
Title: Designing an Interactive Tool for Video Object
Segmentation and Annotation

Note: applied for a candidate for the student paper
competition (the primary author is currently a third
year Ph.D. student at Columbia Unversity).

Corresponding Author:
Huitao Luo

Dept. of EE, Columbia Unversity

1312 Mudd, 500 West 120th Str., MC4712

New York, NY 10027

luoht@ctr.columbia.edu

Technical Area:
multimedia tools, end-systems and applications



Designing an Interactive Tool for Video Object Segmentation and

Annotation�

Huitao Luo and Alexandros Eleftheriadis

Advent Group, Columbia University

fluoht, eleftg@ctr.columbia.edu

ABSTRACT

An interactive authoring system is proposed for semi-

automatic video object segmentation and annotation.

This system features a new contour interpolation algo-

rithm, which enables the user to de�ne the contour of a

video object on multiple frames while the computer in-

terpolates the missing contours of this object on every

frame automatically. Typical active contour (snake)

model is adapted and the contour interpolation prob-

lem is decomposed into two directional contour tracking

problems and a merging problem. In addition, new user

interaction models are created for the user to interact

with the computer. Experiments indicate that this sys-

tem o�ers a good balance between algorithm complexity

and user interaction e�ciency.

Key words: snake, DP, graph search, Interactive

Rubber, authoring tool, MPEG-4.

1. INTRODUCTION

To segment and track semantically meaningful video

objects (VOs) through a video sequence is currently

an interesting topic. The need of video objects arises

from two major multimedia applications. One of them

is extended video annotation on traditional video. At

the editing stage, video objects are speci�ed and an-

notated with hyperlinks. When the user clicks on the

object in any frame that it appears, the annotated data

pops up. This is similar to the hyperlink mechanism

in HTML. Because video is becoming rapidly a popu-

lar media form, video object annotation is also becom-

ing a very important topic in multimedia authoring re-

search. Actually, several authoring systems are already

available that support video object annotation, such

as IBM's HotVideo [1] and HyperVideo from Veon [2].

In addition, video object annotation is also an impor-

tant technique for interactive TV, in which hot links

are embedded along with video information. The other

�For better view of color pictures, ps �le downloadable at

http://www.ctr.columbia.edu/~luoht/research/paper/acm99.ps.gz

application associated with video objects is the new ob-

ject oriented video representation technique, which is

speci�ed within the framework of MPEG-4 and upcom-

ing MPEG-7 standards. In the terminology of MPEG-

4, video objects are segmented from traditional video.

Each video object is compressed and decompressed in-

dividually. The composition of multiple video objects

is coordinated by MPEG-4 Systems. Though these two

applications are di�erent, they have the common prob-

lem at the authoring stage, that is, how to specify video

objects from large amount of video data in both spatial

and temporal domains.

Segmenting objects from image and/or video data

has been under intensive research. Numerous algo-

rithms are available in literature. However, it is be-

coming widely accepted recently that fully automatic

segmentation is di�cult. Instead, a semi-automatic

approach is a more feasible solution. Several papers

have been published according to this idea, for exam-

ple [3], [4], [5], [6], etc. These papers all sidestepped

full automation and designed tracking algorithms to

work along with user interaction. However, though

their contribution to the \tracking" (algorithm) part

of the problem is di�erent, their user interaction mod-

els are all very simple, i.e., the user de�nes a VO in the

�rst frame, and then lets the computer track the VO

temporally. This model cannot meet the requirements

of interactive authoring tools. For example, a common

problem is that no quality criteria are proposed for the

computer to detect the loss of tracking and thus ask for

additional user input. Instead, the user has to observe

the tracking course from time to time and o�er new

input when he or she �nds it necessary.

In this paper, we propose a new \interpolation" ap-

proach for semi-automatic video object segmentation,

and discuss an authoring tool prototype design based

on this approach. Our focus is to design the algorithm

and the user interaction models at the same time, which

helps to solve the e�ciency problem in interactive au-

thoring systems. In our system, the user de�nes a video

object by specifying its contour on multiple anchor



frames rather than only on the �rst frame. The com-

puter then uses input information from multiple an-

chor frames to \interpolate" the VO contours on every

frame. Compared with the pure tracking approach, the

interpolation approach o�ers more \interaction points"

between the algorithm and the user. From the algo-

rithm's point of view, the algorithm makes use of user

input more e�ciently, because each user input contour

contributes to VO de�nitions on those frames before as

well as after it, while in the tracking case, a user in-

put only inuences the frames after it. From the user's

point of view, the new approach makes the system per-

formance more predictable because the user can de�ne

a VO on frames where large occlusion or motion occurs

and most tracking algorithms are likely to fail. In ad-

dition, it is more controllable in that with two or more

input VO contours, the possible interpolated contours

can be e�ectively limited to certain searching region.

More speci�cally, the problem can be de�ned as fol-

lows. Given two input contours Cb and Ce of a video

object on frame b and frame e, try to �nd the object

contours Ci on frames i, i = b+1; b+ 2; � � � ; e� 1. We

call it a \contour interpolation" problem. As a com-

parison, we express the \contour tracking" problem as:

given an input contour Cb, try to �nd the object con-

tour Ci on frame i, i = b+ 1; b+ 2; � � � ; e. It is natural

to consider an interpolation problem as two tracking

problems, i.e., to maximize the usage of input infor-

mation on two frames, we can track the input contour

from Cb to Ce also well as from Ce to Cb. In this

sense, all the available VO tracking algorithms can be

used. However, how to merge the results from these

two directional tracking and produce a �nal best result

is obviously an open problem.

