
Differential Compression and Optimal Caching Methods for
Content-Based Image Search Systems

Di Zhonga, Shih-Fu Changa, John R. Smithb

aDepartment of Electrical Engineering, Columbia University, NY, USA

bIBM T.J. Watson Research Center, NY, USA

ABSTRACT

Compression and caching are two important issues for a large online image server. In this paper, we propose a new approach
to compression by exploring image similarity in large image archives. An adaptive vector quantization (VQ) approach using
content categorizations, including both the semantic level and the feature level, is developed to provide a differential
compression scheme. We show that this scheme is able to support flexible and optimal caching strategies. The experimental
results demonstrate that the proposed technique can improve the compression rate by about 20% compared to JPEG
compression, and can improve the retrieval response by 5% to 20% percent under different typical access scenarios.

Keywords: image compression, network caching, content-based image search, vector quantization, multimedia database,
content categorization

1. INTRODUCTION

Large-scale media archives are increasingly popular as more digital media content is created and deployed on-line. Such
archives may include different types of media such as images, video, audio, graphics, and text documents. An important issue
in designing such archives is compression and storage of the data. Although the cost for storage is rapidly dropping,
compression is still a significant issue when the archive size is large. In addition, choice of compression techniques has great
impact on other aspects of the system. For example, by exploring the characteristics of the compression algorithms (e.g.,
intra-frame coding vs. inter-frame coding, scalable coding vs. non-scalable coding), optimal storage and delivery schemes
can be achieved.

In this paper, we explore a new dimension of interaction between compression and content indexing. Today, most image
servers include techniques for feature extraction, indexing, and categorization. One popular approach is to use similarity
matching to support functions like “query by example” or “find me more images similar to this”. Image similarity has been
explored to cluster images into hierarchical structures for browsing or subject categorization.

We propose a new approach to compression by exploring image similarity in large image archives. Existing systems encode
each image in the database independently. Image similarity is only exploited between image frames in the same video
sequence, but not among others. We argue that for large image archives, visual similarity among images is likely to exist. If
we can effectively find such similarity, coding redundancy can be minimized. We called this new approach “similarity-based
image compression”. Conceptually, it uses the same principle as video coding, where similar blocks in subsequent image
frames are identified and predictive coding is used.

In a large image server (e.g., Altavista media search2, WebSEEk1), images are usually grouped to various categories based on
some semantic-level or feature-level criteria. For example, at the semantic level, images may be categorized into classes of
“nature/flowers/rose” or “art/painting/vangogh”. At the feature level, images can be classified to clusters based on visual
features (e.g., color, texture). These groupings usually are based on hierarchical structures and may be used to support
interactive browsing by users. These hierarchical structures also provide a suitable framework for similarity-based
compression. Images in the same class may have similar visual content - particularly for classes obtained by visual feature

clustering. Similarity-based compression aims at removing the “visual” redundancy among images in the same class and thus
achieving high coding efficiency.

Note that similarity-based compression is different from scalable coding. Scalable coding is used to provide a multi-
resolution representation for a single image. Similarity-based compression is used to encode a group of similar images.
Actually, these two approaches can be combined to achieve both functionalities. One analogy is the combination of inter-
frame predictive coding and spatial scalable coding in MPEG-23. The inter-frame coding removes the redundancy between
subsequent frames while the spatial scalable coding provides multi-resolution coding for each frame. In [7], an MPEG based
method is proposed to find similar image blocks across the whole collection and encode them with indices. It is shown to be
useful for large image collections where a large amount of similar image blocks exist.

Specifically, we develop efficient vector quantization (VQ) compression algorithms that take advantage of the categorization
structure in the image archive. The optimal VQ codebook is developed for each image class at in the hierarchy. We also
develop a hierarchical structure to organize multiple VQ codebooks associated with different levels of the hierarchy. When a
VQ codebook is used to encode an image class, each image in that class is represented by a codeword in the codebook plus
the residual difference between the codeword and the image. The residual difference is further compressed by lossy
compression like JPEG. Note that an image may be encoded multiple times with respect to different VQ codebooks if
needed. For example, an image may belong to several semantic classes (e.g., “architecture” and “building”) and/or visual
clusters.

