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Table 1: Classification performance results

Image Set Image Set Recall Precision
Ships A 94 % 70 %
Roses A 94 % 75 %

Elephants A 91 % 77 %

Cocktails A 95 % 36 %
Skater B 100 % 62 %
Faces C 70 % 89 %

Image set Aimages of ships, roses, elephants, and cocktails.
Training set: 30 of each class for a total of 120.
Testing set: Remaining 70 of each class, for a total of 280.

Image set Bthe skater sequence contains 120 frames.
Training set: first 30 frames of the skater sequence.
Testing set: remaining 90 frames from skater sequence and the 400 images from set A, for a total of 490 images.

Image set Cnews images from an internet newsgroup. . o
Training set:70 news images that contain 86 faces in total (only faces used for training).

Testing set: 181 images with one face, 137 with two faces and 60 with no faces for a total of 378 images.

Internalobject-partstructural information was not used in these tests, but detailed results are provided in [14].

The results above suggest that the framework presented here is suitable for perfismahglassificationwhen the

elements in the class present a strong consistency in terms of regions (e.g., elephants). In cases where that consistency i
limited to a very small subset of the conceptual definition of a class (e.g., skater), we say that our approach is suitable for
detection The Visual Apprentickearns from the examples it is provided, therefore, the definition of skater in the system is
limited to skaters with very similar visual characteristics to the one in the examples.

In other classes, such as cocktails, for instance, there is a wide variation in terms of the color, size and location of the
regions. Our approach is not suitable in such cases.

6. CONCLUSIONS AND FUTURE WORK

We have presented a different approach to content-based retrieval in which distinct users can otljeet aefinition

hierarchy to define their owrvisual classesClasses are defined ifihe Visual Apprenticean implementation of our
approach, which learns classifiers that can be used to automatically organize the contents of a database. Our novel
framework for classification of visual information incorporates multiple fuzzy classifiers and learning techniques according
to the levels of thebject definition hierarchy(1) region, (2) perceptual, (3) object-part, (4) objecd(5) sceneThe use of

generic and task-specific classifiers is possible, and our approach is flexible since each user can haveifimlown
classifiers

Future research directions include placing a feedback loop iThkeVisual Apprenticeso that learning is performed
incrementally, allowing the user to place additional restrictions on the visual classes. This will require more sophisticated
interface tools. In addition, we are working on integratiigyial classificatiorresults with information provided by other

media accompanying the visual information. In particular, we are working on wU$iegVisual Apprenticéo build
classifiers for news images/video making use of text information. Motion information is also being included in our model
and we plan to integrate the work from [26] to assist labeling of video objects. Our system forms part of Columbia’s Mpeg-7
testbed [20].
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4.2.4 Objects and scenes

The process described above for learning structural relationships is also used at this level, with the difference that each
element in theARGscorresponds to ambject-partinstead of gerceptual-areaScenes, as structured sets of objects, can be
given the same treatment.

5. APPLICATIONS AND PERFORMANCE
5.1 Applications

In this section we briefly discuss the visual domains in which our framework is suitable and possible applications of our
techniques.

Strong visual consistency across images/videos of the same class can take on many forms: consistent motion, overall color,
texture, etc. Our approach is based on regions, therefore, it is suitable for cases in which similar regions are obtained for
elements in the samasual clasge.g., some animals, people, nature, etc.). Classes may consist of objects or scenes- figure 9
shows examples of how scene structure may be defined as a visual class in our framework.

O

Centered object Horizontal

Figure 9: Scene structure can be defined in terms of regions. In the first case, for instance, the visual class can be defingid@s one ha
a flat background, independently of the regions that appear in the center.

The cases in which our framework can be applieddssificationdepend on the definition of the specific class. In general,

visual classexan be built when elements of the class have similar regions- when that is not the case, we can refer to the
process asletection The skater of figure 1 is a good example fatedectionapplication. A television viewer watching a
program in which the skater appears, may want to build a classifier that will automatically filter other programs being
transmitted that contain the same skater. This type of application can be very useful in such scenario and particularly in news
domains because often a story is repeated by different sources (e.g. Dolly the sheep).

5.2 Performance

A good performance analysis of the implementation of our framework requires testing at each individual level of the
hierarchy as well as for each individual classifier. This analysis is presented in detail in [14]. In this paper, however, sinc
the focus is on the presentation of our framework, we only present a few cases in order to demonstrate the feasibility of this
approach.

U = entire database.