To maximize the use of user input on two frames,

we use active contour models (snakes) [7] in our inter-

polation algorithm. In a snake model, a planar curve

is parameterized with nodes and local energy functions

are de�ned for each node. The �nal shape and po-

sition of the curve is determined by the global mini-

mization of the snake's energy. In our work, a tradi-

tional snake model is extended in the following ways.

First, we use nodes to represent snakes and we design

a \contour matching" algorithm to match the node-

representations of two user input contours. Based on

contour matching, contour temporal smoothness and

shape similarity criteria are de�ned. Later discussion

will show that these criteria are essential for merging

the multiple tracking results. Second, we extend the

2-dimensional snake model to 3-dimensional model in

which new energy terms that reect spatial temporal

constraints are included. Third, a \parametric neigh-

borhood template" is designed to improve the robust-

ness against background edge noises during the active

contour tracking course.

The algorithm design in this work is directly inu-

enced by the work [8], in which the idea of contour

matching was �rst proposed. In our work, we further

develop their contour matching algorithm by introduc-

ing di�erent local motion models. Based on the contour

matching, the interpolation problem is then modeled

as a bi-directional snake tracking stage and a merging

stage. In addition, similar work on spatial temporal

active snake model can be found in [9], [10], [11] etc.

In [9], e�orts were made to combine the active con-

tour model with motion estimation. Quality criteria

were also suggested to evaluate the quality of contour

tracking. However, their experimental results were not

good because no node neighborhood information was

used. [11] used similar snake technique to track video

object contours for annotation. [10] tried to solve the

occlusion problem in active contour tracking by seg-

menting the contours into multiple segments. They

used neighborhood information for motion estimation

and got better results than [9]. We will later show in

this paper that their work can be included in ours as a

speci�c case of our parametric template.

The user interface model in this work is related to

the work in [12]. In their system, the user selects key

points and the computer grows the corresponding con-

tour segment that links the key points. The current

key point is moved by the user until the contour seg-

ment grown by the computer is desirable. This process

involves both the computer's searching as well as the

user's decision. It is an e�cient model for user/machine

interaction. In our system, an improved active search-

ing mechanism (interactive rubber) is designed for the

user to de�ne the initial VO contours on anchor frames.

In addition, an iterative interpolation mechanism is de-

signed for the user to o�er the error feedback to the

interpolation algorithm.

This paper is organized as follows. In Section 2,

we introduce the contour representation and contour

matching algorithm. In Section 3, we discuss in detail

our contour interpolation algorithm based on contour

matching. Then in Section 4 we summarize the user

interaction model in several stages of the algorithm.

Experimental results are presented in Section 5, and in

Section 6, we present some concluding remarks.

2. CONTOUR REPRESENTATION AND

MATCHING

2.1. Contour Representation

In this work, a contour can be represented by a vector

array fvs;kg, (s = 0; 1; � � � ; N), where k is the tempo-



ral location and s is the spatial index of contour pixels.

The spatial location of each contour pixel is denoted

by the vector vs = (xs; ys). In addition, for concise

representation and easy matching, a contour can also

be represented with subsampled nodes as fvSk(i);kg,

where Sk : i 7! j, i 2 [0; 1; � � � ; Ns], j 2 [0; 1; � � � ; N ] is

the subsampling function related to temporal position

k. For example, a uniform subsampling function is de-

�ned as Sk(i) = i � unit, where unit is the subsampling

unit. In this paper, we name fvs;kg the pixel repre-

sentation and fvSk(i);kg the node representation. Note

that the node representation is actually a �rst order

polynomial approximation of the pixel representation.

2.2. Contour Matching

The purpose of contour matching is to �nd the cor-

respondence between two contours Cb, Ce, which are

the contours of the same video object at the di�erent

temporal locations (b and e). This is essential for in-

terpolating the object contours between them. In the

pixel representation, the length of Cb and Ce is not

necessarily the same and pixel by pixel correspondence

can not be created. Therefore, we use subsampled node

representation for the contour interpolation study and

contour matching algorithms are used to �nd the cor-

respondence between the two subsampled contours.

Mathematically, the matching process can be de-

�ned as follows. Given two input contours: Cb =

fvs;bg, Ce = fvs;eg in the pixel representation, and

a subsampled node representation for the �rst contour

fvSb(i);bg, �nd the corresponding node representation

for the second contour fvSe(i);eg. Here the matching

of the nodes of two contours can be expressed with

the mapping function fm : vSb(i);b 7! vSe(i);e, i 2

[0; 1; � � � ; Ns]. Generally, we �x the node representation

of the �rst contour Cb by uniform subsampling (Other

subsampling algorithms are also possible, see [13] for

a detailed discussion), and the matching process is re-

duced to �nding the corresponding subsampling func-

tion Se(i) for the second contour.

In order to �nd the mapping function fm, we de�ne

a local energy term for each matched node pair. The

�nal matching result is determined by the global min-

imization of the matching energy of the two contours.

This is similar to the matching approach in [8]. In this

work, we assume the motion of the considered video

object is nonrigid globally, but rigid locally, and the

shape of its two contours is similar locally everywhere.

