class; (2) creation of a
class-definition hierarchy by defining the labels to be used from level 2 to level 5; (3) labeling ofregions in each training
image/video frame according to thehierarchy. As a result of user interaction, we obtain the following sets for a defined class
j:

• Conceptualobject definition hierarchy (e.g. figure 2): Hj.
• Set of segmentation parameters: SEGj = {par1, par2, ..., parn}
• Labeled Element Set: LESj = {{(e11, l11), (e12, l12), ..., (e1n, l1n)}, ..., {(ek1, lk1), (ek2, lk2), ..., (ekp, lkp)}, ..., {(em1, lm1),

..., (emq, lmq)} where in each tuple, eki corresponds to theith element (i.e., an area of a training image) of level k and lki is

a label of level k associated with it (e.g., (op31, l31) = (bodyobject-part, body label)). Label level distinctions emphasize
that labels must be different at different levels of thehierarchy.

As discussed earlier, an element eki of our model (node in thehierarchy) is a set of connected pixels (i.e., an area of the
image). For each element in the label set, we compute afeature vector, which is an attribute-value tuple representation of the
features of the element (e.g., color, shape, etc.). By computing feature vectors for all elements in the set LESj, we obtain a
training set of positive examples for each classj:

• TSj = {{(fv 11, l11), (fv12, l12), ..., (fv1n, l1n)}, ..., {(fv k1, lk1), (fvk2, lk2), ..., (fvkp, lkp)}, ..., {(fv m1, lm1), ..., fvmq, lmq)}

where fvki corresponds to theith feature vector element of level k and lki is a label of level k associated with it (e.g.,
(op31, l31) = (bodyobject-part feature vector, body label)).

Attributes for the feature vectors may vary across levels of thehierarchy. Structural relationships, for instance, are
considered only betweenperceptual-areas, betweenobject-parts, and betweenobjects. Feature vectors at each level are
discussed in the next section.

4. LEARNING, CLASSIFICATION AND GROUPING

Classification and grouping is performed at the five levels of thehierarchy defined above: (1) region, (2) perceptual, (3)
object-part, (4) object and(5) scene. In this section, we describe the general characteristics of our classifiers and how they
interact to perform grouping. We also describe in detail the classification process at every level of our framework.

4.1 Fuzzy-classification and grouping at multiple levels

Given a universeU of elements (e.g.,U comprises nodes at a given level of theobject definition hierarchy), a function cj(i)

is a classifier for classj that determines membership ofi ( ) in the setj. In binary classifiers,cj:  where,∀
, cj(i) = 1 if  and cj(i) =  0 if . In fuzzy-classifiers [6] the function is not binary, but continuous, thuscj:

. In this case,j is a fuzzy-set since each element inj has been assigned a degree of membership in that set (e.g., if
cj(i) =0.75 and cj(l) =0.68 we say thati is astronger member of class j thanl).

In addition to fuzzy-classification functions, we define a grouping functiong: whereS is a set of disjoint subsets of
U. We call every setsi of Sa group, for which any pair of elements insi are connected to each other, meaning that there is a
spatial path between those two elements. In simpler terms, the functiong returnsgroups of adjoining areas of the image

1. The best segmentation for a given class minimizes areas of internal regions that fall outside the boundaries of the objects of
interest, while minimizing the number of regions inside those objects. Parameters depend on the segmentation algorithm in use.

i U∈ U 0 1,{ }→

i U∈ i j∈ i j∉

U 0 1,[ ]→

U S→
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(5) Scene: structured1 set ofobjects.
(4) Object: structured set of adjoiningobject-parts.
(3) Object-part: structured set ofperceptual-areas.
(2) Perceptual-area: set of contiguous and perceptually homogeneousregions.
(1) Region: set of connected2pixels.

Figure 2 illustrates a genericobject definition hierarchy and a specific example for the skater image in figure 1, which we
describe next.

Observing figure 1 we can build the followingobject definition hierarchy:

(5) Scene: oneobjectis present (a skater).
(4) Object skater: the division of anobject into parts is subjective. Let us consider three observers and their divisions:

Observer A:object should not be divided into parts.
Observer B:object-parts are face and body.
Observer C:object-parts are face, body, and skates.

We continue our definition only for observer B:

(3) Object-part face: only oneperceptual-area (entire face).
     Object-part body: body of the skater can be divided into two mainperceptual-areas (blue body-area and white arm-
area)
(2) Perceptual-areablue body: set of blueregions.

Perceptual-area white arm: set of whiteregions.
(1) Regionblue: set of connected bluepixels.

Regionwhite: set of connected whitepixels.

As the previous example suggests, in general, the way in whichdefinition hierarchies are built is subjective and may vary
between users. Our framework accommodates this subjectivity: users can build different models based on their individual
interests. There are, however, some restrictions on the way a hierarchy can be built. These are discussed next.