Another focus of this paper is to develop efficient caching schemes for prefectching VQ codebooks by exploring the context
of the user interaction. We propose to prefetch the VQ codebooks that will likely be used in subsequent user operations in
order to reduce the retrieval delay when users actually request to retrieve images later. Prediction of user operations is based
on the current state of user access (e.g., the current state in the subject hierarchy when the user is browsing) and likelihood
distribution of different operations based on empirical data. Prefectching is feasible and can be done during frequent time
windows between subsequent user operations. Note, however, as is the case for operation system, prefetching is most
effective when the prefetched data is frequently referenced by the subsequent operations.

In this paper, we present innovative similarity-based image coding methods based on adaptive VQ and content
categorization. We compare the new similarity coding with JPEG in terms of compression efficiency. We also propose
optimal caching algorithms for such adaptive VQ techniques to improve the access speed during interactive image retrieval.
The experimental results demonstrate that compared to the JPEG compression, with the simple MSE-based LBG training the
proposed VQ technique can improve the compression rate by about 20%, and can improve the retrieval response by 5% to
20% percent under different typical access scenarios.

This paper is organized as follows. Section 2 includes description of the client-server system architecture for image retrieval.
It also includes assumptions about the system functionalities and user access scenarios. In Section 3, we discuss the adaptive
VQ compression scheme using content categories, including semantic categorization and feature clustering. Section 4
describes multi-level structure of VQ codebooks based on hierarchical categorization. Caching strategies and performance
evaluation are presented in Section 5. Section 6 presents the conclusion and future work.

2. SYSTEM ARCHITECTURE AND PROBLEM FORMULATION

In this section, we discuss the system architecture and scenarios of user access to the image archive. We then formulate the
technical problems and define specific performance metrics.

Figure 1 shows the client-server architecture for a typical image search system. Users access the image server through a
bandwidth limited network link (bandwidth W). The cache is the memory space that’s used to store previously delivered data.
It could be located at the user site or the intermediate proxy site. On the server side, we assume the image collection is
associated with keyword annotations for individual images, visual feature indexes, one semantic classification tree, and one
or more hierarchical feature cluster structures. Each semantic class can also be indexed by keywords associated with images
in that given class.

To clearly define the problem, we also make the following assumptions.

Network link: We assume the user accesses the server through a network link with limited bandwidth, W (bits per second).

Cache: We assume that previously delivered data is stored in the cache, with a size of B (bits).

User interface: We assume users have limited display space on their screens. The maximum number of images
simultaneously displayed on the interface is K. We also assume that for each access request, thumbnail images are shown
first and full-size images are displayed only upon user’s request.

Image representation: Images in the database may be represented with multiple resolutions. This paper focuses on the
compression of images at one single resolution (i.e., the thumbnail level). As discussed earlier, coding of multi-resolution
images is similar to issues encountered in scalable coding in MPEG-2 high profiles3. But we will not address this issue in this
paper.

Figure 1. Client-server architecture for a typical image search system.

Access scenario: We assume the following three access scenarios.

1. Browsing using the semantic tree. Users may choose to navigate arbitrarily in the semantic subject tree. When the user
selects a specific class at the terminal level, images of that class will be retrieved.

2. Keyword search. After the user issues a query with one or more keywords, the matched images will be retrieved. In some
systems, subject classes with matched keywords are returned and then users may choose to browse content in specific
classes. We do not include this option in the study. However, each semantic class is also indexed by representative
keywords. Upon a keyword search, VQ codebooks of the matched classes can be prefetched to the cache. This process
can be run in the background and is transparent to users.