This assumption is true in general if the motion of the

video object is not too fast in relation to the temporal

distance between the two frames on which the contours

Cb and Ce are de�ned. Two rigid motion models, i.e.,

translation and a�ne, are possible for local matching

energy de�nition.

Translation Motion Model: If we denote the mo-

tion vector between two matched nodes asMVi = vSb(i);b�

vSe(i);e, then the matching energy term is de�ned as

Ei = �jjMVi �MVi�1jj+ �(Se(i)� Se(i� 1))2

where the �rst term is the smoothness evaluation of

the motion vectors of two neighboring nodes, the sec-

ond term is an elastic constraint on the distance of two

neighboring nodes, and �; � are two weighting factors.

A�ne Motion Model: In contrast to the transla-

tion model, the a�ne model needs three motion vec-

tors to de�ne. Here we denote the a�ne mapping

function as Ai = A�nei(MVi�1;MVi;MVi+1). Un-

der this function, the local contour segment fvs;bg, s 2

[Sb(i� 1); Sb(i+1)) is projected to a pixel set fv0e(s)g,

while its corresponding contour segment in frame e is

denoted as pixel set fvSe(s);eg, s 2 [Se(i�1); Se(i+1)).

Then the matching energy term is de�ned as

Ei = �D
�
fv0e(s)g; fvSe(s);eg

�
+ �(Se(i)� Se(i� 1))2;

where the operator D(�) is the distance measure of two

sets, which we de�ne as

D(A;B) =
h X
vi2B

min
vj2A

jjvi�vj jj+
X
vj2A

min
vi2B

jjvj�vijj
i
=2:

(1)

In practice, Eq. (1) can be implemented in an itera-

tive manner for each pixel. Here we de�ne d(vi; A) =

minvj2A jjvi � vj jj, and denote dn(vi; A) as the n-th

value for d(vi; A) in the iteration. At the initialization

stage,

d0(vi; A) =

�
0 if vi 2 A

+1 otherwise
:

The iteration is then de�ned as

dn+1(vi; A) = min
vj2N(vi)

�
dn(vj ; A) + jjvi � vj jj

�
;

where N(vi) is the 8-neighborhood set of pixel vi.

With the de�nition of local matching energy terms,

the matching problem is converted to an energy mini-

mization problem. This can be easily solved by the DP

algorithm [14], which we do not discuss in detail here.

In practice, the a�ne model is more complex than the

translation model, but the quality is better, especially

when the subsampling distance between neighboring

nodes is big. In Figure 1, we show a result of contour

matching under the translation model. Figure 1(a) is

the 50th, 1(b) is the 70th frame of the Carphone se-

quence. Green lines are the contours and red lines link

the matched node pairs.



(a) (b)

Figure 1: Results of contour matching for the Carphone

sequence. (a) is the 50th and (b) is the 70th frame

of the Carphone sequence. Green lines are the user

speci�ed contours and the red lines link the matched

node pairs.

3. CONTOUR INTERPOLATION

ALGORITHM

3.1. Localized Energy Minimization Model

The essence of Kass' snake model [7] is to de�ne a lo-

cal energy term for each node and the shape of the

contour is determined by minimizing the total snake

energy globally. When we go from 2-dimensional spa-

tial snake to 3-dimensional spatial/temporal snake, it

is possible to extend the local energy term from 2D to

3D as well. In this work, we study the extended local

energy term as the intraframe energy and the inter-

frame energy respectively. From now on, because no

subsampling issue will be involved, snakes are assumed

to be in the node representation. The node representa-

tion notation fvSk(i);kg is simpli�ed to fvi;kg whenever

possible.

Intraframe Energy: As usual, the intraframe en-

ergy includes two terms, a gradient term and a smooth-

ness term:

Eintra;i = �edgeEgradient;i + �smoothEsmooth;i: (2)

In this equation, the �rst gradient term is de�ned as

Egradient;i =

Z S(i)

s=S(i�1)

255

(10 + jj 5 (c(vs))jj)
ds;

in which 255 and 10 are two empirical values. c(v)

is the color vector of node v. The second smoothness

term is de�ned as

Esmooth;i =
� 2jjvS(i�1) + vS(i+1) � 2vS(i)jj

jjvS(i�1) � vS(i+1)jj+ jjvS(i) + vS(i+1)jj

�2
;

which is designed to eliminate the inuence of the node

distance on the contour smoothness measure.

Interframe Energy: In available papers on tempo-

ral active contour tracking [9, 10], generally employed

interframe energy terms include optical ow, motion

smoothness, interframe color, etc. A basic problem

in these approaches is that most of their node energy

de�nitions are based only on the image feature at the

node's position rather than on its neighborhood. This

makes the color and especially motion information gen-

erally not accurate. Ideally, the contour nodes' neigh-

borhood should be observed in order to track them

from frame to frame. However, a problem here is,

di�erent from typical point tracking problem, contour

nodes are most likely on the boundary of a moving

object, so their neighborhood is not constant. In or-

der to capture the consistency through the tracking

course, we introduce the concept of parametric neigh-

borhood template. A parametric template T is de�ned

as a data structure including two arrays: a vector array

fdv0;dv1; � � � ;dvng and a weighting array

fw0; w1; � � � ; wng. For each contour node vi;k , a para-

metric template Ti;k is de�ned and kept updated frame

by frame through the tracking course.