Every nodee in our object-definition-hierarchy has a conceptual interpretation (e.g., face). In addition, each nodee
corresponds to a set of connected pixels in the image/video. We can state the restrictions for building validdefinition-
hierarchiesas follows: (1) an element of leveli ( ) is a subset of only one element of leveli+1 (e.g. an object-part can
only belong to oneobject; a node in the hierarchy can only have one parent); (2) an element of leveli cannot be a subset of

1. The word structured is used only to emphasize the importance of spatial relationships between elements in the particular set.
Spatial locations of elements may be part of their attributes.

2. Regions, which are at the lowest level of the hierarchy, constitute the basic units in our framework and can be extracted using
any segmentation algorithm based on low-level features such as color, texture, or motion. We currently use the implementation
from [25] for image/video segmentation.

Level 1:region

Level 4:object

Level 3: object-part

Level 2:perceptual-area

Object

Object-part 1

Perceptual-area 1

Region 1

Skater

Face Body

Blue-area White-area

Blue-regions White-regions

Face-area

Pink-regions

Figure 2: Generalobject definition hierarchy andhierarchyfor the skater of figure 1. Every node in the tree has a conceptual

Perceptual-area n

Object-part 2 Object-part n

Region n

meaning (e.g., face), but also corresponds to a set of connected pixels in the image. As such, each set of pixels contains all of
the descendants that correspond to its node (e.g., body contains blue and white areas, etc.). Sets at the same level are disjoint.

i 5≠
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2. GENERAL APPROACH

Given the importance of objects and their parts in classification of visual information [13], we base our framework on an
object-definition hierarchy consisting of the following levels: (1)region; (2) perceptual; (3) object-part; (4) objectand (5)
scene.

First, the user defines thevisual class. This is done by creating labels forobjects and theirparts (e.g., thescene class skater
in figure 1 contains oneobject, with object-parts face, body and skates). Then, the user provides training examples for the
class: for each image/video example,regions are labeled according to the class definition. The labeled regions from all of the
training examples are used to compute the training set: features (color, texture, shape, spatial relationships, etc.) for each
level are automatically extracted and stored in a database. This database is used for training by multiple learning algorithms
to yield a set of fuzzy-classifiers at different levels (e.g., region, object-part).

Automatic classification is performed by combining the learned classifiers and using grouping strategies at the levels listed
above.Regions are classified first and combined to obtainperceptual-areas (i.e. areas that are visually homogeneous; e.g.,
blue skater-body area of figure 1) which are used byobject-part classifiers.Object-parts, in turn, are combined and passed to
objectclassifiers.

In the next section, we describe the components present in a class definition and the results of training.

3. CLASS DEFINITIONS AND TRAINING

3.1 Grouping and perceptual organization

Studies in cognition and human vision have shown that during visual recognition, humans perform grouping of features at
different levels [16][4]. The highest level of grouping is semantic- areas that belong to anobject are grouped together. An
object, however, can be separated intoobject-parts which consist ofperceptual-areas: areas which we perceive categorically
(i.e., as a single visualgroup). The best example of categorical perception is color [23]: when observing anobject and asked
how many colors it contains, we "group" different shades of the same color. An elephant’s ear, for instance, constitutes one
perceptual-area for an average observer- there is no interest in differentiating between distinct shades of gray. We base our
framework on classification and grouping at the following levels: (1)region; (2) perceptual; (3) object-part; (4) objectand
(5) scene. We define anobject definition hierarchy as follows:

Figure 1: During training, the user defines a class and labels regions in the training set according to the definition. On the left is
avisual class for which the user is interested indetection of a skater with similar visual features. On the right, the user’s interest
is in building aclassifierfor elephants (there is strongvisual consistency in the elephants class).



Storage and Retrieval for Image and Video Databases VII, IS&T/SPIE99. San Jose, CA, January 1999.

2

appearance). In this scenario classification can be ambiguous, unless the user and the system share the same meaning for a
given class (e.g., class "stars")- the user’s definition of similarity must match the system’s definition. In practice, this is
difficult to achieve in a general application, given that different users have different criteria for similarity and possibly
different meanings associated with each class.

Existing approaches in a priori classification can be mainly divided into two groups: those that use specialized algorithms
[10][11][24][22] for automatic classification and those that rely on manual classification. In both cases, the lack of flexibility
is evident: creation of new specialized classifiers must be programed by an expert and manual based classification is
expensive. Another limitation of most of these approaches is that all users are presented with the same classifications and the
initial classes are chosen subjectively by the designers of the specialized algorithms or pre-defined classes. This is
particularly problematic with images/video since there are practically unlimited ways of indexing visual information and
classification can be very subjective, varying across users or for a single user over time [13][18].

In this paper, we present a different approach towards content-based retrieval and a novel framework for classification1 of
visual information. Users definevisual classes based on objects and classifiers are learned automatically as each user
provides examples. Our approach is flexible since: (1) each user can have his own set of classifiers (system class definitions
and similarity criteria match those provided by the user); (2) classifiers can be changed over time and (3) once a user’s class
has been learned, database contents can be classified automatically.