Relevant items: c + a
Retrieved items: a + b
a a

Recall: Precision:
a+c

a+hb

Figure 10: Graphical representation of performance measures used.

11



Storage and Retrieval for Image and Video Databases VII, IS&T/SPIE99. San Jose, CA, January 1999.

tuple (g, m), & is aperceptual-areand m its membership value for that class. The goal at this step is to find combinations
of these that may correspondaioject-parts

An object-part by definition, may or may not contain more than peeceptual-areaWhen only oneerceptual-areas
present, it is equivalent to the correspondimgect-part thus perceptual-areaclassification alone yields the result for the
object-part(as is the case with the faobject-partof the skater). In cases where more thanpereeptual-areds present,
spatial relationships between those areas must be considered. If they are ignoobiedimoartshaving similamperceptual-
areas,but very distinct spatial layout would be incorrectly placed in the same class.

To represent the structural relationships betwgenceptual-areasvithin object-parts we first build Attributed Relational
Graphs (ARG)[5] based on the spatial relationships of figure 7. INnARG each node represents abjectand an arc
between two nodes represents a relationship between them. Instead of using a relational representatiti® (rgctly,

we convert eaclhARGto an attribute-value representation: objects inAR& are ordered and a feature vector is generated,
as explained in figure 8.

r———': r—-———n" r-———=-n1
L___a | | M B
Fm—— == b ——droo oo le=s,
L | | EA N |
Above/Below Left/Right Inside/Contains
r— —=-n"
—_—— Iy -
LT3 L__iron 4 N
L — — [ SR —| v,
Near Far Touching

Figure 7: Structural relationships usedTie Visual Apprenticd8ounding boxes are used, as seen above.

Attribute-value representations for structural relationships have been used in some learning systems [19]. One of the
advantages of such transformation is that existing learning techniques that use feature vector representations can be appliec
This avoids the difficult search in the space of more complex representations (e.g., Horn clauses). One of the disadvantages
however, is that the number of attributes can grow very quickly. We avoid this problem byABSRs@fter perceptual-
areashave been found- this is equivalent to having labeled objects in the nodesAéi@sand a very small set of object
attribute features (e.g., as opposedegion feature vectors). Another advantage of having labeled nodes (provided by our
multi-stage classification framework) is that we do not deal with matching of graptd9(that contain unlabeled objects,

which is a hard combinatorial problem.

A problem with the feature vector representation is that the number of node QAR@s¢in our casgerceptual-aregsmay

vary between images/videos. Three possibilities to deal with this may be considered: (1) use set-valued attributes as in [2],
(2) use wild card (unknown) attribute values when nodes are not present, and (3) build several representations for a given
ARG [5]- i.e., if it contains n nodes, build separate feature vectors for n, n-1, ... 2 nodes. For figure 8, for example, featu
vectors could be generated corresponding té\RE&sfor (A,B,C,D), (A,B,C), (A,B), etc.

Object ARG Feature Vector

<A, Long, B, Round, C, Long, D, Fat,
AFarB, AFarC, ATouchind,

BFarC, BTouchind®,

CTouchind>

Figure 8: Attributed Relational Graph (ARGnd correspondinfgature vectorepresentation. In this simple case, every node has only
two attributes: label and shape. In the feature vector, nodes and their attributes are listed first, and then their ogrrelmmihips.

Feature vectors obtained from the transformation are used by a decision tree [19] to learn the relationships for the given
class. We use the closed-world assumption to generate negative exampleg\RGteature vectors. During classification,
ARGsare generated for all possible setspefceptual-areagound by the previous stage. Those feature vectors are then
classified by the decision tree associated with the correspoobjact-partclass.
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Using theregionsin Ry, groupsthat may belong tgerceptualareas must be found by applying the corresponding
perceptual-areaclassifier. The first step is to useregion classification algorithm analogous to the one in the previous
section (with the difference that the classification function will produce a binary result), to obtain a new set of regions,
Ropgd Rop Where each region ingy is likely to form part of theperceptual-arean question Considering the skater of

figure 1 againregionsthat are likely to belong to the skater body will be in the ggt Fhis set may include white, and blue
regions, so the first step in finding a blue bogerceptual-areawill be selecting the blueegionsfrom the set §, and
placing those in the set,R;

Since aperceptual-areaby definition is an area of connectpiels in the image, we must findroups (i.e., adjoining
regions) in the seR,,q We apply a grouping functiog (as defined in 4.1) to 3, to obtain a sePG = {g1, &, .., &}

where everyg, 0 PG is @roup of adjoiningregions(e.g.group of blueregiong. The goal then becomes to find the most

likely perceptual-areacandidates from the set PG. Since each elegehbwever, comprises a setrefgionsit is possible
for a subgroup ofj; to be a better candidate for therceptual-arealass tham; itself.