With the de�nition of parametric template Ti;k, the

color of two temporally neighboring contour nodes vi;k ,

vi;k�1 can be compared as

Di�c(vi;k;vi;k�1; Ti;k) =X
dvj2Ti;k

wj jjc(vi;k + dvj)�c(vi;k�1 + dvj)jj; (3)

where c(v) is the color vector of node v. In addition,

we de�ne the motion vector at the node vs;k as

MV (vi;k ; Ti;k) =
X

dvj2Ti;k

wj �MV (p)(vi;k+dvj)=
X

dvj2Ti;k

wj ;

(4)

where MV (p)(vi;k) is the estimated motion vector at

the vi;k. If we do not consider occlusion, a simple way

to determine the weights of template T is to set wj for

those neighboring pixels inside the contour as 1 and for

those outside the contour as 0. This can be illustrated

in Figure 2. For the occlusion case as was discussed

in [10], we can easily switch the weights by setting in-

side weights to 0 and outside weights to 1. In general

cases, both the size and the weights of the parametric

template can be adjusted exibly to get the best results

of the contour node tracking.

Based on the parametric template, the interframe

energy terms for each contour node are enumerated as

follows.

1. Color similarity:Ecolor;i;k = Di�c(vi;k ;vi�1;k; Ti;k).

Here function Di�c() is de�ned in Eq. (3).



Weight=0

Weight=1

Figure 2: Illustration of parametric template concept.

During the tracking course, both the size and weights

of the template can be adapted.

2. Optical ow: Eoptical;i;k = MV (vi;k�1; Ti;k�1)

�MVi;k�1. Here the �rst termMV (vi;k�1; Ti;k�1)

is de�ned in Eq. (4) and we assume forward mo-

tion estimation is used. The second term is

MVi;k�1 = (vi;k � vi;k�1).

3. Motion smoothness: Emotion;i;k = jjMVi�1;k +

MVi+1;k � 2MVi;kjj. This is a smoothness mea-

sure for motion vectors on spatially neighboring

nodes. It is accurate for local motion in the trans-

lation form.

4. Shape sti�ness: Eshape;i;k = jjangle(vi�1;k�1;

vi;k�1;vi+1;k�1)�angle(vi�1;k ;vi;k;vi+1;k)jj, where

angle(vi�1;vi;vi+1) is the angle based on the

three spatially neighboring nodes. This term mea-

sures the local shape similarity. It is accurate if

the local motion is in the rotation form.

5. Temporal smoothness: Etemporal;i;k = jjvi;k�1 +

vi;k+1 � 2vi;kjj. This is the smoothness measure

for the three temporally neighboring nodes.

The interframe energy Einter is then the weighted sum

of above terms.

Search Algorithm for Minimization: With the

de�nition of local energy terms, the contour interpola-

tion problem can be expressed as an energy minimiza-

tion problem as follows. Given two contours fvi;bg; fvi;eg,

(b < e; i = 0; 1; � � � ; Ns), �nd the contour nodes fvs;kg,

(k = b + 1; � � � ; e � 1; s = 0; 1; � � � ; Ns), that minimize

the global energy
P

s;k(Einter;s;k +Eintra;s;k).

Though it is natural to extend the local energy

terms from 2D to 3D, the increase in computational

complexity is an important problem. In the 2D case,

each node vi's local energy is de�ned in relation to two

neighbors, i.e., Eintra = f(vi�1;vi;vi+1), while in the

3D case, the local energy terms for each node vs;k is

de�ned in relation to eight neighbors! This change is

illustrated in Figure 3. If each node has a search region

(i+1,k-1)

(i,k-1)

(i-1,k-1) (i-1,k)

(i+1,k)

(i,k)

(i+1,k+1)

(i-1,k+1)

(i,k+1)

Figure 3: Spatial temporal neighborhood of a contour

node for the local energy de�nition. In the �gure, i is

the spatial index and k is the temporal index.

of n, the local searching complexity then increases from

n3 to n9, which makes global minimization algorithm

di�cult to design. Though powerful algorithms such

as simulated annealing should still be able to solve this

minimization problem, the slow speed of convergence

makes it inappropriate for an interactive segmentation

tool.

In this work, a sub-optimal solution is obtained by

converting the contour interpolation problem into two

tracking problems: a forward tracking from Cb to Ce

and a backward tracking from Ce to Cb. They are

also referred to as bi-directional tracking in this paper.

When converted to a tracking problem, the neighbor-

hood de�nition of the current pixel (i; k) cannot include

nodes in a neighboring frame that has not been pro-

cessed. Therefore, we shift the neighborhood de�nition

in Figure 3 by one frame. For example in the forward

tracking model, if the current node is (i; k) in Figure 3,

then its eight nodes are (i + 1; p); (i; p); (i� 1; p), p =

k�2; k�1; k (not including (i; k)). Among them, six are

already �xed and only two variable nodes (i+1; k+1)

and (i � 1; k + 1) will inuence its local energy. This

is the same as the case with the intraframe energy

Eintra;s. Therefore, it is easy to design a search al-

gorithm with DP. After the bi-directional tracking, an-

other search process is used to �nd the optimal contours

out of the previous tracking results.

3.2. Bi-directional Tracking

In the tracking model, each node vi;k's total node en-

ergy can be written as

Etotal;i;k = fE(vi�1;k;vi;k ;vi+1;k) (5)

because the other six neighboring nodes vi+p;k�2,

vi+p;k�1, p = (�1; 0; 1) in the previous frames are all

�xed. This energy expression is similar to those used

for 2D active contour models, except that the detailed

expression of fE is di�erent. Therefore, we use the DP

algorithm similar to that used in [14].