3. Find more similar images. After seeing some retrieved images, the user may request to retrieve more images similar to
one or more specific images displayed on the screen. Or users may select specific images at the very beginning of the
session and request to find images similar to the specific ones. This is a popular search function called “query by
example”.

Based on the above assumptions, one technical objective is to develop efficient similarity-based compression algorithms to
remove redundancy among similar images in the archive. Another objective is to develop efficient schemes for prefetching
codebooks based on the user access scenarios. Here we make an important assumption that there are non-zero time intervals
between user operations. For example, users usually spend some time in reviewing the subject categories before they choose
the next operation. If users choose to do direct queries, there is always some query process delay, particularly when the query
is based on visual features or image examples. It is during these non-zero time intervals we execute prefetching. In an ideal
case when the cache size is very large, we may even be able to prefectch all codebooks at the beginning of the session.

We will evaluate the proposed approach in the following two aspects.

Network Link

Cache

User
Interface

Server

Semantic
Categorization

Feature
Clustering

Keyword
Annotation

Visual Feature
Indexing

1. Compared to the existing compression techniques, how do the similarity-based coding techniques perform in terms of the
compression ratio and image quality?

2. Compute the access delay for each stage of different access scenarios. We will show that the proposed compression and
caching methods can greatly reduce the access delay when the access link is bandwidth limited.

3. ADAPTIVE VQ USING CONTENT CATEGORIES

The basic idea of the vector quantization4 of images is shown in Figure 2. An input image is partitioned into non-overlapping
blocks. Each block of pixels is encoded as the index of its nearest codeword in the VQ codebook, according to certain
distortion measures. The decoder simply looks up the codebook using the indices, and outputs the corresponding codewords.
The average distortion of the VQ coding scheme is

)],([’
ii FFdED = (1)

where iF is the input block and ’
iF is the decoded block. Thus the optimal codebook is the one that yields the least average

distortion. The LBG clustering algorithm has been widely used to find an optimal codebook.

The reason why the VQ scheme can be used to compress images is that images are comprised of repeated patterns. Given a
set of example patterns (i.e. a codebook), we can reduce the redundancy of such patterned structure by encoding it with
pattern indices.

Usually, a codebook is derived from a set of training images, and thus is data-dependent. While the maximum encoding error
of any image within the training set can be controlled, an outside image may be encoded with an error exceeding that
maximum value. Such dependence on the training data has limited the usage of VQ in many areas. However, as we will
discuss in the following sections, for a large online image database, where users only have remote access through a
bandwidth-limited network link, an adaptive VQ based on content categories can provide efficient compression and caching
performance.

In the following, we will discuss two different types of content categorization. They are used to support different browsing
and retrieval functions in image databases.

3.1 Semantic Content Categorization

Semantic classification of images in a database can be done based on the text information (e.g., keywords) associated with
image1. Such a classification structure allows for efficient browsing of content in the archive. Given this kind of structure,
users often request to retrieve a subset of images from each class for preview. This is also true for another common access
scenario - keyword query. For a keyword query, images that will be accessed are usually within one or a few categories
associated with this keyword.

Based on the above category-based access pattern, a compression scheme can be designed at the server side to help clients
browse and search the database more efficiently. Instead of looking at the compression of each image independently, we will
explore the correlation among the images within each category, and compress them as a single entity.

),(’ yxFi),(yxFi Index kNearest Neighbor
Encoder
enc(Fi,C)

Codebook
C

Nearest Neighbor
Decoder
dec(k,C)

Codebook
C

Figure 2. A typical vector quantization scheme

As we mentioned before, VQ techniques are based on discovering and encoding of repetitive image patterns, and thus
provide a good approach to exploring similarity among images in a category. In the traditional VQ compression, the goal is to
minimize the average coding/decoding distortion (Eq. 1). Here our goal is to separate the common information (i.e.,
codebook) from unique features of each image (i.e., residual error) in the encoding process. During users’ interaction with the
system, codebooks are pre-fetched to clients during non-active periods. Non-active periods are defined as the time interval
between subsequent user operations. It could be the time that users spend in reviewing categories between successive
requests, or the query process time between a query is issued and the time processing of that query is complete. This inactive
period basically is the time interval that the network link is idle and can be used to download the data such as codebooks.

