
LOW OVERHEAD CONTINUOUS MONITORING OF IP NETWORK PERFORMANCE

Mandis Beigi, Raymond Jennings, and Dinesh Verma
IBM Thomas J. Watson Research Center

30 Saw Mill River Road,
Hawthorne, NY 10532

e-mail: {mandis, raymondj, dverma} @ watson.ibm.com

KEYWORDS
monitoring, measurement, performance, low overhead

ABSTRACT

 An Internet Service Provider or a corporate Intranet
operator often needs to monitor the utilization and
performance of its IP network. The performance metrics
typically needed are the traffic, delay and loss-rate between
two access-points. In many cases, the network provider
needs to have the network operate within specific
performance expectations, such as those specified within a
Service Level Agreement (SLA) contract. A continuous
measurement of the performance metrics is needed to
ensure compliance with the SLA. However, traditional IP
performance approaches typically include snap-shots of
network performance at one single point, and do not offer
much support for network performance between two
customer access points. The main difficulty associated with
the measurement is that neither of the access-points are the
source or destination of an IP packet. In this paper, we
present a scheme for network performance monitoring that
can be used to monitor the IP performance problem
between two access-points, and to verify that a specific
SLA contract is being satisfied.

INTRODUCTION

 As the demand for IP-based networks has grown, there
has been a significant increase in the number of companies
that provide a network to their customer. Such companies
may be Internet Service Providers, or operators of private
corporate Intranets. In either configuration, the provider
network interfaces with multiple customer networks at
specific access-points, and may interface with another ISP
network at other access-points. Such a configuration is
shown in Figure 1.

Figure 1: Network topology for performance monitoring

 It is also usual for a network provider to have specific
Service Level Agreements (SLAs) with its customers. It is
more likely when the customer is a large enterprise. While
several aspects of a SLA pertain to business practices, it
also outlines the performance metrics that would be
expected between two customer access-points. These
metrics may include a bound on the traffic to be injected or
delay between two specific customer access-points. The
network operator needs to ensure that the network
performance meets the criteria outlined in the SLA contact.

 It is common practice in the industry to satisfy SLAs by
provisioning the network. This approach works
satisfactorily if the load on the network meets the
assumptions made during provisioning. More often, the
load on the network grows beyond the original
assumptions, and it becomes uncertain if the SLA
performance criteria are being met.

 In order to verify that SLAs are being satisfied, the
network operator needs to continuously monitor the
performance of the network between a pair of customer
access points. One way to do it would be to run a network
performance monitor between all pairs of access points.
However, most network performance measurement
mechanisms tend to be relatively heavyweight. They rely
on sending a continuous sequence of ping packets or other
network probes between two end-points. The load
generated by network measurement mechanisms is usually

ISP
Domain

Access
Point

Access
Point

Host A

Host B

Host C

Host D

Network1 Network 2

quite prohibitive. A typical ISP or a corporate Intranet
backbone has a very large number of customer access-
points. It is not practical to have a continuous monitoring
of network performance between all the end-points.

 Another measure of interest to most network operators
is the amount of traffic between a given pair of access-
points. This measurement can be used to verify if a
customer is generating traffic load in accordance with the
SLA. Even in the absence of a formal SLA, it is useful to
collect the traffic data in order to gain an understanding of
network traffic patterns, and can be used in the future
provisioning and upgrading of the network.

 The traditional methods for measuring traffic have
relied on counters and information collected at a single
point in the network. Most IP routers collect a running
count of packets and bytes transmitted through them,
which can be accessed using SNMP (McCloghrie 1991)
(Waldbusser 1997). An alternate option is to collect
information about the different packet headers, and identify
information about the different traffic flows in the network.
This is the approach used in RTFM [Brownlee, Mills
andRuth 1997).