In this sense, we must perform a search over the space of pgseilghsof regions from the séG to find the best possible

ones (i.e., those that are more likely togeeceptual-aregs This can be treated as a classical search problem in Artificial
Intelligence [12], and therefore, we can use heuristic techniques to reduce the search space. One of such techniques i
Evolution Algorithms [17]. We treat each elemagtin the set PG as an individual in a population P (e.g., P=PG).

Individuals evolve from one generation to the next through genetic operations such as mutation (an individual's
characteristics are changed) and cross-over (two or more individuals combined to produce a new one). During the evolution
process (generation to generation), only "strong" individuals survive- that is, individuals that meet certain fitness criteria.

What follows is a description of our algorithm (figure 6):

1. Initialize population (P = § set ofstrong regionghat are candidates for the currpatceptual-arep

2. Preliminary cross-over (PGgroupsof adjoiningregionsfrom P).

3. Secondary cross-over (Pgroupsformed by individuals from PG and adjoining weagionsfrom P), only
population PS is kept.

4. Fitness functionperceptual-arealassifier) used to evaluate fit individuals in current population.

5. Selected individuals are mutated.

6. Go to step 4.

As illustrated in figure 6, strongegion candidates are first grouped and then merged with adjoining weak candidates. This
eliminates from consideration isolated weak candidegeéns.The evolution program then considers egabup of regions

as aperceptual-areacandidate: at every generation step, eg@up is mutated, thus generating a new individual. A new
individual’'s fitness in the population is measured byeeceptual-areeclassifier, thus the features for the new individual
must be computed. Current featuresgderceptual-areasire the same as foegionsandperceptual-arealassifiers are lazy
classifiers (similar to those in section 4.2.1).

Strong candidates Groups sifongregions Groups weakregions Initial population Generation 1 Generation 2 ...
O [ o [ [
< oo Nof X | 8 oo
O [ 6) ’ [ _J ‘
00)

Figure 6: Evolution process for a set of regions. Groupiregkregions with existing groups sfrongregions avoids forming groups
of isolated weak regions. At every generation, individuals are mutated to form new ones and new features are computed. A fitnes
function is used to determine whether an individual survives into the next generation.

4.2.3 Object-part

The result of the previous step is a sgbPperceptual-areacandidates P= {(a;, my), (&, M), ..., (&, My)} where in each
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The input to each lazy-classifier is an instance (feature vector) and the output a fuzzy-membership value for that instance.
The currentegion feature vectors contain the following attributes [14]: color (average Hue, Saturation, Value), location (X,

y center location, orientation), size (area), shape (aspect ratio, formfactor, roundness, compactness, extent) and texture
(coarseness, contrast). Since performance of most learning algorithms is strongly affected by irrelevant features, for each
lazy-classifier, the Branch and Bound algorithm is used for feature selection. Each classifier consists of the following:

« Concept descriptiorset of instances that belong to the class (i.e., positive examples).
CD = {ty, t, ..., 1} wheret; is a training instance (e.gegion feature vect9r

e Similarity function: computes similarity between the new instance (feature vector) and instances in the concept
description (K-Nearest Neighbor, Weighted Euclidean Distance). Between an input insaadca training instange

n
2 2
z (X =Y;)" %y
i=1
Whereqy is a constant that weights the role of tettribute in the similarity function, anglis the value of featurieof
elementy andn is the total number of features.

sim(x Y=

The feature weighty, for each feature is obtained from the variance of that feature, measured independently of other
features over the training set:

m
2
w =1- z (yJ'—U)
i=1
Wherey; is the value of featureof thejth element in the training set apd is the mean value for that feature over the
training set (which contairma elements).

* Classification functionuses the similarity function result to compute a fuzzy-membership value for the input, using the
parametersy (hard boundary threshold) agdsoft boundary threshold), whengs;.

ifsim(x)>s thenm, = 0,5, =0
else i6im(x)>h; thens, = 0, m, = sim(x)

elsg, = 1, m, = sim(x)

Wheresim(x) is the result of computing the similarity value of the inputith its k nearest neighbors in the training
set;m, is the membership value assigned to the im@nds, = 1 if x is considered atrongmember of the class and O if
it is considered aweakmember.