The residual errors are not thrown away as in the traditional VQ compression. They are also encoded and will be transmitted
to clients when users want to view images.

The VQ encoding process is shown in Figure 3. Among the three outputs, codebooks are expected to be transmitted before
the indices and residual errors. The indices are usually smaller than the other two and can be compressed with run-length
coding. The size of a codebook is critical. It depends on the access bandwidth of clients, W, and the average non-active
period, dt . Assume B is the size of each codeword, the maximum number of codewords that can be downloaded is,

B

dtW
N

*= (2)

Residual errors are expected to be coded smaller than conventional compression methods (e.g., JPEG). A natural approach is
to encode the residual error using the JPEG compression with a flat quantization table (i.e., similar to the inter-frame
compression in the MPEG compression). This is because an error image contains only high frequency signals. How to design
a LBG that will minimize the size of compressed residual errors is an open issue to be studied. Here we demonstrate the idea
with the common LBG algorithms based on mean square error (MSE) criterion.

3.2 Visual Feature Based Clustering

In addition to the above text-based semantic access, feature based similarity query is another important method to find
images in a large database. Query based on either example images or sketches allows users to retrieve images that are
visually similar to the query. Color, texture and shape are common features that have been used to match the visual
similarity. Similar to the semantic-level categorization, low-level features have been used to form clusters in image archives.
Such clusters can be used to aid interactive browsing or automatic semantic classification.

To build the feature cluster, an extended k-means clustering algorithm is utilized. It ensures that the maximum intra-class
distance (e.g. L2 distance) of generated clusters is smaller than a pre-defined threshold. This will create various number of
classes based on the actual distribution of feature vectors, and most importantly, it increases the VQ compression efficiency
by limiting the variance of images within each cluster.

Unlike the keyword searching, where we know exactly which categories a keyword matches, due to the nature of similarity
matching, a visual query may return results from several neighboring categories (as shown in Figure 4). As we will discuss
in Section 5, by building a hierarchical clustering structure as the index for visual feature search, we are able to know which

For each image

Images in
One Category Vector

Formation
Data

Sampling
LBG

Clustering Codebook

VQ
Encoder

Indices

Residual
Errors

Figure 3. Content category based VQ compression

clusters contain search results before these results are retrieved. Thus it is feasible to pre-fetch codebooks before actual
images are returned.

Figure 4. A visual similarity search where return results belong to several neighboring classes

3.3 Observations and Possible Improvements

As the VQ codebook is computed under a mean square (or L1-distance) error criterion, it tends to capture smooth image
blocks well, but represents edge blocks poorly. A typical example is shown in Figure 5. As we can see from the image of the
residual errors, error values are larger around edge pixels. The reconstructed image (i.e., codewords) usually represents the
smoothed values.

Figure 5. A typical example of the VQ based compression

Some advanced VQ approaches can be used to greatly reduce the residual errors. The classified VQ5 is one of such
approaches. It classifies image blocks into smooth and edge parts, and generates different optimal codebooks for them
respectively.

Another important issue that needs to be studied in a practical system is the optimal size of each codebook and the optimal
number of codebooks (i.e., the number of content categories). With larger size and number of codebooks, residual errors will
be smaller. On the contrary, residual errors will be larger. The optimal decision may depend on the available bandwidth, the
cache size as well as the nature of images in the database.

4. MULTI-LEVEL STRUCTURE FOR VQ CODEBOOKS

Considering the large amount of data in the database, multi-level semantic categorization and feature clustering provide an
efficient abstraction hierarchy. Users can quickly get a sense of the images contained in the database with a look at a few
top-level categories. In [1], a subject taxonomy for image and video is developed using a process of key-term mappings. A
hierarchical feature clustering tree can be constructed by applying the aforementioned k-means algorithm recursively

Q

C1 C2

C3
C1, C2 and C3 are image classes based on visual features.