 A flow is usually identified by means of source and
destination IP addresses contained in the captured packet.
Since the ISP access-points typically tend to be
intermediate points in a typical customer traffic flows,
single point measurement approaches such as used in
RMON (Waldbusser 1997) or RTFM (Brownlee, Mills and
Ruth 1997) are not adequate in estimating the amount of
traffic flowing between a pair of access-points. While
some information can be obtained about traffic patterns if
one makes assumptions about the routes used by specific
traffic flows, it is difficult to determine the correct
mapping between traffic flows and customer access points
without keeping track of the routing tables in the network.
If a customer network has multiple access points to the
provider's network, (a fairly typical scenario), it is hard to
predict which of the many access-points is used by packets
belonging to a specific flow. Furthermore, no information
about the performance (delay etc.) between two access-
points can be obtained.

 One way to collect the traffic information would be to
determine the egress access-point for each packet at the
ingress access-point, and to collect counters based on that
information. However, determining the egress access-point
requires that an additional set of routing tables be
maintained within the IP forwarding path. This approach is
undesirable both from the point of additional processing
delays in packet forwarding, and from the space
requirements of storing the additional routing information.

 In this paper, we describe a method that can provide
traffic accounting between different access-points of an
ISP. We also discuss an extension to the method, which
will permit an efficient pro-active monitoring of the
network performance between two access-points. The
method used for bandwidth accounting and performance
monitoring provides a way to continuously monitor
performance problems in the network with a very low
overhead. This monitoring mechanism acts as a trigger,
which detects potential violations of SLA contracts. The
trigger, in turn, can be used to activate more precise
heavyweight monitoring schemes like netperf
(Netperf), which can accurately verify network
performance between two specific access-points.

PERFORMANCE MONITORING

 In order to monitor the performance of an IP network,
probe packets are sent from ingress access-points to egress
access-points. These probes are generated by copying the
contents of the normal data packets, which follow the usual
IP routing paths. The probe packets are identified and
detected by the egress access-points. The probe packets are
structured so that any packets that do happen to reach their
destinations would be discarded. Within the context of this
scheme, we can provide low overhead monitoring of traffic
between two access-points as well as the network
performance in terms of one-way or round-trip delays.

Traffic Monitoring

 Our proposed traffic-monitoring scheme works as
follows. Each ingress access-point is configured with a
specific packet count number (say N). The ingress access-
point keeps track of the packet counts it sends into the
network. After every N packets it generates a new probe
packet into the network. The probe packet has the same
destination IP address as the Nth packet into the network,
but the source IP address is that of the ingress access-
router. The probe-packet contains special data that
identifies it as a probe packet in the network. Additional
data in the probe packet can be used for network
monitoring.

 At the egress router, the probe packets are identified
and removed from the network data-stream. They are sent
to a local process, which would analyze the information
contained in the probe packet. For bandwidth accounting,
the receiving process needs to simply increment the count
of packets received from the ingress access-router. At
periodic intervals, the accumulated number of packets
received from each ingress access-routers is converted into

an estimate of the total number of packets being sent from
that access-router.

 In order to avoid synchronization with specific network
traffic patterns, the exact probe generation will need to be
varied with a small random distribution about the mean.
While we have presented a mechanism which sends a
probe packet on the basis of packet counts, simple variants
of the scheme, for example sending probe packets after a
specific number of bytes have been transmitted, or when a
specific time-period has elapsed, can also be used with the
same effect.

 The overhead of the probe packets can be constrained to
be only a limited percentage of the total network load by
choosing the configuration packet count number. The
choice of N=100, a typical use, would keep network
overhead to 1 percent of data traffic. The probe packets can
be structured so that a packet, which does not encounter an
egress access-point, can be discarded at the receiver. Thus,
one can deploy the bandwidth monitoring mechanism at
only a subset of all the customer access-points in the
network. When the traffic characteristics in the network
change, the probe packets adjust according to them in a
statistical manner.

 While there are multiple ways to create the probe
packets, we present a scheme that can be implemented
relatively easily on most platforms. The probe packets are
created with an IP header and a UDP header. However, the
protocol field in the IP header is not marked with the UDP
protocol-id, but a special reserved protocol number. The
source port field in the UDP header is filled with a
reserved pattern, and the destination port field is filled with
a number that is unlikely to be used at any receiving end-
host. The reserved protocol number would be used by the
egress access-router to identify the probe packets to extract
them from the stream. It then matches the reserved pattern
in the source port field to double-check the probe packet,
and replaces the protocol field with the UDP protocol
number and the destination port with a local port number
where a monitor process is active. This allows the egress
access-router to handle the packet as a normal UDP packet,
while providing a relative simple implementation of the
receiver monitoring.