In summary, the similarity functiosim(x,y)produces a value for each input instance, which represents how similar it is to

the training examples. The classification function, which provides the output of the classifier, uses this information to
determine the input instance’s membership value in the class, thus producing a fuzzy-set when the classifier is applied to a
set of instances. In addition, the classifier determines whether the input instarsteoigganember or aveakone. This is

useful when performing grouping, as will be seen in the next section.

Classification at this level produces for eaelgion in the incoming image a value that determinesréggon’s degree of
membership in the currerggionclass.

4.2.2 Perceptual grouping, search and evolution programs

The previous step results in a set of region-membership tugles 1, My, sp), (o, My, ), .., (y, My, $y)} where in each
tuple (rj, m;, ), r; is aregionthat belongs to the currerggion class with degree of membershipands=0 if it is aweak

member and 1 if it is atrongmember.Regionsfrom the original image whose classification produces a membership value
of zero are not included in the sejRas defined in the classification function above).
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the next section we describe the classification process in more detail and the specific classification approach used at each
level in the current implementation ®he Visual Apprentice.

4.2 Classification process

The first step in the classification of a new image/video is its automatic segmentation. This is done using the segmentation
parameters provided by the user during the class definition and training phase.

Classification follows the bottom up order of thkject definition hierarchyln classes where more than one classifier is
present at the same level, those classifiers are ordered from best to worst according to their performance, therefare setting t
Focus of Attentioffior classification at each level. This is useful since in order for an element to pass a classification test, all
of its components (i.e., descendants intiegarchy) must exist, and it may be unnecessary to use a classifier at a given level

if other classifiers at the same level have failed (e.g., a skater must contaobjeebparts;if no face is found it is not
necessary to search for a bodject-par). Performance is computed by calculating error estimates for each classifier
independently using leave-one-out error cross-validation [27] on the training data.

Once the input image/video has been segmentedgian level classifier is applied, according to the spedificus of
attentionfor the given classThis yields a fuzzy-set of candidatgionsthat belong to a particulabject-part A perceptual-
area classifier is then applied to that setrefjions: groupsof adjoining regions are found and passed to the evolution
program, which finds the best combinations. The focus of attention is set againp@ictetual-aredevel) and the process

is repeated.

Start )
¢ Regions Image

Object Object-part ¢ Evolution Feature ¢
Classifier Classifier Program Extraction t
13 10 4

° 2 ZT 1l

6 : 8 y .
Focus of Region | 7 .|Focus of Perceptual Grou
Attention Clagssifier Attention generator Segmentation

x 418

=)

Figure 5: Overview of the classification process. Steps 1-4 are performed once and yield the features for the input image. 5jét (steps
a region classifier corresponding to a an object-part is selected. Regions are classified (7) and a choice to find peasdptoade

(8; e.g., blue). The evolution program extracts new features for the generated groups and performs a loop to find bgsoppsgible

11 repeat). Once those groups are found, if the object-part contains more perceptual areas, the process repeatsrattsthp tBjdEt

part classifier yields a result to the object classifier. Again, the process repeats from step 5 for a new object-pag defireed:

In the next sections we describe classification and grouping at each level in the order that it is peffdprragain, (2)
perceptual, (3) object-part, (4) objeahd(5) scene.

4.2.1 Region

Region classification serves as an initial selection process similar to the one in [23]. (agimntlassifiers are similar to
IB1, a lazy learning algorithm [1] which is a variation of K-Nearest-Neighbor classification.

Lazy learning algorithms perform classification by combining their stored data (i.e., the training set) when an input occurs.
This makes it possible to have dynamic models that can be changed by the user over time since the examples provided are
not discarded after training (e.g., for the skater of figure 1, the user may, at a later time, change the features ifiethe class

so that it accommodates red skaters). In addition to providing this flexibility, Lazy-Iéahsens significant advantages

over other learning algorithms when the target function is very complex [19].

1. Also referred to as memory-based or instance-based learners.
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(e.g.,groupsof regions prospective bodyegionsaregroupedand the besgroupsfound by the correspondingerceptual-
areaclassifier).

Using a binary classifier for a clagsmplies absolute certainty about the membership of the elements in thdnsétat
case, when applying a grouping functipto the sef, we can have a guarantee that the best poggiblgpsfrom j are inS

The use of fuzzy-classifiers, on the other hand, allows the grouping fugctselect elements frofnaccording to their
degrees of membership in clgs@ather than blindly) and improves the possibility for grouping functions to find the best
groupsin j.