Q is the visual query. The dash circle contains images that will be
returned to users based on similarity matching.

(a) Original image (b) Reconstructed image
from codewords

(c) Residual error (the
background level is 128)

following a top–down approach. That is to say, we can first create N clusters at the top level and then classify images within
each cluster into sub-classes again.

In the previous section, we introduced the adaptive VQ for images within each content category. How to adapt it to the
multi-level hierarchical categorization structure and to manage codebooks effectively for online image access will be
addressed in this section. One straightforward approach is to create codebooks for all categories at the bottom of the
categorization tree, and then use the tree only as the index to the codebooks. In other words, codebooks only exist in the
terminal nodes of the tree. With such a design, codebooks are independent of each other. To show two images from two
neighboring categories simultaneously requires two separate codebooks. This certainly does not provide a flexible method
for efficient caching.

To further explore the content similarity at a higher level category, the LBG training process is applied to its lower level
codebooks in the hierarchy to create a new codebook. This new higher level codebook thus contains more general codewords
with respect to its lower level codebooks (Figure 6). The bottom-up process continues until the top-level codebook is
generated.

Figure 6. Muti-level structure of VQ codebooks

Because only the codebooks at the bottom level will be used to encode images, the above multi-level structure of codebooks
can not improve the transmission efficiency of codebooks. It is desirable to have a coding scheme that links parent codebooks
to their child codebooks so that codebooks at higher levels can be used to help download low level ones.

To fulfill this goal, we develop a top-down differential coding scheme for the codebook hierarchy. The top-level codebook is
represented as a set of example blocks. Codebooks at the following levels are encoded using their parent codebooks, and
thus each includes an index table and an image of residual errors. This process can be applied until the bottom level where
images are VQ encoded. As we discussed before, the residual error of an image can be coded with JPEG compression.
Residual errors of intermediate codebooks can be encoded with either lossless compression or lossy compression with limited
distortion. For example, codewords (i.e., their associated residual errors) in a codebook can be arranged to a two dimensional
array and treated as a normal image for compression. For this purpose, the Self-Organization Map (SOM) 6 provides a better
solution than the LBG, as the output of the SOM is a 2-D map of codebooks where similar codewords are spatially close to
each other.

Assume the top-level codebook is always cached at the client side, the above coding structure supports progressive
transmission of codebooks when the database is accessed following a top-down pattern. This structure also provides some
other benefits. In both semantic and feature classification, there are some classes containing only a few images. To create
codebooks for these classes degrades the compression ratio. Within the tree structure, such codebooks can be easily replaced
by their corresponding parent codebooks.

It is also possible to combine the semantic content categorization and the feature clustering. For example, in the semantic
taxonomy, there are usually some bottom-level classes which contain a large number of images. This situation may cause
large residual errors of VQ encoding. Feature-based clustering can be used here to classify the images into a few sub-classes
with much more efficient VQ compression.

CB 0

CB 1 CB 2

CB 3 CB 4 CB 5

… …

…

Images

Bottom-up
codebook
generation

Top-down
differential
encoding

5. PERFORMANCE EVALUATION

For the performance evaluation, we built an image database with about 2700 images (in either GIF or JPEG format). They
are a subset of images collected by the Internet spider of the WebSEEk system. The semantic taxonomy is also obtained
from the WebSEEk system1. There are four categories at the first level, animal, architecture, clothes and sports. The depth of
the semantic tree is about 3 to 5 levels. There are about 90 bottom-level categories, and thus in average there are 30 images in
each bottom-level category.

Visual features used to match the image similarity is the typical 64-bin color histogram. The clustering process is done with a
target number of 20 classes under each node. This creates a 3-level feature clustering tree with about 120 leaf nodes.