Performance Monitoring Protocol

 In order to monitor the performance of the network, we
use the UDP payload of the probe packet to carry
information about network delays. The source access
router includes the time-stamp of the creation in the probe
packet. It can also contain an optional indication for the

destination access router to reflect the packet back to the
source.

 When the packet is received at the egress access router,
the local timestamp of packet reception is computed. The
difference in time between the packet reception and
transmission is the delay. This difference is rounded to
zero if it happens to be negative. The time difference is
smoothed out using a running average, and compared to a
target delay stored in a configuration file, or in a directory
database. If the smoothed delay exceeds the target delay, or
approaches it, a trigger is generated for the egress and
ingress access-points to activate the heavyweight
performance monitoring protocol available on them. This
scheme works well when the target delay amounts exceed
the amount of clock skew that is expected among the two
routers.

 When clock skew is an issue, the ingress access router
contains the option that probe packets be reflected back to
it. The ingress access router then contains the smoothed
round-trip delay and activates the heavyweight
performance monitoring when it exceeds the target round-
trip delays.

 Note that the continuous monitoring provides a low
overhead trigger that is activated when network
performance problems are suspected. A more precise value
of network performance is obtained by the heavyweight
monitoring protocol, and an appropriate alarm generated
for the network operator.

IMPLEMENTATION

 We have implemented the above-mentioned
performance monitoring protocol on a Windows NT
platform. Our monitoring protocol is implemented as an
NDIS intermediate device driver, which is placed between
the Microsoft IP stack and the token ring device driver.
The software was developed within the context of IBM
Intermediate Device Driver (Dietrich). The NDIS
intermediate device driver keeps a running count of the
number of IP packets sent out on an interface. When the
trigger is activated, a new IP packet is created by copying
the token ring header and IP header of the current packet.
The protocol field in the IP packet is changed, and a new
payload is created. The source field in the IP packet header
is changed to that of the local access-point. This ensures
that ICMP messages from untrapped probe packets are
received at the intermediate driver and can be prevented
from reaching the IP stack. The payload consists of 4 bytes
of magic number, the IP address of the access-point
generating the probe, the current time at the access-point, a
received time field which is created to be zero and an

option field. The option field indicates whether the packet
delays and counters are to be computed at the egress
access-point or if the packet needs to be reflected back to
the ingress access-point.

 The intermediate driver also examines all packets
received up from the token ring. It checks to see if the
packet has the reserved protocol field. If so, it verifies that
the first four bytes in the payload matches the specific
magic number used for network monitoring. If there is a
match, the intermediate driver checks if the reflection
option is specified. If so, a new IP packet is created and
echoed back to the source access-point. The payload in the
packet consists of the IP address of the current interface,
and the option field indicates that the packet is a reflected
one. If the packet is to be analyzed at the local access-
point, the received time-field is filled by the intermediate
driver.

 While the measurements of bandwidth and delays can
be done in the intermediate driver, we have chosen to use a
simple hack to move most of the processing to the
application layer in NT. The protocol field in the IP header
is changed to that of UDP and the destination field is
changed to that of the local interface. The magic number
field corresponds to the source and destination ports in
UDP. The destination port is changed to be one upon
which a local application is listening. The local application
maintains a table of all probe counters that have been
received from different source access-points.

 A control server in the network collects information
from all the access points in the network. The control
server is an NT application, which polls all the access-
points at periodic intervals. It obtains the rate of probe
generation and the total outgoing bandwidth (pkts/sec)
from all access-points in the network. It also collects the
probe rate, which is received at each of the access-points in
the network from other access-points. Using this
information, an estimate of the traffic between each pair of
access-points is obtained. Similarly, a smoothed estimate
of the average delay in each polling cycle between the pair
of access-points is obtained. The control server compares
the traffic rates thus obtained, and the value of delays
against the targets stored in a directory, and flags a
warning message whenever the observed metrics exceed
the targets stored in the directory.