Limited Search Region v.s. Searching Complex-

ity According to [14], the local energy expression in

Eq. (5) is a second order expression in the sense that

it includes two neighboring nodes as variables. In this

case, a two-element vector (vi+1;vi) is used as the sta-

tus index for DP. The DP search is then carried out as

follows

Si(vi+1;vi) = min
vi�1

h
Si�1(vi;vi�1)+fE(vi�1;vi;vi+1)

i
:

Note that the frame index k is omitted in the above ex-

pression because no temporal information is involved.

If the search size for each node is n and the total num-

ber of nodes in each contour is m, the complexity of

DP is O(mn3). Obviously, the search size n is the im-

portant factor in the overall complexity and should be

limited as much as possible.

Two clues are used to limit the search size in our

work. First at the global level, a search stripe can be

created for each matched node pair. This is illustrated

in Figure 4. For ease of discussion, the temporal orbit

of the matched node is mapped into one frame. On

this frame, a search stripe is de�ned. Please note that

the de�nition of search stripe is di�erent according to

di�erent spatial location of the matched node pair. In

Figure 4(a), and 4(b), two basic types of search stripe

de�nitions are depicted. The orientation of width and

height are di�erently de�ned as well based on the di�er-

ent orientation of the matched node pairs. In practice,

both the width and height of the global search stripe

can be determined by the user in an interactive way,

according to the motion of video object. That is, if

the motion is more like a pure translation, the height

of the stripe S
(G)
height may be reduced, otherwise it is

increased. The bottom line is that the global search

region should be at least big enough to include the

temporal orbit of the node's motion. In addition, in

the case of large search stripe that exceeds a certain

threshold, the global search stripe is further re-sampled

to reduce the overall search size. The two axes \x" and

\y" used for resampling are marked in Figure 4(a) and

4(b). Please note that the parallelogram search region

de�nition is more e�cient than a strictly rectangular

one in the computational sense, while without much

performance degradation.

Once the global stripes are de�ned for node pairs,

the tracking of nodes is constrained within their stripes

on every frame. In addition, at the local level, the local

search region is further determined frame by frame by

the forward motion vector at the current frame. In our

work, the determination of S
(L)

height and S
(L)

width is based

on S
(G)
height and S

(G)
width, and the local search is carried

out on top of the re-sampled grids created for the global

search stripe, i.e. the re-sampled grids along the \x"

and \y" axes.

In above two clues, the global stripe limits the possi-

ble location of the local search region. Note that in the

pure \interpolation" case, both the width and height

of the global search stripe is zero. Therefore, the global

search stripe is actually a generalization of interpola-

tion.

Closed Contour Problem Until now, the discussed

contours Ci are all by default open. In practice when

contours are constrained to be closed, the minimization

search used for tracking purpose can be approximated

with two-pass open contour searching. That is, for a

closed contour Ci; i = 0; 1; 2; � � � ; n, node C0 = Cn,

its minimization status can be found as follows. First

break the closed contour at node C0, use previous algo-

rithm to process open contour Ci; i = 0; 1; 2; � � � ; n� 1,

which produces a temporary contour C 0

i. Second, close

C 0

i by setting C 0

n = C 0

0
and then break it half way at

node C 0

(n=2), this produces an open contour C 00

i . C
00

i is

further processed with the open contour algorithm and

the �nal result is obtained.

3.3. Merging of Multiple Results

Though the bi-directional tracking approach reduces

the searching complexity, its limitation is that it only

makes use of user input in one frame (either Cb or Ce)

at a time. Due to the error accumulation, the tracked

contour Ck always degrades when k approaches e, if

tracked from Cb to Ce, and vice versa. Actually we

have observed that if the object's motion involves self-

occlusion and/or uncovering, sometimes it is very dif-

�cult for the active contour model to track its contour

in one direction, but easy to do it in the other direc-

tion. Figure 5 is such an example. In Figure 5, (a), (b)

are the user de�ned VO on the 118th and the 132nd

frame of the Carphone sequence. From frame 118 to

frame 132, the man's left ear was uncovered because of

the rotation of his head. If we track the object contour

forward, i.e. from the 118th frame to the 132nd frame,

the uncovered ear was not included as part of the video

object. This is depicted in Figure 5(c). On the other

hand, if we track the contour backward, i.e. from the

132nd frame to 118th frame, the motion is reversed and

the uncovering motion of left ear changes to occlusion,

which is easy for the active contour tracking algorithm

to handle. The result of backward tracking for frame

125 is shown in Figure 5(d). Note that the left ear is

correctly included as part of the video object.

Therefore, a good algorithm to merge the results

from the two tracking processes is important. In this



Temporal orbit

Search Height

Search width

Frame"e"Frame"b"

X axis

Y axis

Motion vector

Local search area

Global search stripe

Temporal orbit

Y axis

X axis

Frame "e"Frame "b"

Search height

Search width

(a) (b)

Figure 4: Global and local search region limitation. The two grayed circles represent the matched node pair. The

size of the global search region is determined by \search height" and \search width", while the local search region

is determined by motion estimation.

(a) (b)

(c) (d)

Figure 5: Illustration of the necessity of bi-directional

tracking and result merging. (a), (b) are the user de-

�ned VO on the 118th and the 132nd frame of the Car-

phone sequence. (c) is the tracked object contour on

the 125th frame by forward tracking. (d) is the tracked

object contour on the 125th frame by backward track-

ing.

work, an e�cient DP algorithm is designed for the

merging job. The problem may be de�ned as follows.