Under our assumption of the user access pattern of an image database, users may first browse or query the database and then
examine a relatively large number of icons. The transmission of full-size images only occurs upon users’ specific requests.
Thus in this study, experiments are conducted on the icons of the images. The size of each icon is around 96x96.

In the following sections, we present our evaluation results based on several practical scenarios.

5.1 Compression Efficiency

In the adaptive VQ coding of icon images, we blocks 4x4 of pixels with RGB values (i.e., a 48 dimensional vector). The size
of the codebook is 512. The LBG training algorithm with MSE criterion is used to generate codebooks. In the encoding
process, residual error images are compressed using JPEG with a flat quantization table. The quantization step value is 24.
Table 1 provides a comparison of the compression efficiency of the proposed VQ method with JPEG compression and the
global VQ. It is conducted on the 1329 GIF images in the database. Semantic adaptive VQ uses techniques described in
Section 3.1. Feature adaptive VQ uses techniques in Section 3.2. Global VQ uses a single VQ codebook to encode images in
the whole collection.

Table 1. Comparison of compression efficiency
Compression

Scheme
Average

Compression Ratio
Average PSNR

(luminance)

JPEG (default) 0.42 32.2 dB

Global VQ 0.42 31.9 dB

Semantic Content
Adaptive VQ

0.34 32.4 dB

Feature Content
Adaptive VQ

0.32 32.7 dB

Here JPEG compression uses the default quantization table. When computing the size of VQ compressed images, codebooks
are not included based on the assumption that they will be transmitted separately. In 5.2, we will present a summary of the
sizes of codebooks. Global VQ gives the similar compression and PSNR results as the JPEG, as the residual errors are
compressed in JPEG. Semantic and feature content adaptive VQ achieve 18% and 23% more compression ratios respectively
and with similar PSNR’s. This validates our belief that in large image archives, a more efficient compression scheme can be
developed by exploring the content similarity, especially the visual similarity. As we discussed before, more advanced VQ
techniques, such as classified VQ, are expected to bring better results.

5.2 Download and Cache All Codebooks

When the client machine has enough cache and can pre-fetch all the codebooks from the database, users will be able to
experience the maximum speed-up provided by our compression scheme. The size of the top-level codebook is
512*48=24576 bytes or 24 kbytes. The rest codebooks are encoded differentially. Here we use a simple JPEG (flat
quantization table with the step size 8) to compression the residual errors. The average size of each subsequent codebook, B,
is 5149 bytes or 5.0 kbytes. The total size of the 121 codebooks of the semantic categorization tree is 24+5.0*120=624 kbytes
(which is about 9% percent of the total size of compressed icons).

Thus, to hold the whole codebook structure, the client machine needs to have at least 636 kbytes cache size. Downloading
these data with reasonable speed probability is feasible for network links of high bandwidth such as ISDN or Ethernet.

5.3 Semantic Category Browsing

We assume there is a 5 second average interval between successive operations, when users are browsing the semantic
categories. Without losing the generality, we also assume the top-level codebook is already cached at the client side, as it
needs to be fetched only once at the beginning. With a 56kbps connection, about 7 codebooks can be downloaded during
each operation interval.

Now consider a user who is at one semantic category with less than 7 sub-categories, and he is going to choose one sub-
category with 15 icons. As the codebooks of all sub-categories are pre-fetched, only indices and residual errors of the 15
icons need to be downloaded. The total size is thus 15*2.4=36 Kbytes, where 2.4 kbytes is the average size of icons in the
database. This will take 36/7=5.1 seconds to download. Compared to JPEG icons (with the average size of 2.9 kbytes), it
saves about 1.1 seconds. More cases are given in Table 2.