Classification and grouping are performed in order according to the structure atbjear definition hierarchyfigure 3).

First, individual regions are classified and, themperceptual-areadormed (i.e.,regions are classifiedperceptuallyand
groupsare found). Thosgroupsare then combined to form prospectolgect-parts which formobjectsthat formscenes

Each fuzzy-classifier acts like a "black box", permitting the incorporation of specialized classifiers (e.ghjéat@art
classifier below replaced by a face recognition module) or generic classifiers (e.g., each classifier as a specific iastance of
decision tree learning algorithm). It is important to note that the structure of figure 3 is not identicalliethelefinition
hierarchyof figure 2; we have chosen to have only ocegionclassifier as a descendant to eabfect-partclassifier.

Classifiers interact across levels, but not within levels: a clas€ifiéor classj and levell is a function of the classifiers it

uses from level1, but not of another classifier from leud(in figure 3, no horizontal connections exist between classifiers,
thus face and bodybject-partclassifiers, for instance, do not exchange information).

Body Regi Face Regi ' Level
ody Region ace Region .
. yReg 9 | (1) Region
- 4 L — — |- — - — — —_ —_ — — — -—_————- — = = — -
| v v |
: White Perceptua Blue Perceptua Face Perceptua : (2) Perceptual
|
|
_g__: ______ f_____________v____l ______
2 [ Body Object-par Face Object-parit | (3) Object -Part
R !
-— Y — = = = = S — P
. |
: Skater Objec : (4) Object
— _I ________________________ < — e - - — -
! v |
| Skater Scene v o) Scene

Figure 3: Multiple level classifiers make up models. Each classifier acts as a "black box" passing its results to the next level, thus
allowing the incorporation of different learning and grouping strategies. This diagram corresponds to the skater of figure 1 as
defined by observer B in section 3.1. Each box represents a classifier and arrows indicate the propagation of cladsifioation.in

As defined earlier, given a universeand a sef DU , a classifigf(i) is a characteristic function for the $ée.g.,c;is an

equivalent way of defining). Taking this into consideration, we can visualize the interaction between classifiers at different
levels in terms of sets. Figure 4 is useful in interpreting the flow of information and in particular when reading section 4.2.

Segmentation ! Level 1 Level 2 Level 3 Level 4 Level 5
|

A = All imageregions

B = Body imageegions

C = Whiteregions

D = Blueregions

1, 2 = Whiteperceptual-areas|
3, 4 = Blueperceptual-areas
E = Object-partpossibilities
F = Bodyobject-part

G = Faceobject-part

H = Skatembject

| = Skaterscene

1 1 1
| | |
| | |
| 1 | |
| | |
| | |

| 1

Figure 4: Classification and grouping can be seen in terms of sets. At each step, elements that pass a classifier are selected from
a set and in other cases new sets are formed by obtgimingsof elements at a particular level.

In
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an element of levell, unless they are equéd.g.an objectcannot be part of perceptual-areaa face can be equal to a

single perceptual area); (3) elements of the same level are disjoint (e.g. intersection of two elements of the samé; level = nul
two object-parts cannot intersect); (4)egions do not contain subsets (i.eegions are the basic units and cannot be
separated); (5) No. elements level i <= No. elements at level i-1.

During training, the user performs the following tasks: (1) selection of the best segmérﬁmttba class; (2) creation of a
class-definition hierarchyy defining the labels to be used from level 2 to level 5; (3) labelimggidnsin each training
image/video frame according to thierarchy. As a result of user interaction, we obtain the following sets for a defined class

j:

+ Conceptuabbject definition hierarchye.g. figure 2): K

 Set of segmentation parameters: $E@ary, pas, ..., pag}

+ Labeled Element Set: LES {{(e11, |11, (€12 112, - (@n l10)} - {(€k1s IkD): (B2r [k2)s - (&py kp)}s s {(Em1 Im),
-, (8ng Img)} Where in each tuple gcorresponds to thid element (i.e., an area of a training image) of level k gnd |
a label of level k associated with it (e.g., 4pfd31) = (bodyobject-part body label)). Label level distinctions emphasize
that labels must be different at different levels oftitezarchy.