Given two set of contours fC
(1)

k g, fC
(2)

k g, (k = b; b +

1; � � � ; e), that are created by two contour tracking pro-

cesses (one from Cb to Ce and the other from Ce to

Cb), �nd a contour set Ck, (k = b; b + 1; � � � ; e; Ck =

C
(1)

k or Ck = C
(2)

k ) that meets certain merit criteria as

the �nal output of contour interpolation. In the termi-

nology of DP, we can say that the target is to �nd an

optimal path from Cb to Ce that maximize the merit

criteria.

In this work, the merit criteria for each candidate

contour include two terms: a temporal smoothness en-

ergy term ET , and a shape merit energy term ES , i.e.

Emerge(Ck) = �T �ET (Ck) + �S �ES(Ck): (6)

The �rst term is de�ned in a localized form:

ET (Ck) =

i=NsX
i=0

jjvi;k�1 + vi;k+1 � 2vi;kjj; (7)

where Ns is the number of nodes in each contour. Note

that ET (Ck) is di�erent from previously de�ned Etemporal

in that ET (Ck) is de�ned for each contour while Etemporal

is de�ned for each contour node.

The second term of Eq. (6) is based on the shape

similarity comparison between two contour pairs: (Cb; Ck)

and (Ck; Ce). If we denote the shape similarity mea-

sure of two contours Ck and Cl as shape(Ck; Cl), then

the ES term can be written as

ES(Ck) =
h
w1(k)�shape(Cb; Ck)+w2(k)�shape(Ce; Ck)

i
;

(8)



Contour created by tracking

User defined contour

Contour tracking path

DP merging path

Figure 6: Illustration of DP approach for merging the

bi-directional contour tracking. Each circle represents

a contour C
(d)
k , DP searching is used to �nd an optimal

path in the temporal direction that has the best merit

quality.

where w1(�) and w2(�) are two weighting functions. They

are designed as a linear function of frame indices k,

b, and e. In addition, the shape similarity measure

used here can be de�ned based on two interframe node

energy terms Eshape and Emotion, as discussed in Sec-

tion 3.1. At the contour level, this expression is de�ned

as

shape(Ck; Cl) =

i=NsX
i=0

�1[(vi;k�vi;l)� (vi�1;k�vi�1;l)]

+�2[angle(vi�1;k ;vi;k;vi+1;k)�angle(vi�1;l;vi;l;vi+1;l)]:

In the above Equations (6)-(8), Emerge(Ck) is actu-

ally de�ned in relation to three contours: Ck�1, Ck and

Ck+1. Therefore, it is easy to solve the minimization

problem with DP. Here Figure 6 is used to illustrate

the DP based merging algorithm. In Figure 6, each

circle represents a contour C
(d)

k , DP searching is used

to �nd an optimal path in the temporal direction that

has the best merit quality, i.e., in the sense of temporal

smoothness and shape similarity.

4. USER INTERACTION MODEL

In a typical semi-automatic system, the user's role in-

cludes two important functions. One is to give the ini-

tial data for the computer to begin the computation,

the other is to correct the computer's errors. In our

system, these two functions are handled by Interactive

Rubber and Iterative Interpolation respectively.

4.1. Interactive Rubber

In available image authoring systems, two types of so-

lutions are common for a user to specify an object con-

tour in an image (or a video frame). In one of them,

contour segment

Temporarily grown

Rubber width

Moving point

Fixed point

Figure 7: Illustration of active rubber. The containing

rectangle is determined by two points: a �xed point

and a moving point, and the rubber width. The width

of the rubber is adjustable by the user.

the user speci�es every point of the contour, while the

computer does nothing but record the positions of each

mouse click and links the positions with line segments.

Typical examples include the polyline drawing in XFIG

and free style drawing in PHOTOSHOP. This type of

solution gives the user full control of the shape and

position of the contour, but ignores the computational

power of the computer. Obviously, it is tedious to in-

put an accurate contour point by point. On the other

hand, in the other type of solutions, the image is mod-

eled as grids and the contour as paths linking the grids.

The user has only to select a starting point and an

ending point of a contour segment, the computer �nds

the whole segment by searching the minimal cost path

that links the two points. This can be done with ei-

ther dynamic programming or graph searching algo-

rithms such as Dijkstra's algorithm [15]. Publications

belonging to this type of solution include [12], [16],

[17], etc. Compared with the �rst type of solutions,

this type of approach relieves the user's labor by in-

troducing computer searching during the interaction.

However, its problem is that the user has less control

on the contour. Sometime when the gradient informa-

tion within the image is complex, an intended contour

segment may be attracted to an erroneous strong neigh-

boring edge, which is totally undesirable. In addition,

the \Active-Scissors" approach de�ned in [12] requires

the computer to calculate the optimal path to every

pixel within the image every time a new contour point

position is chosen by the user. This is not e�cient if

the size of image is big and real time performance is

hard to achieve.

To overcome the problems while retaining the ben-

e�ts of above two groups of solutions, we design an

Interactive Rubber tool, which is a hybrid of the two of

them.

An Interactive Rubber is in principle a dynamic



graph searching edge detection algorithm that is simi-

lar to the second of the above mentioned types of so-

lutions. The di�erence is that it comes with an ad-

justable containing rectangle that limits the range of

graph searching. This is illustrated in Figure 7. The

user moves the current moving point, which, together

with the �xed point, determines a containing rectangle.