EXPERIMENTS AND RESULTS

 In order to validate the implementation of the
performance monitor, and to explore the characteristics of
the protocol, we used the performance monitoring protocol
to evaluate the characteristics of network on our campus

Intranet. One site for measurement was placed in one of
the labs in Hawthorne, New York, while the other site was
placed in another lab located in Raleigh, North Carolina.
The topology of the network between these two sites is
shown in Figure 2. Two access routers (shown as AR1 and
AR2 in the figure) were used for the purpose of the
measurements. The control server was co-located with the
access router located in Hawthorne. The directory server
was located on a UNIX machine in the Hawthorne. The
path between the access routers traversed several token
rings, three T3 lines and one FDDI ring as shown in the
figure.

Figure 2: Network used for experimentation

 We measured the characteristics of network monitoring
protocol by generating known load using a packet
generator, and monitoring how closely the traffic delays
and bandwidth reported by the monitoring protocol
corresponded to the known generated traffic. The packet
generator sent fixed-size UDP packets at a configurable
rate between the two users shown in Figure 2. A probe
packet was created and sent out for every 50 outgoing
packets, making the overhead to be 2 percent. Since the
two access routers clocks were not synchronized, we used
the reflection option in the probe packets to measure
round-trip delays.

 Figure 3 illustrates the round trip delays measured
between the access routers in Hawthorne and Raleigh from
2:30 PM to 4:30 PM on a weekday. The measured delay is
typically around a value of 250 ms with some occasional
peaks. Figure 3 shows the results of measuring delays at
one-minute intervals. The control server displays a rate of
approximately 20 probes being sent in each direction
during a one-minute interval as reported by the access
routers. Since the UDP packet generators are transmitting
approximately 16 packets/sec, we calculate the probe
packet rate as reported by the control server to be correct.

User1 AR-1
16Mbps

TR

100Mbps
FDDI

R3

16Mbps
TR

R4
R5

16Mbps
TRR6

R7 R8
16Mbps

TR
16Mbps

TR

16Mbps
TR

4Mbps
TR

R9

AR2

R10

User2

Hawthorne Lab
Raleigh Lab

IBM Intranet

T3

T3

T3

Each delay is therefore an average of information obtained
from approximately 20 probe packets.

Figure 3

 Figure 4 shows the measured roundtrip delay between
the same access routers using `ping’ averaged over one-
minute intervals during the same time-period. Due to the
change in the traffic load and therefore the traffic delays
between the two sites during different times of the day, we
started the ping and the bandwidth broker at the same time.
The measured roundtrip delay as reported by ping is very
similar to the ones reported by the probe packets. One
would expect slightly different results to be reported by
ping due to the different processing of the ICMP packets in
the end routers. However, the measurements were done
during a busy period of network operation, and the impact
of ICMP processing was small in these studies. On a
smaller network, or a less loaded network, the effect would
have been more prominent. It can be concluded from the
graphs that the probe packets show reasonably accurate
results with good precision, which can be used by a
network operator for monitoring a network.

Figure 4

 While the delay measurements done with our protocol
are about the same as the ping measurements, there are
some distinct limitations to using ping within bandwidth
brokers. Ping provides no indication of the traffic
distribution on the network, and is not able to
accommodate for different class of traffic in a
differentiated network. The network monitoring protocol
can readily provide answers to both of these cases.
Furthermore, continuous operation of ping across all access
routers generates excess traffic in the network.

 One of the requirements for efficient bandwidth
brokering would be to get good timely estimates of the
bandwidth utilization in the network. We wanted to see
how quickly the bandwidth broker protocol would react to
changes in the load between two access routers. We
changed the load on the access routers function manner to
see how quickly the bandwidth broker would detect the
changed load. Figure 5 shows the results of this
experiment. In the figure, the solid line shows the reference
traffic load, and the dotted line represents the reported
traffic estimate. The bandwidth broker estimations were
close to actual measurements, and it reacted within one
polling cycle to the changed load on the network. Thus, the
calculation of the estimated traffic rate by the control
server is relatively accurate and close to the actual value.