As discussed earlier, an elemepta our model (node in thhierarchy) is a set of connected pixels (i.e., an area of the

image). For each element in the label set, we compigatare vectgrwhich is an attribute-value tuple representation of the
features of the element (e.g., color, shape, etc.). By computing feature vectors for all elements in the wetdlEsin a

training set of positive examples for each cjass
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where fy; corresponds to thid" feature vector element of level k anglis a label of level k associated with it (e.g.,
(opsy, I37) = (bodyobject-partfeature vector, body label)).

Attributes for thefeature vectorsmay vary across levels of thderarchy Structural relationships, for instance, are
considered only betwegperceptual-areasbetweenobject-parts,and betweerobjects. Feature vectorat each level are
discussed in the next section.

4. LEARNING, CLASSIFICATION AND GROUPING

Classification and grouping is performed at the five levels ohtbearchy defined above(1) region, (2) perceptual, (3)
object-part, (4) objecand(5) sceneln this section, we describe the general characteristics of our classifiers and how they
interact to perform grouping. We also describe in detail the classification process at every level of our framework.

4.1 Fuzzy-classification and grouping at multiple levels

Given a universeJ) of elements (e.gl) comprises nodes at a given level of tigect definition hierarchy a functiong(i)

is a classifier for classthat determines membershipiofi DU ) in the sef. In binary classifiersg;: U - {0, 1} where,[]

iU, g =1if i0j andg(i) = 0if i0j. In fuzzy-classifiers [6] the function is not binary, but continuous, tus

U - [0, 1] . In this casej is a fuzzy-set since each elemeng iras been assigned a degree of membership in that set (e.g., if
¢i(i) =0.75 andg(l) =0.68 we say that is astrongermember of claspthanl).

In addition to fuzzy-classification functions, we define a grouping fungiod - S whereSis a set of disjoint subsets of
U. We call every se of Sagroup,for which any pair of elements 8)1are connected to each other, meaning that there is a
spatial path between those two elements. In simpler terms, the fugct&nrnsgroupsof adjoining areas of the image

1. The best segmentation for a given class minimizes areas of internal regions that fall outside the boundaries of the objects o
interest, while minimizing the number of regions inside those objects. Parameters depend on the segmentation algorithm in use.
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(5) Scenestructured set ofobjects

(4) Object:structured set of adjoiningpject-parts

(3) Object-part:structured set gferceptual-areas

(2) Perceptual-areaset of contiguous and perceptually homogeneegi®ns.
(1) Region:set of connecte%pixels.

Figure 2 illustrates a genembject definition hierarchyand a specific example for the skater image in figure 1, which we
describe next.

Level 4:0bject

_________________ 7,(_ ~_ - - - _A_
Level 2:perceptual-area Gerceptual—ar% 1 G’erceptual—are}
Level 1:region ( Region 1 (Region rD A (Pink-regio@ (Blue-region9 @hite-regio@
Figure 2: Generabbject definition hierarchandhierarchyfor the skater of figure 1. Every node in the tree has a conceptual

meaning (e.g., face), but also corresponds to a set of connected pixels in the image. As such, each set of pixelsafontains all
the descendants that correspond to its node (e.g., body contains blue and white areas, etc.). Sets at the same Ietiel are disjoi

Observing figure 1 we can build the followinbject definition hierarchy:

(5) Scenebneaobjectis present (a skater).

(4) Objectskater the division of arobjectinto parts is subjective. Let us consider three observers and their divisions:
Observer Apbjectshould not be divided into parts.
Observer Bobject-partsare face and body.
Observer Cobject-partsare face, body, and skates.

We continue our definition only for observer B:

(3) Object-partface: only ongerceptual-aregentire face).
Object-partbody: body of the skater can be divided into two nparceptual-areagblue body-area and white arm-
area)
(2) Perceptual-aredlue body: set of blueegions
Perceptual-areavhite arm: set of whiteegions
(1) Regionblue: set of connected blyéxels
Regionwhite: set of connected whifexels.

As the previous example suggests, in general, the way in wlkfahition hierarchiesare built is subjective and may vary
between users. Our framework accommodates this subjectivity: users can build different models based on their individual
interests. There are, however, some restrictions on the way a hierarchy can be built. These are discussed next.

Every nodee in our object-definition-hierarchyhas a conceptual interpretation (e.g., face). In addition, each enode
corresponds to a set of connected pixels in the image/video. We can state the restrictions for buildawefinititbeh-
hierarchiesas follows: (1) an element of levie(i #5) is a subset of only one element of leiel (e.g.an object-partcan
only belong to on@bject a node in the hierarchy can only have one paré&itan element of levélcannot be a subset of

1. The word structured is used only to emphasize the importance of spatial relationships between elements in the particular set.
Spatial locations of elements may be part of their attributes.