Table 2. Some typical cases of the semantic category browsing

Case
Time Delay for
Adaptive VQ

Time Delay for
JPEG Compression

Difference

≤ 7 sub-categories
15 icons

5.1 s 6.2 s 1.1 s

≤ 7 sub-categories
30 icons

10.3 s 12.4 s 2.1 s

14 sub-categories
15 icons

5.5 s 6.2 s 0.7 s

14 sub-categories
30 icons

10.6 s 12.4 s 1.8 s

When there are more than 7 subcategories, there is a possibility, p, (e.g., 50% for 14 sub-categories) that the codebook of a
selected sub-category is not pre-fetched. So B*p is included in the final download size, and increases the download time
delay.

5.4 Keyword Searching

Assume a keyword search returns a total of 150 icons from 15 categories. Also assume that 10 icons are displayed at one time
due to the display size limit. In the worst case, the first 10 icons belong to 10 different categories. Thus with VQ
compression, the client needs to download 10*(residual error+codebook)=74 kbytes. Compared to JPEG compression, the
size of 10 icons is 29 kbytes.

For the next 10 icons, the client should have pre-fetched the required codebooks. Thus there are only 10*(residual error)=24
kbytes to be downloaded. If users browse all the 150 return icons, the total download size is 410 kbytes for the proposed
method. The download size for JPEG compression is 435 kbytes.

5.5 Query by Example

The Query by Example approach lets users to find visually similar images based on certain visual features. Different from
keyword searching, Query by Example is usually a similarity matching process in high dimension feature spaces, and is much
more computationally expensive. This query process delay gives the client a possible time slot to pre-fetch codebooks.

Generally, the feature clustering tree can be used as the index for the feature-based searching. The searching process is
actually an automatic top-down “browsing” process. Thus the server is able to predict which clusters will contain the most
search results. Before the final matches are found and sorted, related codebooks can be sent to clients.

To evaluate the performance of the feature cluster tree, we first compute the probability distribution of the number of clusters
that contain top 10 results. This is fulfilled by performing example-based queries using all images in the database. As shown

in Figure 7, the top ten results usually come from only a few clusters. The average number of clusters is ∑
=

=
10

1

*
i

ipiN ,

which is 3.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

of Clusters

P
er

ce
nt

ag
e

Figure 7. The histogram of the number of clusters that the top 10 return results belong to

Based on this analysis, on average, the client can pre-fetch required codebooks without causing much time delay. As the
average size of icons under feature cluster based VQ is 2.2 kbytes (compared to 2.9 kbytes of JPEG), in downloading 10
icons through a 56kbps modem, users will save 1 second.

6. CONCLUSION

In this paper, we propose an adaptive VQ approach using content categorization, including both the semantic level and the
feature level, to provide a differential compression scheme. It effectively explores image similarity in large image archives.
We also show that this scheme is able to support flexible and optimal caching strategies under different typical access
scenarios. The experimental results demonstrate that compared to JPEG compression, with the simple MSE-based LBG
training the proposed technique can largely improve the compression rate and the retrieval response. Advanced training
algorithms will be studied to create VQ codebooks that can capture the image similarity more effectively at different content
levels.

REFERENCES

1. J. R. Smith and S.-F. Chang, Visually Searching the Web for Content, IEEE Multimedia Magazine, Vol. 4, No. 3, pp.12-
20, 1997.

2. AltaVista Multi-Media Search Technology, http://www.altavista.com.
3. ISO/IEC 13818 – 2, Committee Draft, MPEG-2 Video.
4. A. Gersho and R. Gray, Vector Quantization and Signal Compression, Khiwer Academic Publishers, 1991.
5. B. Ramamurthi and A. Gersho, Classified Vector Quantization of Images, IEEE Trans. Commun. COM-34(11), pp1105-

1115, Nov, 1986.
6. T. Kohonen, Things You Haven’t Heard about the Self-Organizing Map, Proceedings of IEEE International Conference

on Neural Networks, San Francisco, California, March 28 - April 1,1993
7. M. S. Lew, K. Lempinen, N. Huijsmans, Webcrawling Using Sketches, Proceedings VISUAL97 conference, San Diego

15-17 Dec 1997, pp 77-84.