Graph searching is then carried out within the rectan-

gle and a contour segment is grown to link these two

points. Compared with the Active-Scissors approach

in [12], Interactive Rubber is more e�cient because it

limits the graph searching range to the neighborhood

of the desirable contour segment. Moreover, the user

can control the result of graph searching by adjusting

the width of the rectangle, e.g. if there is strong noisy

edges in the neighborhood, the user may get rid of them

by narrowing the containing rectangle. In the extreme

case, the width can be set to zero, then the Interactive

Rubber reduces to above type one solution. In this

sense, the Interactive Rubber is a generalization of the

previous type one and type two solutions.

4.2. Iterative Interpolation

Though in experiments the discussed interpolation al-

gorithm showed good performance, error is inevitable

in practice, especially when the two anchor frames on

which the user speci�es object contours Cb and Ce are

far away in the temporal direction. Iterative interpola-

tion is found to be a good solution to this problem.

In general, the reasons for errors in interpolation

are complex. However, in the bi-directional tracking

based interpolation algorithm, a video object contour

can always be reliably tracked from Cb to a certain

C(b+t1), and from Ce to a Ce�t2 , where t1 > 0 and

t2 > 0. If b+ t1 turns out equal to e� t2, the problem

is solved. Otherwise, we can move the Cb to C(b+t1),

and Ce to Ce�t2 , and begin the interpolation again. In

this way, the interpolation is done iteratively until the

two contours Cb and Ce converge. This process can

be better illustrated in Figure 8. In Figure 8, points

P (1) and P (2) are a matched node pair on contours Cb

and Ce. After the �rst round of interpolation, point

P (1) is correctly tracked to P (3) and P (2) to P (4).

At this stage, the user changes the Cb to the temporal

position at P (3) and Ce to the position at P (4), sets

the global search parameters accordingly, and begins

the interpolation again. As depicted in the �gure, the

global search area in the second round for point pair

P (3)�P (4) is much smaller than that of P (1)�P (2).

This is an important factor that helps the iterative in-

terpolation process converge.

In Figure 9, a practical example is given on the

Foreman sequence to show how the iterative interpola-

Search Area 1

Search Area 2 P(2)

P(4)

P(3)

P(1)

Figure 8: Illustration of iterative interpolation. Point

P (1) and P (2) are a matched node pair on initial con-

tours Cb and Ce. After the �rst round of interpolation,

point P (1) is correctly tracked to P (3) and P (2) to

P (4). Their corresponding contours are used as new

Cb and Ce and the interpolation is done iteratively un-

til converges.

tion works. In the �rst interpolation round, the user

speci�es Cb on frame 50 and Ce on frame 100, the

global searching parameters are height = 15(pixels),

width = 4(pixels). Sub�gures (a) to (e) are results

on frames 80, 84, 87, 90, 94 in this round. Obviously,

the tracking result is poor from frame 80 to 94, mainly

because a strong neighboring edge has attracted the

snake erroneously (due to space limits, other frames

are not included in the �gure). To overcome the error,

the user moves Cb to frame 80 and Ce to frame 94, and

change the global searching parameters to height = 4,

width = 4. Based on the contours on frame 80 and

94, the results after the new interpolation round on

frames 84, 87, 90 are shown in sub�gures (f), (g), (h),

respectively. Obviously, the second interpolation round

improves the accuracy of tracked contours if we com-

pare the contours in sub�gures (b), (c), (d) with those

in (f), (g), (h). It is worth noticing that in the second

round of interpolation, the user does not have to tell the

computer laboriously what exactly a correct contour

is. Instead, the user just chooses new anchor frames

on which the tracked contours are correct, and changes

the global searching parameters accordingly (limits the

global searching area as much as possible). It is the

computer's work to do the interpolation again based

on new user input information!

5. EXPERIMENTS

The discussed video object annotation system was im-

plemented on PCs running Windows 95. Experiments

were carried out over MPEG-4 testing video sequences

as well as sequences from a library used by Columbia's

VideoQ1 system.

1http://www.ctr.columbia.edu/VideoQ



First, we compared the e�ect of parametric tem-

plate for active contour tracking on the Carphone se-

quence. In the experiment, single direction forward

tracking was used. In Figure 10, the left column is

the tracking result without and the right column is the

result with the parametric template. The �rst row is

the beginning user input contour in frame 0, the fol-

lowing two rows are the tracked results for the 43rd

and 47th frames. Obviously, the parametric template

improves the tracking robustness in complex boundary

conditions.

Figure 11 shows the results of tracking result merg-

ing on the Mother-Daughter sequence. The user de-

�ned VO contours on frame 75 and 180. The �rst row

is the result of backward tracking from frame 180 to

frame 75, and the second row is the interpolation re-

sults that merged bi-directional trackings. The frame

numbers, from left to right, are 170, 160, 150, 130 and

90. We can see that from frame 180 to 160, the merged

results are taken from backward tracking, while from

160 to 75, the merged results are taken from forward

tracking (which is not shown here due to the space

limit). That is, the merged interpolation results are

better than tracking results on either direction.

Figure 12 is a fully �nished segmentation result on

the �rst 100 frames of the Foreman sequence. Sub�g-

ures (a)-(h) are the produced contours on frame 10, 20,

30, 40, 60, 70, 80, 90. To �nish the segmentation, the

user speci�ed three initial contours on frame 0, 50 and

100. One additional iteration was involved in the in-

terpolation between frame 0 and frame 50, and frame

50 and frame 100, respectively.