2. Regions, which are at the lowest level of the hierarchy, constitute the basic units in our framework and can be extracted using
any segmentation algorithm based on low-level features such as color, texture, or motion. We currently use the implementation
from [25] for image/video segmentation.
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2. GENERAL APPROACH

Given the importance of objects and their parts in classification of visual information [13], we base our framework on an
object-definition hierarchyconsisting of the following levels: (Iggion (2) perceptual (3) object-part (4) objectand (5)
scene

First, the user defines thsual class This is done by creating labels fabjectsand theirparts (e.g., thesceneclass skater

in figure 1 contains onebject with object-partsface, body and skates). Then, the user provides training examples for the
class: for each image/video exampkgionsare labeled according to the class definition. The labeled regions from all of the
training examples are used to compute the training set: features (color, texture, shape, spatial relationships, etc.) for each
level are automatically extracted and stored in a database. This database is used for training by multiple learning algorithms
to yield a set of fuzzy-classifiers at different levels (eggjon, object-pait

Automatic classification is performed by combining the learned classifiers and using grouping strategies at the levels listed
above.Regionsare classified first and combined to obtperceptual-areadi.e. areas that are visually homogeneous; e.g.,

blue skater-body area of figure 1) which are usedtljgct-partclassifiers Object-parts in turn, are combined and passed to
objectclassifiers.

The Visual Apprentice I'he ¥isual Apprentice
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Figure 1: During training, the user defines a class and labels regioné in the training set according':to the definition. On the left is
avisual clasgor which the user is interesteddetectionof a skater with similar visual features. On the right, the user’s interest
is in building aclassifierfor elephants (there is stromgsual consistency in the elephants class).

In the next section, we describe the components present in a class definition and the results of training.
3. CLASS DEFINITIONS AND TRAINING
3.1 Grouping and perceptual organization

Studies in cognition and human vision have shown that during visual recognition, humans perform grouping of features at
different levels [16][4]. The highest level of grouping is semantic- areas that belongbjeahare grouped together. An

object however, can be separated intgect-partswhich consist operceptual-areasareas which we perceive categorically

(i.e., as a single visugroup). The best example of categorical perception is color [23]: when observolgeamand asked

how many colors it contains, we "group” different shades of the same color. An elephant’s ear, for instance, constitutes one
perceptual-aredor an average observer- there is no interest in differentiating between distinct shades of gray. We base our
framework on classification and grouping at the following levelsré@jor (2) perceptual (3) object-part (4) objectand

(5) scene We define ambject definition hierarchwas follows:
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appearance). In this scenario classification can be ambiguous, unless the user and the system share the same meaning for
given class (e.g., class "stars")- the user’s definition of similarity must match the system’s definition. In practice, this is
difficult to achieve in a general application, given that different users have different criteria for similarity and possibly
different meanings associated with each class.

Existing approaches in a priori classification can be mainly divided into two groups: those that use specialized algorithms
[10][11][24][22] for automatic classification and those that rely on manual classification. In both cases, the lack dfflexibil

is evident: creation of new specialized classifiers must be programed by an expert and manual based classification is
expensive. Another limitation of most of these approaches is that all users are presented with the same classifications and the
initial classes are chosen subjectively by the designers of the specialized algorithms or pre-defined classes. This is
particularly problematic with images/video since there are practically unlimited ways of indexing visual information and
classification can be very subjective, varying across users or for a single user over time [13][18].

In this paper, we present a different approach towards content-based retrieval and a novel framework for cldssffication
visual information. Users defingisual classesased on objects and classifiers are learned automatically as each user
provides examples. Our approach is flexible since: (1) each user can have his own set of classifiers (system class definitions
and similarity criteria match those provided by the user); (2) classifiers can be changed over time and (3) once a user’s class
has been learned, database contents can be classified automatically.

Our novel framework for classification of visual information is based on a hierarchical decomposition of the image with the
following levels: (1)region (2) perceptual (3) object-part (4) objectand (5)sceneWe presenfhe Visual Apprenticean
implementation of this framework for still images and video that uses a combination of lazy-learning, decision trees and
evolution programs for fuzzy-classification and grouping.