Our novel framework for classification of visual information is based on a hierarchical decomposition of the image with the
following levels: (1)region; (2) perceptual; (3) object-part; (4) objectand (5)scene.We presentThe Visual Apprentice, an
implementation of this framework for still images and video that uses a combination of lazy-learning, decision trees and
evolution programs for fuzzy-classification and grouping.

In the framework presented, we are concerned with the problem ofvisual rather thanconceptual classification. This
distinction is of great importance since, as mentioned above, a semantic class carries information at different levels. Our
interest is in thevisualappearance ofobjects and in particular, in letting users define classes in those terms. It is clear that in
some cases (e.g., elephants) the amount ofvisual variation for objects in the same class is smaller than in others (i.e. house).
We use this criterion to differentiate betweenclassification anddetection.

1.1 Related work

This approach to content-based retrieval differs significantly from previous techniques (QBIC, Photobook, WebSEEk,
Virage) [8] that do not attempt content classification based on visual features, and from others that use specialized
algorithms (e.g., [11]'s face detection). It also differs from the work in [9] that is based on the formulation of sketch queries
and from other approaches in which images are classified using global low-level features [22][24].

Our framework for classification of visual information differs from other approaches based on regions [21][15][7] that
perform classification based on global region configuration, and from others [18] that neither use spatial relationships nor
allow definition of complex objects [3]. Our approach is different from [10] in the following: 1. users construct their own
models (rather than having a fixed set). 2. No assumption is made about elements of the model (regions have arbitrary
shapes, cylinder-like "primitives" not assumed). 3. Generic region extraction rather than only specialized (like a skin filter).
4. Fuzzy classification paradigm rather than binary. In addition, our approach is different from other model-based techniques
such as [23] that use single features for region extraction and from others that use 3D object models.

1.2. Outline

In section 2, we give a general overview. In section 3, we present anobject definition hierarchy and describe the training
phase. Section 4 describes the classifiers used and their interaction in detail. In section 5, applications of our framework and
performance are discussed. Conclusions follow in section 6.

1. In some cases, we will use the worddetection. Classification assigns an object to a category, whereasdetection determines the
presence of an object:detection will be used to refer to objects that have a rather "unique" visual appearance or that belong to
classes in which there is great variation (e.g., house).
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ABSTRACT

Most existing approaches to content-based retrieval rely on query by example or user sketch based on low-level features;
these are not suitable for semantic (object level) distinctions. In other approaches, information is classified according to a pre-
defined set of classes and classification is either performed manually or using class-specific algorithms. Most of these
systems lack flexibility: the user does not have the ability to define or change the classes, and new classification schemes
require implementation of new class-specific algorithms and/or the input of an expert. In this paper, we present a different
approach to content-based retrieval and a novel framework for classification of visual information in which (1) users define
their ownvisual classes and classifiers are learned automatically; and (2) multiple fuzzy-classifiers and machine learning
techniques are combined for automatic classification at multiple levels (region, perceptual, object-part, object andscene).
We presentThe Visual Apprentice, an implementation of our framework for still images and video that uses a combination
of lazy-learning, decision trees, and evolution programs for classification and grouping. Our system is flexible in that models
can be changed by users over time, different types of classifiers are combined, and user-model definitions can be applied to
object andscene structure classification. Special emphasis is placed on the difference betweensemantic andvisual classes,
and betweenclassification and detection. Examples and results are presented to demonstrate the applicability of our
approach to performvisual classificationanddetection.

Keywords: content-based retrieval, image classification, video classification, model-based classification, detection, machine
learning.

1. INTRODUCTION

Digital image databases have been growing in size and popularity. Recently, there have been many efforts to support
searching and browsing based on the visual content of images/videos [8]. Existing approaches to content-based retrieval of
visual information can be divided into two groups: those in which users perform queries by example or user sketch, and
those in which a priori classification of the information is performed. Some systems include both, allowing query by sketch
or similarity within categories.

Similarity and query by sketch techniques are based on low-level features (color, texture, etc.), thus concentrating on the
form of the visual information (syntax: color, texture, etc.) rather than on the content (semantics: objects). Users, however,
are generally interested first in semantics and then in syntax- the query "show me all the images that contain green apples" is
more likely than the query "show me all the green areas that are apples". The focus is first on the objects depicted and then
on their specific form. Low-level features are unsuitable at the semantic level: meaningful queries by sketch are difficult to
formulate, and similarity queries do not express semantic level distinctions.

A priori classification, on the other hand, can provide a good general organization of the contents of the database in terms of
semantics. For instance, the pre-defined scene class "man" carries general information at different levels [13]:conceptual
(e.g., definition of man in the dictionary),physical(size, weight, texture) andvisual (hair color, clothing), among others.
Some of this information is explicit (e.g., man vs. woman), but a lot of it is implicit or undefined (e.g., actual physical
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