Figure 6: Estimated and Actual Traffic Rates
(4:00 PM - 6:00 PM)

0

20

40

60

80

Time of the Day

P
ac

ke
ts

/S
ec

4:00 4:15 4:30 4:45 5:00 5:30 5:45

…... Actual
___ Estimated

Figure 5

CONCLUSIONS AND FUTURE WORK

 In this paper, we have proposed a scheme for low
overhead continuous monitoring which can be used as a
trigger to activate more heavyweight performance
monitoring when performance problems are suspected. The
scheme reduces the monitoring load on the network
substantially, and assists in verifying service level
agreements in an ISP network or corporate backbone.

Measured Roundtrip Delay using Probes (2:30PM-
4:30PM)

0

50

100

150

200

250

300

350

2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15
Time of the Day

D
el

ay
 (m

s)

Measured Roundtrip Delay using PING (2:30PM-
4:30PM)

0

50

100

150

200

250

300

350

2:30 2:45 3:00 3:15 3:30 3:45 4:00 4:15
Time of the Day

D
el

ay
 (m

s)

Estimated and Actual Traffic Rates (4:00PM-
6:00PM)

 The low-overhead bandwidth estimation protocol
outlined above can also be used for detecting and isolating
network failures in a TCP/IP network. The egress access-
router contains a smoothed estimate of the number of
packets to be received from each of the source access-
routers. When the smoothed expected number is
significantly more than the expected number of packets in
the network, a heavyweight fault detection mechanism is
activated (e.g. running ping between the two access
routers). The heavyweight fault detection mechanism
generates the appropriate alarm for the network operator if
a fault indeed exists in the network.

 We have presented some sample measurements done
using the protocols over the IBM Intranet. To refine the
measurement of the protocols, we are planning to conduct
further studies involving more access routers. We are also
exploring methods by which the scheme can yield precise
loss information on specific tunnels. We have mainly
looked at traditional unicast IP traffic. Estimation of
multicast IP traffic requires some modifications to the
existing protocols, and we are investigating appropriate
means to incorporate multicast traffic into the monitoring
scheme.

REFERENCES

Brownlee, N.; C. Mills and G. Ruth , Traffic Flow
Measurement Architecture, Internet RFC 2063, January
1997

Dietrich, K., NT NDIS Intermediate Device Driver
Software, Private Communicationn

McCloghrie, K. and M. Rose, Management Information
Base for Network Management of TCP/IP-based Internets:
MIB-II, Internet STD 17, RFC 1213, March 1991.

Netperf, home page:
http://www.netperf.org/netperf/NetperfPage.html

Waldbusser, S., Remote Network Monitoring Management
Information Base, Internet RFC 2021, January 1997

Mandis Beigi received her Bachelors of Engineering in
Electrical Engineering from the State University of New
York at Stony Brook in 1993. She received her Masters of
Science in the field of Electrical Engineering from
Columbia University in 1995. She works at the IBM T.J.
Watson Research Center and is also a Ph.D. student at
Columbia University. Her research interests are quality of
service, service differentiation and network monitoring.

Raymond B. Jennings III received a Bachelors of Science
in Electrical Engineering from Western New England
College in 1993 and Masters of Science in Computer
Engineering from Manhattan College in 1996. He works
for the IBM T. J. Watson Research Center and is currently
a Ph.D. student at Polytechnic University.

Dinesh Verma received his B. Tech. in Computer Science
from Indian Institute of Technology, Kanpur, India in
1987, and Ph.D. in computer networks in 1992 from the
University of California, Berkeley. He is currently
managing the Enterprise Networking Research Group at
IBM T. J. Watson Research Center. His interests include
Quality of Service (QoS) in networks, performance
evaluation of networks, policy enabled networking, and
applicability of TCP/IP in enterprise environments.