In the framework presented, we are concerned with the problewiswdl rather thanconceptualclassification. This
distinction is of great importance since, as mentioned above, a semantic class carries information at different levels. Our
interest is in thevisualappearance adbjectsand in particular, in letting users define classes in those terms. It is clear that in
some cases (e.g., elephants) the amouwisagl variation for objects in the same class is smaller than in others (i.e. house).
We use this criterion to differentiate betwedmssificationanddetection

1.1 Related work

This approach to content-based retrieval differs significantly from previous techniques (QBIC, Photobook, WebSEEK,
Virage) [8] that do not attempt content classification based on visual features, and from others that use specialized
algorithms (e.g., [11]'s face detection). It also differs from the work in [9] that is based on the formulation of sketsh queri
and from other approaches in which images are classified using global low-level features [22][24].

Our framework for classification of visual information differs from other approaches based on regions [21][15][7] that
perform classification based on global region configuration, and from others [18] that neither use spatial relationships nor
allow definition of complex objects [3]. Our approach is different from [10] in the following: 1. users construct their own
models (rather than having a fixed set). 2. No assumption is made about elements of the model (regions have arbitrary
shapes, cylinder-like "primitives” not assumed). 3. Generic region extraction rather than only specialized (like a skin filter)

4. Fuzzy classification paradigm rather than binary. In addition, our approach is different from other model-based techniques
such as [23] that use single features for region extraction and from others that use 3D object models.

1.2. Outline
In section 2, we give a general overview. In section 3, we presanttjact definition hierarchyand describe the training

phase. Section 4 describes the classifiers used and their interaction in detail. In section 5, applications of our fradnework an
performance are discussed. Conclusions follow in section 6.

1. In some cases, we will use the wdetection Classificationassigns an object to a category, whedsdsctiondetermines the
presence of an objeatetectionwill be used to refer to objects that have a rather "unique" visual appearance or that belong to
classes in which there is great variation (e.g., house).
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ABSTRACT

Most existing approaches to content-based retrieval rely on query by example or user sketch based on low-level features;
these are not suitable feemantiqobject level) distinctions. In other approaches, information is classified according to a pre-
defined set of classes and classification is either performed manually or using class-specific algorithms. Most of these
systems lack flexibility: the user does not have the ability to define or change the classes, and new classification schemes
require implementation of new class-specific algorithms and/or the input of an expert. In this paper, we present a different
approach to content-based retrieval and a novel framework for classification of visual information in which (1) users define
their ownvisual classesnd classifiers are learned automatically; and (2) multiple fuzzy-classifiers and machine learning
techniques are combined for automatic classification at multiple lensgjofi, perceptual, object-part, objeahdsceng.

We preseniThe Visual Apprenticean implementation of our framework for still images and video that uses a combination

of lazy-learning, decision trees, and evolution programs for classification and grouping. Our system is flexible in that models
can be changed by users over time, different types of classifiers are combined, and user-model definitions can be applied to
objectandscenestructure classification. Special emphasis is placed on the difference beemeanticandvisual classes

and betweerclassification and detection Examples and results are presented to demonstrate the applicability of our
approach to performisual classificatioranddetection

Keywords: content-based retrieval, image classification, video classification, model-based classification, detection, machine
learning.

1. INTRODUCTION

Digital image databases have been growing in size and popularity. Recently, there have been many efforts to support
searching and browsing based on the visual content of images/videos [8]. Existing approaches to content-based retrieval of
visual information can be divided into two groups: those in which users perform queries by example or user sketch, and
those in which a priori classification of the information is performed. Some systems include both, allowing query by sketch
or similarity within categories.

Similarity and query by sketch techniques are based on low-level features (color, texture, etc.), thus concentrating on the
form of the visual informationsfntax:color, texture, etc.) rather than on the contsatmantics:objects). Users, however,

are generally interested first in semantics and then in syntax- the query "show me all the images that contain green apples" is
more likely than the query "show me all the green areas that are apples". The focus is first on the objects depicted and then
on their specific form. Low-level features are unsuitable at the semantic level: meaningful queries by sketch are difficult to
formulate, and similarity queries do not express semantic level distinctions.

A priori classification, on the other hand, can provide a good general organization of the contents of the database in terms of
semantics. For instance, the pre-defined scene class "man" carries general information at different lewetsc§pdlial

(e.g., definition of man in the dictionanphysical(size, weight, texture) andsual (hair color, clothing), among others.

Some of this information is explicit (e.g., man vs. woman), but a lot of it is implicit or undefined (e.g., actual physical
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