In practice, the computational complexity of the al-

gorithm depends on the size of the searching area and

the complexity of the contours. In our experiment, a

200-MHz Pentium was used, the average speed of the

interpolation algorithm was about 0.01 second/node

and/or 0.6 second/frame (tested on several MPEG-4

sequences in QCIF size).

6. CONCLUDING REMARKS

In this paper, an interactive authoring system is de-

signed for video object segmentation and annotation.

This system features a new contour interpolation algo-

rithm, which makes better use of user inputs and has

more stable performance than traditional single direc-

tional tracking algorithms. In addition, e�cient user

interaction models are built for both initial data input

and machine error feedback. Our experiments show

that this prototype system works e�ciently both from

the machine's and the user's point of view, in that it

elegantly balances the use's decision making capability

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 9: An example of iterative interpolation on the

Foreman sequence. In the �rst round, the user speci�es

Cb at frame 50 and Ce at frame 100, the global search

parameters are height = 15(pixels), width = 4(pixels).

(a) to (e) are results on frames 80, 84, 87, 90, 94 at this

round. In the second round, previous contour result on

frame 80 is used as Cb and contour result on frame 94

is used as Ce, the global search parameters are reduced

to be height = 4, width = 4. The new interpolation

results on frame 84, 87, 90 are showed in (f), (g), (h),

respectively.



Figure 11: Illustration of tracking results merging. The user de�ned VO contours on frame 75 and 180. The �rst

row is the result of backward tracking from frame 180 to frame 75, and the second row is the interpolation results

that merged bi-directional trackings. The frame numbers, from left to right, are 170, 160, 150, 130 and 90.

Figure 10: Comparison of the e�ect of parametric tem-

plate on active contour tracking. The left column is

the tracking result without and the right column is the

result with parametric template. First row is the be-

ginning user input contour in frame 0, the following

two rows are the tracked results for the 43rd and 47th

frames.

with the computer's processing and searching power.

7. REFERENCES

[1] IBM HotVideo website, \http://www.software.

ibm.com/net.media/hotvideo/index.html".

[2] Veon website, \http://www.veon.com/".

[3] E. Chalom and V.M. Bove Jr., \Segmentation of

an image sequence using multi-dimensional image

attributes," in Proc. IEEE Int. Conf. Image Pro-

cessing, Lausanne, Sept. 1996.

[4] P. Correia and F. Pereira, \The role of analysis in

content-based video coding and indexing," Signal

Processing, vol. 66, pp. 125{142, 1998.

[5] D. Zhong and S.F. Chang, \AMOS: an active sys-

tem for MPEG-4 video object segmentation," in

Proc. IEEE Int. Conf. Image Processing, Chicago,

Oct. 1998.

[6] C. Gu and M.C. Lee, \Semantic video object

tracking using region-based classi�cation," in

Proc. IEEE Int. Conf. Image Processing, Chicago,

Oct. 1998.

[7] M. Kass, A. Witkin, and D. Terzopoulos, \Snakes:

Active contour models," Int. J. Comput. Vision,

vol. 1, no. 4, pp. 321{331, 1988.

[8] D. Geiger, A. Gupta, L.A. Costa, and J. Vlont-

zos, \Dynamic programming for detecting, track-

ing and matching deformable contours," IEEE

Trans. PAMI, vol. 17, no. 3, pp. 294{302, 1995.



[9] Y.T. Lin and Y.L. Chang, \Tracking deformable

objects with the active contour model," in IEEE

Int. Conf. On Multimedia Computing and Sys-

tems, Ottawa, Canada, June 1997.

[10] Y. Fu, A.T. Erdem, and A.M. Tekalp, \Occlusion

adaptive motion snake," in Proc. IEEE Int. Conf.

Image Processing, Chicago, Oct. 1998.

[11] T.C Chiueh, T. Mitra, and C.K. Yang, \Zodiac: a

history-based interactive video authoring system,"

in ACM Int. Multimedia Conf., Bristol, England,

Sept. 1998.

[12] E.N. Mortensen and W.A. Barrett, \Interactive

segmentation with intelligent scissors," Graphical

Models and Image Processing, vol. 60, pp. 349{

384, 1998.

[13] K. Sobottka and I. Pitas, \Segmentation and

tracking of faces in color images," in Proceedings

of 2nd Intl. Conf. Automatic Face and Gesture

Recog., Killington, Vermont, 1996, pp. 236{241.

[14] A.A. Amini, T.E. Weymouth, and R.C. Jain, \Us-

ing dynamic programming for solving variational

problems in vision," IEEE Trans. PAMI, vol. 12,

no. 9, pp. 885{867, 1990.

[15] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, In-

troduction to Algorithms, chapter 25.2, MIT Press,

1990.

[16] A. Martelli, \A heuristic search methods to edge

and contour detection," Commun. ACM, vol. 19,

no. 2, pp. 73{83, 1976.

[17] E. Mortensen and W. Barrett, \Intelligent scissors

for image composition," in Proceedings of ACM

SIGGRAPH 95, Los Angeles, CA, 1995, pp. 191{

198.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 12: Illustration of a full segmentation result on

the Foreman sequence. The frame numbers are 10, 20,

30, 40, 60, 70, 80, 90 for sub�gures (a)-(h).


